Commit 974cce06 authored by Delaigue Olivier's avatar Delaigue Olivier
Browse files

refactor(Publications): add and update references in the 'Articles' section

Refs #2
parent 1a8b8051
......@@ -103,15 +103,14 @@ output:
- Althoff D., Rodrigues L.N. & Silva D.D. da (2022). Predicting runoff series in ungauged basins of the Brazilian Cerrado biome. Environmental Modelling & Software 149, 105315. [10.1016/j.envsoft.2022.105315](https://doi.org/10.1016/j.envsoft.2022.105315)
- Althoff D. & Rodrigues L.N. (2021). Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment. Journal of Hydrology 600, 126674. doi: [10.1016/j.jhydrol.2021.126674](https://doi.org/10.1016/j.jhydrol.2021.126674)
- Althoff D., Rodrigues L.N. & Bazame H.C. (2021). Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble. Stochastic Environmental Research and Risk Assessment. doi: [10.1007/s00477-021-01980-8](https://doi.org/10.1007/s00477-021-01980-8)
- Astagneau P.C., Bourgin F., Andréassian V. & Perrin C. (2021). When does a parsimonious model fail to simulate floods? Learning from the seasonality of model bias. Hydrological Sciences Journal. doi: [10.1080/02626667.2021.1923720](https://doi.org/10.1080/02626667.2021.1923720)
- Ayzel G., Kurochkina L., Abramov D. & Zhuravlev S. (2021). Development of a Regional Gridded Runoff Dataset Using Long Short-Term Memory (LSTM) Networks. Hydrology 8, 6. doi: [10.3390/hydrology8010006](https://doi.org/10.3390/hydrology8010006)
- Ayzel G., Kurochkina L. & Zhuravlev S. (2020). The influence of regional hydrometric data incorporation on the accuracy of gridded reconstruction of monthly runoff. Hydrological Sciences Journal, 1–12. doi: [10.1080/02626667.2020.1762886](https://doi.org/10.1080/02626667.2020.1762886)
- Bérubé S., Brissette F. & Arsenault R. (2022). Optimal Hydrological Model Calibration Strategy for Climate Change Impact Studies. Journal of Hydrologic Engineering 27, 04021053. [10.1061/(ASCE)HE.1943-5584.0002148](https://doi.org/10.1061/(ASCE)HE.1943-5584.0002148)
- Caillouet L., Vidal J.-P., Sauquet E., Devers A., Lauvernet C., Graff B., et al. (2021). Intercomparaison des évènements d’étiage extrême en France depuis 1871. LHB 107, 1–9. doi: [10.1080/00186368.2021.1914463](https://doi.org/10.1080/00186368.2021.1914463)
- Flores N., Rodríguez R., Yépez S., Osores V., Rau P., Rivera D., et al. (2021). Comparison of Three Daily Rainfall-Runoff Hydrological Models Using Four Evapotranspiration Models in Four Small Forested Watersheds with Different Land Cover in South-Central Chile. Water 13. doi: [10.3390/w13223191](https://doi.org/10.3390/w13223191)
- Ghimire U., Agarwal A., Shrestha N.K., Daggupati P., Srinivasan G. & Than H.H. (2020). Applicability of Lumped Hydrological Models in a Data-Constrained River Basin of Asia. Journal of Hydrologic Engineering 25, 05020018. doi: [10.1061/(ASCE)HE.1943-5584.0001950](https://doi.org/10.1061/(ASCE)HE.1943-5584.0001950)
- Gnann S.J., Coxon G., Woods R.A., Howden N.J.K. & McMillan H.K. (2021). TOSSH: A Toolbox for Streamflow Signatures in Hydrology. Environmental Modelling & Software 138, 104983. doi: [10.1016/j.envsoft.2021.104983](https://doi.org/10.1016/j.envsoft.2021.104983)
- Golian S., Murphy C. & Meresa H. (2021). Regionalization of hydrological models for flow estimation in ungauged catchments in Ireland. Journal of Hydrology: Regional Studies 36, 100859. doi: [10.1016/j.ejrh.2021.100859](https://doi.org/10.1016/j.ejrh.2021.100859)
- Hao Y., Sun F., Wang H., Liu W., Shen Y.-J., Li Z., et al. (2022). Understanding climate-induced changes of snow hydrological processes in the Kaidu River Basin through the CemaNeige-GR6J model. CATENA 212, 106082. doi[10.1016/j.catena.2022.106082](https://doi.org/10.1016/j.catena.2022.106082)
- Hashemi R., Brigode P., Garambois P.-A. & Javelle P. (2021). How can regime characteristics of catchments help in training of local and regional LSTM-based runoff models? Hydrology and Earth System Sciences Discussions 2021, 1–33. doi: [10.5194/hess-2021-511](https://doi.org/10.5194/hess-2021-511)
- Henine H., Jeantet A., Chaumont C., Chelil S., Lauvernet C. & Tournebize J. (2021). Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start. Agricultural Water Management, 107318. doi: [10.1016/j.agwat.2021.107318](https://doi.org/10.1016/j.agwat.2021.107318)
- Horton P., Schaefli B. & Kauzlaric M. (2021). Why do we have so many different hydrological models? A review based on the case of Switzerland. WIREs Water, e1574. doi:[10.1002/wat2.1574](https://doi.org/10.1002/wat2.1574)
......@@ -121,10 +120,9 @@ output:
- Mercado-Bettín D., Clayer F., Shikhani M., Moore T.N., Frías M.D., Jackson-Blake L., et al. (2021). Forecasting water temperature in lakes and reservoirs using seasonal climate prediction. Water Research, 117286. doi: [10.1016/j.watres.2021.117286](https://doi.org/10.1016/j.watres.2021.117286)
- Nguyen H., Mehrotra R. & Sharma A. (2020). Assessment of Climate Change Impacts on Reservoir Storage Reliability, Resilience, and Vulnerability Using a Multivariate Frequency Bias Correction Approach. Water Resources Research 56. doi: [10.1029/2019WR026022](https://doi.org/10.1029/2019WR026022)
- Pelletier A. & Andréassian V. (2021). On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation. Hydrology and Earth System Sciences Discussions 2021, 1–37. doi: [10.5194/hess-2021-413](https://doi.org/10.5194/hess-2021-413)
- Peredo D., Ramos M.-H., Andréassian V. & Oudin L. (2022). Investigating hydrological model versatility to simulate extreme flood events. Hydrological Sciences Journal. [10.1080/02626667.2022.2030864](https://doi.org/10.1080/02626667.2022.2030864)
- Peredo D., Ramos M.-H., Andréassian V. & Oudin L. (2022). Investigating hydrological model versatility to simulate extreme flood events. Hydrological Sciences Journal 0, 1–18. doi: [10.1080/02626667.2022.2030864](https://doi.org/10.1080/02626667.2022.2030864)
- Piazzi G., Thirel G., Perrin C. & Delaigue O. (2021). Sequential Data Assimilation for Streamflow Forecasting: Assessing the Sensitivity to Uncertainties and Updated Variables of a Conceptual Hydrological Model at Basin Scale. Water Resources Research 57. doi: [10.1029/2020WR028390](https://doi.org/10.1029/2020WR028390)
- Saadi M., Oudin L. & Ribstein P. (2021). Physically consistent conceptual rainfall–runoff model for urbanized catchments. Journal of Hydrology 599, 126394. doi: [10.1016/j.jhydrol.2021.126394](https://doi.org/10.1016/j.jhydrol.2021.126394)
- Sauquet E., Beaufort A., Sarremejane R. & Thirel G. (2021). Predicting flow intermittence in France under climate change. Hydrological Sciences Journal 0, 1–14. doi: [10.1080/02626667.2021.1963444]( https://doi.org/10.1080/02626667.2021.1963444)
- Schmidt-Walter P., Trotsiuk V., Meusburger K., Zacios M. & Meesenburg H. (2020). Advancing simulations of water fluxes, soil moisture and drought stress by using the LWF-Brook90 hydrological model in R. Agricultural and Forest Meteorology, 108023. doi: [10.1016/j.agrformet.2020.108023](https://doi.org/10.1016/j.agrformet.2020.108023)
- Soper J.J., Guzman C.D., Kumpel E. & Tobiason J.E. (2021). Long-term analysis of road salt loading and transport in a rural drinking water reservoir watershed. Journal of Hydrology 603, 127005. doi: [10.1016/j.jhydrol.2021.127005](https://doi.org/10.1016/j.jhydrol.2021.127005)
- Tyralis H. & Papacharalampous G. (2021). Quantile-Based Hydrological Modelling. Water 13. doi:[10.3390/w13233420](https://doi.org/10.3390/w13233420)
......@@ -140,9 +138,11 @@ output:
- Adane G.B., Hirpa B.A., Gebru B.M., Song C. & Lee W.-K. (2021). Integrating Satellite Rainfall Estimates with Hydrological Water Balance Model: Rainfall-Runoff Modeling in Awash River Basin, Ethiopia. Water 13. doi: [10.3390/w13060800](https://doi.org/10.3390/w13060800)
- Arabzadeh R., Aberi P., Hesarkazzazi S., Hajibabaei M., Rauch W., Nikmehr S., et al. (2021). WRSS: An Object-Oriented R Package for Large-Scale Water Resources Operation. Water 13. doi:[10.3390/w13213037](https://doi.org/10.3390/w13213037)
- Astagneau P.C., Bourgin F., Andréassian V. & Perrin C. (2021). When does a parsimonious model fail to simulate floods? Learning from the seasonality of model bias. Hydrological Sciences Journal 66, 1288–1305. doi: [10.1080/02626667.2021.1923720](https://doi.org/10.1080/02626667.2021.1923720)
- Astagneau P.C., Thirel G., Delaigue O., Guillaume J.H.A., Parajka J., Brauer C.C., et al. (2021). Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective. Hydrology and Earth System Sciences 25, 3937–3973. doi: [10.5194/hess-25-3937-2021](https://doi.org/10.5194/hess-25-3937-2021)
- Bouaziz L.J.E., Fenicia F., Thirel G., de Boer-Euser T., Buitink J., Brauer C.C., et al. (2021). Behind the scenes of streamflow model performance. Hydrology and Earth System Sciences 25, 1069–1095. doi: [10.5194/hess-25-1069-2021](https://doi.org/10.5194/hess-25-1069-2021)
- Donegan S., Murphy C., Harrigan S., Broderick C., Foran Quinn D., Golian S., et al. (2021). Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times. Hydrology and Earth System Sciences 25, 4159–4183. doi: [10.5194/hess-25-4159-2021](https://doi.org/10.5194/hess-25-4159-2021)
- Flores N., Rodríguez R., Yépez S., Osores V., Rau P., Rivera D., et al. (2021). Comparison of Three Daily Rainfall-Runoff Hydrological Models Using Four Evapotranspiration Models in Four Small Forested Watersheds with Different Land Cover in South-Central Chile. Water 13. doi: [10.3390/w13223191](https://doi.org/10.3390/w13223191)
- Gagnon-Poiré A., Brigode P., Francus P., Fortin D., Lajeunesse P., Dorion H., et al. (2021). Reconstructing past hydrology of eastern Canadian boreal catchments using clastic varved sediments and hydro-climatic modelling: 160 years of fluvial inflows. Climate of the Past 17, 653–673. doi: [10.5194/cp-17-653-2021](https://doi.org/10.5194/cp-17-653-2021)
- Golian S. & Murphy C. (2021). Evaluation of Sub-Selection Methods for Assessing Climate Change Impacts on Low-Flow and Hydrological Drought Conditions. Water Resources Management 35, 113–133. doi: [s11269-020-02714-1](https://doi.org/10.1007/s11269-020-02714-1)
- Guilpart E., Espanmanesh V., Tilmant A. & Anctil F. (2021). Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models. Hydrology and Earth System Sciences 25, 4611–4629. doi: [10.5194/hess-25-4611-2021](https://doi.org/10.5194/hess-25-4611-2021)
......@@ -152,6 +152,7 @@ output:
- Llauca H., Lavado-Casimiro W., Montesinos C., Santini W. & Rau P. (2021). PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water 13. doi: [10.3390/w13081048](https://doi.org/10.3390/w13081048)
- Nicolle P., Andréassian V., Royer-Gaspard P., Perrin C., Thirel G., Coron L., et al. (2021). Technical note: RAT – a robustness assessment test for calibrated and uncalibrated hydrological models. Hydrology and Earth System Sciences 25, 5013–5027. doi: [10.5194/hess-25-5013-2021](https://doi.org/10.5194/hess-25-5013-2021)
- Royer-Gaspard P., Andréassian V. & Thirel G. (2021). Technical note: PMR – a proxy metric to assess hydrological model robustness in a changing climate. Hydrology and Earth System Sciences 25, 5703–5716. doi: [hess-25-5703-2021](https://doi.org/10.5194/hess-25-5703-2021)
- Sauquet E., Beaufort A., Sarremejane R. & Thirel G. (2021). Predicting flow intermittence in France under climate change. Hydrological Sciences Journal 66, 2046–2059. doi: [10.1080/02626667.2021.1963444](https://doi.org/10.1080/02626667.2021.1963444)
- Toum E., Masiokas M.H., Villalba R., Pitte P. & Ruiz L. (2021). The HBV.IANIGLA Hydrological Model. The R Journal 13, 378–395. doi: [10.32614/RJ-2021-059](https://doi.org/10.32614/RJ-2021-059)
### 2020
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment