ErrorCrit_KGE.Rd 2.28 KB
Newer Older
Delaigue Olivier's avatar
Delaigue Olivier committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/ErrorCrit_KGE.R
\encoding{UTF-8}
\name{ErrorCrit_KGE}
\alias{ErrorCrit_KGE}
\title{Error criterion based on the KGE formula}
\usage{
ErrorCrit_KGE(InputsCrit, OutputsModel, quiet = FALSE)
}
\arguments{
\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details}

\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details}

\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE}
}
\value{
[list] list containing the function outputs organised as follows:
         \tabular{ll}{
         \emph{$CritValue      }   \tab   [numeric] value of the criterion \cr
         \emph{$CritName       }   \tab   [character] name of the criterion \cr
         \emph{$SubCritValues  }   \tab   [numeric] values of the sub-criteria \cr
         \emph{$SubCritNames   }   \tab   [character] names of the sub-criteria \cr
         \emph{$CritBestValue  }   \tab   [numeric] theoretical best criterion value \cr
         \emph{$Multiplier     }   \tab   [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr
         \emph{$Ind_notcomputed}   \tab   [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr
         }
}
\description{
Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009).
}
\details{
In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows
the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised
(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE).
}
\examples{
## see example of the ErrorCrit function
}
\author{
Laurent Coron (June 2014)
}
\references{
Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009),
      Decomposition of the mean squared error and NSE performance criteria: Implications
      for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr
}
\seealso{
\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}}
}