V05_sd_model.Rmd 9.57 KB
Newer Older
1
---
2
title: "Simulated vs observed upstream flows in calibration of semi-distributed GR4J model"
3
author: "David Dorchies"
4
5
6
7
bibliography: V00_airgr_ref.bib
output: rmarkdown::html_vignette
vignette: >
  %\VignetteEngine{knitr::rmarkdown}
8
  %\VignetteIndexEntry{Simulated vs observed upstream flows in calibration of semi-distributed GR4J model}
9
10
11
12
13
14
15
16
17
18
19
20
21
22
  %\VignetteEncoding{UTF-8}
---

```{r, include=FALSE, fig.keep='none', results='hide'}
library(airGR)
options(digits = 3)
```

# Introduction

## Scope

The **airGR** package implements semi-distributed model capabilities using a lag model between subcatchments. It allows to chain together several lumped models as well as integrating anthropogenic influence such as reservoirs or withdrawals.

23
`RunModel_Lag` documentation gives an example of simulating the influence of a reservoir in a lumped model. Try `example(RunModel_Lag)` to get it.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

In this vignette, we show how to calibrate 2 sub-catchments in series with a semi-distributed model consisting of 2 GR4J models. For doing this we compare two strategies for calibrating the downstream subcatchment:

- using upstream observed flows
- using upstream simulated flows

We finally compare these calibrations with a theoretical set of parameters.

## Model description


```{r, warning=FALSE, include=FALSE}
library(airGR)
options(digits = 3)
```

We use an example data set from the package that unfortunately contains data for only one catchment.

```{r, warning=FALSE}
## loading catchment data
data(L0123001)
```

Let's imagine that this catchment of 360 km² is divided into 2 subcatchments:

- An upstream subcatchment of 180 km²
- 100 km downstream another subcatchment of 180 km²

We consider that meteorological data are homogeneous on the whole catchment, so we use the same pluviometry `BasinObs$P` and the same evapotranspiration `BasinObs$E` for the 2 subcatchments.

For the observed flow at the downstream outlet, we generate it with the assumption that the upstream flow arrives at downstream with a constant delay of 2 days.

```{r}
QObsDown <- (BasinObs$Qmm + c(0, 0, BasinObs$Qmm[1:(length(BasinObs$Qmm)-2)])) / 2
58
59
60
options(digits = 5)
summary(cbind(QObsUp = BasinObs$Qmm, QObsDown))
options(digits = 3)
61
62
63
64
65
66
67
68
```

# Calibration of the upstream subcatchment

The operations are exactly the same as the ones for a GR4J lumped model. So we do exactly the same operations as in the [Get Started](V01_get_started.html) vignette.

```{r}
InputsModelUp <- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR,
69
                                   Precip = BasinObs$P, PotEvap = BasinObs$E)
70
71
72
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d") == "1990-01-01"),
               which(format(BasinObs$DatesR, format = "%Y-%m-%d") == "1999-12-31"))
RunOptionsUp <- CreateRunOptions(FUN_MOD = RunModel_GR4J,
73
74
                                 InputsModel = InputsModelUp,
                                 IndPeriod_WarmUp = NULL, IndPeriod_Run = Ind_Run,
75
                                 IniStates = NULL, IniResLevels = NULL)
76
InputsCritUp <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModelUp,
77
78
                                 RunOptions = RunOptionsUp,
                                 VarObs = "Q", Obs = BasinObs$Qmm[Ind_Run])
79
80
CalibOptionsUp <- CreateCalibOptions(FUN_MOD = RunModel_GR4J, FUN_CALIB = Calibration_Michel)
OutputsCalibUp <- Calibration_Michel(InputsModel = InputsModelUp, RunOptions = RunOptionsUp,
81
82
                                     InputsCrit = InputsCritUp, CalibOptions = CalibOptionsUp,
                                     FUN_MOD = RunModel_GR4J)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
```

And see the result of the simulation:

```{r}
OutputsModelUp <- RunModel_GR4J(InputsModel = InputsModelUp, RunOptions = RunOptionsUp,
                                Param = OutputsCalibUp$ParamFinalR)
```


# Calibration of the downstream subcatchment with upstream flow observations

we need to create the `InputsModel` object completed with upstream information:

```{r}
InputsModelDown1 <- CreateInputsModel(
  FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR,
  Precip = BasinObs$P, PotEvap = BasinObs$E,
101
  Qupstream = matrix(BasinObs$Qmm, ncol = 1), # upstream observed flow
102
  LengthHydro = 100, # distance between upstream catchment outlet & the downstream one [km]
103
  BasinAreas = c(180, 180) # upstream and downstream areas [km²]
104
105
106
)
```

107
And then calibrate the combination of Lag model for upstream flow transfer and GR4J model for the runoff of the downstream subcatchment:
108
109
110

```{r}
RunOptionsDown <- CreateRunOptions(FUN_MOD = RunModel_GR4J,
111
112
113
                                   InputsModel = InputsModelDown1,
                                   IndPeriod_WarmUp = NULL, IndPeriod_Run = Ind_Run,
                                   IniStates = NULL, IniResLevels = NULL)
114
InputsCritDown <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModelDown1,
115
116
                                   RunOptions = RunOptionsDown,
                                   VarObs = "Q", Obs = QObsDown[Ind_Run])
117
118
CalibOptionsDown <- CreateCalibOptions(FUN_MOD = RunModel_GR4J,
                                       FUN_CALIB = Calibration_Michel,
119
120
121
122
123
                                       IsSD = TRUE) # specify that it's a SD model
OutputsCalibDown1 <- Calibration_Michel(InputsModel = InputsModelDown1,
                                        RunOptions = RunOptionsDown,
                                        InputsCrit = InputsCritDown,
                                        CalibOptions = CalibOptionsDown,
124
125
126
                                        FUN_MOD = RunModel_GR4J)
```

127
To run the complete model, we should substitute the observed upstream flow by the simulated one for the entire period of simulation (warm-up + run):
128
129
130

```{r}
InputsModelDown2 <- InputsModelDown1
131
132
133
# Simulated flow during warm-up period 
InputsModelDown2$Qupstream[Ind_Run[seq_len(365)] - 365] <- OutputsModelUp$WarmUpQsim
# Simulated flow during run period
134
135
136
InputsModelDown2$Qupstream[Ind_Run] <- OutputsModelUp$Qsim
```

137
`RunModel` is run in order to automatically combine GR4J and Lag models.
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

```{r}
OutputsModelDown1 <- RunModel(InputsModel = InputsModelDown2,
                              RunOptions = RunOptionsDown,
                              Param = OutputsCalibDown1$ParamFinalR,
                              FUN_MOD = RunModel_GR4J)
```

Performance of the model validation is then:

```{r}
CritDown1 <- ErrorCrit_NSE(InputsCritDown, OutputsModelDown1)
```


# Calibration of the downstream subcatchment with upstream simulated flow

We calibrate the model with the `InputsModel` object previously created for substituting the observed upstream flow with the simulated one:

```{r}
158
159
160
161
OutputsCalibDown2 <- Calibration_Michel(InputsModel = InputsModelDown2,
                                        RunOptions = RunOptionsDown,
                                        InputsCrit = InputsCritDown,
                                        CalibOptions = CalibOptionsDown,
162
163
164
165
166
167
168
                                        FUN_MOD = RunModel_GR4J)
ParamDown2 <- OutputsCalibDown2$ParamFinalR
```


# Discussion

169
## Identification of Velocity parameter
170

171
The theoretical Velocity parameter should be equal to:
172
173

```{r}
174
Velocity <- InputsModelDown1$LengthHydro * 1e3 / (2 * 86400)
175
paste(format(Velocity), "m/s")
176
177
178
179
180
```

Both calibrations overestimate this parameter:

```{r}
181
mVelocity <- matrix(c(Velocity,
Delaigue Olivier's avatar
Delaigue Olivier committed
182
183
184
185
186
187
188
                      OutputsCalibDown1$ParamFinalR[1],
                      OutputsCalibDown2$ParamFinalR[1]),
                    ncol = 1,
                    dimnames = list(c("theoretical",
                                      "calibrated with observed upstream flow",
                                      "calibrated with simulated  upstream flow"),
                                    c("Velocity parameter")))
189
knitr::kable(mVelocity)
190
191
192
193
194
195
196
```

## Value of the performance criteria with theoretical calibration

Theoretically, the parameters of the downstream GR4J model should be the same as the upstream one and we know the lag time. So this set of parameter should give a better performance criteria:

```{r}
197
ParamDownTheo <- c(Velocity, OutputsCalibUp$ParamFinalR)
198
OutputsModelDownTheo <- RunModel(InputsModel = InputsModelDown2,
199
200
201
                                 RunOptions = RunOptionsDown,
                                 Param = ParamDownTheo,
                                 FUN_MOD = RunModel_GR4J)
202
203
204
205
206
207
208
209
CritDownTheo <- ErrorCrit_NSE(InputsCritDown, OutputsModelDownTheo)
```



## Parameters and performance of each subcatchment for all calibrations

```{r}
210
211
212
213
214
215
216
217
218
219
comp <- matrix(c(0, OutputsCalibUp$ParamFinalR,
                 rep(OutputsCalibDown1$ParamFinalR, 2),
                 OutputsCalibDown2$ParamFinalR,
                 ParamDownTheo),
               ncol = 5, byrow = TRUE)
comp <- cbind(comp, c(OutputsCalibUp$CritFinal,
                      OutputsCalibDown1$CritFinal,
                      CritDown1$CritValue,
                      OutputsCalibDown2$CritFinal,
                      CritDownTheo$CritValue))
220
colnames(comp) <- c("Velocity", paste0("X", 1:4), "NSE")
221
222
223
224
225
226
227
228
229
rownames(comp) <- c("Calibration of the upstream subcatchment",
                    "Calibration 1 with observed upstream flow",
                    "Validation 1 with simulated upstream flow",
                    "Calibration 2 with simulated upstream flow",
                    "Validation theoretical set of parameters")
knitr::kable(comp)
```

Even if calibration with observed upstream flows gives an improved performance criteria, in validation using simulated upstream flows the result is quite similar as the performance obtained with the calibration with upstream simulated flows. The theoretical set of parameters give also an equivalent performance but still underperforming the calibration 2 one.