RunModel_GR5J.R 6.34 KB
Newer Older
Delaigue Olivier's avatar
Delaigue Olivier committed
1
2
3
RunModel_GR5J <- function(InputsModel,RunOptions,Param){

    NParam <- 5;
4
    FortranOutputs <- .FortranOutputs(GR = "GR5J")$GR
Delaigue Olivier's avatar
Delaigue Olivier committed
5
6

    ##Arguments_check
7
8
9
10
11
12
13
      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
      if(inherits(InputsModel,"daily"      )==FALSE){ stop("'InputsModel' must be of class 'daily'      ") }  
      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
Delaigue Olivier's avatar
Delaigue Olivier committed
14
      Param <- as.double(Param);
15
16
      
      Param_X1X3_threshold <- 1e-2
17
      Param_X4_threshold   <- 0.5
18
      if (Param[1L] < Param_X1X3_threshold) {
19
        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
20
21
22
        Param[1L] <- Param_X1X3_threshold
      }
      if (Param[3L] < Param_X1X3_threshold) {
23
        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
24
25
        Param[3L] <- Param_X1X3_threshold
      }
26
27
28
29
      if (Param[4L] < Param_X4_threshold) {
        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
        Param[4L] <- Param_X4_threshold
      }      
30
      
Delaigue Olivier's avatar
Delaigue Olivier committed
31
32
33
34
35
36
37
    ##Input_data_preparation
      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
      LInputSeries <- as.integer(length(IndPeriod1))
      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
      } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }

38
39
40
41
42
    ##Output_data_preparation
      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
      
Delaigue Olivier's avatar
Delaigue Olivier committed
43
    ##Use_of_IniResLevels
44
      if(!is.null(RunOptions$IniResLevels)){
45
46
        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
Delaigue Olivier's avatar
Delaigue Olivier committed
47
48
49
      }

    ##Call_fortan
50
      RESULTS <- .Fortran("frun_gr5j",PACKAGE="airGR",
Delaigue Olivier's avatar
Delaigue Olivier committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
                 ##inputs
                     LInputs=LInputSeries,                             ### length of input and output series
                     InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/d]
                     InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/d]
                     NParam=as.integer(length(Param)),                 ### number of model parameter
                     Param=Param,                                      ### parameter set
                     NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
                     StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
                     NOutputs=as.integer(length(IndOutputs)),          ### number of output series
                     IndOutputs=IndOutputs,                            ### indices of output series
                 ##outputs
                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm]
                     StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
                     )
      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
67
68
      if (ExportStateEnd) {
        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
69
70
71
72
73
74
        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5J, InputsModel = InputsModel,
                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
                                            UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
                                            GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
                                            verbose = FALSE)
      }
Delaigue Olivier's avatar
Delaigue Olivier committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    ##Output_data_preparation
      ##OutputsModel_only
      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
        OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
        names(OutputsModel) <- FortranOutputs[IndOutputs];      }
      ##DatesR_and_OutputsModel_only
      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]);      }
      ##OutputsModel_and_SateEnd_only
      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
                           list(RESULTS$StateEnd) );
        names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd");      }
      ##DatesR_and_OutputsModel_and_SateEnd
      if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
                           list(RESULTS$StateEnd) );
        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd");      }

    ##End
      rm(RESULTS); 
      class(OutputsModel) <- c("OutputsModel","daily","GR");
      return(OutputsModel);

}