RunModel_CemaNeigeGR4J.Rd 7.05 KB
Newer Older
Delaigue Olivier's avatar
test    
Delaigue Olivier committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
% Generated by roxygen2 (4.0.1): do not edit by hand
\encoding{UTF-8}
\name{RunModel_CemaNeigeGR4J}
\alias{RunModel_CemaNeigeGR4J}
\title{Run with the CemaNeigeGR4J hydrological model}
\usage{
RunModel_CemaNeigeGR4J(InputsModel, RunOptions, Param)
}
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}

\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}

\item{Param}{[numeric] vector of 6 parameters
\tabular{ll}{
GR4J X1      \tab production store capacity [mm]                                \cr
GR4J X2      \tab intercatchment exchange coefficient [mm/d]                    \cr
GR4J X3      \tab routing store capacity [mm]                                   \cr
GR4J X4      \tab unit hydrograph time constant [d]                             \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-]         \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d]                       \cr
}}
}
\value{
[list] list containing the function outputs organised as follows:
         \tabular{ll}{
         \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                     \cr
         \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/d]                 \cr
         \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/d]                          \cr
         \emph{$Prod    }          \tab [numeric] series of production store level (X(2)) [mm]                        \cr
         \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/d]                          \cr
         \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/d]                                 \cr
         \emph{$PR      }          \tab [numeric] series of PR=PN-PS+PERC [mm/d]                                      \cr
         \emph{$Q9      }          \tab [numeric] series of HU1 outflow (Q9) [mm/d]                                   \cr
         \emph{$Q1      }          \tab [numeric] series of HU2 outflow (Q1) [mm/d]                                   \cr
         \emph{$Rout    }          \tab [numeric] series of routing store level (X(1)) [mm]                           \cr
         \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]         \cr
         \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]           \cr
         \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/d]                         \cr
         \emph{$QD      }          \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d]           \cr
         \emph{$Qsim    }          \tab [numeric] series of Qsim [mm/d]                                               \cr
         \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                          \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Pliq         }   \tab [numeric] series of liquid precip. [mm/d]                          \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Psol         }   \tab [numeric] series of solid precip. [mm/d]                           \cr
         \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     }   \tab [numeric] series of snow pack [mm]                                 \cr
         \emph{$CemaNeigeLayers[[iLayer]]$ThermalState }   \tab [numeric] series of snow pack thermal state [degC]                 \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Gratio       }   \tab [numeric] series of Gratio [0-1]                                   \cr
         \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      }   \tab [numeric] series of potential snow melt [mm/d]                     \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Melt         }   \tab [numeric] series of actual snow melt [mm/d]                        \cr
         \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  }   \tab [numeric] series of liquid precip. + actual snow melt [mm/d]       \cr
         \emph{$StateEnd}                                  \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr
         }
         (refer to the provided references or to the package source code for further details on these model outputs)
}
\description{
Function which performs a single model run for RunModel_CemaNeigeGR4J.
}
\details{
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
}
\examples{
## load of catchment data
require(airGR)
data(L0123002)

## preparation of the InputsModel object
InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR4J,DatesR=BasinObs$DatesR,
                                 Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T,
                                 ZInputs=BasinInfo$HypsoCurve[51],HypsoData=BasinInfo$HypsoCurve,
                                 NLayers=5)

## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"),
               which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00"))

## preparation of the RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR4J,InputsModel=InputsModel,
                               IndPeriod_Run=Ind_Run)

## simulation
Param <- c(408.774,2.646,131.264,1.174,0.962,2.249)
OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param)

## results preview
plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run])

## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit  <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel,
                                RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel)
cat(paste("  Crit  ",OutputsCrit$CritName,"  ",round(OutputsCrit$CritValue,4),"\\n",sep=""))

}
\author{
Laurent Coron (December 2013)
}
\references{
Perrin, C., C. Michel and V. Andréassian (2003),
      Improvement of a parsimonious model for streamflow simulation,
      Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7.
  Valéry, A., V. Andréassian and C. Perrin (2014),
      "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine?
      Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr
  Valéry, A., V. Andréassian and C. Perrin (2014),
      "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine?
      Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.
}
\seealso{
\code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}},
         \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}.
}