ErrorCrit_KGE.Rd 2.18 KB
Newer Older
Delaigue Olivier's avatar
Delaigue Olivier committed
1
2
3
4
5
\encoding{UTF-8}
\name{ErrorCrit_KGE}
\alias{ErrorCrit_KGE}
\title{Error criterion based on the KGE formula}
\usage{
6
ErrorCrit_KGE(InputsCrit, OutputsModel, verbose = TRUE)
Delaigue Olivier's avatar
Delaigue Olivier committed
7
8
9
10
11
12
}
\arguments{
\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details}

\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details}

13
\item{verbose}{(optional) [boolean] boolean indicating if the function is run in verbose mode or not, default=TRUE}
Delaigue Olivier's avatar
Delaigue Olivier committed
14
15
16
17
18
19
20
}
\value{
[list] list containing the function outputs organised as follows:
         \tabular{ll}{
         \emph{$CritValue      }   \tab   [numeric] value of the criterion \cr
         \emph{$CritName       }   \tab   [character] name of the criterion \cr
         \emph{$SubCritValues  }   \tab   [numeric] values of the sub-criteria \cr
21
         \emph{$SubCritNames   }   \tab   [character] names of the components of the criterion \cr
Delaigue Olivier's avatar
Delaigue Olivier committed
22
23
         \emph{$CritBestValue  }   \tab   [numeric] theoretical best criterion value \cr
         \emph{$Multiplier     }   \tab   [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr
24
         \emph{$Ind_notcomputed}   \tab   [numeric] indices of the time steps where InputsCrit$BoolCrit=FALSE or no data is available \cr
Delaigue Olivier's avatar
Delaigue Olivier committed
25
26
27
28
29
30
         }
}
\description{
Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009).
}
\details{
Delaigue Olivier's avatar
Delaigue Olivier committed
31
In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows 
32
the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised (Multiplier=-1 for KGE).
Delaigue Olivier's avatar
Delaigue Olivier committed
33
34
35
36
37
38
39
40
}
\examples{
## see example of the ErrorCrit function
}
\author{
Laurent Coron (June 2014)
}
\references{
Delaigue Olivier's avatar
Delaigue Olivier committed
41
Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), 
Delaigue Olivier's avatar
Delaigue Olivier committed
42
43
44
45
46
47
48
      Decomposition of the mean squared error and NSE performance criteria: Implications
      for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr
}
\seealso{
\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}}
}