RunModel_GR2M.R 8.31 KB
Newer Older
Delaigue Olivier's avatar
Delaigue Olivier committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#*****************************************************************************************************************
#' Function which performs a single run for the GR2M monthly lumped model.
#'
#' For further details on the model, see the references section.
#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
#*****************************************************************************************************************
#' @title Run with the GR2M hydrological model
#' @author Laurent Coron (March 2015)
#' @example tests/example_RunModel_GR2M.R
#' @references
#'   Mouelhi S. (2003), 
#'       Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier,
#'       PhD thesis (in French), ENGREF, Cemagref Antony, France. \cr
#'   Mouelhi, S., C. Michel, C. Perrin and V. Andréassian (2006),
#'       Stepwise development of a two-parameter monthly water balance model,
#'       Journal of Hydrology, 318(1-4), 200-214, doi:10.1016/j.jhydrol.2005.06.014.
Delaigue Olivier's avatar
Delaigue Olivier committed
17
#' @useDynLib airGR
Delaigue Olivier's avatar
Delaigue Olivier committed
18
19
20
21
22
#' @encoding UTF-8
#' @export
#_FunctionInputs__________________________________________________________________________________________________
#' @param  InputsModel         [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details
#' @param  RunOptions          [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details
23
#' @param  Param               [numeric] vector of 2 parameters                                                             
Delaigue Olivier's avatar
Delaigue Olivier committed
24
25
#'                             \tabular{ll}{                                                                      
#'                             GR2M X1      \tab production store capacity [mm]                 \cr
26
#'                             GR2M X2      \tab groundwater exchange coefficient [-]    \cr
Delaigue Olivier's avatar
Delaigue Olivier committed
27
28
29
30
31
#'                             }                                                                                  
#_FunctionOutputs_________________________________________________________________________________________________
#' @return  [list] list containing the function outputs organised as follows:                                         
#'          \tabular{ll}{                                                                                         
#'          \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                    \cr
32
33
34
#'          \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/month]                 \cr
#'          \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/month]                          \cr
#'          \emph{$Qsim    }          \tab [numeric] series of Qsim [mm/month]                                               \cr
Delaigue Olivier's avatar
Delaigue Olivier committed
35
36
37
38
39
40
41
42
43
44
45
46
#'          \emph{$StateEnd}          \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr
#'          }                                                                                                     
#'          (refer to the provided references or to the package source code for further details on these model outputs)
#*****************************************************************************************************************
RunModel_GR2M <- function(InputsModel,RunOptions,Param){

    NParam <- 2;
    FortranOutputs <- c("PotEvap","Precip","Prod","Rout","Qsim");
    ### FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim");

    ##Arguments_check
      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); }  
47
      if(inherits(InputsModel,"monthly"    )==FALSE){ stop("InputsModel must be of class 'monthly'     \n"); return(NULL); }  
Delaigue Olivier's avatar
Delaigue Olivier committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
      if(inherits(InputsModel,"GR"         )==FALSE){ stop("InputsModel must be of class 'GR'          \n"); return(NULL); }  
      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("RunOptions must be of class 'RunOptions'   \n"); return(NULL); }  
      if(inherits(RunOptions,"GR"          )==FALSE){ stop("RunOptions must be of class 'GR'           \n"); return(NULL); }  
      if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); }
      if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); }
      Param <- as.double(Param);

    ##Input_data_preparation
      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
      LInputSeries <- as.integer(length(IndPeriod1))
      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
      } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }

    ##Use_of_IniResLevels
      if("IniResLevels" %in% names(RunOptions)){
        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
      }

    ##Call_fortan
Delaigue Olivier's avatar
Delaigue Olivier committed
68
      RESULTS <- .Fortran("frun_gr2m",PACKAGE="airGR",
Delaigue Olivier's avatar
Delaigue Olivier committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
                 ##inputs
                     LInputs=LInputSeries,                             ### length of input and output series
                     InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/month]
                     InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/month]
                     NParam=as.integer(length(Param)),                 ### number of model parameter
                     Param=Param,                                      ### parameter set
                     NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
                     StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
                     NOutputs=as.integer(length(IndOutputs)),          ### number of output series
                     IndOutputs=IndOutputs,                            ### indices of output series
                 ##outputs
                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm]
                     StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
                     )
      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;

    ##Output_data_preparation
      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
      ##OutputsModel_only
      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
        OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
        names(OutputsModel) <- FortranOutputs[IndOutputs];      }
      ##DatesR_and_OutputsModel_only
      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]);      }
      ##OutputsModel_and_SateEnd_only
      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
                           list(RESULTS$StateEnd) );
        names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd");      }
      ##DatesR_and_OutputsModel_and_SateEnd
      if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
                           list(RESULTS$StateEnd) );
        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd");      }

    ##End
      rm(RESULTS); 
      class(OutputsModel) <- c("OutputsModel","monthly","GR");
      return(OutputsModel);

}