ErrorCrit_KGE.Rd 2.31 KB
Newer Older
Delaigue Olivier's avatar
Delaigue Olivier committed
1
2
3
4
5
\encoding{UTF-8}
\name{ErrorCrit_KGE}
\alias{ErrorCrit_KGE}
\title{Error criterion based on the KGE formula}
\usage{
6
ErrorCrit_KGE(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
Delaigue Olivier's avatar
Delaigue Olivier committed
7
8
9
10
11
12
}
\arguments{
\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details}

\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details}

13
14
15
\item{warnings}{(optional) [boolean] boolean indicating if the warning messages are shown, default = \code{TRUE}}

\item{verbose}{(optional) [boolean] boolean indicating if the function is run in verbose mode or not, default = \code{TRUE}}
Delaigue Olivier's avatar
Delaigue Olivier committed
16
17
18
19
20
21
22
}
\value{
[list] list containing the function outputs organised as follows:
         \tabular{ll}{
         \emph{$CritValue      }   \tab   [numeric] value of the criterion \cr
         \emph{$CritName       }   \tab   [character] name of the criterion \cr
         \emph{$SubCritValues  }   \tab   [numeric] values of the sub-criteria \cr
23
         \emph{$SubCritNames   }   \tab   [character] names of the components of the criterion \cr
Delaigue Olivier's avatar
Delaigue Olivier committed
24
25
         \emph{$CritBestValue  }   \tab   [numeric] theoretical best criterion value \cr
         \emph{$Multiplier     }   \tab   [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr
26
         \emph{$Ind_notcomputed}   \tab   [numeric] indices of the time steps where InputsCrit$BoolCrit=FALSE or no data is available \cr
Delaigue Olivier's avatar
Delaigue Olivier committed
27
28
29
30
31
32
         }
}
\description{
Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009).
}
\details{
Delaigue Olivier's avatar
Delaigue Olivier committed
33
In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows 
34
the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised (Multiplier=-1 for KGE).
Delaigue Olivier's avatar
Delaigue Olivier committed
35
36
37
38
39
40
41
42
}
\examples{
## see example of the ErrorCrit function
}
\author{
Laurent Coron (June 2014)
}
\references{
Delaigue Olivier's avatar
Delaigue Olivier committed
43
Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), 
Delaigue Olivier's avatar
Delaigue Olivier committed
44
45
46
47
48
49
50
      Decomposition of the mean squared error and NSE performance criteria: Implications
      for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr
}
\seealso{
\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}}
}