RunModel_CemaNeigeGR4H.R 11.8 KB
Newer Older
1
RunModel_CemaNeigeGR4H <- function(InputsModel, RunOptions, Param) {
2
3


4
5
6
  ## Initialization of variables
  IsHyst <- inherits(RunOptions, "hysteresis")
  NParam <- ifelse(test = IsHyst, yes = 8L, no = 6L)
7
  NParamCN <- NParam - 4L
8
9
  NStates <- 4L
  FortranOutputs <- .FortranOutputs(GR = "GR4H", isCN = TRUE)
10
11


12
  ## Arguments check
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
  if (!inherits(InputsModel, "InputsModel")) {
    stop("'InputsModel' must be of class 'InputsModel'")
  }
  if (!inherits(InputsModel, "hourly")) {
    stop("'InputsModel' must be of class 'hourly'")
  }
  if (!inherits(InputsModel, "GR")) {
    stop("'InputsModel' must be of class 'GR'")
  }
  if (!inherits(InputsModel, "CemaNeige")) {
    stop("'InputsModel' must be of class 'CemaNeige'")
  }
  if (!inherits(RunOptions, "RunOptions")) {
    stop("'RunOptions' must be of class 'RunOptions'")
  }
  if (!inherits(RunOptions, "GR")) {
    stop("'RunOptions' must be of class 'GR'")
  }
  if (!inherits(RunOptions, "CemaNeige")) {
    stop("'RunOptions' must be of class 'CemaNeige'")
  }
  if (!is.vector(Param) | !is.numeric(Param)) {
    stop("'Param' must be a numeric vector")
  }
  if (sum(!is.na(Param)) != NParam) {
    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
  }
  Param <- as.double(Param)
41
42


43
44
45
46
47
48
49
50
51
52
53
  Param_X1X3_threshold <- 1e-2
  Param_X4_threshold   <- 0.5
  if (Param[1L] < Param_X1X3_threshold) {
    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
    Param[1L] <- Param_X1X3_threshold
  }
  if (Param[3L] < Param_X1X3_threshold) {
    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
    Param[3L] <- Param_X1X3_threshold
  }
  if (Param[4L] < Param_X4_threshold) {
54
    warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
55
    Param[4L] <- Param_X4_threshold
56
57
  }

58
  ## Input data preparation
59
  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
60
61
62
63
64
    RunOptions$IndPeriod_WarmUp <- NULL
  }
  IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
  LInputSeries   <- as.integer(length(IndPeriod1))
  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries
65
  ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)]
66
67
68
69
  NParamMod      <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
  ParamMod       <- Param[1:NParamMod]
  NLayers        <- length(InputsModel$LayerPrecip)
  NStatesMod     <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
70

71
  ## Output data preparation
72
73
  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
74
75


76
  ## CemaNeige________________________________________________________________________________
77
78
79
80
81
82
83
84
85
  if (inherits(RunOptions, "CemaNeige")) {
    if ("all" %in% RunOptions$Outputs_Sim) {
      IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN))
    } else {
      IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim)
    }
    CemaNeigeLayers <- list()
    CemaNeigeStateEnd <- NULL
    NameCemaNeigeLayers <- "CemaNeigeLayers"
86
87


88
    ## Call CemaNeige Fortran_________________________
89
    for (iLayer in 1:NLayers) {
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
      if (!IsHyst) {
        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
      } else {
        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
      }
      RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR",
                          ## inputs
                          LInputs = LInputSeries,                                                         ### length of input and output series
                          InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
                          InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
                          InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
                          MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
                          NParam = as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
                          Param = as.double(ParamCemaNeige),                                              ### parameter set
                          NStates = as.integer(NStates),                                                  ### number of state variables used for model initialisation = 4
                          StateStart = StateStartCemaNeige,                                               ### state variables used when the model run starts
                          IsHyst = as.integer(IsHyst),                                                    ### use of hysteresis
                          NOutputs = as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
                          IndOutputs = IndOutputsCemaNeige,                                               ### indices of output series
110
111
112
                          ## outputs
                          Outputs = matrix(as.double(-99e9), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm, mm/h or degC]
                          StateEnd = rep(as.double(-99e9), as.integer(NStates))                                        ### state variables at the end of the model run
113
      )
114
115
116
      RESULTS$Outputs[RESULTS$Outputs   <= -99e8] <- NA
      RESULTS$StateEnd[RESULTS$StateEnd <= -99e8] <- NA

117
      ## Data storage
118
119
120
121
122
      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]
      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
      if (iLayer == 1) {
        CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
123
      }
124
125
      if (iLayer > 1) {
        CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
126
      }
127
128
      if (ExportStateEnd) {
        CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd)
129
      }
130
      rm(RESULTS)
131
    } ### ENDFOR iLayer
132
    names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
133
  } ### ENDIF RunSnowModule
134
135
136
137
138
139
  if (!inherits(RunOptions, "CemaNeige")) {
    CemaNeigeLayers <- list()
    CemaNeigeStateEnd <- NULL
    NameCemaNeigeLayers <- NULL
    CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]
  }
140
141
142



143
  ## GR model
144
145
146
147
148
  if ("all" %in% RunOptions$Outputs_Sim) {
    IndOutputsMod <- as.integer(1:length(FortranOutputs$GR))
  } else {
    IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim)
  }
149

150
  ## Use of IniResLevels
151
152
153
154
  if (!is.null(RunOptions$IniResLevels)) {
    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm)
    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm)
  }
155

156
  ## Call GR model Fortan
157
158
159
160
161
162
163
164
165
166
167
  RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR",
                      ## inputs
                      LInputs = LInputSeries,                          ### length of input and output series
                      InputsPrecip = CatchMeltAndPliq,                 ### input series of total precipitation [mm/h]
                      InputsPE = InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/h]
                      NParam = NParamMod,                              ### number of model parameter
                      Param = ParamMod,                                ### parameter set
                      NStates = NStatesMod,                            ### number of state variables used for model initialising
                      StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
                      NOutputs = as.integer(length(IndOutputsMod)),    ### number of output series
                      IndOutputs = IndOutputsMod,                      ### indices of output series
168
169
170
                      ## outputs
                      Outputs = matrix(as.double(-99e9), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm or mm/h]
                      StateEnd = rep(as.double(-99e9), NStatesMod)                                           ### state variables at the end of the model run
171
  )
172
173
  RESULTS$Outputs[RESULTS$Outputs   <= -99e8] <- NA
  RESULTS$StateEnd[RESULTS$StateEnd <= -99e8] <- NA
174
175
176
177
178
  if (ExportStateEnd) {
    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
    idNStates <- seq_len(NStates*NLayers) %% NStates
    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst,
                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
179
180
                                        UH1 = RESULTS$StateEnd[(1:(20*24)) + 7],
                                        UH2 = RESULTS$StateEnd[(1:(40*24)) + (7+20*24)],
181
182
                                        GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
                                        eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
183
                                        GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]],
184
185
186
                                        GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
                                        verbose = FALSE)
  }
187

188
  if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
189
    RESULTS$Outputs[, which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1]
190
  }
191

192
193
  ## Output data preparation
  ## OutputsModel only
194
195
196
197
198
  if (!ExportDatesR & !ExportStateEnd) {
    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
                      list(CemaNeigeLayers))
    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
  }
199
  ## DatesR and OutputsModel only
200
201
202
203
204
205
  if ( ExportDatesR & !ExportStateEnd) {
    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
                      list(CemaNeigeLayers))
    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
  }
206
  ## OutputsModel and SateEnd only
207
208
209
210
211
212
  if (!ExportDatesR & ExportStateEnd) {
    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
                      list(CemaNeigeLayers),
                      list(RESULTS$StateEnd))
    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
  }
213
  ## DatesR and OutputsModel and SateEnd
214
215
216
217
218
219
220
  if ( ExportDatesR & ExportStateEnd) {
    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
                      list(CemaNeigeLayers),
                      list(RESULTS$StateEnd))
    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
  }
221

222
223
224
225
226
227
228
  ## End
  rm(RESULTS)
  class(OutputsModel) <- c("OutputsModel", "hourly", "GR", "CemaNeige")
  if (IsHyst) {
    class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
  }
  return(OutputsModel)
229

230
}