diff --git a/DESCRIPTION b/DESCRIPTION
index 3d1df6e56e9db84ccabe48097ed6b7db9a94d7b0..2eb70b11773881cf7a1f00962f34f475ff904666 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,7 +1,7 @@
 Package: airGR
 Type: Package
 Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
-Version: 1.0.6.11
+Version: 1.0.6.12
 Date: 2017-04-05
 Authors@R: c(
   person("Laurent", "Coron", role = c("aut", "trl")),
diff --git a/man/ErrorCrit_KGE.Rd b/man/ErrorCrit_KGE.Rd
index 28efcc811b8f8356ca615a6ff51ee63f0da04c1b..66b3a4fc228d8cee51c74abfdbbddc49fc2eb911 100644
--- a/man/ErrorCrit_KGE.Rd
+++ b/man/ErrorCrit_KGE.Rd
@@ -39,9 +39,9 @@ Function which computes an error criterion based on the KGE formula proposed by
 In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows 
 the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised (Multiplier=-1 for KGE).\cr\cr
 The KGE formula is
-\deqn{KGE = 1 - \sqrt(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}{KGE = 1 - sqrt((r - 1)² + (\alpha - 1)² + (\beta - 1)²)}
+\deqn{KGE = 1 - \sqrt{(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}}{KGE = 1 - sqrt((r - 1)² + (\alpha - 1)² + (\beta - 1)²)}
 with the following sub-criteria:
-\deqn{r = \mathrm{the\: linear\: correlation\: coefficient\: between\:} Q_{sim}\: \mathrm{and\:} Q_{obs}}{r = the linear correlation coefficient between Q[sim] and Q[obs]}
+\deqn{r = \mathrm{the\: linear\: correlation\: coefficient\: between\:} sim\: \mathrm{and\:} obs}{r = the linear correlation coefficient between Q[sim] and Q[obs]}
 \deqn{\alpha = \frac{\sigma_{sim}}{\sigma_{obs}}}{\alpha = \sigma[sim] / \sigma[obs]}
 \deqn{\beta = \frac{\mu_{sim}}{\mu_{obs}}}{\beta = \mu[sim] / \mu[obs]}
 }
diff --git a/man/ErrorCrit_KGE2.Rd b/man/ErrorCrit_KGE2.Rd
index 0fa1cd12481368cfb8be4e3b1f382c01840b0352..c0cc9113ae467a14902a63f8297adcf221f53931 100644
--- a/man/ErrorCrit_KGE2.Rd
+++ b/man/ErrorCrit_KGE2.Rd
@@ -41,7 +41,7 @@ the use of the function for model calibration: the product CritValue*Multiplier
 The KGE' formula is
 \deqn{KGE' = 1 - \sqrt{(r - 1)^2 + (\gamma - 1)^2 + (\beta - 1)^2}}{KGE' = 1 - sqrt((r - 1)² + (\gamma - 1)² + (\beta - 1)²)}
 with the following sub-criteria:
-\deqn{r = \mathrm{the\: linear\ correlation\: coefficient\: between\:} Q_{sim}\: \mathrm{and\:} Q_{obs}}{r = is the linear correlation coefficient between Q[sim] and Q[obs]}
+\deqn{r = \mathrm{the\: linear\ correlation\: coefficient\: between\:} sim\: \mathrm{and\:} obs}{r = is the linear correlation coefficient between Q[sim] and Q[obs]}
 \deqn{\gamma = \frac{CV_{sim}}{CV_{obs}}}{\gamma = CV[sim] / CV[obs]}
 \deqn{\beta = \frac{\mu_{sim}}{\mu_{obs}}}{\beta = \mu[sim] / \mu[obs]}
 }