diff --git a/DESCRIPTION b/DESCRIPTION index 3d1df6e56e9db84ccabe48097ed6b7db9a94d7b0..2eb70b11773881cf7a1f00962f34f475ff904666 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: airGR Type: Package Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling -Version: 1.0.6.11 +Version: 1.0.6.12 Date: 2017-04-05 Authors@R: c( person("Laurent", "Coron", role = c("aut", "trl")), diff --git a/man/ErrorCrit_KGE.Rd b/man/ErrorCrit_KGE.Rd index 28efcc811b8f8356ca615a6ff51ee63f0da04c1b..66b3a4fc228d8cee51c74abfdbbddc49fc2eb911 100644 --- a/man/ErrorCrit_KGE.Rd +++ b/man/ErrorCrit_KGE.Rd @@ -39,9 +39,9 @@ Function which computes an error criterion based on the KGE formula proposed by In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised (Multiplier=-1 for KGE).\cr\cr The KGE formula is -\deqn{KGE = 1 - \sqrt(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}{KGE = 1 - sqrt((r - 1)² + (\alpha - 1)² + (\beta - 1)²)} +\deqn{KGE = 1 - \sqrt{(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}}{KGE = 1 - sqrt((r - 1)² + (\alpha - 1)² + (\beta - 1)²)} with the following sub-criteria: -\deqn{r = \mathrm{the\: linear\: correlation\: coefficient\: between\:} Q_{sim}\: \mathrm{and\:} Q_{obs}}{r = the linear correlation coefficient between Q[sim] and Q[obs]} +\deqn{r = \mathrm{the\: linear\: correlation\: coefficient\: between\:} sim\: \mathrm{and\:} obs}{r = the linear correlation coefficient between Q[sim] and Q[obs]} \deqn{\alpha = \frac{\sigma_{sim}}{\sigma_{obs}}}{\alpha = \sigma[sim] / \sigma[obs]} \deqn{\beta = \frac{\mu_{sim}}{\mu_{obs}}}{\beta = \mu[sim] / \mu[obs]} } diff --git a/man/ErrorCrit_KGE2.Rd b/man/ErrorCrit_KGE2.Rd index 0fa1cd12481368cfb8be4e3b1f382c01840b0352..c0cc9113ae467a14902a63f8297adcf221f53931 100644 --- a/man/ErrorCrit_KGE2.Rd +++ b/man/ErrorCrit_KGE2.Rd @@ -41,7 +41,7 @@ the use of the function for model calibration: the product CritValue*Multiplier The KGE' formula is \deqn{KGE' = 1 - \sqrt{(r - 1)^2 + (\gamma - 1)^2 + (\beta - 1)^2}}{KGE' = 1 - sqrt((r - 1)² + (\gamma - 1)² + (\beta - 1)²)} with the following sub-criteria: -\deqn{r = \mathrm{the\: linear\ correlation\: coefficient\: between\:} Q_{sim}\: \mathrm{and\:} Q_{obs}}{r = is the linear correlation coefficient between Q[sim] and Q[obs]} +\deqn{r = \mathrm{the\: linear\ correlation\: coefficient\: between\:} sim\: \mathrm{and\:} obs}{r = is the linear correlation coefficient between Q[sim] and Q[obs]} \deqn{\gamma = \frac{CV_{sim}}{CV_{obs}}}{\gamma = CV[sim] / CV[obs]} \deqn{\beta = \frac{\mu_{sim}}{\mu_{obs}}}{\beta = \mu[sim] / \mu[obs]} }