Commit 5ad40d56 authored by Delaigue Olivier's avatar Delaigue Olivier
Browse files

v1.2.9.14 DOC: update of CemaNeige* docs to take into account the use of hysteresis #5252

parent fc032614
Package: airGR
Type: Package
Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
Version: 1.2.9.13
Version: 1.2.9.14
Date: 2019-03-18
Authors@R: c(
person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
......
......@@ -13,7 +13,7 @@ output:
### 1.2.9.13 Release Notes (2019-03-18)
### 1.2.9.14 Release Notes (2019-03-18)
......
......@@ -18,13 +18,15 @@ RunModel_CemaNeige(InputsModel, RunOptions, Param, IsHyst = FALSE)
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 2 parameters
\item{Param}{[numeric] vector of 2 (or 4 parameters if \code{IsHyst = TRUE})
\tabular{ll}{
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE}) \cr
}}
\item{IsHyst}{}
\item{IsHyst}{[boolean] boolean indicating if the hysteresis version of CemaNeige is used. See details}
}
......@@ -36,12 +38,14 @@ CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
......@@ -54,7 +58,8 @@ Function which performs a single run for the CemaNeige daily snow module.
\details{
For further details on the model, see the references section.
The use of the \code{IsHyst} argument is explained in \code{\link{RunModel_CemaNeigeGR4J}}. \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
}
......@@ -79,7 +84,7 @@ Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y")=="01/01/199
RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeige, InputsModel = InputsModel,
IndPeriod_Run = Ind_Run)
## simulation
## simulation with original CemaNeige version
Param <- c(0.962, 2.249)
OutputsModel <- RunModel_CemaNeige(InputsModel = InputsModel,
RunOptions = RunOptions, Param = Param)
......@@ -87,6 +92,14 @@ OutputsModel <- RunModel_CemaNeige(InputsModel = InputsModel,
## results preview
plot(OutputsModel)
## simulation with the Linear Hysteresis
Param <- c(0.962, 2.249, 100, 0.4)
OutputsModel <- RunModel_CemaNeige(InputsModel = InputsModel,
RunOptions = RunOptions, Param = Param, IsHyst = TRUE)
## results preview
plot(OutputsModel)
}
......@@ -96,16 +109,19 @@ Laurent Coron, Olivier Delaigue
\references{
Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019),
Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses.
Journal of Hydrology and Hydromechanics, doi:10.2478/johh-2018-0004, 67, 1, 70–81. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
"As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine?
Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
Valéry, A., V. Andréassian and C. Perrin (2014),
"As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine?
Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.
}
\seealso{
\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}.
\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}, \code{\link{CreateCalibOptions}}.
}
......@@ -18,14 +18,16 @@ RunModel_CemaNeigeGR4J(InputsModel, RunOptions, Param, IsHyst = FALSE)
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 6 parameters
\item{Param}{[numeric] vector of 6 (or 8 parameters if \code{IsHyst = TRUE})
\tabular{ll}{
GR4J X1 \tab production store capacity [mm] \cr
GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR4J X3 \tab routing store capacity [mm] \cr
GR4J X4 \tab unit hydrograph time constant [d] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
GR4J X1 \tab production store capacity [mm] \cr
GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR4J X3 \tab routing store capacity [mm] \cr
GR4J X4 \tab unit hydrograph time constant [d] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE}) \cr
}}
\item{IsHyst}{}
......@@ -64,6 +66,8 @@ CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
......@@ -76,7 +80,9 @@ Function which performs a single run for the CemaNeige-GR4J daily lumped model o
\details{
For further details on the model, see the references section.
If \code{IsHyst = FALSE}, the original CemaNeige version from Valéry et al. (2014) is used. \cr
If \code{IsHyst = TRUE}, the CemaNeige version from Riboust et al. (2019) is used. Compared to the original version, this version of CemaNeige needs two more parameters and it includes a representation of the hysteretic relationship between the Snow Cover Area (SCA) and the Snow Water Equivalent (SWE) in the catchment. The hysteresis included in airGR is the Modified Linear hysteresis (LH*); it is represented on panel b) of Fig. 3 in Riboust et al. (2019). Riboust et al. (2019) advise to use the LH* version of CemaNeige with parameters calibrated using an objective function combining 75 \% of KGE calculated on discharge simulated from a rainfall-runoff model compared to observed discharge and 5 \% of KGE calculated on SCA on 5 CemaNeige elevation bands compared to satellite (e.g. MODIS) SCA (see Eq. (18), Table 3 and Fig. 6). Riboust et al. (2019)'s tests were realized with GR4J as the chosen rainfall-runoff model. \cr \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
}
......@@ -111,11 +117,25 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, Qobs = BasinObs$Qmm[Ind_Run])
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
## simulation with the Linear Hysteresis
Param <- c(408.774, 2.646, 131.264, 1.174, 0.962, 2.249, 100, 0.4)
OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel = InputsModel,
RunOptions = RunOptions, Param = Param, IsHyst = TRUE)
## results preview
plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
\author{
Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Vazken Andréassian, Olivier Delaigue
}
......@@ -125,17 +145,20 @@ Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Vazken Andréassia
Perrin, C., C. Michel and V. Andréassian (2003),
Improvement of a parsimonious model for streamflow simulation,
Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019),
Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses.
Journal of Hydrology and Hydromechanics, doi:10.2478/johh-2018-0004, 67, 1, 70–81. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
"As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine?
Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
Valéry, A., V. Andréassian and C. Perrin (2014),
"As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine?
Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.
}
\seealso{
\code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}},
\code{\link{RunModel_CemaNeige}}, \link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}},
\code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}.
}
......@@ -18,15 +18,17 @@ RunModel_CemaNeigeGR5J(InputsModel, RunOptions, Param, IsHyst = FALSE)
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 7 parameters
\item{Param}{[numeric] vector of 7 (or 9 parameters if \code{IsHyst = TRUE})
\tabular{ll}{
GR5J X1 \tab production store capacity [mm] \cr
GR5J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR5J X3 \tab routing store capacity [mm] \cr
GR5J X4 \tab unit hydrograph time constant [d] \cr
GR5J X5 \tab intercatchment exchange threshold [-] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
GR5J X1 \tab production store capacity [mm] \cr
GR5J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR5J X3 \tab routing store capacity [mm] \cr
GR5J X4 \tab unit hydrograph time constant [d] \cr
GR5J X5 \tab intercatchment exchange threshold [-] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE}) \cr
}}
\item{IsHyst}{}
}
......@@ -64,6 +66,8 @@ CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
......@@ -76,7 +80,8 @@ Function which performs a single run for the CemaNeige-GR5J daily lumped model.
\details{
For further details on the model, see the references section.
The use of the \code{IsHyst} argument is explained in \code{\link{RunModel_CemaNeigeGR4J}}. \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
}
......@@ -111,8 +116,24 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, Qobs = BasinObs$Qmm[Ind_Run])
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## simulation with the Linear Hysteresis
Param <- c(179.139, -0.100, 203.815, 1.174, 2.478, 0.977, 2.774, 100, 0.4)
OutputsModel <- RunModel_CemaNeigeGR5J(InputsModel = InputsModel,
RunOptions = RunOptions, Param = Param, IsHyst = TRUE)
## results preview
plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......@@ -122,22 +143,26 @@ Laurent Coron, Audrey Valéry, Claude Michel, Nicolas Le Moine, Charles Perrin,
\references{
Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances
Le Moine, N. (2008),
Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances
et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr
Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011),
Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011),
A downward structural sensitivity analysis of hydrological models to improve low-flow simulation,
Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019),
Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses.
Journal of Hydrology and Hydromechanics, doi:10.2478/johh-2018-0004, 67, 1, 70–81. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
"As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine?
Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
Valéry, A., V. Andréassian and C. Perrin (2014),
"As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine?
Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.
}
\seealso{
\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}},
\code{\link{RunModel_CemaNeige}}, \link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}},
\code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}.
}
......@@ -18,16 +18,18 @@ RunModel_CemaNeigeGR6J(InputsModel, RunOptions, Param, IsHyst = FALSE)
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 8 parameters
\item{Param}{[numeric] vector of 8 (or 10 parameters if \code{IsHyst = TRUE})
\tabular{ll}{
GR6J X1 \tab production store capacity [mm] \cr
GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR6J X3 \tab routing store capacity [mm] \cr
GR6J X4 \tab unit hydrograph time constant [d] \cr
GR6J X5 \tab intercatchment exchange threshold [-] \cr
GR6J X6 \tab coefficient for emptying exponential store [mm] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
GR6J X1 \tab production store capacity [mm] \cr
GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR6J X3 \tab routing store capacity [mm] \cr
GR6J X4 \tab unit hydrograph time constant [d] \cr
GR6J X5 \tab intercatchment exchange threshold [-] \cr
GR6J X6 \tab coefficient for emptying exponential store [mm] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE})\cr
}}
\item{IsHyst}{}
}
......@@ -36,37 +38,39 @@ CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
\value{
[list] list containing the function outputs organised as follows:
\tabular{ll}{
\emph{$DatesR } \tab [POSIXlt] series of dates \cr
\emph{$PotEvap} \tab [numeric] series of input potential evapotranspiration [mm/d] \cr
\emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr
\emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr
\emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr
\emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr
\emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr
\emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr
\emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr
\emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
\emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
\emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr
\emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr
\emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr
\emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr
\emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr
\emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr
\emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr
\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState} \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d]\cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$DatesR } \tab [POSIXlt] series of dates \cr
\emph{$PotEvap} \tab [numeric] series of input potential evapotranspiration [mm/d] \cr
\emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr
\emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr
\emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr
\emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr
\emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr
\emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr
\emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr
\emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
\emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
\emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr
\emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr
\emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr
\emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr
\emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr
\emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr
\emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr
\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
......@@ -79,9 +83,12 @@ Function which performs a single run for the CemaNeige-GR6J daily lumped model.
\details{
For further details on the model, see the references section.
The use of the \code{IsHyst} argument is explained in \code{\link{RunModel_CemaNeigeGR4J}}. \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
}
\examples{
library(airGR)
......@@ -112,11 +119,26 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, Qobs = BasinObs$Qmm[Ind_Run])
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
## simulation with the Linear Hysteresis
Param <- c(116.482, 0.500, 72.733, 1.224, 0.278, 30.333, 0.977, 2.774, 100, 0.4)
OutputsModel <- RunModel_CemaNeigeGR6J(InputsModel = InputsModel,
RunOptions = RunOptions, Param = Param, IsHyst = TRUE)
## results preview
plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
\author{
Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Raji Pushpalatha, Nicolas Le Moine, Vazken Andréassian, Olivier Delaigue
}
......@@ -126,17 +148,20 @@ Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Raji Pushpalatha,
Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011),
A downward structural sensitivity analysis of hydrological models to improve low-flow simulation,
Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019),
Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses.
Journal of Hydrology and Hydromechanics, doi:10.2478/johh-2018-0004, 67, 1, 70–81. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
"As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine?
Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr
Valéry, A., V. Andréassian and C. Perrin (2014),
Valéry, A., V. Andréassian and C. Perrin (2014),
"As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine?
Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.
}
\seealso{
\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_GR6J}},
\code{\link{RunModel_CemaNeige}}, \link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_GR6J}},
\code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}.
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment