\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
...
...
@@ -54,7 +58,8 @@ Function which performs a single run for the CemaNeige daily snow module.
\details{
For further details on the model, see the references section.
The use of the \code{IsHyst} argument is explained in \code{\link{RunModel_CemaNeigeGR4J}}. \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
}
...
...
@@ -79,7 +84,7 @@ Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y")=="01/01/199
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
...
...
@@ -76,7 +80,9 @@ Function which performs a single run for the CemaNeige-GR4J daily lumped model o
\details{
For further details on the model, see the references section.
If \code{IsHyst = FALSE}, the original CemaNeige version from Valéry et al. (2014) is used. \cr
If \code{IsHyst = TRUE}, the CemaNeige version from Riboust et al. (2019) is used. Compared to the original version, this version of CemaNeige needs two more parameters and it includes a representation of the hysteretic relationship between the Snow Cover Area (SCA) and the Snow Water Equivalent (SWE) in the catchment. The hysteresis included in airGR is the Modified Linear hysteresis (LH*); it is represented on panel b) of Fig. 3 in Riboust et al. (2019). Riboust et al. (2019) advise to use the LH* version of CemaNeige with parameters calibrated using an objective function combining 75 \% of KGE calculated on discharge simulated from a rainfall-runoff model compared to observed discharge and 5 \% of KGE calculated on SCA on 5 CemaNeige elevation bands compared to satellite (e.g. MODIS) SCA (see Eq. (18), Table 3 and Fig. 6). Riboust et al. (2019)'s tests were realized with GR4J as the chosen rainfall-runoff model. \cr \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
...
...
@@ -76,7 +80,8 @@ Function which performs a single run for the CemaNeige-GR5J daily lumped model.
\details{
For further details on the model, see the references section.
The use of the \code{IsHyst} argument is explained in \code{\link{RunModel_CemaNeigeGR4J}}. \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
[list] list containing the function outputs organised as follows:
\tabular{ll}{
\emph{$DatesR } \tab [POSIXlt] series of dates \cr
\emph{$PotEvap} \tab [numeric] series of input potential evapotranspiration [mm/d] \cr
\emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr
\emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr
\emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr
\emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr
\emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr
\emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr
\emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr
\emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
\emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
\emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr
\emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr
\emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr
\emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr
\emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr
\emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr
\emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr
\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState} \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d]\cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$DatesR } \tab [POSIXlt] series of dates \cr
\emph{$PotEvap} \tab [numeric] series of input potential evapotranspiration [mm/d] \cr
\emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr
\emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr
\emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr
\emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr
\emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr
\emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr
\emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr
\emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
\emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
\emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr
\emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr
\emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr
\emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr
\emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr
\emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr
\emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr
\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
...
...
@@ -79,9 +83,12 @@ Function which performs a single run for the CemaNeige-GR6J daily lumped model.
\details{
For further details on the model, see the references section.
The use of the \code{IsHyst} argument is explained in \code{\link{RunModel_CemaNeigeGR4J}}. \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.