From 76600c38e6243af3d28025af08cb24984711460d Mon Sep 17 00:00:00 2001 From: Olivier Delaigue <olivier.delaigue@irstea.fr> Date: Thu, 9 Apr 2015 14:08:36 +0200 Subject: [PATCH] test --- INDEX | 56 --- MD5 | 23 -- Meta/Rd.rds | Bin 1288 -> 0 bytes Meta/data.rds | Bin 200 -> 0 bytes Meta/hsearch.rds | Bin 1148 -> 0 bytes Meta/links.rds | Bin 485 -> 0 bytes Meta/nsInfo.rds | Bin 409 -> 0 bytes Meta/package.rds | Bin 752 -> 0 bytes R/BasinData.R | 42 ++ R/Calibration.R | 29 ++ R/Calibration_HBAN.R | 401 ++++++++++++++++++ R/Calibration_optim.R | 149 +++++++ R/CreateCalibOptions.R | 226 +++++++++++ R/CreateInputsCrit.R | 81 ++++ R/CreateInputsModel.R | 156 +++++++ R/CreateRunOptions.R | 260 ++++++++++++ R/DataAltiExtrapolation_HBAN.R | 540 +++++++++++++++++++++++++ R/ErrorCrit.R | 22 + R/ErrorCrit_KGE.R | 122 ++++++ R/ErrorCrit_KGE2.R | 124 ++++++ R/ErrorCrit_NSE.R | 87 ++++ R/ErrorCrit_RMSE.R | 81 ++++ R/PEdaily_Oudin.R | 58 +++ R/RunModel.R | 22 + R/RunModel_CemaNeige.R | 131 ++++++ R/RunModel_CemaNeigeGR4J.R | 208 ++++++++++ R/RunModel_CemaNeigeGR5J.R | 210 ++++++++++ R/RunModel_CemaNeigeGR6J.R | 211 ++++++++++ R/RunModel_GR4J.R | 128 ++++++ R/RunModel_GR5J.R | 131 ++++++ R/RunModel_GR6J.R | 132 ++++++ R/TransfoParam.R | 19 + R/TransfoParam_CemaNeige.R | 37 ++ R/TransfoParam_GR4J.R | 41 ++ R/TransfoParam_GR5J.R | 45 +++ R/TransfoParam_GR6J.R | 47 +++ R/airGR | 27 -- R/airGR.rdb | Bin 46952 -> 0 bytes R/airGR.rdx | Bin 645 -> 0 bytes R/plot_OutputsModel.R | 331 +++++++++++++++ airGR.Rproj | 17 + help/AnIndex | 31 -- help/airGR.rdb | Bin 115007 -> 0 bytes help/airGR.rdx | Bin 836 -> 0 bytes help/aliases.rds | Bin 314 -> 0 bytes help/paths.rds | Bin 352 -> 0 bytes html/00Index.html | 87 ---- html/R.css | 57 --- man/BasinInfo.Rd | 21 + man/BasinObs.Rd | 22 + man/Calibration.Rd | 94 +++++ man/Calibration_HBAN.Rd | 127 ++++++ man/Calibration_optim.Rd | 103 +++++ man/CreateCalibOptions.Rd | 128 ++++++ man/CreateInputsCrit.Rd | 112 +++++ man/CreateInputsModel.Rd | 89 ++++ man/CreateRunOptions.Rd | 121 ++++++ man/DataAltiExtrapolation_HBAN.Rd | 64 +++ man/ErrorCrit.Rd | 92 +++++ man/ErrorCrit_KGE.Rd | 50 +++ man/ErrorCrit_KGE2.Rd | 53 +++ man/ErrorCrit_NSE.Rd | 48 +++ man/ErrorCrit_RMSE.Rd | 43 ++ man/PEdaily_Oudin.Rd | 36 ++ man/RunModel.Rd | 61 +++ man/RunModel_CemaNeige.Rd | 84 ++++ man/RunModel_CemaNeigeGR4J.Rd | 112 +++++ man/RunModel_CemaNeigeGR5J.Rd | 115 ++++++ man/RunModel_CemaNeigeGR6J.Rd | 83 ++++ man/RunModel_GR4J.Rd | 92 +++++ man/RunModel_GR5J.Rd | 95 +++++ man/RunModel_GR6J.Rd | 96 +++++ man/TransfoParam.Rd | 45 +++ man/TransfoParam_CemaNeige.Rd | 43 ++ man/TransfoParam_GR4J.Rd | 43 ++ man/TransfoParam_GR5J.Rd | 43 ++ man/TransfoParam_GR6J.Rd | 43 ++ man/airGR.Rd | 53 +++ man/plot_OutputsModel.Rd | 37 ++ {libs/i386 => src-i386}/airGR.dll | Bin 24064 -> 24064 bytes src-i386/frun_CEMANEIGE.f | 128 ++++++ src-i386/frun_CEMANEIGE.o | Bin 0 -> 1095 bytes src-i386/frun_GR4J.f | 225 +++++++++++ src-i386/frun_GR4J.o | Bin 0 -> 2505 bytes src-i386/frun_GR5J.f | 226 +++++++++++ src-i386/frun_GR5J.o | Bin 0 -> 2433 bytes src-i386/frun_GR6J.f | 249 ++++++++++++ src-i386/frun_GR6J.o | Bin 0 -> 2977 bytes src-i386/utils.f | 272 +++++++++++++ src-i386/utils.o | Bin 0 -> 2548 bytes src-x64/airGR.dll | Bin 0 -> 28672 bytes src-x64/frun_CEMANEIGE.f | 128 ++++++ src-x64/frun_CEMANEIGE.o | Bin 0 -> 1498 bytes src-x64/frun_GR4J.f | 225 +++++++++++ src-x64/frun_GR4J.o | Bin 0 -> 2975 bytes src-x64/frun_GR5J.f | 226 +++++++++++ src-x64/frun_GR5J.o | Bin 0 -> 2875 bytes src-x64/frun_GR6J.f | 249 ++++++++++++ src-x64/frun_GR6J.o | Bin 0 -> 3415 bytes src-x64/utils.f | 272 +++++++++++++ src-x64/utils.o | Bin 0 -> 2944 bytes src/frun_CEMANEIGE.f | 128 ++++++ src/frun_GR4J.f | 225 +++++++++++ src/frun_GR5J.f | 226 +++++++++++ src/frun_GR6J.f | 249 ++++++++++++ src/utils.f | 272 +++++++++++++ tests/example_Calibration.R | 47 +++ tests/example_Calibration_HBAN.R | 46 +++ tests/example_Calibration_optim.R | 45 +++ tests/example_ErrorCrit.R | 60 +++ tests/example_RunModel.R | 29 ++ tests/example_RunModel_CemaNeige.R | 25 ++ tests/example_RunModel_CemaNeigeGR4J.R | 31 ++ tests/example_RunModel_CemaNeigeGR5J.R | 31 ++ tests/example_RunModel_CemaNeigeGR6J.R | 31 ++ tests/example_RunModel_GR4J.R | 28 ++ tests/example_RunModel_GR5J.R | 28 ++ tests/example_RunModel_GR6J.R | 28 ++ tests/example_TransfoParam.R | 15 + tests/example_TransfoParam_CemaNeige.R | 15 + tests/example_TransfoParam_GR4J.R | 15 + tests/example_TransfoParam_GR5J.R | 15 + tests/example_TransfoParam_GR6J.R | 15 + tests/example_plot_OutputsModel.R | 54 +++ 124 files changed, 10194 insertions(+), 281 deletions(-) delete mode 100644 INDEX delete mode 100644 MD5 delete mode 100644 Meta/Rd.rds delete mode 100644 Meta/data.rds delete mode 100644 Meta/hsearch.rds delete mode 100644 Meta/links.rds delete mode 100644 Meta/nsInfo.rds delete mode 100644 Meta/package.rds create mode 100644 R/BasinData.R create mode 100644 R/Calibration.R create mode 100644 R/Calibration_HBAN.R create mode 100644 R/Calibration_optim.R create mode 100644 R/CreateCalibOptions.R create mode 100644 R/CreateInputsCrit.R create mode 100644 R/CreateInputsModel.R create mode 100644 R/CreateRunOptions.R create mode 100644 R/DataAltiExtrapolation_HBAN.R create mode 100644 R/ErrorCrit.R create mode 100644 R/ErrorCrit_KGE.R create mode 100644 R/ErrorCrit_KGE2.R create mode 100644 R/ErrorCrit_NSE.R create mode 100644 R/ErrorCrit_RMSE.R create mode 100644 R/PEdaily_Oudin.R create mode 100644 R/RunModel.R create mode 100644 R/RunModel_CemaNeige.R create mode 100644 R/RunModel_CemaNeigeGR4J.R create mode 100644 R/RunModel_CemaNeigeGR5J.R create mode 100644 R/RunModel_CemaNeigeGR6J.R create mode 100644 R/RunModel_GR4J.R create mode 100644 R/RunModel_GR5J.R create mode 100644 R/RunModel_GR6J.R create mode 100644 R/TransfoParam.R create mode 100644 R/TransfoParam_CemaNeige.R create mode 100644 R/TransfoParam_GR4J.R create mode 100644 R/TransfoParam_GR5J.R create mode 100644 R/TransfoParam_GR6J.R delete mode 100644 R/airGR delete mode 100644 R/airGR.rdb delete mode 100644 R/airGR.rdx create mode 100644 R/plot_OutputsModel.R create mode 100644 airGR.Rproj delete mode 100644 help/AnIndex delete mode 100644 help/airGR.rdb delete mode 100644 help/airGR.rdx delete mode 100644 help/aliases.rds delete mode 100644 help/paths.rds delete mode 100644 html/00Index.html delete mode 100644 html/R.css create mode 100644 man/BasinInfo.Rd create mode 100644 man/BasinObs.Rd create mode 100644 man/Calibration.Rd create mode 100644 man/Calibration_HBAN.Rd create mode 100644 man/Calibration_optim.Rd create mode 100644 man/CreateCalibOptions.Rd create mode 100644 man/CreateInputsCrit.Rd create mode 100644 man/CreateInputsModel.Rd create mode 100644 man/CreateRunOptions.Rd create mode 100644 man/DataAltiExtrapolation_HBAN.Rd create mode 100644 man/ErrorCrit.Rd create mode 100644 man/ErrorCrit_KGE.Rd create mode 100644 man/ErrorCrit_KGE2.Rd create mode 100644 man/ErrorCrit_NSE.Rd create mode 100644 man/ErrorCrit_RMSE.Rd create mode 100644 man/PEdaily_Oudin.Rd create mode 100644 man/RunModel.Rd create mode 100644 man/RunModel_CemaNeige.Rd create mode 100644 man/RunModel_CemaNeigeGR4J.Rd create mode 100644 man/RunModel_CemaNeigeGR5J.Rd create mode 100644 man/RunModel_CemaNeigeGR6J.Rd create mode 100644 man/RunModel_GR4J.Rd create mode 100644 man/RunModel_GR5J.Rd create mode 100644 man/RunModel_GR6J.Rd create mode 100644 man/TransfoParam.Rd create mode 100644 man/TransfoParam_CemaNeige.Rd create mode 100644 man/TransfoParam_GR4J.Rd create mode 100644 man/TransfoParam_GR5J.Rd create mode 100644 man/TransfoParam_GR6J.Rd create mode 100644 man/airGR.Rd create mode 100644 man/plot_OutputsModel.Rd rename {libs/i386 => src-i386}/airGR.dll (98%) create mode 100644 src-i386/frun_CEMANEIGE.f create mode 100644 src-i386/frun_CEMANEIGE.o create mode 100644 src-i386/frun_GR4J.f create mode 100644 src-i386/frun_GR4J.o create mode 100644 src-i386/frun_GR5J.f create mode 100644 src-i386/frun_GR5J.o create mode 100644 src-i386/frun_GR6J.f create mode 100644 src-i386/frun_GR6J.o create mode 100644 src-i386/utils.f create mode 100644 src-i386/utils.o create mode 100644 src-x64/airGR.dll create mode 100644 src-x64/frun_CEMANEIGE.f create mode 100644 src-x64/frun_CEMANEIGE.o create mode 100644 src-x64/frun_GR4J.f create mode 100644 src-x64/frun_GR4J.o create mode 100644 src-x64/frun_GR5J.f create mode 100644 src-x64/frun_GR5J.o create mode 100644 src-x64/frun_GR6J.f create mode 100644 src-x64/frun_GR6J.o create mode 100644 src-x64/utils.f create mode 100644 src-x64/utils.o create mode 100644 src/frun_CEMANEIGE.f create mode 100644 src/frun_GR4J.f create mode 100644 src/frun_GR5J.f create mode 100644 src/frun_GR6J.f create mode 100644 src/utils.f create mode 100644 tests/example_Calibration.R create mode 100644 tests/example_Calibration_HBAN.R create mode 100644 tests/example_Calibration_optim.R create mode 100644 tests/example_ErrorCrit.R create mode 100644 tests/example_RunModel.R create mode 100644 tests/example_RunModel_CemaNeige.R create mode 100644 tests/example_RunModel_CemaNeigeGR4J.R create mode 100644 tests/example_RunModel_CemaNeigeGR5J.R create mode 100644 tests/example_RunModel_CemaNeigeGR6J.R create mode 100644 tests/example_RunModel_GR4J.R create mode 100644 tests/example_RunModel_GR5J.R create mode 100644 tests/example_RunModel_GR6J.R create mode 100644 tests/example_TransfoParam.R create mode 100644 tests/example_TransfoParam_CemaNeige.R create mode 100644 tests/example_TransfoParam_GR4J.R create mode 100644 tests/example_TransfoParam_GR5J.R create mode 100644 tests/example_TransfoParam_GR6J.R create mode 100644 tests/example_plot_OutputsModel.R diff --git a/INDEX b/INDEX deleted file mode 100644 index 44daa535..00000000 --- a/INDEX +++ /dev/null @@ -1,56 +0,0 @@ -BasinInfo Data sample: characteristics of a fictional - catchment (L0123001, L0123002 or L0123003) -BasinObs Data sample: time series of observations of a - fictional catchment (L0123001, L0123002 or - L0123003) -Calibration Calibration algorithm which minimises an error - criterion on the model outputs using the - provided functions -Calibration_HBAN Calibration algorithm which minimises the error - criterion using the Irstea-HBAN procedure -Calibration_optim Calibration algorithm which minimises the error - criterion using the stats::optim function -CreateCalibOptions Creation of the CalibOptions object required to - the Calibration functions -CreateInputsCrit Creation of the InputsCrit object required to - the ErrorCrit functions -CreateInputsModel Creation of the InputsModel object required to - the RunModel functions -CreateRunOptions Creation of the RunOptions object required to - the RunModel functions -DataAltiExtrapolation_HBAN - Altitudinal extrapolation of precipitation and - temperature series -ErrorCrit Error criterion using the provided function -ErrorCrit_KGE Error criterion based on the KGE formula -ErrorCrit_KGE2 Error criterion based on the KGE' formula -ErrorCrit_NSE Error criterion based on the NSE formula -ErrorCrit_RMSE Error criterion based on the RMSE -PEdaily_Oudin Computation of daily series of potential - evapotranspiration with Oudin's formula -RunModel Run with the provided hydrological model - function -RunModel_CemaNeige Run with the CemaNeige snow module -RunModel_CemaNeigeGR4J - Run with the CemaNeigeGR4J hydrological model -RunModel_CemaNeigeGR5J - Run with the CemaNeigeGR5J hydrological model -RunModel_CemaNeigeGR6J - Run with the CemaNeigeGR6J hydrological model -RunModel_GR4J Run with the GR4J hydrological model -RunModel_GR5J Run with the GR5J hydrological model -RunModel_GR6J Run with the GR6J hydrological model -TransfoParam Transformation of the parameters using the - provided function -TransfoParam_CemaNeige - Transformation of the parameters from the - CemaNeige module -TransfoParam_GR4J Transformation of the parameters from the GR4J - model -TransfoParam_GR5J Transformation of the parameters from the GR5J - model -TransfoParam_GR6J Transformation of the parameters from the GR6J - model -airGR Modelling tools used at Irstea-HBAN (France), - including GR4J, GR5J, GR6J and CemaNeige -plot_OutputsModel Default preview of model outputs diff --git a/MD5 b/MD5 deleted file mode 100644 index 1f4bcc9a..00000000 --- a/MD5 +++ /dev/null @@ -1,23 +0,0 @@ -dc740898c129f840d12d222a2ead106d *DESCRIPTION -eacf8601006227c3c02bcfaf97cbdc0e *INDEX -f06c85e4eb89b267cfb165274067c4e8 *Meta/Rd.rds -32a1c5de93e3b6254dbd86b07ba073ba *Meta/data.rds -e5a11fd9f38a3bf1d0dadd7840a739f7 *Meta/hsearch.rds -a1d82a0c2244a09e38104c219298794a *Meta/links.rds -3b9ab8f86ffaa46a406cb5352028ef27 *Meta/nsInfo.rds -7ecce7e1cc77345bfed1ac9c9b04e61d *Meta/package.rds -52ca795872157b1a3e2b6f6bfbc480e0 *NAMESPACE -ebf0fc819595d631b8bf280c4b049940 *R/airGR -fca9fb51c6dd9ac775dbba00d895d0a7 *R/airGR.rdb -9362eca21ff55ff6e7866a8653c5371e *R/airGR.rdx -63a6f712183a364edfac4df460e83c4b *data/L0123001.rda -aa6993b50e8a59fb4b37c8eb92df6760 *data/L0123002.rda -cd27feeac8c19aad0c511b33010ea9ed *data/L0123003.rda -c067204cb6e5b9db41af38aa96b519b0 *help/AnIndex -a55d619bb922901e93a88bc0cd44fa4a *help/airGR.rdb -efdee1c7837ed1b695a529e17fa09725 *help/airGR.rdx -228f1599718d0523f25967469dcfbb61 *help/aliases.rds -d312909d7d245fe60010b0b763b00f13 *help/paths.rds -592202faa3a70495a0bf299af2596ac4 *html/00Index.html -444535b9cb76ddff1bab1e1865a3fb14 *html/R.css -0b6e15e196f42c1f59b5b95fc0fad2b9 *libs/i386/airGR.dll diff --git a/Meta/Rd.rds b/Meta/Rd.rds deleted file mode 100644 index 8bf1bca97a0b3411a2e9ab9b50096efe7101fcbf..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1288 zcmV+j1^4<NiwFP!000002JINzZW~3^<RY9lfk0cNB2^3ssflo+B&{tJ@sc`D2qhPp zP{C6)-kr6l?CvbH;~2m3tNaMz%z9^cX7*y2@_;B(HeR3moa-F_bg$89EH#$lSz3nI z<p=Pu3C|`xpEXt*Yw)@L0>?Bw3q7{mcT?E?1a>)ybI=D}?9&0qg0e7&KG2{y-@Z7y z$Wae<6pI86a@?aXCs>e#;xdvHu`V+~o`um^#9dB>E>lCDGne=Uw*ELQNPKdP1wQfx z?foV=j+kF&?|P4O#!Y>j8SLieX)lL=WWWzf87_V(XXu~nh|Q~>i>W`oxg5JxbL@RM zhjqY53Ut#Y0lpw~NOI)kBJ#BV{JS{>?Rf+pjbJk)FeU5ob_HCQ^WineVeGLh%(0de zk9Ba_5g!@^rVTc(U4zqYX=2Jx`x<TJGXb#>MuM3Ivz8T%5~8X_#ZJq7<qNw`R9+N{ zBt?8&tdLBURUVlryEaUQyf9Mur`1)VPMT$H3fM66UUdeu7>cA&2}M#_28z_E0p(Pc zJ<1`)^h`0Il&5|jwq1+uDC~xj@g=}^88BmC*Aq`EEYETk!$OKzAlg-kO!;b(*@~)= z)>clhxR47a?~VWH=lc<Me!-dF8<sm>$<jbE4kDi%B4-57bp+uw7SxFm^AJWJb!53< zA30b!qkx10ZGFGDfADN?Z@-1ow*$nudVjW^N*@@~q2>vSK{!byvjM!{CZ+iHnqF(| z1z~^4pz=lmnvAG3LIDkFKx0sgLqud@A_wqb2@u1d7!ef6TtRG>IA{!QZkWI$&Tgqo zT;z>IM{g=WFQ!q-uvO;L&v+~d-jSV1YI2A>=H#DL5DP5g!^5QEW=BXBoF(lt@qw2R z>pd94^O`sUaq{b!ayY+WIZbMm?UJ4?FmK&e;<7fmsIc={oXVxC-c%5FYzxb0#2d>x zl9NQp1`dfz^ob&cN1Qk`q9P4j2=Yh}5%3s9HqHK2&{w_6uobc{W!bV>1~>+)G>2g* zA&>E3?5nP}J&*pW#Za#R=9@+Tc`dy*`mVYxfcRy8O6H)}4I(C>+^KZwEjU!jW*^Zs z(I$}jD4Cg0W6OYjh|>&j_-!<GIrG_&Iv_DH;+QgiVK8R%3B@6sNRF|u3UQ~LQVy*W zJ@c5_e}}14!}O)WRBx3{TW5?-TW7;J>2T(OQDu>w)dVu5wxgyp4(H17I18+38G(Af zxP-(_`U&2MxBV8p9h3J}(q#O^IgI(zQQ#UZjM1=l0ty_m-9j{Ud|3y><OHq6mex$F z>^1f^3mp>=k9{HA(k&$uX__(Vtn0w)kJl$VU;qE*U-1Pt{UkKA5WQDi%1lJQoSATA zNi$K!WzEEwENv!1+45$qu$MSnMPZpM6`(D3CcbXDvpknCc_zYI_DrO`^i{IT<*$-8 znS>UrxeQvt%$7pS;U&wVNl~>VE<n{@h^k{#S<7QJvLN4DCQYQdR9c2rESFYp6_?C< zf`Wl1OQ%VYE}s@x*%GSPa^oHRd>7BJ65>g^gtxLA)U-95!*cNFOe;$o(`pE}2i5JG z>L-g6nq7BRE`UJ2Ur!_TzIshXM%3(u4wDxK^?SgPPvMHLc93S5!NnpH+4q-ZI$_+6 yEo0U=o9rrsHsD$M9sb?j-Th%(?f5vhd-Of|L(8rwuS4+d&%Xeyz22j)7XSc|&}<F> diff --git a/Meta/data.rds b/Meta/data.rds deleted file mode 100644 index 216de635f65820f8e7827f455b266dfe5a43f744..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 200 zcmV;(05|_1iwFP!000002JMr*3c@fDfX}uFih`gIaHE1le>O*P5d=4Jy~dOVnnar5 z<BMr&l~U>hh(mG*AAH|**C_ya;JfGf)w*!s3<8+Ax!RKv>Zme}>r)uTNf<_(VHSU3 zNz0ZsJEx|v?4x)Xy@i(pSwchdUho~VoJwMrm%>=V4C)LCGr_FTiV9?8SuVM<pZXTt z80r##$)0xXR!EM<$$4$osoNh^x&NhZ2?EcRMorPb3F*eXz7v3PGoLTqq-AD00{{T1 CC0uy` diff --git a/Meta/hsearch.rds b/Meta/hsearch.rds deleted file mode 100644 index 2c0c5a9b235d2df56a725f881ae7d3fa14dbed3d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1148 zcmV-?1cUn@iwFP!000002JKi~Z`(E$RqPZ=x@BlOpbrCzal?Qnm;=Oe>}J7UQpe4_ zHi?n7#r7}+v`pLVBvGTNxcRC5GwUuXl9psgan}JWIs+DbdA|;Id3h-5*Sn76RGcbY zl`4qNmvF6u>K^>R1!)8R?_kPLE|!CjXyE)$|5xfpaE;I~!oCrjMraw~u@Mf8@PigA z^*t-qt>jv%VWoX5HLcXL(qk(fSjl3z7Q?j|uElUIhHEigi{V-f*J8L9!?hR<i_tI` z8&7ad!)`caTCuJa=lxiZKWk&3_Bj@mg<5qlqq_X*$<dkCZ)No?5;V|;`)y9JAj*6m zNpoydDN8qu5)rpK6*g5yf64~L&j(y2VLs7U$5`MaU(n7Q!Ewa=nb~c0IA=VAv1t{T z&rUj8`9)6Y&bprcGRO7e)M__-odKr)_2qdopr&H$FyHK5+&AOPHVN<<p(CO#4`wYV z7yCb#S(~NSma%SHYbIe<*_@}e;h(?YIE;s^hdDOu`XH;Dxs|P)H3M2SG;cCk@Eosg zMLrWyUQz6gSF#6CjDyH0hsYa47EcgPV?n(bu_3}}NIlsX*hd}~-Z&tkK-<sv>TY9i zuU<o1auMT3ZtUpn{akivZh~S+PE=;r2l-0%+=nB*&g>(E{Sku}8wY4IrrsC@G^7EI z0Tzdd$PPpv*kLB%3_md@D3C=#EUgeqU_XzPKH}_(4#)rvlhDiVp5GQjlsSr!)9hUy z3xap$mXk;x86=$in*g!EB0fA+%wlgr19TNHs2U8FbCzsid0rDwAWr^FD2MwOZ0e&Y zRV+!Tm~hHbH>I<DuxPT=be-mBGn;TG*>N%1lnmcH*O8=5A(;vqm1L<?CXYDrXhelx zwh;1>AR<sPSXtfuI??x?8<%aS>vYI=F{F=U@X|dD?2Cqs2Z@ih|ITgxj|u_h06^pg z|8GkDGaTP*vjEo5)=3e5h7BSnV7pUU(km#akgOI_-Dnf&e54MCM{!{Sby%m=o~zsV zdcc{_M%06hL2ey&;J3LzOT;J+*+fPpzS)So^F1Xy&%wDZsQFKVS|vf><$}s*RrD>J zOwqS&4nOKshzGe{7Rf`2KxdRPs?KqEYmOmjL1DFW3$?#^234l)9lTd;^8;dA`Pf&A zWPDW|#(Y^QC=C|5qhb3g0C;4lhG^*davzM;9n{oZYH3!<HO1!%bWDag@r9(ND@rDE zYPpkc`AEBbr2WJmY45yz@pSiKIru0B&T0h)D_U6{02x4M$=7MPzJ_b9;Ia-bA<$;* zq#w<s?Jv3Gm2c{^*2CT(*ml_3bK37=G1kLM_gG7-GLe}NJhS=J0gI?-5IdpAB&DWE z>J#1XOI}>^;wQ$7%Wr(n;@|lG`%lr!fgPw5V&z@o<fx|l%DXuyMb#V)M?QrYQbU8& zqrn~_Q_eRr52Msnv#&eXwe+D`KBdp}%#CwgS#XZ)&&c(J@xelqbmjm#ivqP7yhKEz O9O!QxpC#P88UO%_PAbU& diff --git a/Meta/links.rds b/Meta/links.rds deleted file mode 100644 index ffb9eaf33fcee20c0f78f728756d0c2bfa881145..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 485 zcmV<B0UG`viwFP!000002Az~kO9L?w$Jai<s+H=&gM#7%^&qW?+k0C}ZKV%Z58g^j zw;I?N*%b84i`kN_$<A)N75d1|{AM<p%>3VX48tfGMfNQeqh*c#oEasf68+cf4fa8p z^sL4wb)7~Vh1lzR3%?#ca_lr68_z<SItNq-Ie118#l9zl*E(?e+-{9z`bJCp0mZJ2 z-$I<&h}x^5aS#QCYc{ju`(Ci5VTWM4W-}5!^yjvdC%LusQnqpr=qE%`%b~dYMF|Rg zC%r=O7Q2M_B)Rv?Y;5|{>&obr9(~B0cJ!J%tu<6xn0C^gBkX)n$IChP^zF&&3+@6o zhM=Y$+eITAf7mjAmxJ$FkAux)%zwl*2m0c~G081yQ8PcPZr}o-Zv=Va!k-|5T>bH6 zGQIS0%9NPo5!d48X1IFP6M(Ol`iz0&Q`V?7p$bN+!0;^|R`!r<hioBBawS$^ZrB!D z%b#~8`QxTqQa`!<04ODQ970WuQzg_dPL<R-HQ-OtxcxX=yTnQ3;pc{`A~M{#uPP5j znZ`ggQWJqHx*>`xI$IP3&K&m~rBA)iYihks;jJn&n_@K6jB)s$+_mC`>9Zy75KK{q b!_0ETFE6ipT~MIgnepcrjYPxwc?bXi6Gilc diff --git a/Meta/nsInfo.rds b/Meta/nsInfo.rds deleted file mode 100644 index 6ff9d4fdd53e86e1ae97491c61469e30994ab991..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 409 zcmV;K0cQRmiwFP!0000027QxTPr@)5hRcRQ#1Re&7sg+q;yum<58;sEg?CHMDmK~L zrRxm*d9~fT(rrkSQu@5#_x7-_?-u|73)rGtw){I5KRwaqDBD2vYtRN=$z2%X4+c4= zM4^F!f~SYsQt_e5X~J==gptb-<S3U{iIh`ql`GFA$$08A%(a!l7c@jsHNnqF)#&OG zayW}P_I8}Xghq|sbv?!?GuCi42wvx&g8d4-X@)L0M?(FDrq0?6A&&OJDhqLWW9MSO z<|#(yJaADAmk4i>QYKAh?%%zfQl}@?`%-nZY8aYudJO9H%Qpr|`bpQ2!ScIKOx8Hc zu%a4^)`jVRf?j->M3jpg<%e=8suUPiYgX@((UN0J8J<DRwhVx_WkLdDl&Xvp%Jy?` zx0G8Y(GEqai+jtTRnhDsO@_68m1R$bcW|6g#>>*}pq)AG7t=N595G$rPLbnAFilYn zE)f5sp@v0%EwX^s$gvSwTdouCiFmAfPeeSYZ{*XAW1>yFo7-3!io^Z^Zwg62Rs;Y5 Dt_;Tm diff --git a/Meta/package.rds b/Meta/package.rds deleted file mode 100644 index b57d7c148cdebf3be368bf036ad0ae0a7b3d8f02..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 752 zcmV<M0uTKkiwFP!000002GvwcPuoBcb{;e#s45bNUiS!6VkIG@6)zPMng#_DnSgpj zi@ix!ti9ImnutG7JGOU2>_QK{HIg6m?PO-YZ)W_nW?5FzD#2AO!E0#;ZdHJ`;kjj% ztxb4tU@8WVHYyYBKH@pi=G_(d2xByuBgHwBD3ZiOSfQbiir~hN^RsKT`(5C`C3|&5 z1D8c!>^*Qgmvy)wB=_!R4F?|T5g%U@x{AKhw7=LLZPeP$R;STwHJUArd>r9OkU*i{ z*co4&iZUQNW~phrT=3u<P0F%o;<S#&j6P8!Q2%0dHXPhu)Q)+I*gy%>c|_LSP0E^s zc27^xzTLE2dns5rnJ%bAVJZxI5Wr6YRmG8m)PkVJvnM#?bLwJ-{5J%vA^5!`nvJFq z!URtRBoayTL<EF$IXHzX!Ym0QFb!syv4)5OKAWZ4B#On2E5TB7mtqAynni)DC=Vo> zaS<O<fuKJ6AaD$)CBfgw6J}8Y)!*+P%5=|0w-Q(r7VajavzG*m(-<1Sz!fx%quQp| zgUP7T*2a;ODBM0mbpLC&vFvslKIC2Q17gOYeSq5S!)Eue(?Yk?-Vs{Tz~f74S>+;x zD44hb_6dO2`bg)dxIBFhS2H)IiW#GFM}&kTjb9(6)9)Y7BDLVc4CfUHuizpEsq{%m z0#9mltN%*bc#Nn^0=Y_j9#N*?<puUH-ovuq$3i@J@p9_RN_IBK(q+(F&9bDyZRcJ- z!$kS_PZ=7YbQ|(;5cxz<cLgV<BoR%T?R-0O=bztcPR^~8X;tBuJ}&Fyg8A4~Ck!i? z8~-i+$2ThO+N)lrTowqE1&XI9f04A1R#P<96#qr73?I{nay){j1|Av_vNG$k{(mM3 z11lH6T4QPb`ONrMS1WUI({qNC>2URN*E^!8!|^gJwrOnh70In&^(LCniB!g}4E>Oc imAN^h!6Qudl;`9#qVH(=);2kw|CirqVsSb}2LJ$rENGwr diff --git a/R/BasinData.R b/R/BasinData.R new file mode 100644 index 00000000..b1e6d222 --- /dev/null +++ b/R/BasinData.R @@ -0,0 +1,42 @@ +#' @name BasinInfo +#' @docType data +#' @title Data sample: characteristics of a fictional catchment (L0123001, L0123002 or L0123003) +#' @description +#' R-object containing the code, station's name, area and hypsometric curve of the catchment. +#' @encoding UTF-8 +#' @format +#' List named 'BasinInfo' containing +#' \itemize{ +#' \item two strings: catchment's code and station's name +#' \item one float: catchment's area in km2 +#' \item one numeric vector: catchment's hypsometric curve (min, quantiles 01 to 99 and max) in metres +#' } +#' @examples +#' require(airGR) +#' data(L0123001) +#' str(BasinInfo) + +NULL + + +#' @name BasinObs +#' @docType data +#' @title Data sample: time series of observations of a fictional catchment (L0123001, L0123002 or L0123003) +#' @description +#' R-object containing the times series of precipitation, temperature, potential evapotranspiration and discharges. \cr +#' Times series for L0123001 or L0123002 are at the daily time-step for use with daily models such as GR4J, GR5J, GR6J, CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J. +#' Times series for L0123003 are at the hourly time-step for use with hourly models such as GR4H. +#' @encoding UTF-8 +#' @format +#' Data frame named 'BasinObs' containing +#' \itemize{ +#' \item one POSIXlt vector: time series dates in the POSIXlt format +#' \item five numeric vectors: time series of catchment average precipitation [mm], catchment average air temperature [degC], catchment average potential evapotranspiration [mm], outlet discharge [l/s], outlet discharge [mm] +#' } +#' @examples +#' require(airGR) +#' data(L0123001) +#' str(BasinObs) + +NULL + diff --git a/R/Calibration.R b/R/Calibration.R new file mode 100644 index 00000000..874740b5 --- /dev/null +++ b/R/Calibration.R @@ -0,0 +1,29 @@ +#************************************************************************************************* +#' Calibration algorithm which minimises the error criterion using the provided functions. \cr +#************************************************************************************************* +#' @title Calibration algorithm which minimises an error criterion on the model outputs using the provided functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{Calibration_HBAN}}, \code{\link{Calibration_optim}}, +#' \code{\link{RunModel}}, \code{\link{ErrorCrit}}, \code{\link{TransfoParam}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, +#' \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +#' @example tests/example_Calibration.R +#' @export +#' @encoding UTF-8 +#_FunctionInputs__________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param CalibOptions [object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param FUN_CALIB (optional) [function] calibration algorithm function (e.g. Calibration_HBAN, Calibration_optim), default=Calibration_HBAN +#' @param FUN_TRANSFO (optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] see \code{\link{Calibration_HBAN}} or \code{\link{Calibration_optim}} +#************************************************************************************************** +Calibration <- function(InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_CALIB=Calibration_HBAN,FUN_TRANSFO=NULL,quiet=FALSE){ + return( FUN_CALIB(InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO,quiet=quiet) ) +} + diff --git a/R/Calibration_HBAN.R b/R/Calibration_HBAN.R new file mode 100644 index 00000000..97e631f5 --- /dev/null +++ b/R/Calibration_HBAN.R @@ -0,0 +1,401 @@ +#************************************************************************************************* +#' Calibration algorithm which minimises the error criterion. \cr +#' \cr +#' The algorithm is based on a local search procedure. +#' First, a screening is performed using either a rough predefined grid or a list of parameter sets +#' and then a simple steepest descent local search algorithm is performed. +#' +#' A screening is first performed either from a rough predefined grid (considering various initial +#' values for each paramete) or from a list of initial parameter sets. \cr +#' The best set identified in this screening is then used as a starting point for the steepest +#' descent local search algorithm. \cr +#' For this search, the parameters are used in a transformed version, to obtain uniform +#' variation ranges (and thus a similar pace), while the true ranges might be quite different. \cr +#' At each iteration, we start from a parameter set of NParam values (NParam being the number of +#' free parameters of the chosen hydrological model) and we determine the 2*NParam-1 new candidates +#' by changing one by one the different parameters (+/- pace). \cr +#' All these candidates are tested and the best one kept to be the starting point for the next +#' iteration. At the end of each iteration, the pace is either increased or decreased to adapt +#' the progression speed. A diagonal progress can occasionally be done. \cr +#' The calibration algorithm stops when the pace becomes too small. \cr +#' +#' To optimise the exploration of the parameter space, transformation functions are used to convert +#' the model parameters. This is done using the TransfoParam functions. +#************************************************************************************************* +#' @title Calibration algorithm which minimises the error criterion using the Irstea-HBAN procedure +#' @author Laurent Coron (August 2013) +#' @references +#' Michel, C. (1991), +#' Hydrologie appliquée aux petits bassins ruraux, Hydrology handout (in French), Cemagref, Antony, France. +#' @example tests/example_Calibration_HBAN.R +#' @seealso \code{\link{Calibration}}, \code{\link{Calibration_optim}}, +#' \code{\link{RunModel_GR4J}}, \code{\link{TransfoParam_GR4J}}, \code{\link{ErrorCrit_RMSE}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, +#' \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param CalibOptions [object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param FUN_TRANSFO (optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$ParamFinalR } \tab [numeric] parameter set obtained at the end of the calibration \cr +#' \emph{$CritFinal } \tab [numeric] error criterion obtained at the end of the calibration \cr +#' \emph{$NIter } \tab [numeric] number of iterations during the calibration \cr +#' \emph{$NRuns } \tab [numeric] number of model runs done during the calibration \cr +#' \emph{$HistParamR } \tab [numeric] table showing the progression steps in the search for optimal set: parameter values \cr +#' \emph{$HistCrit } \tab [numeric] table showing the progression steps in the search for optimal set: criterion values \cr +#' \emph{$MatBoolCrit } \tab [boolean] table giving the requested and actual time steps when the model is calibrated \cr +#' \emph{$CritName } \tab [character] name of the calibration criterion \cr +#' \emph{$CritBestValue} \tab [numeric] theoretical best criterion value \cr +#' } +#************************************************************************************************** +Calibration_HBAN <- function(InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO=NULL,quiet=FALSE){ + + +##_____Arguments_check_____________________________________________________________________ + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions")==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(CalibOptions,"CalibOptions")==FALSE){ stop("CalibOptions must be of class 'CalibOptions' \n"); return(NULL); } + if(inherits(CalibOptions,"HBAN")==FALSE){ stop("CalibOptions must be of class 'HBAN' if Calibration_HBAN is used \n"); return(NULL); } + + + ##_check_FUN_TRANSFO + if(is.null(FUN_TRANSFO)){ + if(identical(FUN_MOD,RunModel_GR4J )){ FUN_TRANSFO <- TransfoParam_GR4J ; } + if(identical(FUN_MOD,RunModel_GR5J )){ FUN_TRANSFO <- TransfoParam_GR5J ; } + if(identical(FUN_MOD,RunModel_GR6J )){ FUN_TRANSFO <- TransfoParam_GR6J ; } + if(identical(FUN_MOD,RunModel_CemaNeige )){ FUN_TRANSFO <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J)){ FUN1 <- TransfoParam_GR4J; FUN2 <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR5J)){ FUN1 <- TransfoParam_GR5J; FUN2 <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ FUN1 <- TransfoParam_GR6J; FUN2 <- TransfoParam_CemaNeige; } + FUN_TRANSFO <- function(ParamIn,Direction){ + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + ParamOut <- NA*ParamIn; + NParam <- ncol(ParamIn); + ParamOut[, 1:(NParam-2)] <- FUN1(ParamIn[, 1:(NParam-2)],Direction); + ParamOut[,(NParam-1):NParam ] <- FUN2(ParamIn[,(NParam-1):NParam ],Direction); + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + } + } + if(is.null(FUN_TRANSFO)){ stop("FUN_TRANSFO was not found (in Calibration function) \n"); return(NULL); } + } + + ##_variables_initialisation + ParamFinalR <- NULL; ParamFinalT <- NULL; CritFinal <- NULL; + NRuns <- 0; NIter <- 0; + if("StartParamDistrib" %in% names(CalibOptions)){ PrefilteringType <- 2; } else { PrefilteringType <- 1; } + if(PrefilteringType==1){ NParam <- ncol(CalibOptions$StartParamList); } + if(PrefilteringType==2){ NParam <- ncol(CalibOptions$StartParamDistrib); } + if(NParam>20){ stop("Calibration_HBAN can handle a maximum of 20 parameters \n"); return(NULL); } + HistParamR <- matrix(NA,nrow=500*NParam,ncol=NParam); + HistParamT <- matrix(NA,nrow=500*NParam,ncol=NParam); + HistCrit <- matrix(NA,nrow=500*NParam,ncol=1); + CritName <- NULL; + CritBestValue <- NULL; + Multiplier <- NULL; + CritOptim <- +1E100; + ##_temporary_change_of_Outputs_Sim + RunOptions$Outputs_Sim <- RunOptions$Outputs_Cal; ### this reduces the size of the matrix exchange with fortran and therefore speeds the calibration + + + +##_____Parameter_Grid_Screening____________________________________________________________ + + + ##Definition_of_the_function_creating_all_possible_parameter_sets_from_different_values_for_each_parameter + ProposeCandidatesGrid <- function(DistribParam){ + ##Managing_matrix_sizes + Nvalmax <- nrow(DistribParam); + NParam <- ncol(DistribParam); + ##we_add_columns_to_MatDistrib_until_it_has_20_columns + DistribParam2 <- matrix(NA,nrow=Nvalmax,ncol=20); + DistribParam2[1:Nvalmax,1:NParam] <- DistribParam; + ##we_check_the_number_of_values_to_test_for_each_param + NbDistrib <- rep(1,20); + for(iC in 1:20){ NbDistrib[iC] <- max( 1 , Nvalmax-sum(is.na(DistribParam2[,iC])) ); } + ##Loop_on_the_various_values_to_test ###(if 4 param and 3 values for each => 3^4 sets) + ##NB_we_always_do_20_loops ###which_is_here_the_max_number_of_param_that_can_be_optimised + VECT <- NULL; + for(iL01 in 1:NbDistrib[01]){ for(iL02 in 1:NbDistrib[02]){ for(iL03 in 1:NbDistrib[03]){ for(iL04 in 1:NbDistrib[04]){ for(iL05 in 1:NbDistrib[05]){ + for(iL06 in 1:NbDistrib[06]){ for(iL07 in 1:NbDistrib[07]){ for(iL08 in 1:NbDistrib[08]){ for(iL09 in 1:NbDistrib[09]){ for(iL10 in 1:NbDistrib[10]){ + for(iL11 in 1:NbDistrib[11]){ for(iL12 in 1:NbDistrib[12]){ for(iL13 in 1:NbDistrib[13]){ for(iL14 in 1:NbDistrib[14]){ for(iL15 in 1:NbDistrib[15]){ + for(iL16 in 1:NbDistrib[16]){ for(iL17 in 1:NbDistrib[17]){ for(iL18 in 1:NbDistrib[18]){ for(iL19 in 1:NbDistrib[19]){ for(iL20 in 1:NbDistrib[20]){ + VECT <- c(VECT, + DistribParam2[iL01,01],DistribParam2[iL02,02],DistribParam2[iL03,03],DistribParam2[iL04,04],DistribParam2[iL05,05], + DistribParam2[iL06,06],DistribParam2[iL07,07],DistribParam2[iL08,08],DistribParam2[iL09,09],DistribParam2[iL10,10], + DistribParam2[iL11,11],DistribParam2[iL12,12],DistribParam2[iL13,13],DistribParam2[iL14,14],DistribParam2[iL15,15], + DistribParam2[iL16,16],DistribParam2[iL17,17],DistribParam2[iL18,18],DistribParam2[iL19,19],DistribParam2[iL20,20]); + } } } } } + } } } } } + } } } } } + } } } } } + MAT <- matrix(VECT,ncol=20,byrow=TRUE)[,1:NParam]; + if(is.matrix(MAT)==FALSE){ MAT <- cbind(MAT); } + Output <- NULL; + Output$NewCandidates <- MAT; + return(Output); + } + + + ##Creation_of_new_candidates_______________________________________________ + if(PrefilteringType==1){ CandidatesParamR <- CalibOptions$StartParamList; } + if(PrefilteringType==2){ DistribParamR <- CalibOptions$StartParamDistrib; DistribParamR[,!CalibOptions$OptimParam] <- NA; CandidatesParamR <- ProposeCandidatesGrid(DistribParamR)$NewCandidates; } + ##Remplacement_of_non_optimised_values_____________________________________ + CandidatesParamR <- apply(CandidatesParamR,1,function(x){ x[!CalibOptions$OptimParam] <- CalibOptions$FixedParam[!CalibOptions$OptimParam]; return(x); }); + if(NParam>1){ CandidatesParamR <- t(CandidatesParamR); } else { CandidatesParamR <- cbind(CandidatesParamR); } + + ##Loop_to_test_the_various_candidates______________________________________ + iNewOptim <- 0; + Ncandidates <- nrow(CandidatesParamR); + if(!quiet & Ncandidates>1){ + if(PrefilteringType==1){ cat(paste("\t List-Screening in progress (",sep="")); } + if(PrefilteringType==2){ cat(paste("\t Grid-Screening in progress (",sep="")); } + cat("0%"); + } + for(iNew in 1:nrow(CandidatesParamR)){ + if(!quiet & Ncandidates>1){ + for(k in c(2,4,6,8)){ if(iNew==round(k/10*Ncandidates)){ cat(paste(" ",10*k,"%",sep="")); } } + } + ##Model_run + Param <- CandidatesParamR[iNew,]; + OutputsModel <- FUN_MOD(InputsModel,RunOptions,Param); + ##Calibration_criterion_computation + OutputsCrit <- FUN_CRIT(InputsCrit,OutputsModel); + if(!is.na(OutputsCrit$CritValue)){ if(OutputsCrit$CritValue*OutputsCrit$Multiplier < CritOptim){ + CritOptim <- OutputsCrit$CritValue*OutputsCrit$Multiplier; + iNewOptim <- iNew; + } } + ##Storage_of_crit_info + if(is.null(CritName) | is.null(CritBestValue) | is.null(Multiplier)){ + CritName <- OutputsCrit$CritName; + CritBestValue <- OutputsCrit$CritBestValue; + Multiplier <- OutputsCrit$Multiplier; + } + } + if(!quiet & Ncandidates>1){ cat(" 100%) \n"); } + + + ##End_of_first_step_Parameter_Screening____________________________________ + ParamStartR <- CandidatesParamR[iNewOptim,]; if(!is.matrix(ParamStartR)){ ParamStartR <- matrix(ParamStartR,nrow=1); } + ParamStartT <- FUN_TRANSFO(ParamStartR,"RT"); + CritStart <- CritOptim; + NRuns <- NRuns+nrow(CandidatesParamR); + if(!quiet){ + if(Ncandidates> 1){ cat(paste("\t Screening completed (",NRuns," runs): \n",sep="")); } + if(Ncandidates==1){ cat(paste("\t Starting point for steepest-descent local search: \n",sep="")); } + cat(paste("\t Param = ",paste(formatC(ParamStartR,format="f",width=8,digits=3),collapse=" , "),"\n",sep="")); + cat(paste("\t Crit ",format(CritName,width=12,justify="left")," = ",formatC(CritStart*Multiplier,format="f",digits=4),"\n",sep="")); + } + ##Results_archiving________________________________________________________ + HistParamR[1,] <- ParamStartR; + HistParamT[1,] <- ParamStartT; + HistCrit[1,] <- CritStart; + + + + +##_____Steepest_Descent_Local_Search_______________________________________________________ + + + ##Definition_of_the_function_creating_new_parameter_sets_through_a_step_by_step_progression_procedure + ProposeCandidatesLoc <- function(NewParamOptimT,OldParamOptimT,RangesT,OptimParam,Pace){ + ##Format_checking + if(nrow(NewParamOptimT)!=1 | nrow(OldParamOptimT)!=1){ stop("each input set must be a matrix of one single line \n"); return(NULL); } + if(ncol(NewParamOptimT)!=ncol(OldParamOptimT) | ncol(NewParamOptimT)!=length(OptimParam)){ stop("each input set must have the same number of values \n"); return(NULL); } + ##Proposal_of_new_parameter_sets ###(local search providing 2*NParam-1 new sets) + NParam <- ncol(NewParamOptimT); + VECT <- NULL; + for(I in 1:NParam){ + ##We_check_that_the_current_parameter_should_indeed_be_optimised + if(OptimParam[I]==TRUE){ + for(J in 1:2){ + Sign <- 2*J-3; #Sign can be equal to -1 or +1 + ##We_define_the_new_potential_candidate + Add <- TRUE; + PotentialCandidateT <- NewParamOptimT; + PotentialCandidateT[1,I] <- NewParamOptimT[I]+Sign*Pace; + ##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary + if(PotentialCandidateT[1,I]<RangesT[1,I]){ PotentialCandidateT[1,I] <- RangesT[1,I]; } + if(PotentialCandidateT[1,I]>RangesT[2,I]){ PotentialCandidateT[1,I] <- RangesT[2,I]; } + ##We_check_the_set_is_not_outside_the_range_of_possible_values + if( NewParamOptimT[I]==RangesT[1,I] & Sign<0 ){ Add <- FALSE; } + if( NewParamOptimT[I]==RangesT[2,I] & Sign>0 ){ Add <- FALSE; } + ##We_check_that_this_set_has_not_been_tested_during_the_last_iteration + if(identical(PotentialCandidateT,OldParamOptimT)){ Add <- FALSE; } + ##We_add_the_candidate_to_our_list + if(Add==TRUE){ VECT <- c(VECT,PotentialCandidateT); } + } + } + } + Output <- NULL; + Output$NewCandidatesT <- matrix(VECT,ncol=NParam,byrow=TRUE); + return(Output); + } + + + ##Initialisation_of_variables + if(!quiet){ + cat("\t Steepest-descent local search in progress \n"); + } + Pace <- 0.64; + PaceDiag <- rep(0,NParam); + CLG <- 0.7^(1/NParam); + Compt <- 0; + CritOptim <- CritStart; + ##Conversion_of_real_parameter_values + RangesR <- CalibOptions$SearchRanges; + RangesT <- FUN_TRANSFO(RangesR,"RT"); + NewParamOptimT <- ParamStartT; + OldParamOptimT <- ParamStartT; + + + ##START_LOOP_ITER_________________________________________________________ + for(ITER in 1:(100*NParam)){ + + + ##Exit_loop_when_Pace_becomes_too_small___________________________________ + if(Pace<0.01){ break; } + + + ##Creation_of_new_candidates______________________________________________ + CandidatesParamT <- ProposeCandidatesLoc(NewParamOptimT,OldParamOptimT,RangesT,CalibOptions$OptimParam,Pace)$NewCandidatesT; + CandidatesParamR <- FUN_TRANSFO(CandidatesParamT,"TR"); + ##Remplacement_of_non_optimised_values_____________________________________ + CandidatesParamR <- apply(CandidatesParamR,1,function(x){ x[!CalibOptions$OptimParam] <- CalibOptions$FixedParam[!CalibOptions$OptimParam]; return(x); }); + if(NParam>1){ CandidatesParamR <- t(CandidatesParamR); } else { CandidatesParamR <- cbind(CandidatesParamR); } + + + ##Loop_to_test_the_various_candidates_____________________________________ + iNewOptim <- 0; + for(iNew in 1:nrow(CandidatesParamR)){ + ##Model_run + Param <- CandidatesParamR[iNew,]; + OutputsModel <- FUN_MOD(InputsModel,RunOptions,Param); + ##Calibration_criterion_computation + OutputsCrit <- FUN_CRIT(InputsCrit,OutputsModel); + if(!is.na(OutputsCrit$CritValue)){ if(OutputsCrit$CritValue*OutputsCrit$Multiplier < CritOptim){ + CritOptim <- OutputsCrit$CritValue*OutputsCrit$Multiplier; + iNewOptim <- iNew; + } } + } + NRuns <- NRuns+nrow(CandidatesParamR); + + + ##When_a_progress_has_been_achieved_______________________________________ + if(iNewOptim!=0){ + ##We_store_the_optimal_set + OldParamOptimT <- NewParamOptimT; + NewParamOptimT <- matrix(CandidatesParamT[iNewOptim,1:NParam],nrow=1); + Compt <- Compt+1; + ##When_necessary_we_increase_the_pace ### if_successive_progress_occur_in_a_row + if(Compt>2*NParam){ + Pace <- Pace*2; + Compt <- 0; + } + ##We_update_PaceDiag + VectPace <- NewParamOptimT-OldParamOptimT; + for(iC in 1:NParam){ if(CalibOptions$OptimParam[iC]==TRUE){ + if(VectPace[iC]!=0){ PaceDiag[iC] <- CLG*PaceDiag[iC]+(1-CLG)*VectPace[iC]; } + if(VectPace[iC]==0){ PaceDiag[iC] <- CLG*PaceDiag[iC]; } + } } + } else { + ##When_no_progress_has_been_achieved_we_decrease_the_pace_________________ + Pace <- Pace/2; + Compt <- 0; + } + + + ##Test_of_an_additional_candidate_using_diagonal_progress_________________ + if(ITER>4*NParam){ + + NRuns <- NRuns+1; + iNewOptim <- 0; iNew <- 1; + CandidatesParamT <- NewParamOptimT+PaceDiag; if(!is.matrix(CandidatesParamT)){ CandidatesParamT <- matrix(CandidatesParamT,nrow=1); } + ##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary + for(iC in 1:NParam){ if(CalibOptions$OptimParam[iC]==TRUE){ + if(CandidatesParamT[iNew,iC]<RangesT[1,iC]){ CandidatesParamT[iNew,iC] <- RangesT[1,iC]; } + if(CandidatesParamT[iNew,iC]>RangesT[2,iC]){ CandidatesParamT[iNew,iC] <- RangesT[2,iC]; } + } } + CandidatesParamR <- FUN_TRANSFO(CandidatesParamT,"TR"); + ##Model_run + Param <- CandidatesParamR[iNew,]; + OutputsModel <- FUN_MOD(InputsModel,RunOptions,Param); + ##Calibration_criterion_computation + OutputsCrit <- FUN_CRIT(InputsCrit,OutputsModel); + if(OutputsCrit$CritValue*OutputsCrit$Multiplier < CritOptim){ + CritOptim <- OutputsCrit$CritValue*OutputsCrit$Multiplier; + iNewOptim <- iNew; + } + ##When_a_progress_has_been_achieved + if(iNewOptim!=0){ + OldParamOptimT <- NewParamOptimT; + NewParamOptimT <- matrix(CandidatesParamT[iNewOptim,1:NParam],nrow=1); + } + + } + + + ##Results_archiving_______________________________________________________ + NewParamOptimR <- FUN_TRANSFO(NewParamOptimT,"TR"); + HistParamR[ITER+1,] <- NewParamOptimR; + HistParamT[ITER+1,] <- NewParamOptimT; + HistCrit[ITER+1,] <- CritOptim; + ### if(!quiet){ cat(paste("\t Iter ",formatC(ITER,format="d",width=3)," Crit ",formatC(CritOptim,format="f",digits=4)," Pace ",formatC(Pace,format="f",digits=4),"\n",sep="")); } + + + + } ##END_LOOP_ITER_________________________________________________________ + ITER <- ITER-1; + + + ##Case_when_the_starting_parameter_set_remains_the_best_solution__________ + if(CritOptim==CritStart & !quiet){ + cat("\t No progress achieved \n"); + } + + ##End_of_Steepest_Descent_Local_Search____________________________________ + ParamFinalR <- NewParamOptimR; + ParamFinalT <- NewParamOptimT; + CritFinal <- CritOptim; + NIter <- 1+ITER; + if(!quiet){ + cat(paste("\t Calibration completed (",NIter," iterations, ",NRuns," runs): \n",sep="")); + cat(paste("\t Param = ",paste(formatC(ParamFinalR,format="f",width=8,digits=3),collapse=" , "),"\n",sep="")); + cat(paste("\t Crit ",format(CritName,width=12,justify="left")," = ",formatC(CritFinal*Multiplier,format="f",digits=4),"\n",sep="")); + } + ##Results_archiving_______________________________________________________ + HistParamR <- cbind(HistParamR[1:NIter,]); colnames(HistParamR) <- paste("Param",1:NParam,sep=""); + HistParamT <- cbind(HistParamT[1:NIter,]); colnames(HistParamT) <- paste("Param",1:NParam,sep=""); + HistCrit <- cbind(HistCrit[1:NIter,]); ###colnames(HistCrit) <- paste("HistCrit"); + + BoolCrit_Actual <- InputsCrit$BoolCrit; BoolCrit_Actual[OutputsCrit$Ind_notcomputed] <- FALSE; + MatBoolCrit <- cbind( InputsCrit$BoolCrit , BoolCrit_Actual ); + colnames(MatBoolCrit) <- c("BoolCrit_Requested","BoolCrit_Actual"); + + +##_____Output______________________________________________________________________________ + OutputsCalib <- list(as.double(ParamFinalR),CritFinal*Multiplier,NIter,NRuns,HistParamR,HistCrit*Multiplier,MatBoolCrit,CritName,CritBestValue); + names(OutputsCalib) <- c("ParamFinalR","CritFinal","NIter","NRuns","HistParamR","HistCrit","MatBoolCrit","CritName","CritBestValue"); + class(OutputsCalib) <- c("OutputsCalib","HBAN"); + return(OutputsCalib); + + + +} + + + + + diff --git a/R/Calibration_optim.R b/R/Calibration_optim.R new file mode 100644 index 00000000..81f1424f --- /dev/null +++ b/R/Calibration_optim.R @@ -0,0 +1,149 @@ +#************************************************************************************************* +#' Calibration algorithm which minimises the error criterion. \cr +#' \cr +#' The algorithm is based on the "optim" function from the "stats" R-package +#' (using method="L-BFGS-B", i.e. a local optimization quasi-Newton method). +#' +#' To optimise the exploration of the parameter space, transformation functions are used to convert +#' the model parameters. This is done using the TransfoParam functions. +#************************************************************************************************* +#' @title Calibration algorithm which minimises the error criterion using the stats::optim function +#' @author Laurent Coron (August 2013) +#' @example tests/example_Calibration_optim.R +#' @seealso \code{\link{Calibration}}, \code{\link{Calibration_HBAN}}, +#' \code{\link{RunModel_GR4J}}, \code{\link{TransfoParam_GR4J}}, \code{\link{ErrorCrit_RMSE}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, +#' \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param CalibOptions [object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param FUN_TRANSFO (optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$ParamFinalR } \tab [numeric] parameter set obtained at the end of the calibration \cr +#' \emph{$CritFinal } \tab [numeric] error criterion obtained at the end of the calibration \cr +#' \emph{$Nruns } \tab [numeric] number of model runs done during the calibration \cr +#' \emph{$CritName } \tab [character] name of the calibration criterion \cr +#' \emph{$CritBestValue} \tab [numeric] theoretical best criterion value \cr +#' } +#************************************************************************************************** +Calibration_optim <- function(InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO=NULL,quiet=FALSE){ + + + ##_check_class + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions")==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(CalibOptions,"CalibOptions")==FALSE){ stop("CalibOptions must be of class 'CalibOptions' \n"); return(NULL); } + if(inherits(CalibOptions,"optim")==FALSE){ stop("CalibOptions must be of class 'optim' if Calibration_optim is used \n"); return(NULL); } + + + ##_check_FUN_TRANSFO + if(is.null(FUN_TRANSFO)){ + if(identical(FUN_MOD,RunModel_GR4J )){ FUN_TRANSFO <- TransfoParam_GR4J ; } + if(identical(FUN_MOD,RunModel_GR5J )){ FUN_TRANSFO <- TransfoParam_GR5J ; } + if(identical(FUN_MOD,RunModel_GR6J )){ FUN_TRANSFO <- TransfoParam_GR6J ; } + if(identical(FUN_MOD,RunModel_CemaNeige )){ FUN_TRANSFO <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J)){ FUN1 <- TransfoParam_GR4J; FUN2 <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR5J)){ FUN1 <- TransfoParam_GR5J; FUN2 <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ FUN1 <- TransfoParam_GR6J; FUN2 <- TransfoParam_CemaNeige; } + FUN_TRANSFO <- function(ParamIn,Direction){ + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + ParamOut <- NA*ParamIn; + NParam <- ncol(ParamIn); + ParamOut[, 1:(NParam-2)] <- FUN1(ParamIn[, 1:(NParam-2)],Direction); + ParamOut[,(NParam-1):NParam ] <- FUN2(ParamIn[,(NParam-1):NParam ],Direction); + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + } + } + if(is.null(FUN_TRANSFO)){ stop("FUN_TRANSFO was not found (in Calibration function) \n"); return(NULL); } + } + + + ##_RunModelAndCrit + RunModelAndCrit <- function(par,InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO){ + ParamT <- NA*CalibOptions$FixedParam; + ParamT[CalibOptions$OptimParam] <- par; + Param <- FUN_TRANSFO(ParamIn=ParamT,Direction="TR"); + Param[!CalibOptions$OptimParam] <- CalibOptions$FixedParam[!CalibOptions$OptimParam]; + OutputsModel <- FUN_MOD(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param); + OutputsCrit <- FUN_CRIT(InputsCrit=InputsCrit,OutputsModel=OutputsModel); + return(OutputsCrit$CritValue*OutputsCrit$Multiplier); + } + + + ##_temporary_change_of_Outputs_Sim + RunOptions$Outputs_Sim <- RunOptions$Outputs_Cal; ### this reduces the size of the matrix exchange with fortran and therefore speeds the calibration + ##_screenPrint + if(!quiet){ + cat(paste("\t Calibration in progress (function optim from the stats package) \n",sep="")); + } + + + ##_lower_and_upper_limit_values (transformed) + RangesR <- CalibOptions$SearchRanges; + RangesT <- FUN_TRANSFO(RangesR,"RT"); + lower <- RangesT[1,CalibOptions$OptimParam]; + upper <- RangesT[2,CalibOptions$OptimParam]; + + ##_starting_values (transformed) + ParamStartT <- FUN_TRANSFO(CalibOptions$StartParam,"RT"); + par_start <- ParamStartT[CalibOptions$OptimParam]; + + + ##_calibration + RESULT <- optim(par=par_start,fn=RunModelAndCrit,gr=NULL, + InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO, ## arguments for the RunModelAndCrit function (other than par) + method="L-BFGS-B",lower=lower,upper=upper,control=list(),hessian=FALSE) + + + ##_outputs_preparation + ParamFinalT <- NA*ParamStartT; + ParamFinalT[CalibOptions$OptimParam] <- RESULT$par; + ParamFinalR <- FUN_TRANSFO(ParamFinalT,"TR"); + ParamFinalR[!CalibOptions$OptimParam] <- CalibOptions$FixedParam[!CalibOptions$OptimParam]; + CritFinal <- RESULT$value; + + ##_storage_of_crit_info + OutputsModel <- FUN_MOD(InputsModel=InputsModel,RunOptions=RunOptions,Param=ParamFinalR); + OutputsCrit <- FUN_CRIT(InputsCrit=InputsCrit,OutputsModel=OutputsModel); + CritName <- OutputsCrit$CritName; + CritBestValue <- OutputsCrit$CritBestValue; + Multiplier <- OutputsCrit$Multiplier; + + ##_screenPrint + if(!quiet){ + if(RESULT$convergence==0){ + cat(paste("\t Calibration completed: \n",sep="")); + cat(paste("\t Param = ",paste(formatC(ParamFinalR,format="f",width=8,digits=3),collapse=" , "),"\n",sep="")); + cat(paste("\t Crit ",format(CritName,width=12,justify="left")," = ",formatC(CritFinal*Multiplier,format="f",digits=4),"\n",sep="")); + } else { + cat(paste("\t Calibration failed: \n",sep="")); + cat(paste("\t ",RESULT$message,sep="")); + } + } + + + ##_function_output + OutputsCalib <- list(as.double(ParamFinalR),CritFinal*Multiplier,as.integer(RESULT$counts[1]),CritName,CritBestValue); + names(OutputsCalib) <- c("ParamFinalR","CritFinal","NRuns","CritName","CritBestValue"); + class(OutputsCalib) <- c("OutputsCalib","optim"); + return(OutputsCalib); + + +} + + + + diff --git a/R/CreateCalibOptions.R b/R/CreateCalibOptions.R new file mode 100644 index 00000000..c94d5efc --- /dev/null +++ b/R/CreateCalibOptions.R @@ -0,0 +1,226 @@ +#************************************************************************************************* +#' Creation of the CalibOptions object required to the Calibration functions. +#' +#' Users wanting to use FUN_MOD, FUN_CALIB or FUN_TRANSFO functions that are not included in +#' the package must create their own CalibOptions object accordingly. +#************************************************************************************************* +#' @title Creation of the CalibOptions object required to the Calibration functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}} +#' @example tests/example_Calibration.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param FUN_CALIB (optional) [function] calibration algorithm function (e.g. Calibration_HBAN, Calibration_optim), default=Calibration_HBAN +#' @param FUN_TRANSFO (optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined +#' @param RunOptions (optional) [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param OptimParam (optional) [boolean] vector of booleans indicating which parameters must be optimised (NParam columns, 1 line) +#' @param FixedParam (optional) [numeric] vector giving the values to allocate to non-optimised parameter values (NParam columns, 1 line) +#' @param SearchRanges (optional) [numeric] matrix giving the ranges of real parameters (NParam columns, 2 lines) +#' \tabular{llllll}{ +#' \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr +#' [1,] \tab 0 \tab -1 \tab 0 \tab ... \tab 0.0 \cr +#' [2,] \tab 3000 \tab +1 \tab 100 \tab ... \tab 3.0 \cr +#' } +#' @param StartParam (optional) [numeric] vector of parameter values used to start global search calibration procedure (e.g. Calibration_optim) +#' \tabular{llllll}{ +#' \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr +#' \tab 1000 \tab -0.5 \tab 22 \tab ... \tab 1.1 \cr +#' } +#' @param StartParamList (optional) [numeric] matrix of parameter sets used for grid-screening calibration procedure (values in columns, sets in line) +#' \tabular{llllll}{ +#' \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr +#' [set1] \tab 800 \tab -0.7 \tab 25 \tab ... \tab 1.0 \cr +#' [set2] \tab 1000 \tab -0.5 \tab 22 \tab ... \tab 1.1 \cr +#' [...] \tab ... \tab ... \tab ... \tab ... \tab ... \cr +#' [set n] \tab 200 \tab -0.3 \tab 17 \tab ... \tab 1.0 \cr +#' } +#' @param StartParamDistrib (optional) [numeric] matrix of parameter values used for grid-screening calibration procedure (values in columns, percentiles in line) \cr +#' \tabular{llllll}{ +#' \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr +#' [value1] \tab 800 \tab -0.7 \tab 25 \tab ... \tab 1.0 \cr +#' [value2] \tab 1000 \tab NA \tab 50 \tab ... \tab 1.2 \cr +#' [value3] \tab 1200 \tab NA \tab NA \tab ... \tab 1.6 \cr +#' } +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] object of class \emph{CalibOptions} containing the data required to evaluate the model outputs; it can include the following: +#' \tabular{ll}{ +#' \emph{$OptimParam } \tab [boolean] vector of booleans indicating which parameters must be optimised \cr +#' \emph{$FixedParam } \tab [numeric] vector giving the values to allocate to non-optimised parameter values \cr +#' \emph{$SearchRanges } \tab [numeric] matrix giving the ranges of real parameters \cr +#' \emph{$StartParam } \tab [numeric] vector of parameter values used to start global search calibration procedure \cr +#' \emph{$StartParamList } \tab [numeric] matrix of parameter sets used for grid-screening calibration procedure \cr +#' \emph{$StartParamDistrib} \tab [numeric] matrix of parameter values used for grid-screening calibration procedure \cr +#' } +#**************************************************************************************************' +CreateCalibOptions <- function(FUN_MOD,FUN_CALIB=Calibration_HBAN,FUN_TRANSFO=NULL,RunOptions=NULL,OptimParam=NULL,FixedParam=NULL,SearchRanges=NULL, + StartParam=NULL,StartParamList=NULL,StartParamDistrib=NULL){ + + + ObjectClass <- NULL; + + ##check_FUN_MOD + BOOL <- FALSE; + if(identical(FUN_MOD,RunModel_GR4J )){ ObjectClass <- c(ObjectClass,"GR4J" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_GR5J )){ ObjectClass <- c(ObjectClass,"GR5J" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_GR6J )){ ObjectClass <- c(ObjectClass,"GR6J" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_CemaNeige )){ ObjectClass <- c(ObjectClass,"CemaNeige" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J)){ ObjectClass <- c(ObjectClass,"CemaNeigeGR4J"); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR5J)){ ObjectClass <- c(ObjectClass,"CemaNeigeGR5J"); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ ObjectClass <- c(ObjectClass,"CemaNeigeGR6J"); BOOL <- TRUE; } + if(!BOOL){ stop("incorrect FUN_MOD for use in CreateCalibOptions \n"); return(NULL); } + + ##check_FUN_CALIB + BOOL <- FALSE; + if(identical(FUN_CALIB,Calibration_HBAN )){ ObjectClass <- c(ObjectClass,"HBAN" ); BOOL <- TRUE; } + if(identical(FUN_CALIB,Calibration_optim)){ ObjectClass <- c(ObjectClass,"optim"); BOOL <- TRUE; } + if(!BOOL){ stop("incorrect FUN_CALIB for use in CreateCalibOptions \n"); return(NULL); } + + ##check_FUN_TRANSFO + if(is.null(FUN_TRANSFO)){ + ##_set_FUN1 + if(identical(FUN_MOD,RunModel_GR4J ) | identical(FUN_MOD,RunModel_CemaNeigeGR4J) ){ FUN1 <- TransfoParam_GR4J ; } + if(identical(FUN_MOD,RunModel_GR5J ) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) ){ FUN1 <- TransfoParam_GR5J ; } + if(identical(FUN_MOD,RunModel_GR6J ) | identical(FUN_MOD,RunModel_CemaNeigeGR6J) ){ FUN1 <- TransfoParam_GR6J ; } + if(identical(FUN_MOD,RunModel_CemaNeige) ){ FUN1 <- TransfoParam_CemaNeige; } + if(is.null(FUN1)){ stop("FUN1 was not found \n"); return(NULL); } + ##_set_FUN2 + FUN2 <- TransfoParam_CemaNeige; + ##_set_FUN_TRANSFO + if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_GR6J) | identical(FUN_MOD,RunModel_CemaNeige)){ + FUN_TRANSFO <- FUN1; + } else { + FUN_TRANSFO <- function(ParamIn,Direction){ + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + ParamOut <- NA*ParamIn; + NParam <- ncol(ParamIn); + if(NParam <= 3){ + ParamOut[, 1:(NParam-2)] <- FUN1(cbind(ParamIn[,1:(NParam-2)]),Direction); + } else { + ParamOut[, 1:(NParam-2)] <- FUN1(ParamIn[,1:(NParam-2) ],Direction); } + ParamOut[,(NParam-1):NParam ] <- FUN2(ParamIn[,(NParam-1):NParam],Direction); + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + } + } + } + if(is.null(FUN_TRANSFO)){ stop("FUN_TRANSFO was not found \n"); return(NULL); } + + ##check_RunOptions + if(!is.null(RunOptions)){ + if(inherits(RunOptions,"RunOptions")==FALSE){ stop("RunOptions must be of class 'RunOptions' if not null= \n"); return(NULL); } + } + + ##NParam + if("GR4J" %in% ObjectClass){ NParam <- 4; } + if("GR5J" %in% ObjectClass){ NParam <- 5; } + if("GR6J" %in% ObjectClass){ NParam <- 6; } + if("CemaNeige" %in% ObjectClass){ NParam <- 2; } + if("CemaNeigeGR4J" %in% ObjectClass){ NParam <- 6; } + if("CemaNeigeGR5J" %in% ObjectClass){ NParam <- 7; } + if("CemaNeigeGR6J" %in% ObjectClass){ NParam <- 8; } + + ##check_OptimParam + if(is.null(OptimParam)){ + OptimParam <- rep(TRUE,NParam); + } else { + if(!is.vector(OptimParam) ){ stop("OptimParam must be a vector of booleans \n"); return(NULL); } + if(length(OptimParam)!=NParam){ stop("Incompatibility between OptimParam length and FUN_MOD \n"); return(NULL); } + if(!is.logical(OptimParam) ){ stop("OptimParam must be a vector of booleans \n"); return(NULL); } + } + + ##check_FixedParam + if(is.null(FixedParam)){ + FixedParam <- rep(NA,NParam); + } else { + if(!is.vector(FixedParam) ){ stop("FixedParam must be a vector \n"); return(NULL); } + if(length(FixedParam)!=NParam ){ stop("Incompatibility between OptimParam length and FUN_MOD \n"); return(NULL); } + if(!is.numeric(FixedParam[!OptimParam])){ stop("if OptimParam[i]==FALSE, FixedParam[i] must be a numeric value \n"); return(NULL); } + } + + ##check_SearchRanges + if(is.null(SearchRanges)){ + ParamT <- matrix(c(rep(-9.99,NParam),rep(+9.99,NParam)),ncol=NParam,byrow=TRUE); + SearchRanges <- TransfoParam(ParamIn=ParamT,Direction="TR",FUN_TRANSFO=FUN_TRANSFO); + } else { + if(!is.matrix( SearchRanges) ){ stop("SearchRanges must be a matrix \n"); return(NULL); } + if(!is.numeric(SearchRanges) ){ stop("SearchRanges must be a matrix of numeric values \n"); return(NULL); } + if(sum(is.na(SearchRanges))!=0){ stop("SearchRanges must not include NA values \n"); return(NULL); } + if(nrow(SearchRanges)!=2 ){ stop("SearchRanges must have 2 rows \n"); return(NULL); } + if(ncol(SearchRanges)!=NParam ){ stop("Incompatibility between SearchRanges ncol and FUN_MOD \n"); return(NULL); } + } + + ##check_StartParamList_and_StartParamDistrib__default_values + if( ("HBAN" %in% ObjectClass & is.null(StartParamList) & is.null(StartParamDistrib)) | + ("optim" %in% ObjectClass & is.null(StartParam)) ){ + + if("GR4J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10),ncol=NParam,byrow=TRUE); } + if("GR5J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -1.70, +3.30, -9.10, -0.70, + +3.90, -0.60, +4.10, -8.70, +0.30, + +4.50, -0.10, +5.00, -8.10, +0.50),ncol=NParam,byrow=TRUE); } + if("GR6J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -1.00, +3.30, -9.10, -0.90, +3.00, + +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, + +4.50, +0.50, +5.00, -8.10, +1.10, +5.00),ncol=NParam,byrow=TRUE); } + if("CemaNeige"%in% ObjectClass){ + ParamT <- matrix( c( -6.26, +0.55, + -2.13, +0.92, + +4.86, +1.40),ncol=NParam,byrow=TRUE); } + if("CemaNeigeGR4J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -2.00, +3.40, -9.10, -6.26, +0.55, + +3.90, -0.90, +4.10, -8.70, -2.13, +0.92, + +4.50, -0.10, +5.00, -8.10, +4.86, +1.40),ncol=NParam,byrow=TRUE); } + if("CemaNeigeGR5J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -1.70, +3.30, -9.10, -0.70, -6.26, +0.55, + +3.90, -0.60, +4.10, -8.70, +0.30, -2.13, +0.92, + +4.50, -0.10, +5.00, -8.10, +0.50, +4.86, +1.40),ncol=NParam,byrow=TRUE); } + if("CemaNeigeGR6J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -1.00, +3.30, -9.10, -0.90, +3.00, -6.26, +0.55, + +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, -2.13, +0.92, + +4.50, +0.50, +5.00, -8.10, +1.10, +5.00, +4.86, +1.40),ncol=NParam,byrow=TRUE); } + + StartParamList <- NULL; + StartParamDistrib <- TransfoParam(ParamIn=ParamT,Direction="TR",FUN_TRANSFO=FUN_TRANSFO); + StartParam <- StartParamDistrib[2,]; + } + + ##check_StartParamList_and_StartParamDistrib__format + if("HBAN" %in% ObjectClass & !is.null(StartParamList)){ + if(!is.matrix( StartParamList) ){ stop("StartParamList must be a matrix \n"); return(NULL); } + if(!is.numeric(StartParamList) ){ stop("StartParamList must be a matrix of numeric values \n"); return(NULL); } + if(sum(is.na(StartParamList))!=0){ stop("StartParamList must not include NA values \n"); return(NULL); } + if(ncol(StartParamList)!=NParam ){ stop("Incompatibility between StartParamList ncol and FUN_MOD \n"); return(NULL); } + } + if("HBAN" %in% ObjectClass & !is.null(StartParamDistrib)){ + if(!is.matrix( StartParamDistrib) ){ stop("StartParamDistrib must be a matrix \n"); return(NULL); } + if(!is.numeric(StartParamDistrib[1,]) ){ stop("StartParamDistrib must be a matrix of numeric values \n"); return(NULL); } + if(sum(is.na(StartParamDistrib[1,]))!=0){ stop("StartParamDistrib must not include NA values on the first line \n"); return(NULL); } + if(ncol(StartParamDistrib)!=NParam ){ stop("Incompatibility between StartParamDistrib ncol and FUN_MOD \n"); return(NULL); } + } + if("optim" %in% ObjectClass & !is.null(StartParam)){ + if(!is.vector( StartParam) ){ stop("StartParam must be a vector \n"); return(NULL); } + if(!is.numeric(StartParam) ){ stop("StartParam must be a vector of numeric values \n"); return(NULL); } + if(sum(is.na(StartParam))!=0 ){ stop("StartParam must not include NA values \n"); return(NULL); } + if(length(StartParam)!=NParam ){ stop("Incompatibility between StartParam length and FUN_MOD \n"); return(NULL); } + } + + + ##Create_CalibOptions + CalibOptions <- list(OptimParam=OptimParam,FixedParam=FixedParam,SearchRanges=SearchRanges); + if(!is.null(StartParam )){ CalibOptions <- c(CalibOptions,list(StartParam=StartParam)); } + if(!is.null(StartParamList )){ CalibOptions <- c(CalibOptions,list(StartParamList=StartParamList)); } + if(!is.null(StartParamDistrib)){ CalibOptions <- c(CalibOptions,list(StartParamDistrib=StartParamDistrib)); } + class(CalibOptions) <- c("CalibOptions",ObjectClass); + return(CalibOptions); + + +} + + + diff --git a/R/CreateInputsCrit.R b/R/CreateInputsCrit.R new file mode 100644 index 00000000..5dcd672c --- /dev/null +++ b/R/CreateInputsCrit.R @@ -0,0 +1,81 @@ +#************************************************************************************************* +#' Creation of the InputsCrit object required to the ErrorCrit functions. +#' +#' Users wanting to use FUN_CRIT functions that are not included in +#' the package must create their own InputsCrit object accordingly. +#************************************************************************************************* +#' @title Creation of the InputsCrit object required to the ErrorCrit functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateCalibOptions}} +#' @example tests/example_ErrorCrit.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Qobs [numeric] series of observed discharges [mm] +#' @param BoolCrit (optional) [boolean] boolean giving the time steps to consider in the computation (all time steps are consider by default) +#' @param transfo (optional) [character] name of the transformation (e.g. "", "sqrt", "log", "inv", "sort") +#' @param Ind_zeroes (optional) [numeric] indices of the time-steps where zeroes are observed +#' @param epsilon (optional) [numeric] epsilon to add to all Qobs and Qsim if \emph{$Ind_zeroes} is not empty +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] object of class \emph{InputsCrit} containing the data required to evaluate the model outputs; it can include the following: +#' \tabular{ll}{ +#' \emph{$BoolCrit } \tab [boolean] boolean giving the time steps to consider in the computation \cr +#' \emph{$Qobs } \tab [numeric] series of observed discharges [mm] \cr +#' \emph{$transfo } \tab [character] name of the transformation (e.g. "", "sqrt", "log", "inv", "sort") \cr +#' \emph{$Ind_zeroes} \tab [numeric] indices of the time-steps where zeroes are observed \cr +#' \emph{$epsilon } \tab [numeric] epsilon to add to all Qobs and Qsim if \emph{$Ind_zeroes} is not empty \cr +#' } +#************************************************************************************************** +CreateInputsCrit <- function(FUN_CRIT,InputsModel,RunOptions,Qobs,BoolCrit=NULL,transfo="",Ind_zeroes=NULL,epsilon=NULL){ + + ObjectClass <- NULL; + + ##check_FUN_CRIT + BOOL <- FALSE; + if(identical(FUN_CRIT,ErrorCrit_RMSE) | identical(FUN_CRIT,ErrorCrit_NSE) | identical(FUN_CRIT,ErrorCrit_KGE) | identical(FUN_CRIT,ErrorCrit_KGE2)){ + BOOL <- TRUE; + } + if(!BOOL){ stop("incorrect FUN_CRIT for use in CreateInputsCrit \n"); return(NULL); } + + ##check_arguments + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n" ); return(NULL); } + if(inherits(RunOptions ,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n" ); return(NULL); } + LLL <- length(InputsModel$DatesR[RunOptions$IndPeriod_Run]) + + if(is.null(Qobs) ){ stop("Qobs is missing \n"); return(NULL); } + if(!is.vector( Qobs)){ stop(paste("Qobs must be a vector of numeric values \n",sep="")); return(NULL); } + if(!is.numeric(Qobs)){ stop(paste("Qobs must be a vector of numeric values \n",sep="")); return(NULL); } + if(length(Qobs)!=LLL){ stop("Qobs and InputsModel series must have the same length \n"); return(NULL); } + + if(is.null(BoolCrit)){ BoolCrit <- rep(TRUE,length(Qobs)); } + if(!is.logical(BoolCrit)){ stop("BoolCrit must be a vector of boolean \n" ); return(NULL); } + if(length(BoolCrit)!=LLL){ stop("BoolCrit and InputsModel series must have the same length \n"); return(NULL); } + + if(is.null(transfo) ){ stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + if(!is.vector( transfo)){ stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + if(length(transfo)!=1 ){ stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + if(!is.character(transfo)){ stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + if(transfo %in% c("","sqrt","log","inv") == FALSE){ + stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + + if(!is.null(Ind_zeroes)){ + if(!is.vector( Ind_zeroes)){ stop("Ind_zeroes must be a vector of integers \n" ); return(NULL); } + if(!is.integer(Ind_zeroes)){ stop("Ind_zeroes must be a vector of integers \n" ); return(NULL); } + } + if(!is.null(epsilon)){ + if(!is.vector( epsilon) | length(epsilon)!=1 | !is.numeric(epsilon)){ + stop("epsilon must be single numeric value \n" ); return(NULL); } + epsilon=as.double(epsilon); + } + + ##Create_InputsCrit + InputsCrit <- list(BoolCrit=BoolCrit,Qobs=Qobs,transfo=transfo,Ind_zeroes=Ind_zeroes,epsilon=epsilon); + class(InputsCrit) <- c("InputsCrit",ObjectClass); + return(InputsCrit); + + +} + diff --git a/R/CreateInputsModel.R b/R/CreateInputsModel.R new file mode 100644 index 00000000..e1b8be1a --- /dev/null +++ b/R/CreateInputsModel.R @@ -0,0 +1,156 @@ +#************************************************************************************************* +#' Creation of the InputsModel object required to the RunModel functions. +#' +#' Users wanting to use FUN_MOD functions that are not included in +#' the package must create their own InputsModel object accordingly. +#************************************************************************************************* +#' @title Creation of the InputsModel object required to the RunModel functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}, \code{\link{DataAltiExtrapolation_HBAN}} +#' @example tests/example_RunModel.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param DatesR [POSIXlt] vector of dates required to create the GR model and CemaNeige module inputs +#' @param Precip [numeric] time series of daily total precipitation (catchment average) [mm], required to create the GR model and CemaNeige module inputs +#' @param PotEvap [numeric] time series of daily potential evapotranspiration (catchment average) [mm], required to create the GR model inputs +#' @param TempMean [numeric] time series of daily mean air temperature [degC], required to create the CemaNeige module inputs +#' @param TempMin (optional) [numeric] time series of daily min air temperature [degC], possibly used to create the CemaNeige module inputs +#' @param TempMax (optional) [numeric] time series of daily max air temperature [degC], possibly used to create the CemaNeige module inputs +#' @param ZInputs (optional) [numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m] +#' @param HypsoData (optional) [numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m], required to create the GR model inputs, if not defined a single elevation is used for CemaNeige +#' @param NLayers (optional) [numeric] integer giving the number of elevation layers requested [-], required to create the GR model inputs, default=5 +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] object of class \emph{InputsModel} containing the data required to evaluate the model outputs; it can include the following: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] vector of dates \cr +#' \emph{$Precip } \tab [numeric] time series of daily total precipitation (catchment average) [mm] \cr +#' \emph{$PotEvap } \tab [numeric] time series of daily potential evapotranspiration (catchment average) [mm], \cr\tab defined if FUN_MOD includes GR4J, GR5J or GR6J \cr \cr +#' \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr +#' \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [degC], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr +#' \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr +#' } +#************************************************************************************************** +CreateInputsModel <- function(FUN_MOD,DatesR,Precip,PotEvap=NULL,TempMean=NULL,TempMin=NULL,TempMax=NULL,ZInputs=NULL,HypsoData=NULL,NLayers=5,quiet=FALSE){ + + ObjectClass <- NULL; + + ##check_FUN_MOD + BOOL <- FALSE; + if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_GR6J)){ + ObjectClass <- c(ObjectClass,"daily","GR"); + TimeStep <- as.integer(24*60*60); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_CemaNeige)){ + ObjectClass <- c(ObjectClass,"daily","CemaNeige"); + TimeStep <- as.integer(24*60*60); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + ObjectClass <- c(ObjectClass,"daily","GR","CemaNeige"); + TimeStep <- as.integer(24*60*60); + BOOL <- TRUE; + } + if(!BOOL){ stop("incorrect FUN_MOD for use in CreateInputsModel \n"); return(NULL); } + + ##check_arguments + if("GR" %in% ObjectClass | "CemaNeige" %in% ObjectClass){ + if(is.null(DatesR)){ stop("DatesR is missing \n"); return(NULL); } + if("POSIXlt" %in% class(DatesR) == FALSE & "POSIXct" %in% class(DatesR) == FALSE){ stop("DatesR must be defined as POSIXlt or POSIXct \n"); return(NULL); } + if("POSIXlt" %in% class(DatesR) == FALSE){ DatesR <- as.POSIXlt(DatesR); } + if(difftime(tail(DatesR,1),tail(DatesR,2),units="secs")[[1]]!=TimeStep){ stop(paste("the time step of the model inputs must be ",TimeStep," seconds \n",sep="")); return(NULL); } + LLL <- length(DatesR); + } + if("GR" %in% ObjectClass){ + if(is.null(Precip )){ stop("Precip is missing \n" ); return(NULL); } + if(is.null(PotEvap )){ stop("PotEvap is missing \n" ); return(NULL); } + if(!is.vector( Precip) | !is.vector( PotEvap)){ stop("Precip and PotEvap must be vectors of numeric values \n"); return(NULL); } + if(!is.numeric(Precip) | !is.numeric(PotEvap)){ stop("Precip and PotEvap must be vectors of numeric values \n"); return(NULL); } + if(length(Precip)!=LLL | length(PotEvap)!=LLL){ stop("Precip, PotEvap and DatesR must have the same length \n"); return(NULL); } + } + if("CemaNeige" %in% ObjectClass){ + if(is.null(Precip )){ stop("Precip is missing \n" ); return(NULL); } + if(is.null(TempMean)){ stop("TempMean is missing \n"); return(NULL); } + if(!is.vector( Precip) | !is.vector( TempMean)){ stop("Precip and TempMean must be vectors of numeric values \n"); return(NULL); } + if(!is.numeric(Precip) | !is.numeric(TempMean)){ stop("Precip and TempMean must be vectors of numeric values \n"); return(NULL); } + if(length(Precip)!=LLL | length(TempMean)!=LLL){ stop("Precip, TempMean and DatesR must have the same length \n"); return(NULL); } + if(is.null(TempMin)!=is.null(TempMax)){ stop("TempMin and TempMax must be both defined if not null \n"); return(NULL); } + if(!is.null(TempMin) & !is.null(TempMax)){ + if(!is.vector( TempMin) | !is.vector( TempMax)){ stop("TempMin and TempMax must be vectors of numeric values \n"); return(NULL); } + if(!is.numeric(TempMin) | !is.numeric(TempMax)){ stop("TempMin and TempMax must be vectors of numeric values \n"); return(NULL); } + if(length(TempMin)!=LLL | length(TempMax)!=LLL){ stop("TempMin, TempMax and DatesR must have the same length \n"); return(NULL); } + } + if(!is.null(HypsoData)){ + if(!is.vector( HypsoData)){ stop("HypsoData must be a vector of numeric values if not null \n"); return(NULL); } + if(!is.numeric(HypsoData)){ stop("HypsoData must be a vector of numeric values if not null \n"); return(NULL); } + if(length(HypsoData)!=101){ stop("HypsoData must be of length 101 if not null \n"); return(NULL); } + if(sum(is.na(HypsoData))!=0 & sum(is.na(HypsoData))!=101){ stop("HypsoData must not contain any NA if not null \n"); return(NULL); } + } + if(!is.null(ZInputs)){ + if(length(ZInputs)!=1 ){ stop("\t ZInputs must be a single numeric value if not null \n"); return(NULL); } + if(is.na(ZInputs) | !is.numeric(ZInputs)){ stop("\t ZInputs must be a single numeric value if not null \n"); return(NULL); } + } + if(is.null(HypsoData)){ + if(!quiet){ warning("\t HypsoData is missing => a single layer is used and no extrapolation is made \n"); } + HypsoData <- as.numeric(rep(NA,101)); ZInputs <- as.numeric(NA); NLayers <- as.integer(1); + } + if(is.null(ZInputs)){ + if(!quiet & !identical(HypsoData,as.numeric(rep(NA,101)))){ warning("\t ZInputs is missing => HypsoData[51] is used \n"); } + ZInputs <- HypsoData[51]; + } + } + + + ##check_NA_values + BOOL_NA <- rep(FALSE,length(DatesR)); + if("GR" %in% ObjectClass){ + BOOL_NA_TMP <- (Precip < 0) | is.na(Precip ); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < 0 or NA values detected in Precip series \n"); } } + BOOL_NA_TMP <- (PotEvap < 0) | is.na(PotEvap); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < 0 or NA values detected in PotEvap series \n"); } } + } + if("CemaNeige" %in% ObjectClass){ + BOOL_NA_TMP <- (Precip < 0 ) | is.na(Precip ); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < 0 or NA values detected in Precip series \n"); } } + BOOL_NA_TMP <- (TempMean<(-150)) | is.na(TempMean); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < -150) or NA values detected in TempMean series \n"); } } + if(!is.null(TempMin) & !is.null(TempMax)){ + BOOL_NA_TMP <- (TempMin<(-150)) | is.na(TempMin); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < -150) or NA values detected in TempMin series \n"); } } + BOOL_NA_TMP <- (TempMax<(-150)) | is.na(TempMax); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < -150) or NA values detected in TempMax series \n"); } } } + } + if(sum(BOOL_NA)!=0){ + WTxt <- NULL; + WTxt <- paste(WTxt,"\t Missing values are not allowed in InputsModel \n",sep=""); + Select <- (max(which(BOOL_NA))+1):length(BOOL_NA); + if(Select[1]>Select[2]){ stop(paste("time series could not be trunced since missing values were detected at the list time-step \n",sep="")); return(NULL); } + if("GR" %in% ObjectClass){ + Precip <- Precip[Select]; PotEvap <- PotEvap[Select]; } + if("CemaNeige" %in% ObjectClass){ + Precip <- Precip[Select]; TempMean <- TempMean[Select]; if(!is.null(TempMin) & !is.null(TempMax)){ TempMin <- TempMin[Select]; TempMax <- TempMax[Select]; } } + WTxt <- paste(WTxt,"\t -> data were trunced to keep the most recent available time-steps \n",sep=""); + WTxt <- paste(WTxt,"\t -> ",length(Select)," time-steps were kept \n",sep=""); + if(!is.null(WTxt) & !quiet){ warning(WTxt); } + } + + + ##DataAltiExtrapolation_HBAN + if("CemaNeige" %in% ObjectClass){ + RESULT <- DataAltiExtrapolation_HBAN(DatesR=DatesR,Precip=Precip,TempMean=TempMean,TempMin=TempMin,TempMax=TempMax,ZInputs=ZInputs,HypsoData=HypsoData,NLayers=NLayers,quiet=quiet); + if(!quiet){ if(NLayers==1){ cat(paste("\t Input series were successfully created on 1 elevation layer for use by CemaNeige \n",sep="")); + } else { cat(paste("\t Input series were successfully created on ",NLayers," elevation layers for use by CemaNeige \n",sep="")); } } + } + + + ##Create_InputsModel + InputsModel <- list(DatesR=DatesR); + if("GR" %in% ObjectClass){ + InputsModel <- c(InputsModel,list(Precip=as.double(Precip),PotEvap=as.double(PotEvap))); } + if("CemaNeige" %in% ObjectClass){ + InputsModel <- c(InputsModel,list(LayerPrecip=RESULT$LayerPrecip,LayerTempMean=RESULT$LayerTempMean, + LayerFracSolidPrecip=RESULT$LayerFracSolidPrecip,ZLayers=RESULT$ZLayers)); } + + class(InputsModel) <- c("InputsModel",ObjectClass); + return(InputsModel); + + +} + diff --git a/R/CreateRunOptions.R b/R/CreateRunOptions.R new file mode 100644 index 00000000..f5c778d8 --- /dev/null +++ b/R/CreateRunOptions.R @@ -0,0 +1,260 @@ +#************************************************************************************************* +#' Creation of the RunOptions object required to the RunModel functions. +#' +#' Users wanting to use FUN_MOD functions that are not included in +#' the package must create their own RunOptions object accordingly. +#' +#' ##### Initialisation options ##### +#' +#' The model initialisation options can either be set to a default configuration or be defined by the user. +#' +#' This is done via three vectors: \cr \emph{IndPeriod_WarmUp}, \emph{IniStates}, \emph{IniResLevels}. \cr +#' A default configuration is used for initialisation if these vectors are not defined. +#' +#' (1) Default initialisation options: +#' +#' \itemize{ +#' \item \emph{IndPeriod_WarmUp} default setting ensures a one-year warm-up using the time-steps preceding the \emph{IndPeriod_Run}. +#' The actual length of this warm-up might be shorter depending on data availability (no missing value being allowed on model input series). +#' +#' \item \emph{IniStates} and \emph{IniResLevels} are automatically set to initialise all the model states at 0, except for the production and routing stores which are initialised at 50\% of their capacity. This initialisation is made at the very beginning of the model call (i.e. at the beginning of \emph{IndPeriod_WarmUp} or at the beginning of IndPeriod_Run if the warm-up period is disabled). +#' } +#' +#' (2) Customisation of initialisation options: +#' +#' \itemize{ +#' \item \emph{IndPeriod_WarmUp} can be used to specify the indices of the warm-up period (within the time-series prepared in InputsModel). \cr +#' - remark 1: for most common cases, indices corresponding to one or several years preceding \emph{IndPeriod_Run} are used (e.g. \emph{IndPeriod_WarmUp <- 1000:1365} and \emph{IndPeriod_Run <- 1366:5000)}. \cr +#' However, it is also possible to perform a long-term initialisation if other indices than the warm-up ones are set in \emph{IndPeriod_WarmUp} (e.g. \emph{IndPeriod_WarmUp <- c( 1:5000 , 1:5000 , 1:5000 ,1000:1365 )}). \cr +#' - remark 2: it is also possible to completely disable the warm-up period when using \emph{IndPeriod_WarmUp <- 0}. +#' +#' \item \emph{IniStates} and \emph{IniResLevels} can be used to specify the initial model states. \cr +#' - remark 1: if \emph{IniStates} is used, all model states must be provided (e.g. 60 floats [mm] are required for GR4J, GR5J and GR6J; 60+2*NLayers floats [mm] are required for CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J; see fortran source code for details). \cr +#' - remark 2: in addition to \emph{IniStates}, \emph{IniResLevels} allows to set the filling rate of the production and routing stores for the GR models. For instance for GR4J, GR5J and GR6J: \emph{IniResLevels <- c(0.3,0.5)} should be used to obtain initial fillings of 30\% and 50\% for the production and routing stores, respectively. \emph{IniResLevels} is optional and can only be used if \emph{IniStates} is also defined (the state values corresponding to these two stores in \emph{IniStates} are not used in such case). \cr \cr +#' } +#************************************************************************************************* +#' @title Creation of the RunOptions object required to the RunModel functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}} +#' @example tests/example_RunModel.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param IndPeriod_WarmUp (optional) [numeric] index of period to be used for the model warm-up [-] +#' @param IndPeriod_Run [numeric] index of period to be used for the model run [-] +#' @param IniStates (optional) [numeric] vector of initial model states [mm] +#' @param IniResLevels (optional) [numeric] vector of initial filling rates for production and routing stores (2 values between 0 and 1) [-] +#' @param Outputs_Cal (optional) [character] vector giving the outputs needed for the calibration \cr (e.g. c("Qsim")), the least outputs the fastest the calibration +#' @param Outputs_Sim (optional) [character] vector giving the requested outputs \cr (e.g. c("DatesR","Qsim","SnowPack")), default="all" +#' @param RunSnowModule (optional) [boolean] option indicating whether CemaNeige should be activated, default=TRUE +#' @param MeanAnSolidPrecip (optional) [numeric] vector giving the annual mean of average solid precipitation for each layer (computed from InputsModel if not defined) [mm/y] +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] object of class \emph{RunOptions} containing the data required to evaluate the model outputs; it can include the following: +#' \tabular{ll}{ +#' \emph{IndPeriod_WarmUp } \tab [numeric] index of period to be used for the model warm-up [-] \cr +#' \emph{IndPeriod_Run } \tab [numeric] index of period to be used for the model run [-] \cr +#' \emph{IniStates } \tab [numeric] vector of initial model states [mm] \cr +#' \emph{IniResLevels } \tab [numeric] vector of initial filling rates for production and routing stores [-] \cr +#' \emph{Outputs_Cal } \tab [character] character vector giving only the outputs needed for the calibration \cr +#' \emph{Outputs_Sim } \tab [character] character vector giving the requested outputs \cr +#' \emph{RunSnowModule } \tab [boolean] option indicating whether CemaNeige should be activated \cr +#' \emph{MeanAnSolidPrecip} \tab [numeric] vector giving the annual mean of average solid precipitation for each layer [mm/y] \cr +#' } +#**************************************************************************************************' +CreateRunOptions <- function(FUN_MOD,InputsModel,IndPeriod_WarmUp=NULL,IndPeriod_Run,IniStates=NULL,IniResLevels=NULL, + Outputs_Cal=NULL,Outputs_Sim="all",RunSnowModule=TRUE,MeanAnSolidPrecip=NULL,quiet=FALSE){ + + + ObjectClass <- NULL; + + + ##check_FUN_MOD + BOOL <- FALSE; + if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_GR6J)){ + ObjectClass <- c(ObjectClass,"GR","daily"); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_CemaNeige)){ + ObjectClass <- c(ObjectClass,"CemaNeige","daily"); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + ObjectClass <- c(ObjectClass,"GR","CemaNeige","daily"); + BOOL <- TRUE; + } + if(!BOOL){ stop("incorrect FUN_MOD for use in CreateRunOptions \n"); return(NULL); } + + + ##check_InputsModel + if(!inherits(InputsModel,"InputsModel")){ + stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if("daily" %in% ObjectClass & !inherits(InputsModel,"daily")){ + stop("InputsModel must be of class 'daily' \n"); return(NULL); } + + + ##check_IndPeriod_Run + if(!is.vector( IndPeriod_Run)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); } + if(!is.numeric(IndPeriod_Run)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); } + if(identical(as.integer(IndPeriod_Run),as.integer(seq(from=IndPeriod_Run[1],to=tail(IndPeriod_Run,1),by=1)))==FALSE){ + stop("IndPeriod_Run must be a continuous sequence of integers \n"); return(NULL); } + if(storage.mode(IndPeriod_Run)!="integer"){ stop("IndPeriod_Run should be of type integer \n"); return(NULL); } + + + ##check_IndPeriod_WarmUp + WTxt <- NULL; + if(is.null(IndPeriod_WarmUp)){ + WTxt <- paste(WTxt,"\t Model warm-up period not defined -> default configuration used \n",sep=""); + ##If_the_run_period_starts_at_the_very_beginning_of_the_time_series + if(IndPeriod_Run[1]==as.integer(1)){ + IndPeriod_WarmUp <- as.integer(0); + WTxt <- paste(WTxt,"\t No data were found for model warm-up! \n",sep=""); + ##We_look_for_the_longest_period_preceeding_the_run_period_with_a_maximum_of_one_year + } else { + TmpDateR <- InputsModel$DatesR[IndPeriod_Run[1]] - 365*24*60*60; ### minimal date to start the warmup + IndPeriod_WarmUp <- which(InputsModel$DatesR==max(InputsModel$DatesR[1],TmpDateR)) : (IndPeriod_Run[1]-1); + if("daily" %in% ObjectClass){ TimeStep <- as.integer( 24*60*60); } + if(length(IndPeriod_WarmUp)*TimeStep/(365*24*60*60)>=1){ + WTxt <- paste(WTxt,"\t The year preceding the run period is used \n",sep=""); + } else { + WTxt <- paste(WTxt,"\t Less than a year (without missing values) was found for model warm-up: \n",sep=""); + WTxt <- paste(WTxt,"\t Only ",length(IndPeriod_WarmUp)," time-steps are used! \n",sep=""); + } + } + } + if(!is.null(IndPeriod_WarmUp)){ + if(!is.vector( IndPeriod_WarmUp)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); } + if(!is.numeric(IndPeriod_WarmUp)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); } + if(storage.mode(IndPeriod_WarmUp)!="integer"){ stop("IndPeriod_Run should be of type integer \n"); return(NULL); } + if(identical(IndPeriod_WarmUp,as.integer(0))){ + WTxt <- paste(WTxt,"\t No warm-up period is used! \n",sep=""); } + if((IndPeriod_Run[1]-1)!=tail(IndPeriod_WarmUp,1)){ + WTxt <- paste(WTxt,"\t Model warm-up period is not directly before the model run period \n",sep=""); } + } + if(!is.null(WTxt) & !quiet){ warning(WTxt); } + + + ##check_IniStates_and_IniResLevels + if(is.null(IniStates) & is.null(IniResLevels) & !quiet){ + warning("\t Model states initialisation not defined -> default configuration used \n"); } + if("GR" %in% ObjectClass){ + if("daily" %in% ObjectClass){ NH <- 20; } + } else { + NH <- 0; + } + if("CemaNeige" %in% ObjectClass){ NLayers <- length(InputsModel$LayerPrecip); } else { NLayers <- 0; } + NState <- 3*NH + 2*NLayers; + if(!is.null(IniStates)){ + if(!is.vector( IniStates) ){ stop("IniStates must be a vector of numeric values \n"); return(NULL); } + if(!is.numeric(IniStates) ){ stop("IniStates must be a vector of numeric values \n"); return(NULL); } + if(length(IniStates)!=NState){ stop(paste("the length of IniStates must be ",NState," for the chosen FUN_MOD \n",sep="")); return(NULL); } + } else { + IniStates <- as.double(rep(0.0,NState)); + } + if(!is.null(IniResLevels)){ + if(!is.vector(IniResLevels) ){ stop("IniResLevels must be a vector of numeric values \n"); return(NULL); } + if(!is.numeric(IniResLevels)){ stop("IniResLevels must be a vector of numeric values \n"); return(NULL); } + if(length(IniResLevels)!=2 ) { stop("the length of IniStates must be 2 for the chosen FUN_MOD \n"); return(NULL); } + } else { + if("GR" %in% ObjectClass){ IniResLevels <- as.double(c(0.3,0.5)); } + } + + + ##check_Outputs_Cal_and_Sim + + ##Outputs_all + Outputs_all <- NULL; + if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR4J)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); } + if(identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); } + if(identical(FUN_MOD,RunModel_GR6J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QR1","Exp","QD","Qsim"); } + if("CemaNeige" %in% ObjectClass){ + Outputs_all <- c(Outputs_all,"Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); } + + ##check_Outputs_Sim + if(!is.vector( Outputs_Sim)){ stop("Outputs_Sim must be a vector of characters \n"); return(NULL); } + if(!is.character(Outputs_Sim)){ stop("Outputs_Sim must be a vector of characters \n"); return(NULL); } + if(sum(is.na(Outputs_Sim))!=0){ stop("Outputs_Sim must not contain NA \n"); return(NULL); } + if("all" %in% Outputs_Sim){ Outputs_Sim <- c("DatesR",Outputs_all,"StateEnd"); } + Test <- which(Outputs_Sim %in% c("DatesR",Outputs_all,"StateEnd") == FALSE); if(length(Test)!=0){ + stop(paste("Outputs_Sim is incorrectly defined: ",paste(Outputs_Sim[Test],collapse=", ")," not found \n",sep="")); return(NULL); } + Outputs_Sim <- Outputs_Sim[!duplicated(Outputs_Sim)]; + + ##check_Outputs_Cal + if(is.null(Outputs_Cal)){ + if("GR" %in% ObjectClass ){ Outputs_Cal <- c("Qsim"); } + if("CemaNeige" %in% ObjectClass ){ Outputs_Cal <- c("all"); } + if("GR" %in% ObjectClass & "CemaNeige" %in% ObjectClass){ Outputs_Cal <- c("PliqAndMelt","Qsim"); } + } else { + if(!is.vector( Outputs_Cal)){ stop("Outputs_Cal must be a vector of characters \n"); return(NULL); } + if(!is.character(Outputs_Cal)){ stop("Outputs_Cal must be a vector of characters \n"); return(NULL); } + if(sum(is.na(Outputs_Cal))!=0){ stop("Outputs_Cal must not contain NA \n"); return(NULL); } + } + if("all" %in% Outputs_Cal){ Outputs_Cal <- c("DatesR",Outputs_all,"StateEnd"); } + Test <- which(Outputs_Cal %in% c("DatesR",Outputs_all,"StateEnd") == FALSE); if(length(Test)!=0){ + stop(paste("Outputs_Cal is incorrectly defined: ",paste(Outputs_Cal[Test],collapse=", ")," not found \n",sep="")); return(NULL); } + Outputs_Cal <- Outputs_Cal[!duplicated(Outputs_Cal)]; + + + ##check_RunSnowModule + if("CemaNeige" %in% ObjectClass){ + if(!is.vector( RunSnowModule)){ stop("RunSnowModule must be a single boolean \n"); return(NULL); } + if(!is.logical(RunSnowModule)){ stop("RunSnowModule must be either TRUE or FALSE \n"); return(NULL); } + if(length(RunSnowModule)!=1 ){ stop("RunSnowModule must be either TRUE or FALSE \n"); return(NULL); } + } + + + ##check_MeanAnSolidPrecip + if("CemaNeige" %in% ObjectClass & is.null(MeanAnSolidPrecip)){ + NLayers <- length(InputsModel$LayerPrecip); + SolidPrecip <- NULL; for(iLayer in 1:NLayers){ + if(iLayer==1){ SolidPrecip <- InputsModel$LayerFracSolidPrecip[[1]]*InputsModel$LayerPrecip[[iLayer]]/NLayers; + } else { SolidPrecip <- SolidPrecip + InputsModel$LayerFracSolidPrecip[[iLayer]]*InputsModel$LayerPrecip[[iLayer]]/NLayers; } } + Factor <- NULL; + if(inherits(InputsModel,"hourly" )){ Factor <- 365.25*24; } + if(inherits(InputsModel,"daily" )){ Factor <- 365.25; } + if(inherits(InputsModel,"monthly")){ Factor <- 12; } + if(inherits(InputsModel,"yearly" )){ Factor <- 1; } + if(is.null(Factor)){ stop("InputsModel must be of class 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + MeanAnSolidPrecip <- rep(mean(SolidPrecip)*Factor,NLayers); ### default value: same Gseuil for all layers + if(!quiet){ warning("\t MeanAnSolidPrecip not defined -> it was automatically set to c(",paste(round(MeanAnSolidPrecip),collapse=","),") \n"); } + } + if("CemaNeige" %in% ObjectClass & !is.null(MeanAnSolidPrecip)){ + if(!is.vector( MeanAnSolidPrecip) ){ stop(paste("MeanAnSolidPrecip must be a vector of numeric values \n",sep="")); return(NULL); } + if(!is.numeric(MeanAnSolidPrecip) ){ stop(paste("MeanAnSolidPrecip must be a vector of numeric values \n",sep="")); return(NULL); } + if(length(MeanAnSolidPrecip)!=NLayers){ stop(paste("MeanAnSolidPrecip must be a numeric vector of length ",NLayers," \n",sep="")); return(NULL); } + } + + + ##check_PliqAndMelt + if(RunSnowModule & "GR" %in% ObjectClass & "CemaNeige" %in% ObjectClass){ + if("PliqAndMelt" %in% Outputs_Cal == FALSE & "all" %in% Outputs_Cal == FALSE){ + WTxt <- NULL; + WTxt <- paste(WTxt,"\t PliqAndMelt was not defined in Outputs_Cal but is needed to feed the hydrological model with the snow module outputs \n",sep=""); + WTxt <- paste(WTxt,"\t -> it was automatically added \n",sep=""); + if(!is.null(WTxt) & !quiet){ warning(WTxt); } + Outputs_Cal <- c(Outputs_Cal,"PliqAndMelt"); } + if("PliqAndMelt" %in% Outputs_Sim == FALSE & "all" %in% Outputs_Sim == FALSE){ + WTxt <- NULL; + WTxt <- paste(WTxt,"\t PliqAndMelt was not defined in Outputs_Sim but is needed to feed the hydrological model with the snow module outputs \n",sep=""); + WTxt <- paste(WTxt,"\t -> it was automatically added \n",sep=""); + if(!is.null(WTxt) & !quiet){ warning(WTxt); } + Outputs_Sim <- c(Outputs_Sim,"PliqAndMelt"); } + } + + + ##Create_RunOptions + RunOptions <- list(IndPeriod_WarmUp=IndPeriod_WarmUp,IndPeriod_Run=IndPeriod_Run,IniStates=IniStates,IniResLevels=IniResLevels, + Outputs_Cal=Outputs_Cal,Outputs_Sim=Outputs_Sim); + if("CemaNeige" %in% ObjectClass){ + RunOptions <- c(RunOptions,list(RunSnowModule=RunSnowModule,MeanAnSolidPrecip=MeanAnSolidPrecip)); } + class(RunOptions) <- c("RunOptions",ObjectClass); + return(RunOptions); + + +} + diff --git a/R/DataAltiExtrapolation_HBAN.R b/R/DataAltiExtrapolation_HBAN.R new file mode 100644 index 00000000..7a5354b6 --- /dev/null +++ b/R/DataAltiExtrapolation_HBAN.R @@ -0,0 +1,540 @@ +#***************************************************************************************************************** +#' Function which extrapolates the precipitation and air temperature series for different elevation layers (method from Valery, 2010). +#' +#' Elevation layers of equal surface are created the 101 elevation quantiles (\emph{HypsoData}) +#' and the number requested elevation layers (\emph{NLayers}). \cr +#' Forcing data (precipitation and air temperature) are extrapolated using gradients from Valery (2010). +#' (e.g. gradP=0.0004 [m-1] for France and gradT=0.434 [degreC/100m] for January, 1st). \cr +#' This function is used by the \emph{CreateInputsModel} function. \cr +#***************************************************************************************************************** +#' @title Altitudinal extrapolation of precipitation and temperature series +#' @author Laurent Coron, Pierre Brigode (June 2014) +#' @references +#' Turcotte, R., L.-G. Fortin, V. Fortin, J.-P. Fortin and J.-P. Villeneuve (2007), +#' Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent +#' in southern Quebec, Canada, Nordic Hydrology, 38(3), 211, doi:10.2166/nh.2007.009. \cr +#' Valéry, A. (2010), Modélisation précipitations-débit sous influence nivale ? : Elaboration d'un module neige +#' et évaluation sur 380 bassins versants, PhD thesis (in french), AgroParisTech, Paris, France. \cr +#' USACE (1956), Snow Hydrology, pp. 437, U.S. Army Coprs of Engineers (USACE) North Pacific Division, Portland, Oregon, USA. +#' @seealso \code{\link{CreateInputsModel}}, \code{\link{RunModel_CemaNeigeGR4J}} +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param DatesR [POSIXlt] vector of dates +#' @param Precip [numeric] time series of daily total precipitation (catchment average) [mm] +#' @param TempMean [numeric] time series of daily mean air temperature [degC] +#' @param TempMin (optional) [numeric] time series of daily min air temperature [degC] +#' @param TempMax (optional) [numeric] time series of daily max air temperature [degC] +#' @param ZInputs [numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m] +#' @param HypsoData [numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m] +#' @param NLayers [numeric] integer giving the number of elevation layers requested [-] +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return list containing the extrapolated series of precip. and air temp. on each elevation layer +#' \tabular{ll}{ +#' \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm] \cr +#' \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [degC] \cr +#' \emph{$LayerTempMin } \tab [list] list of time series of daily min air temperature (layer average) [degC] \cr +#' \emph{$LayerTempMax } \tab [list] list of time series of daily max air temperature (layer average) [degC] \cr +#' \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-] \cr +#' \emph{$ZLayers } \tab [numeric] vector of median elevation for each layer \cr +#' } +#***************************************************************************************************************** +DataAltiExtrapolation_HBAN <- function(DatesR,Precip,TempMean,TempMin=NULL,TempMax=NULL,ZInputs,HypsoData,NLayers,quiet=FALSE){ + + + ##Altitudinal_gradient_functions_______________________________________________________________ + ##unique_gradient_for_precipitation + GradP_Valery2010 <- function(){ + return(0.00041); ### value from Val? PhD thesis page 126 + } + ##daily_gradients_for_mean_min_and_max_air_temperature + GradT_Valery2010 <- function(){ + RESULT <- matrix(c( + 1, 1, 0.434, 0.366, 0.498, + 2, 1, 0.434, 0.366, 0.500, + 3, 1, 0.435, 0.367, 0.501, + 4, 1, 0.436, 0.367, 0.503, + 5, 1, 0.437, 0.367, 0.504, + 6, 1, 0.439, 0.367, 0.506, + 7, 1, 0.440, 0.367, 0.508, + 8, 1, 0.441, 0.368, 0.510, + 9, 1, 0.442, 0.368, 0.512, + 10, 1, 0.444, 0.368, 0.514, + 11, 1, 0.445, 0.368, 0.517, + 12, 1, 0.446, 0.368, 0.519, + 13, 1, 0.448, 0.369, 0.522, + 14, 1, 0.450, 0.369, 0.525, + 15, 1, 0.451, 0.369, 0.527, + 16, 1, 0.453, 0.370, 0.530, + 17, 1, 0.455, 0.370, 0.533, + 18, 1, 0.456, 0.370, 0.537, + 19, 1, 0.458, 0.371, 0.540, + 20, 1, 0.460, 0.371, 0.543, + 21, 1, 0.462, 0.371, 0.547, + 22, 1, 0.464, 0.372, 0.550, + 23, 1, 0.466, 0.372, 0.554, + 24, 1, 0.468, 0.373, 0.558, + 25, 1, 0.470, 0.373, 0.561, + 26, 1, 0.472, 0.374, 0.565, + 27, 1, 0.474, 0.374, 0.569, + 28, 1, 0.476, 0.375, 0.573, + 29, 1, 0.478, 0.375, 0.577, + 30, 1, 0.480, 0.376, 0.582, + 31, 1, 0.483, 0.376, 0.586, + 1, 2, 0.485, 0.377, 0.590, + 2, 2, 0.487, 0.377, 0.594, + 3, 2, 0.489, 0.378, 0.599, + 4, 2, 0.492, 0.379, 0.603, + 5, 2, 0.494, 0.379, 0.607, + 6, 2, 0.496, 0.380, 0.612, + 7, 2, 0.498, 0.381, 0.616, + 8, 2, 0.501, 0.381, 0.621, + 9, 2, 0.503, 0.382, 0.625, + 10, 2, 0.505, 0.383, 0.630, + 11, 2, 0.508, 0.384, 0.634, + 12, 2, 0.510, 0.384, 0.639, + 13, 2, 0.512, 0.385, 0.643, + 14, 2, 0.515, 0.386, 0.648, + 15, 2, 0.517, 0.387, 0.652, + 16, 2, 0.519, 0.387, 0.657, + 17, 2, 0.522, 0.388, 0.661, + 18, 2, 0.524, 0.389, 0.666, + 19, 2, 0.526, 0.390, 0.670, + 20, 2, 0.528, 0.391, 0.674, + 21, 2, 0.530, 0.392, 0.679, + 22, 2, 0.533, 0.393, 0.683, + 23, 2, 0.535, 0.393, 0.687, + 24, 2, 0.537, 0.394, 0.691, + 25, 2, 0.539, 0.395, 0.695, + 26, 2, 0.541, 0.396, 0.699, + 27, 2, 0.543, 0.397, 0.703, + 28, 2, 0.545, 0.398, 0.707, + 29, 2, 0.546, 0.399, 0.709, + 1, 3, 0.547, 0.399, 0.711, + 2, 3, 0.549, 0.400, 0.715, + 3, 3, 0.551, 0.401, 0.718, + 4, 3, 0.553, 0.402, 0.722, + 5, 3, 0.555, 0.403, 0.726, + 6, 3, 0.557, 0.404, 0.729, + 7, 3, 0.559, 0.405, 0.732, + 8, 3, 0.560, 0.406, 0.736, + 9, 3, 0.562, 0.406, 0.739, + 10, 3, 0.564, 0.407, 0.742, + 11, 3, 0.566, 0.408, 0.745, + 12, 3, 0.567, 0.409, 0.748, + 13, 3, 0.569, 0.410, 0.750, + 14, 3, 0.570, 0.411, 0.753, + 15, 3, 0.572, 0.412, 0.756, + 16, 3, 0.573, 0.413, 0.758, + 17, 3, 0.575, 0.414, 0.761, + 18, 3, 0.576, 0.415, 0.763, + 19, 3, 0.577, 0.416, 0.765, + 20, 3, 0.579, 0.417, 0.767, + 21, 3, 0.580, 0.417, 0.769, + 22, 3, 0.581, 0.418, 0.771, + 23, 3, 0.582, 0.419, 0.773, + 24, 3, 0.583, 0.420, 0.774, + 25, 3, 0.584, 0.421, 0.776, + 26, 3, 0.585, 0.422, 0.777, + 27, 3, 0.586, 0.422, 0.779, + 28, 3, 0.587, 0.423, 0.780, + 29, 3, 0.588, 0.424, 0.781, + 30, 3, 0.589, 0.425, 0.782, + 31, 3, 0.590, 0.425, 0.783, + 1, 4, 0.591, 0.426, 0.784, + 2, 4, 0.591, 0.427, 0.785, + 3, 4, 0.592, 0.427, 0.785, + 4, 4, 0.593, 0.428, 0.786, + 5, 4, 0.593, 0.429, 0.787, + 6, 4, 0.594, 0.429, 0.787, + 7, 4, 0.595, 0.430, 0.787, + 8, 4, 0.595, 0.431, 0.788, + 9, 4, 0.596, 0.431, 0.788, + 10, 4, 0.596, 0.432, 0.788, + 11, 4, 0.597, 0.432, 0.788, + 12, 4, 0.597, 0.433, 0.788, + 13, 4, 0.597, 0.433, 0.788, + 14, 4, 0.598, 0.434, 0.788, + 15, 4, 0.598, 0.434, 0.788, + 16, 4, 0.598, 0.435, 0.787, + 17, 4, 0.599, 0.435, 0.787, + 18, 4, 0.599, 0.436, 0.787, + 19, 4, 0.599, 0.436, 0.786, + 20, 4, 0.599, 0.436, 0.786, + 21, 4, 0.600, 0.437, 0.785, + 22, 4, 0.600, 0.437, 0.785, + 23, 4, 0.600, 0.437, 0.784, + 24, 4, 0.600, 0.438, 0.784, + 25, 4, 0.600, 0.438, 0.783, + 26, 4, 0.601, 0.438, 0.783, + 27, 4, 0.601, 0.438, 0.782, + 28, 4, 0.601, 0.439, 0.781, + 29, 4, 0.601, 0.439, 0.781, + 30, 4, 0.601, 0.439, 0.780, + 1, 5, 0.601, 0.439, 0.779, + 2, 5, 0.601, 0.439, 0.778, + 3, 5, 0.601, 0.439, 0.778, + 4, 5, 0.601, 0.440, 0.777, + 5, 5, 0.601, 0.440, 0.776, + 6, 5, 0.601, 0.440, 0.775, + 7, 5, 0.601, 0.440, 0.775, + 8, 5, 0.601, 0.440, 0.774, + 9, 5, 0.601, 0.440, 0.773, + 10, 5, 0.602, 0.440, 0.772, + 11, 5, 0.602, 0.440, 0.772, + 12, 5, 0.602, 0.440, 0.771, + 13, 5, 0.602, 0.440, 0.770, + 14, 5, 0.602, 0.440, 0.770, + 15, 5, 0.602, 0.440, 0.769, + 16, 5, 0.602, 0.440, 0.768, + 17, 5, 0.602, 0.440, 0.768, + 18, 5, 0.602, 0.440, 0.767, + 19, 5, 0.602, 0.440, 0.767, + 20, 5, 0.602, 0.440, 0.766, + 21, 5, 0.602, 0.440, 0.766, + 22, 5, 0.602, 0.440, 0.765, + 23, 5, 0.602, 0.440, 0.765, + 24, 5, 0.602, 0.440, 0.764, + 25, 5, 0.602, 0.440, 0.764, + 26, 5, 0.602, 0.440, 0.764, + 27, 5, 0.602, 0.439, 0.763, + 28, 5, 0.602, 0.439, 0.763, + 29, 5, 0.602, 0.439, 0.763, + 30, 5, 0.602, 0.439, 0.762, + 31, 5, 0.602, 0.439, 0.762, + 1, 6, 0.602, 0.439, 0.762, + 2, 6, 0.602, 0.439, 0.762, + 3, 6, 0.602, 0.439, 0.762, + 4, 6, 0.602, 0.439, 0.762, + 5, 6, 0.602, 0.439, 0.762, + 6, 6, 0.602, 0.438, 0.761, + 7, 6, 0.602, 0.438, 0.761, + 8, 6, 0.602, 0.438, 0.761, + 9, 6, 0.602, 0.438, 0.761, + 10, 6, 0.602, 0.438, 0.761, + 11, 6, 0.602, 0.438, 0.762, + 12, 6, 0.602, 0.438, 0.762, + 13, 6, 0.602, 0.438, 0.762, + 14, 6, 0.602, 0.438, 0.762, + 15, 6, 0.602, 0.437, 0.762, + 16, 6, 0.602, 0.437, 0.762, + 17, 6, 0.602, 0.437, 0.762, + 18, 6, 0.602, 0.437, 0.762, + 19, 6, 0.602, 0.437, 0.763, + 20, 6, 0.602, 0.437, 0.763, + 21, 6, 0.602, 0.437, 0.763, + 22, 6, 0.602, 0.436, 0.763, + 23, 6, 0.602, 0.436, 0.763, + 24, 6, 0.602, 0.436, 0.764, + 25, 6, 0.602, 0.436, 0.764, + 26, 6, 0.601, 0.436, 0.764, + 27, 6, 0.601, 0.436, 0.764, + 28, 6, 0.601, 0.436, 0.764, + 29, 6, 0.601, 0.435, 0.765, + 30, 6, 0.601, 0.435, 0.765, + 1, 7, 0.601, 0.435, 0.765, + 2, 7, 0.600, 0.435, 0.765, + 3, 7, 0.600, 0.435, 0.765, + 4, 7, 0.600, 0.434, 0.766, + 5, 7, 0.600, 0.434, 0.766, + 6, 7, 0.599, 0.434, 0.766, + 7, 7, 0.599, 0.434, 0.766, + 8, 7, 0.599, 0.434, 0.766, + 9, 7, 0.598, 0.433, 0.766, + 10, 7, 0.598, 0.433, 0.766, + 11, 7, 0.598, 0.433, 0.766, + 12, 7, 0.597, 0.433, 0.766, + 13, 7, 0.597, 0.432, 0.767, + 14, 7, 0.597, 0.432, 0.767, + 15, 7, 0.596, 0.432, 0.767, + 16, 7, 0.596, 0.432, 0.766, + 17, 7, 0.595, 0.431, 0.766, + 18, 7, 0.595, 0.431, 0.766, + 19, 7, 0.594, 0.431, 0.766, + 20, 7, 0.594, 0.430, 0.766, + 21, 7, 0.593, 0.430, 0.766, + 22, 7, 0.593, 0.430, 0.766, + 23, 7, 0.592, 0.429, 0.765, + 24, 7, 0.592, 0.429, 0.765, + 25, 7, 0.591, 0.428, 0.765, + 26, 7, 0.590, 0.428, 0.765, + 27, 7, 0.590, 0.428, 0.764, + 28, 7, 0.589, 0.427, 0.764, + 29, 7, 0.588, 0.427, 0.764, + 30, 7, 0.588, 0.426, 0.763, + 31, 7, 0.587, 0.426, 0.763, + 1, 8, 0.586, 0.425, 0.762, + 2, 8, 0.586, 0.425, 0.762, + 3, 8, 0.585, 0.424, 0.761, + 4, 8, 0.584, 0.424, 0.761, + 5, 8, 0.583, 0.423, 0.760, + 6, 8, 0.583, 0.423, 0.760, + 7, 8, 0.582, 0.422, 0.759, + 8, 8, 0.581, 0.421, 0.758, + 9, 8, 0.580, 0.421, 0.758, + 10, 8, 0.579, 0.420, 0.757, + 11, 8, 0.578, 0.420, 0.756, + 12, 8, 0.578, 0.419, 0.755, + 13, 8, 0.577, 0.418, 0.754, + 14, 8, 0.576, 0.418, 0.754, + 15, 8, 0.575, 0.417, 0.753, + 16, 8, 0.574, 0.416, 0.752, + 17, 8, 0.573, 0.415, 0.751, + 18, 8, 0.572, 0.415, 0.750, + 19, 8, 0.571, 0.414, 0.749, + 20, 8, 0.570, 0.413, 0.748, + 21, 8, 0.569, 0.413, 0.747, + 22, 8, 0.569, 0.412, 0.746, + 23, 8, 0.568, 0.411, 0.745, + 24, 8, 0.567, 0.410, 0.744, + 25, 8, 0.566, 0.409, 0.743, + 26, 8, 0.565, 0.409, 0.742, + 27, 8, 0.564, 0.408, 0.741, + 28, 8, 0.563, 0.407, 0.740, + 29, 8, 0.562, 0.406, 0.738, + 30, 8, 0.561, 0.405, 0.737, + 31, 8, 0.560, 0.405, 0.736, + 1, 9, 0.558, 0.404, 0.735, + 2, 9, 0.557, 0.403, 0.734, + 3, 9, 0.556, 0.402, 0.732, + 4, 9, 0.555, 0.401, 0.731, + 5, 9, 0.554, 0.401, 0.730, + 6, 9, 0.553, 0.400, 0.728, + 7, 9, 0.552, 0.399, 0.727, + 8, 9, 0.551, 0.398, 0.725, + 9, 9, 0.550, 0.397, 0.724, + 10, 9, 0.549, 0.396, 0.723, + 11, 9, 0.548, 0.396, 0.721, + 12, 9, 0.546, 0.395, 0.720, + 13, 9, 0.545, 0.394, 0.718, + 14, 9, 0.544, 0.393, 0.717, + 15, 9, 0.543, 0.392, 0.715, + 16, 9, 0.542, 0.391, 0.713, + 17, 9, 0.541, 0.391, 0.712, + 18, 9, 0.540, 0.390, 0.710, + 19, 9, 0.538, 0.389, 0.709, + 20, 9, 0.537, 0.388, 0.707, + 21, 9, 0.536, 0.388, 0.705, + 22, 9, 0.535, 0.387, 0.703, + 23, 9, 0.533, 0.386, 0.702, + 24, 9, 0.532, 0.385, 0.700, + 25, 9, 0.531, 0.385, 0.698, + 26, 9, 0.530, 0.384, 0.696, + 27, 9, 0.528, 0.383, 0.694, + 28, 9, 0.527, 0.383, 0.692, + 29, 9, 0.526, 0.382, 0.690, + 30, 9, 0.525, 0.381, 0.688, + 1, 10, 0.523, 0.381, 0.686, + 2, 10, 0.522, 0.380, 0.684, + 3, 10, 0.521, 0.379, 0.682, + 4, 10, 0.519, 0.379, 0.680, + 5, 10, 0.518, 0.378, 0.678, + 6, 10, 0.517, 0.377, 0.676, + 7, 10, 0.515, 0.377, 0.674, + 8, 10, 0.514, 0.376, 0.671, + 9, 10, 0.512, 0.376, 0.669, + 10, 10, 0.511, 0.375, 0.667, + 11, 10, 0.510, 0.375, 0.664, + 12, 10, 0.508, 0.374, 0.662, + 13, 10, 0.507, 0.374, 0.659, + 14, 10, 0.505, 0.373, 0.657, + 15, 10, 0.504, 0.373, 0.654, + 16, 10, 0.502, 0.372, 0.652, + 17, 10, 0.501, 0.372, 0.649, + 18, 10, 0.499, 0.372, 0.647, + 19, 10, 0.498, 0.371, 0.644, + 20, 10, 0.496, 0.371, 0.641, + 21, 10, 0.495, 0.371, 0.639, + 22, 10, 0.493, 0.370, 0.636, + 23, 10, 0.492, 0.370, 0.633, + 24, 10, 0.490, 0.370, 0.630, + 25, 10, 0.489, 0.369, 0.628, + 26, 10, 0.487, 0.369, 0.625, + 27, 10, 0.485, 0.369, 0.622, + 28, 10, 0.484, 0.368, 0.619, + 29, 10, 0.482, 0.368, 0.616, + 30, 10, 0.481, 0.368, 0.613, + 31, 10, 0.479, 0.368, 0.610, + 1, 11, 0.478, 0.368, 0.607, + 2, 11, 0.476, 0.367, 0.604, + 3, 11, 0.475, 0.367, 0.601, + 4, 11, 0.473, 0.367, 0.598, + 5, 11, 0.471, 0.367, 0.595, + 6, 11, 0.470, 0.367, 0.592, + 7, 11, 0.468, 0.367, 0.589, + 8, 11, 0.467, 0.366, 0.586, + 9, 11, 0.465, 0.366, 0.583, + 10, 11, 0.464, 0.366, 0.580, + 11, 11, 0.462, 0.366, 0.577, + 12, 11, 0.461, 0.366, 0.574, + 13, 11, 0.459, 0.366, 0.571, + 14, 11, 0.458, 0.366, 0.568, + 15, 11, 0.456, 0.366, 0.565, + 16, 11, 0.455, 0.366, 0.562, + 17, 11, 0.454, 0.366, 0.559, + 18, 11, 0.452, 0.365, 0.556, + 19, 11, 0.451, 0.365, 0.553, + 20, 11, 0.450, 0.365, 0.550, + 21, 11, 0.448, 0.365, 0.547, + 22, 11, 0.447, 0.365, 0.544, + 23, 11, 0.446, 0.365, 0.542, + 24, 11, 0.445, 0.365, 0.539, + 25, 11, 0.443, 0.365, 0.536, + 26, 11, 0.442, 0.365, 0.533, + 27, 11, 0.441, 0.365, 0.531, + 28, 11, 0.440, 0.365, 0.528, + 29, 11, 0.439, 0.365, 0.526, + 30, 11, 0.438, 0.365, 0.523, + 1, 12, 0.437, 0.365, 0.521, + 2, 12, 0.436, 0.365, 0.519, + 3, 12, 0.435, 0.365, 0.517, + 4, 12, 0.434, 0.365, 0.515, + 5, 12, 0.434, 0.365, 0.513, + 6, 12, 0.433, 0.365, 0.511, + 7, 12, 0.432, 0.365, 0.509, + 8, 12, 0.431, 0.365, 0.507, + 9, 12, 0.431, 0.365, 0.505, + 10, 12, 0.430, 0.365, 0.504, + 11, 12, 0.430, 0.365, 0.502, + 12, 12, 0.429, 0.365, 0.501, + 13, 12, 0.429, 0.365, 0.500, + 14, 12, 0.429, 0.365, 0.498, + 15, 12, 0.428, 0.365, 0.497, + 16, 12, 0.428, 0.365, 0.496, + 17, 12, 0.428, 0.365, 0.496, + 18, 12, 0.428, 0.365, 0.495, + 19, 12, 0.428, 0.365, 0.494, + 20, 12, 0.428, 0.365, 0.494, + 21, 12, 0.428, 0.365, 0.494, + 22, 12, 0.428, 0.365, 0.493, + 23, 12, 0.429, 0.365, 0.493, + 24, 12, 0.429, 0.366, 0.493, + 25, 12, 0.429, 0.366, 0.493, + 26, 12, 0.430, 0.366, 0.494, + 27, 12, 0.430, 0.366, 0.494, + 28, 12, 0.431, 0.366, 0.495, + 29, 12, 0.431, 0.366, 0.495, + 30, 12, 0.432, 0.366, 0.496, + 31, 12, 0.433, 0.366, 0.497),ncol=5,byrow=TRUE); + dimnames(RESULT) <- list(1:366,c("day","month","grad_Tmean","grad_Tmin","grad_Tmax")); + return(RESULT); + } + + + + ##Format_______________________________________________________________________________________ + HypsoData <- as.double(HypsoData); + ZInputs <- as.double(ZInputs); + + + ##ElevationLayers_Creation_____________________________________________________________________ + ZLayers <- as.double(rep(NA,NLayers)); + if(!identical(HypsoData,as.double(rep(NA,101)))){ + nmoy <- 100 %/% NLayers; + nreste <- 100 %% NLayers; + ncont <- 0; + for(iLayer in 1:NLayers){ + if(nreste > 0){ nn <- nmoy+1; nreste <- nreste-1; } else { nn <- nmoy; } + if(nn==1){ ZLayers[iLayer] <- HypsoData[ncont+1]; } + if(nn==2){ ZLayers[iLayer] <- 0.5 * (HypsoData[ncont+1] + HypsoData[ncont+2]); } + if(nn>2 ){ ZLayers[iLayer] <- HypsoData[ncont+nn/2]; } + ncont <- ncont+nn; + } + } + + + ##Precipitation_extrapolation__________________________________________________________________ + ##Initialisation + LayerPrecip <- list(); + if(identical(ZInputs,HypsoData[51]) & NLayers==1){ + LayerPrecip[[1]] <- as.double(Precip); + } else { + ##Elevation_gradients_for_daily_mean_precipitation + GradP <- GradP_Valery2010(); ### single value + TabGradP <- rep(GradP,length(Precip)); + ##Extrapolation + ##Thresold_of_inputs_median_elevation + Zthreshold <- 4000; + ##_On_each_elevation_layer... + for(iLayer in 1:NLayers){ + ##If_layer_elevation_smaller_than_Zthreshold + if(ZLayers[iLayer] <= Zthreshold){ + LayerPrecip[[iLayer]] <- as.double(Precip*exp(TabGradP*(ZLayers[iLayer]-ZInputs))); + ##If_layer_elevation_greater_than_Zthreshold + } else { + ##If_inputs_median_elevation_smaller_than_Zthreshold + if(ZInputs <= Zthreshold){ LayerPrecip[[iLayer]] <- as.double(Precip*exp(TabGradP*(Zthreshold-ZInputs))); + ##If_inputs_median_elevation_greater_then_Zthreshold + } else { LayerPrecip[[iLayer]] <- as.double(Precip); } + } + } + } + + + + ##Temperature_extrapolation____________________________________________________________________ + ##Initialisation + LayerTempMean <- list(); LayerTempMin <- list(); LayerTempMax <- list(); + if(identical(ZInputs,HypsoData[51]) & NLayers==1){ + LayerTempMean[[1]] <- as.double(TempMean); + if(!is.null(TempMin) & !is.null(TempMax)){ LayerTempMin[[1]] <- as.double(TempMin); LayerTempMax[[1]] <- as.double(TempMax); } + } else { + ##Elevation_gradients_for_daily_mean_min_and_max_temperature + GradT <- GradT_Valery2010(); ### Day, Month, GradTmean, GradTmin and GradTmax for iCol=1,2,3,4,5, respectively + TabGradT <- matrix(NA,nrow=length(Precip),ncol=3); + for(iday in 1:366){ + ind <- which(as.numeric(format(DatesR,format="%d"))==GradT[iday,1] & as.numeric(format(DatesR,format="%m"))==GradT[iday,2]); + TabGradT[ind,1:3] <- GradT[iday,3:5]; + } + ##Extrapolation + ##On_each_elevation_layer... + for(iLayer in 1:NLayers){ + LayerTempMean[[iLayer]] <- as.double(TempMean + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,1])/100); + if(!is.null(TempMin) & !is.null(TempMax)){ + LayerTempMin[[iLayer]] <- as.double(TempMin + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,2])/100); + LayerTempMax[[iLayer]] <- as.double(TempMax + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,3])/100); + } + } + } + + + + ##Solid_Fraction_for_each_elevation_layer______________________________________________________ + LayerFracSolidPrecip <- list(); + ##Thresold_of_inputs_median_elevation + Zthreshold <- 1500; + ##On_each_elevation_layer... + for(iLayer in 1:NLayers){ + Option <- "USACE"; + if(!is.na(ZInputs)){ if(ZInputs < Zthreshold & !is.null(TempMin) & !is.null(TempMax)){ Option <- "Hydrotel"; } } + ##Turcotte_formula_from_Hydrotel + if(Option=="Hydrotel"){ + TempMin <- LayerTempMin[[iLayer]]; + TempMax <- LayerTempMax[[iLayer]]; + SolidFraction <- 1 - TempMax/(TempMax - TempMin); + SolidFraction[TempMin >= 0] <- 0; + SolidFraction[TempMax <= 0] <- 1; + } + ##USACE_formula + if(Option=="USACE"){ + USACE_Tmin <- -1.0; + USACE_Tmax <- 3.0; + TempMean <- LayerTempMean[[iLayer]]; + SolidFraction <- 1- (TempMean - USACE_Tmin)/(USACE_Tmax - USACE_Tmin); + SolidFraction[TempMean > USACE_Tmax] <- 0; + SolidFraction[TempMean < USACE_Tmin] <- 1; + } + LayerFracSolidPrecip[[iLayer]] <- as.double(SolidFraction); + } + + + + + ##END__________________________________________________________________________________________ + return(list(LayerPrecip=LayerPrecip,LayerTempMean=LayerTempMean,LayerTempMin=LayerTempMin,LayerTempMax=LayerTempMax, + LayerFracSolidPrecip=LayerFracSolidPrecip,ZLayers=ZLayers)); + +} + + diff --git a/R/ErrorCrit.R b/R/ErrorCrit.R new file mode 100644 index 00000000..fe874c83 --- /dev/null +++ b/R/ErrorCrit.R @@ -0,0 +1,22 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion with the provided function. +#***************************************************************************************************************** +#' @title Error criterion using the provided function +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}} +#' @example tests/example_ErrorCrit.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs, see \code{\link{ErrorCrit_RMSE}} or \code{\link{ErrorCrit_NSE}} for details +#*****************************************************************************************************************' +ErrorCrit <- function(InputsCrit,OutputsModel,FUN_CRIT,quiet=FALSE){ + return( FUN_CRIT(InputsCrit,OutputsModel,quiet=quiet) ) +} + diff --git a/R/ErrorCrit_KGE.R b/R/ErrorCrit_KGE.R new file mode 100644 index 00000000..96406587 --- /dev/null +++ b/R/ErrorCrit_KGE.R @@ -0,0 +1,122 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009). +#' +#' In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +#' the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +#' (e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +#***************************************************************************************************************** +#' @title Error criterion based on the KGE formula +#' @author Laurent Coron (June 2014) +#' @references +#' Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), +#' Decomposition of the mean squared error and NSE performance criteria: Implications +#' for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr +#' @seealso \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}} +#' @examples ## see example of the ErrorCrit function +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$CritValue } \tab [numeric] value of the criterion \cr +#' \emph{$CritName } \tab [character] name of the criterion \cr +#' \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr +#' \emph{$SubCritNames } \tab [character] names of the sub-criteria \cr +#' \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr +#' \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr +#' \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr +#' } +#***************************************************************************************************************** +ErrorCrit_KGE <- function(InputsCrit,OutputsModel,quiet=FALSE){ + + +##Arguments_check________________________________ + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(OutputsModel,"OutputsModel")==FALSE){ stop("OutputsModel must be of class 'OutputsModel' \n"); return(NULL); } + + +##Initialisation_________________________________ + CritName <- NA; + if(InputsCrit$transfo=="" ){ CritName <- "KGE[Q]" ; } + if(InputsCrit$transfo=="sqrt"){ CritName <- "KGE[sqrt(Q)]"; } + if(InputsCrit$transfo=="log" ){ CritName <- "KGE[log(Q)]" ; } + if(InputsCrit$transfo=="inv" ){ CritName <- "KGE[1/Q]" ; } + if(InputsCrit$transfo=="sort"){ CritName <- "KGE[sort(Q)]"; } + CritValue <- NA; + CritBestValue <- +1; + Multiplier <- -1; ### must be equal to -1 or +1 only + + +##Data_preparation_______________________________ + VarObs <- InputsCrit$Qobs ; VarObs[!InputsCrit$BoolCrit] <- NA; + VarSim <- OutputsModel$Qsim; VarSim[!InputsCrit$BoolCrit] <- NA; + ##Data_transformation + if("Ind_zeroes" %in% names(InputsCrit) & "epsilon" %in% names(InputsCrit)){ if(length(InputsCrit$Ind_zeroes)>0){ + VarObs <- VarObs + InputsCrit$epsilon; + VarSim <- VarSim + InputsCrit$epsilon; + } } + if(InputsCrit$transfo=="sqrt"){ VarObs <- sqrt(VarObs); VarSim <- sqrt(VarSim); } + if(InputsCrit$transfo=="log" ){ VarObs <- log(VarObs) ; VarSim <- log(VarSim) ; VarSim[VarSim < -1E100] <- NA; } + if(InputsCrit$transfo=="inv" ){ VarObs <- 1/VarObs ; VarSim <- 1/VarSim ; VarSim[abs(VarSim) > 1E+100] <- NA; } + if(InputsCrit$transfo=="sort"){ VarObs <- sort(VarObs); VarSim <- sort(VarSim); } + ##TS_ignore + TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit ; + if(sum(!TS_ignore)==0){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } + if(sum(!TS_ignore)<365 & !quiet){ warning("\t criterion computed on less than 365 time-steps \n"); } + ##Other_variables_preparation + meanVarObs <- mean(VarObs[!TS_ignore]); + meanVarSim <- mean(VarSim[!TS_ignore]); + iCrit <- 0; + SubCritNames <- NULL; + SubCritValues <- NULL; + + + +##SubErrorCrit_____KGE_rPearson__________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," rPEARSON(sim vs. obs)",sep=""); + SubCritValues[iCrit] <- NA; + Numer <- sum( (VarObs[!TS_ignore]-meanVarObs)*(VarSim[!TS_ignore]-meanVarSim) ); + Deno1 <- sqrt( sum((VarObs[!TS_ignore]-meanVarObs)^2) ); + Deno2 <- sqrt( sum((VarSim[!TS_ignore]-meanVarSim)^2) ); + if(Numer==0){ if(Deno1==0 & Deno2==0){ Crit <- 1; } else { Crit <- 0; } + } else { Crit <- Numer/(Deno1*Deno2); } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##SubErrorCrit_____KGE_alpha_____________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," STDEVsim/STDEVobs",sep=""); + SubCritValues[iCrit] <- NA; + Numer <- sd(VarSim[!TS_ignore]); + Denom <- sd(VarObs[!TS_ignore]); + if(Numer==0 & Denom==0){ Crit <- 1; } else { Crit <- Numer/Denom ; } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##SubErrorCrit_____KGE_beta______________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," MEANsim/MEANobs",sep=""); + SubCritValues[iCrit] <- NA; + if(meanVarSim==0 & meanVarObs==0){ Crit <- 1; } else { Crit <- meanVarSim/meanVarObs ; } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##ErrorCrit______________________________________ + if(sum(is.na(SubCritValues))==0){ + CritValue <- ( 1 - sqrt( (SubCritValues[1]-1)^2 + (SubCritValues[2]-1)^2 + (SubCritValues[3]-1)^2 ) ); + } + + +##Output_________________________________________ + OutputsCrit <- list(CritValue,CritName,SubCritValues,SubCritNames,CritBestValue,Multiplier,which(TS_ignore)); + names(OutputsCrit) <- c("CritValue","CritName","SubCritValues","SubCritNames","CritBestValue","Multiplier","Ind_notcomputed"); + return(OutputsCrit); + +} + + diff --git a/R/ErrorCrit_KGE2.R b/R/ErrorCrit_KGE2.R new file mode 100644 index 00000000..d4424d72 --- /dev/null +++ b/R/ErrorCrit_KGE2.R @@ -0,0 +1,124 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion based on the KGE' formula proposed by Kling et al. (2012). +#' +#' In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +#' the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +#' (e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +#***************************************************************************************************************** +#' @title Error criterion based on the KGE' formula +#' @author Laurent Coron (June 2014) +#' @references +#' Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), +#' Decomposition of the mean squared error and NSE performance criteria: Implications +#' for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr +#' Kling, H., Fuchs, M. and Paulin, M. (2012), +#' Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, +#' Journal of Hydrology, 424-425, 264-277, doi:10.1016/j.jhydrol.2012.01.011. +#' @seealso \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}} +#' @examples ## see example of the ErrorCrit function +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$CritValue } \tab [numeric] value of the criterion \cr +#' \emph{$CritName } \tab [character] name of the criterion \cr +#' \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr +#' \emph{$SubCritNames } \tab [character] names of the sub-criteria \cr +#' \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr +#' \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr +#' \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr +#' } +#*****************************************************************************************************************' +ErrorCrit_KGE2 <- function(InputsCrit,OutputsModel,quiet=FALSE){ + + +##Arguments_check________________________________ + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(OutputsModel,"OutputsModel")==FALSE){ stop("OutputsModel must be of class 'OutputsModel' \n"); return(NULL); } + + +##Initialisation_________________________________ + CritName <- NA; + if(InputsCrit$transfo=="" ){ CritName <- "KGE'[Q]" ; } + if(InputsCrit$transfo=="sqrt"){ CritName <- "KGE'[sqrt(Q)]"; } + if(InputsCrit$transfo=="log" ){ CritName <- "KGE'[log(Q)]" ; } + if(InputsCrit$transfo=="inv" ){ CritName <- "KGE'[1/Q]" ; } + if(InputsCrit$transfo=="sort"){ CritName <- "KGE'[sort(Q)]"; } + CritValue <- NA; + CritBestValue <- +1; + Multiplier <- -1; ### must be equal to -1 or +1 only + + +##Data_preparation_______________________________ + VarObs <- InputsCrit$Qobs ; VarObs[!InputsCrit$BoolCrit] <- NA; + VarSim <- OutputsModel$Qsim; VarSim[!InputsCrit$BoolCrit] <- NA; + ##Data_transformation + if("Ind_zeroes" %in% names(InputsCrit) & "epsilon" %in% names(InputsCrit)){ if(length(InputsCrit$Ind_zeroes)>0){ + VarObs <- VarObs + InputsCrit$epsilon; + VarSim <- VarSim + InputsCrit$epsilon; + } } + if(InputsCrit$transfo=="sqrt"){ VarObs <- sqrt(VarObs); VarSim <- sqrt(VarSim); } + if(InputsCrit$transfo=="log" ){ VarObs <- log(VarObs) ; VarSim <- log(VarSim) ; VarSim[VarSim < -1E100] <- NA; } + if(InputsCrit$transfo=="inv" ){ VarObs <- 1/VarObs ; VarSim <- 1/VarSim ; VarSim[abs(VarSim) > 1E+100] <- NA; } + if(InputsCrit$transfo=="sort"){ VarObs <- sort(VarObs); VarSim <- sort(VarSim); } + ##TS_ignore + TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit ; + if(sum(!TS_ignore)==0){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } + if(sum(!TS_ignore)<365 & !quiet){ warning("\t criterion computed on less than 365 time-steps \n"); } + ##Other_variables_preparation + meanVarObs <- mean(VarObs[!TS_ignore]); + meanVarSim <- mean(VarSim[!TS_ignore]); + iCrit <- 0; + SubCritNames <- NULL; + SubCritValues <- NULL; + + +##SubErrorCrit_____KGE_rPearson__________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," rPEARSON(sim vs. obs)",sep=""); + SubCritValues[iCrit] <- NA; + Numer <- sum( (VarObs[!TS_ignore]-meanVarObs)*(VarSim[!TS_ignore]-meanVarSim) ); + Deno1 <- sqrt( sum((VarObs[!TS_ignore]-meanVarObs)^2) ); + Deno2 <- sqrt( sum((VarSim[!TS_ignore]-meanVarSim)^2) ); + if(Numer==0){ if(Deno1==0 & Deno2==0){ Crit <- 1; } else { Crit <- 0; } + } else { Crit <- Numer/(Deno1*Deno2); } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##SubErrorCrit_____KGE_gama______________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," CVsim/CVobs",sep=""); + SubCritValues[iCrit] <- NA; + if(meanVarSim==0){ if(sd(VarSim[!TS_ignore])==0){ CVsim <- 1; } else { CVsim <- 99999; } } else { CVsim <- sd(VarSim[!TS_ignore])/meanVarSim; } + if(meanVarObs==0){ if(sd(VarObs[!TS_ignore])==0){ CVobs <- 1; } else { CVobs <- 99999; } } else { CVobs <- sd(VarObs[!TS_ignore])/meanVarObs; } + if(CVsim==0 & CVobs==0){ Crit <- 1; } else { Crit <- CVsim/CVobs ; } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##SubErrorCrit_____KGE_beta______________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," MEANsim/MEANobs",sep=""); + SubCritValues[iCrit] <- NA; + if(meanVarSim==0 & meanVarObs==0){ Crit <- 1; } else { Crit <- meanVarSim/meanVarObs ; } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##ErrorCrit______________________________________ + if(sum(is.na(SubCritValues))==0){ + CritValue <- ( 1 - sqrt( (SubCritValues[1]-1)^2 + (SubCritValues[2]-1)^2 + (SubCritValues[3]-1)^2 ) ); + } + + +##Output_________________________________________ + OutputsCrit <- list(CritValue,CritName,SubCritValues,SubCritNames,CritBestValue,Multiplier,which(TS_ignore)); + names(OutputsCrit) <- c("CritValue","CritName","SubCritValues","SubCritNames","CritBestValue","Multiplier","Ind_notcomputed"); + return(OutputsCrit); + +} + + diff --git a/R/ErrorCrit_NSE.R b/R/ErrorCrit_NSE.R new file mode 100644 index 00000000..7fcbb3ab --- /dev/null +++ b/R/ErrorCrit_NSE.R @@ -0,0 +1,87 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion based on the NSE formula proposed by Nash & Sutcliffe (1970). +#' +#' In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +#' the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +#' (e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +#***************************************************************************************************************** +#' @title Error criterion based on the NSE formula +#' @author Laurent Coron (June 2014) +#' @references +#' Nash, J.E. and Sutcliffe, J.V. (1970), +#' River flow forecasting through conceptual models part 1. +#' A discussion of principles, Journal of Hydrology, 10(3), 282-290, doi:10.1016/0022-1694(70)90255-6. \cr +#' @seealso \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} +#' @examples ## see example of the ErrorCrit function +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$CritValue } \tab [numeric] value of the criterion \cr +#' \emph{$CritName } \tab [character] name of the criterion \cr +#' \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr +#' \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr +#' \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr +#' } +#***************************************************************************************************************** +ErrorCrit_NSE <- function(InputsCrit,OutputsModel,quiet=FALSE){ + + +##Arguments_check________________________________ + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(OutputsModel,"OutputsModel")==FALSE){ stop("OutputsModel must be of class 'OutputsModel' \n"); return(NULL); } + + +##Initialisation_________________________________ + CritName <- NA; + if(InputsCrit$transfo=="" ){ CritName <- "NSE[Q]" ; } + if(InputsCrit$transfo=="sqrt"){ CritName <- "NSE[sqrt(Q)]"; } + if(InputsCrit$transfo=="log" ){ CritName <- "NSE[log(Q)]" ; } + if(InputsCrit$transfo=="inv" ){ CritName <- "NSE[1/Q]" ; } + if(InputsCrit$transfo=="sort"){ CritName <- "NSE[sort(Q)]"; } + CritValue <- NA; + CritBestValue <- +1; + Multiplier <- -1; ### must be equal to -1 or +1 only + + +##Data_preparation_______________________________ + VarObs <- InputsCrit$Qobs ; VarObs[!InputsCrit$BoolCrit] <- NA; + VarSim <- OutputsModel$Qsim; VarSim[!InputsCrit$BoolCrit] <- NA; + ##Data_transformation + if("Ind_zeroes" %in% names(InputsCrit) & "epsilon" %in% names(InputsCrit)){ if(length(InputsCrit$Ind_zeroes)>0){ + VarObs <- VarObs + InputsCrit$epsilon; + VarSim <- VarSim + InputsCrit$epsilon; + } } + if(InputsCrit$transfo=="sqrt"){ VarObs <- sqrt(VarObs); VarSim <- sqrt(VarSim); } + if(InputsCrit$transfo=="log" ){ VarObs <- log(VarObs) ; VarSim <- log(VarSim) ; VarSim[VarSim < -1E100] <- NA; } + if(InputsCrit$transfo=="inv" ){ VarObs <- 1/VarObs ; VarSim <- 1/VarSim ; VarSim[abs(VarSim) > 1E+100] <- NA; } + if(InputsCrit$transfo=="sort"){ VarObs <- sort(VarObs); VarSim <- sort(VarSim); } + ##TS_ignore + TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit ; + if(sum(!TS_ignore)==0){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } + if(sum(!TS_ignore)<365 & !quiet){ warning("\t criterion computed on less than 365 time-steps \n"); } + ##Other_variables_preparation + meanVarObs <- mean(VarObs[!TS_ignore]); + meanVarSim <- mean(VarSim[!TS_ignore]); + + +##ErrorCrit______________________________________ + Emod <- sum((VarSim[!TS_ignore]-VarObs[!TS_ignore])^2); + Eref <- sum((VarObs[!TS_ignore]-mean(VarObs[!TS_ignore]))^2); + if(Emod==0 & Eref==0){ Crit <- 0; } else { Crit <- (1-Emod/Eref); } + if(is.numeric(Crit) & is.finite(Crit)){ CritValue <- Crit; } + + +##Output_________________________________________ + OutputsCrit <- list(CritValue,CritName,CritBestValue,Multiplier,which(TS_ignore)); + names(OutputsCrit) <- c("CritValue","CritName","CritBestValue","Multiplier","Ind_notcomputed"); + return(OutputsCrit); + +} + + diff --git a/R/ErrorCrit_RMSE.R b/R/ErrorCrit_RMSE.R new file mode 100644 index 00000000..a5da7a3e --- /dev/null +++ b/R/ErrorCrit_RMSE.R @@ -0,0 +1,81 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion based on the root mean square error (RMSE). +#' +#' In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +#' the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +#' (e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +#***************************************************************************************************************** +#' @title Error criterion based on the RMSE +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} +#' @examples ## see example of the ErrorCrit function +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$CritValue } \tab [numeric] value of the criterion \cr +#' \emph{$CritName } \tab [character] name of the criterion \cr +#' \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr +#' \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr +#' \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr +#' } +#***************************************************************************************************************** +ErrorCrit_RMSE <- function(InputsCrit,OutputsModel,quiet=FALSE){ + + +##Arguments_check________________________________ + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(OutputsModel,"OutputsModel")==FALSE){ stop("OutputsModel must be of class 'OutputsModel' \n"); return(NULL); } + + +##Initialisation_________________________________ + CritName <- NA; + if(InputsCrit$transfo=="" ){ CritName <- "RMSE[Q]" ; } + if(InputsCrit$transfo=="sqrt"){ CritName <- "RMSE[sqrt(Q)]"; } + if(InputsCrit$transfo=="log" ){ CritName <- "RMSE[log(Q)]" ; } + if(InputsCrit$transfo=="inv" ){ CritName <- "RMSE[1/Q]" ; } + if(InputsCrit$transfo=="sort"){ CritName <- "RMSE[sort(Q)]"; } + + CritValue <- NA; + CritBestValue <- +1; + Multiplier <- -1; ### must be equal to -1 or +1 only + + +##Data_preparation_______________________________ + VarObs <- InputsCrit$Qobs ; VarObs[!InputsCrit$BoolCrit] <- NA; + VarSim <- OutputsModel$Qsim; VarSim[!InputsCrit$BoolCrit] <- NA; + ##Data_transformation + if("Ind_zeroes" %in% names(InputsCrit) & "epsilon" %in% names(InputsCrit)){ if(length(InputsCrit$Ind_zeroes)>0){ + VarObs <- VarObs + InputsCrit$epsilon; + VarSim <- VarSim + InputsCrit$epsilon; + } } + if(InputsCrit$transfo=="sqrt"){ VarObs <- sqrt(VarObs); VarSim <- sqrt(VarSim); } + if(InputsCrit$transfo=="log" ){ VarObs <- log(VarObs) ; VarSim <- log(VarSim) ; VarSim[VarSim < -1E100] <- NA; } + if(InputsCrit$transfo=="inv" ){ VarObs <- 1/VarObs ; VarSim <- 1/VarSim ; VarSim[abs(VarSim) > 1E+100] <- NA; } + if(InputsCrit$transfo=="sort"){ VarObs <- sort(VarObs); VarSim <- sort(VarSim); } + ##TS_ignore + TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit ; + if(sum(!TS_ignore)==0){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } + if(sum(!TS_ignore)<365 & !quiet){ warning("\t criterion computed on less than 365 time-steps \n"); } + + +##ErrorCrit______________________________________ + Numer <- sum((VarSim-VarObs)^2,na.rm=TRUE); + Denom <- sum(!is.na(VarObs)); + if(Numer==0){ Crit <- 0; } else { Crit <- sqrt(Numer/Denom); } + if(is.numeric(Crit) & is.finite(Crit)){ CritValue <- Crit; } + + +##Output_________________________________________ + OutputsCrit <- list(CritValue,CritName,CritBestValue,Multiplier,which(TS_ignore)); + names(OutputsCrit) <- c("CritValue","CritName","CritBestValue","Multiplier","Ind_notcomputed"); + return(OutputsCrit); + +} + + diff --git a/R/PEdaily_Oudin.R b/R/PEdaily_Oudin.R new file mode 100644 index 00000000..1f3b2c6d --- /dev/null +++ b/R/PEdaily_Oudin.R @@ -0,0 +1,58 @@ +#***************************************************************************************************************** +#' Function which computes daily PE using the formula from Oudin et al. (2005). +#***************************************************************************************************************** +#' @title Computation of daily series of potential evapotranspiration with Oudin's formula +#' @author Laurent Coron (December 2013) +#' @references +#' Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil and C. Loumagne (2005), +#' Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-Towards a +#' simple and efficient potential evapotranspiration model for rainfall-runoff modelling, Journal of Hydrology, +#' 303(1-4), 290-306, doi:10.1016/j.jhydrol.2004.08.026. +#' @examples +#' require(airGR) +#' data(L0123001) +#' PotEvap <- PEdaily_Oudin(JD=as.POSIXlt(BasinObs$DatesR)$yday,Temp=BasinObs$T,LatRad=0.8) +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param JD [numeric] time series of julian day [-] +#' @param Temp [numeric] time series of daily mean air temperature [degC] +#' @param LatRad [numeric] latitude of measurement for the temperature series [rad] +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [numeric] time series of daily potential evapotranspiration [mm/d] +#*****************************************************************************************************************' +PEdaily_Oudin <- function(JD,Temp,LatRad){ + + PE_Oudin_D <- rep(NA,length(Temp)); + for(k in 1:length(Temp)){ + + FI <- LatRad ### latitude in rad + ### FI <- LatDeg/(180/pi) ### conversion from deg to rad + COSFI <- cos(FI) + AFI <- abs(LatRad/42.) + + TETA <- 0.4093*sin(JD[k]/58.1-1.405) + COSTETA <- cos(TETA) + COSGZ <- max(0.001,cos(FI-TETA)) + GZ <- acos(COSGZ) + COSGZ2 <- COSGZ*COSGZ + if(COSGZ2 >= 1){ SINGZ <- 0. } else { SINGZ <- sqrt(1.-COSGZ2) } + COSOM <- 1.-COSGZ/COSFI/COSTETA + if(COSOM < -1.){ COSOM <- -1. } + if(COSOM > 1.){ COSOM <- 1. } + COSOM2 <- COSOM*COSOM + if(COSOM2 >= 1.){ SINOM <- 0. } else { SINOM <- sqrt(1.-COSOM2) } + OM <- acos(COSOM) + COSPZ <- COSGZ+COSFI*COSTETA*(SINOM/OM-1.) + if(COSPZ < 0.001){ COSPZ <- 0.001 } + ETA <- 1.+cos(JD[k]/58.1)/30. + GE <- 446.*OM*COSPZ*ETA + + if(Temp[k] >= -5.0) { PE_Oudin_D[k] <- GE*(Temp[k]+5.)/100./28.5 } else { PE_Oudin_D[k] <- 0 } + + } + + return(PE_Oudin_D); + +} + diff --git a/R/RunModel.R b/R/RunModel.R new file mode 100644 index 00000000..4acfd1e2 --- /dev/null +++ b/R/RunModel.R @@ -0,0 +1,22 @@ +#***************************************************************************************************************** +#' Function which performs a single model run with the provided function. +#***************************************************************************************************************** +#' @title Run with the provided hydrological model function +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel_GR4J}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of model parameters +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#*****************************************************************************************************************' +RunModel <- function(InputsModel,RunOptions,Param,FUN_MOD){ + return( FUN_MOD(InputsModel,RunOptions,Param) ) +} + diff --git a/R/RunModel_CemaNeige.R b/R/RunModel_CemaNeige.R new file mode 100644 index 00000000..8122b4b5 --- /dev/null +++ b/R/RunModel_CemaNeige.R @@ -0,0 +1,131 @@ +#***************************************************************************************************************** +#' Function which performs a single model run for RunModel_CemaNeige. +#' +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the CemaNeige snow module +#' @author Laurent Coron (January 2014) +#' @references +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? +#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? +#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +#' @seealso \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_CemaNeige.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 2 parameters +#' \tabular{ll}{ +#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run: CemaNeige states [mm & degC] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#*****************************************************************************************************************' +RunModel_CemaNeige <- function(InputsModel,RunOptions,Param){ + + NParam <- 2; + FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,0)){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):length(IndPeriod1); + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + + + ##SNOW_MODULE________________________________________________________________________________## + ParamCemaNeige <- Param; + NLayers <- length(InputsModel$LayerPrecip); + if(sum(is.na(ParamCemaNeige))!=0){ stop("Param contains missing values \n"); return(NULL); } + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); + } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + StateStartCemaNeige <- RunOptions$IniStates[ (2*(iLayer-1)+1):(2*(iLayer-1)+2) ]; + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", + ##inputs + LInputs=as.integer(length(IndPeriod1)), ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(2), ### number of model parameter = 2 + Param=ParamCemaNeige, ### parameter set + NStates=as.integer(2), ### number of state variables used for model initialising = 2 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=length(IndPeriod1),ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); + + ##Output_data_preparation + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- list(CemaNeigeLayers); + names(OutputsModel) <- NameCemaNeigeLayers; } + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",NameCemaNeigeLayers); } + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(CemaNeigeLayers), + CemaNeigeStateEnd ); + names(OutputsModel) <- c(NameCemaNeigeLayers,"StateEnd"); } + if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + list(CemaNeigeLayers), + CemaNeigeStateEnd ); + names(OutputsModel) <- c("DatesR",NameCemaNeigeLayers,"StateEnd"); } + + ##End + class(OutputsModel) <- c("OutputsModel","daily","CemaNeige"); + return(OutputsModel); + +} + diff --git a/R/RunModel_CemaNeigeGR4J.R b/R/RunModel_CemaNeigeGR4J.R new file mode 100644 index 00000000..70e81522 --- /dev/null +++ b/R/RunModel_CemaNeigeGR4J.R @@ -0,0 +1,208 @@ +#***************************************************************************************************************** +#' Function which performs a single model run for RunModel_CemaNeigeGR4J. +#' +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the CemaNeigeGR4J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Perrin, C., C. Michel and V. Andréassian (2003), +#' Improvement of a parsimonious model for streamflow simulation, +#' Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? +#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? +#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +#' @seealso \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_CemaNeigeGR4J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 6 parameters +#' \tabular{ll}{ +#' GR4J X1 \tab production store capacity [mm] \cr +#' GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr +#' GR4J X3 \tab routing store capacity [mm] \cr +#' GR4J X4 \tab unit hydrograph time constant [d] \cr +#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#*****************************************************************************************************************' +RunModel_CemaNeigeGR4J <- function(InputsModel,RunOptions,Param){ + + NParam <- 6; + FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); + FortranOutputsMod <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ParamCemaNeige <- Param[(length(Param)-1):length(Param)]; + NParamMod <- as.integer(length(Param)-2); + ParamMod <- Param[1:NParamMod]; + NLayers <- length(InputsModel$LayerPrecip); + NStatesMod <- as.integer(length(RunOptions$IniStates)-2*NLayers); + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + + + ##SNOW_MODULE________________________________________________________________________________## + if(RunOptions$RunSnowModule==TRUE){ + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); + } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ]; + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(2), ### number of model parameter = 2 + Param=ParamCemaNeige, ### parameter set + NStates=as.integer(2), ### number of state variables used for model initialising = 2 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); + if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); + } ###ENDIF_RunSnowModule + if(RunOptions$RunSnowModule==FALSE){ + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } + + + + ##MODEL______________________________________________________________________________________## + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod)); + } else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr4j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=NParamMod, ### number of model parameter + Param=ParamMod, ### parameter set + NStates=NStatesMod, ### number of state variables used for model initialising + StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs=IndOutputsMod, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } + + ##Output_data_preparation + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); + return(OutputsModel); + +} + diff --git a/R/RunModel_CemaNeigeGR5J.R b/R/RunModel_CemaNeigeGR5J.R new file mode 100644 index 00000000..e65f5dc0 --- /dev/null +++ b/R/RunModel_CemaNeigeGR5J.R @@ -0,0 +1,210 @@ +#***************************************************************************************************************** +#' Function which performs a single model run for RunModel_CemaNeigeGR5J. +#' +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the CemaNeigeGR5J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances +#' et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr +#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), +#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, +#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? +#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? +#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +#' @seealso \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_CemaNeigeGR5J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 7 parameters +#' \tabular{ll}{ +#' GR5J X1 \tab production store capacity [mm] \cr +#' GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +#' GR5J X3 \tab routing store capacity [mm] \cr +#' GR5J X4 \tab unit hydrograph time constant [d] \cr +#' GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr +#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#*****************************************************************************************************************' +RunModel_CemaNeigeGR5J <- function(InputsModel,RunOptions,Param){ + + NParam <- 7; + FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); + FortranOutputsMod <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ParamCemaNeige <- Param[(length(Param)-1):length(Param)]; + NParamMod <- as.integer(length(Param)-2); + ParamMod <- Param[1:NParamMod]; + NLayers <- length(InputsModel$LayerPrecip); + NStatesMod <- as.integer(length(RunOptions$IniStates)-2*NLayers); + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + + ##SNOW_MODULE________________________________________________________________________________## + if(RunOptions$RunSnowModule==TRUE){ + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); + } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ]; + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(2), ### number of model parameter = 2 + Param=ParamCemaNeige, ### parameter set + NStates=as.integer(2), ### number of state variables used for model initialising = 2 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); + if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); + } ###ENDIF_RunSnowModule + if(RunOptions$RunSnowModule==FALSE){ + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } + + + + ##MODEL______________________________________________________________________________________## + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod)); + } else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr5j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=NParamMod, ### number of model parameter + Param=ParamMod, ### parameter set + NStates=NStatesMod, ### number of state variables used for model initialising + StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs=IndOutputsMod, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } + + ##Output_data_preparation + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); + return(OutputsModel); + +} + diff --git a/R/RunModel_CemaNeigeGR6J.R b/R/RunModel_CemaNeigeGR6J.R new file mode 100644 index 00000000..32604bd1 --- /dev/null +++ b/R/RunModel_CemaNeigeGR6J.R @@ -0,0 +1,211 @@ +#***************************************************************************************************************** +#' Function which performs a single model run for RunModel_CemaNeigeGR6J. +#' +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the CemaNeigeGR6J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), +#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, +#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? +#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? +#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +#' @seealso \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_GR6J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 8 parameters +#' \tabular{ll}{ +#' GR6J X1 \tab production store capacity [mm] \cr +#' GR6J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +#' GR6J X3 \tab routing store capacity [mm] \cr +#' GR6J X4 \tab unit hydrograph time constant [d] \cr +#' GR6J X5 \tab intercatchment exchange coefficient 2 [-] \cr +#' GR6J X6 \tab coefficient for emptying exponential store [-] \cr +#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr +#' \emph{$Exp } \tab [numeric] series of exponential store level (X(6)) (negative) [mm] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_CemaNeigeGR6J <- function(InputsModel,RunOptions,Param){ + + NParam <- 8; + FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); + FortranOutputsMod <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QR1","Exp","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ParamCemaNeige <- Param[(length(Param)-1):length(Param)]; + NParamMod <- as.integer(length(Param)-2); + ParamMod <- Param[1:NParamMod]; + NLayers <- length(InputsModel$LayerPrecip); + NStatesMod <- as.integer(length(RunOptions$IniStates)-2*NLayers); + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + + + ##SNOW_MODULE________________________________________________________________________________## + if(RunOptions$RunSnowModule==TRUE){ + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); + } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ]; + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(2), ### number of model parameter = 2 + Param=ParamCemaNeige, ### parameter set + NStates=as.integer(2), ### number of state variables used for model initialising = 2 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); + if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); + } ###ENDIF_RunSnowModule + if(RunOptions$RunSnowModule==FALSE){ + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } + + + + ##MODEL______________________________________________________________________________________## + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod)); + } else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr6j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=NParamMod, ### number of model parameter + Param=ParamMod, ### parameter set + NStates=NStatesMod, ### number of state variables used for model initialising + StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs=IndOutputsMod, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } + + ##Output_data_preparation + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR4J.R b/R/RunModel_GR4J.R new file mode 100644 index 00000000..b4325023 --- /dev/null +++ b/R/RunModel_GR4J.R @@ -0,0 +1,128 @@ +#***************************************************************************************************************** +#' Function which performs a single model run for GR4J. +#' +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR4J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Perrin, C., C. Michel and V. Andréassian (2003), +#' Improvement of a parsimonious model for streamflow simulation, +#' Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. +#' @seealso \code{\link{RunModel_GR5J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR4J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_GR4J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 4 parameters +#' \tabular{ll}{ +#' GR4J X1 \tab production store capacity [mm] \cr +#' GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr +#' GR4J X3 \tab routing store capacity [mm] \cr +#' GR4J X4 \tab unit hydrograph time constant [d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_GR4J <- function(InputsModel,RunOptions,Param){ + + NParam <- 4; + FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr4j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR5J.R b/R/RunModel_GR5J.R new file mode 100644 index 00000000..eb82813b --- /dev/null +++ b/R/RunModel_GR5J.R @@ -0,0 +1,131 @@ +#***************************************************************************************************************** +#' Function which performs a single model run for GR5J. +#' +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR5J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances +#' et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr +#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet, and V. Andréassian (2011), +#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, +#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +#' @seealso \code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR5J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_GR5J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 5 parameters +#' \tabular{ll}{ +#' GR5J X1 \tab production store capacity [mm] \cr +#' GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +#' GR5J X3 \tab routing store capacity [mm] \cr +#' GR5J X4 \tab unit hydrograph time constant [d] \cr +#' GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#*****************************************************************************************************************' +RunModel_GR5J <- function(InputsModel,RunOptions,Param){ + + NParam <- 5; + FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr5j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR6J.R b/R/RunModel_GR6J.R new file mode 100644 index 00000000..7a022c8b --- /dev/null +++ b/R/RunModel_GR6J.R @@ -0,0 +1,132 @@ +#***************************************************************************************************************** +#' Function which performs a single model run for GR6J. +#' +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR6J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), +#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, +#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +#' @seealso \code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_GR6J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 6 parameters +#' \tabular{ll}{ +#' GR6J X1 \tab production store capacity [mm] \cr +#' GR6J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +#' GR6J X3 \tab routing store capacity [mm] \cr +#' GR6J X4 \tab unit hydrograph time constant [d] \cr +#' GR6J X5 \tab intercatchment exchange coefficient 2 [-] \cr +#' GR6J X6 \tab coefficient for emptying exponential store [-] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr +#' \emph{$Exp } \tab [numeric] series of exponential store level (X(6)) (negative) [mm] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_GR6J <- function(InputsModel,RunOptions,Param){ + + NParam <- 6; + FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QR1","Exp","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr6j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR"); + return(OutputsModel); + +} + diff --git a/R/TransfoParam.R b/R/TransfoParam.R new file mode 100644 index 00000000..ae0da09c --- /dev/null +++ b/R/TransfoParam.R @@ -0,0 +1,19 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa) using the provided function. +#************************************************************************************************** +#' @title Transformation of the parameters using the provided function +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +#' @example tests/example_TransfoParam.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @param FUN_TRANSFO [function] model parameters transformation function (e.g. TransfoParam_GR4J, TransfoParam_CemaNeigeGR4J) +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#**************************************************************************************************' +TransfoParam <- function(ParamIn,Direction,FUN_TRANSFO){ + return( FUN_TRANSFO(ParamIn,Direction) ) +} + diff --git a/R/TransfoParam_CemaNeige.R b/R/TransfoParam_CemaNeige.R new file mode 100644 index 00000000..73ba2134 --- /dev/null +++ b/R/TransfoParam_CemaNeige.R @@ -0,0 +1,37 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the CemaNeige module +#' @author Laurent Coron (December 2013) +#' @seealso \code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}} +#' @example tests/example_TransfoParam_CemaNeige.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_CemaNeige <- function(ParamIn,Direction){ + + NParam <- 2; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the CemaNeige module requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- (ParamIn[,1]+9.99)/19.98; ### CemaNeige X1 (weighting coefficient for snow pack thermal state) + ParamOut[,2] <- exp(ParamIn[,2]); ### CemaNeige X2 (degree-day melt coefficient) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- ParamIn[,1]*19.98-9.99; ### CemaNeige X1 (weighting coefficient for snow pack thermal state) + ParamOut[,2] <- log(ParamIn[,2]); ### CemaNeige X2 (degree-day melt coefficient) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR4J.R b/R/TransfoParam_GR4J.R new file mode 100644 index 00000000..2613179d --- /dev/null +++ b/R/TransfoParam_GR4J.R @@ -0,0 +1,41 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR4J model +#' @author Laurent Coron (December 2013) +#' @seealso \code{\link{TransfoParam}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +#' @example tests/example_TransfoParam_GR4J.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR4J <- function(ParamIn,Direction){ + + NParam <- 4; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR4J model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- exp(1.5*ParamIn[,1]); ### GR4J X1 (production store capacity) + ParamOut[,2] <- sinh(ParamIn[,2]); ### GR4J X2 (groundwater exchange coefficient) + ParamOut[,3] <- exp(ParamIn[,3]); ### GR4J X3 (routing store capacity) + ParamOut[,4] <- 20+19.5*(ParamIn[,4]-9.99)/19.98; ### GR4J X4 (unit hydrograph time constant) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- log(ParamIn[,1])/1.5; ### GR4J X1 (production store capacity) + ParamOut[,2] <- asinh(ParamIn[,2]); ### GR4J X2 (groundwater exchange coefficient) + ParamOut[,3] <- log(ParamIn[,3]); ### GR4J X3 (routing store capacity) + ParamOut[,4] <- 9.99+19.98*(ParamIn[,4]-20)/19.5; ### GR4J X4 (unit hydrograph time constant) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR5J.R b/R/TransfoParam_GR5J.R new file mode 100644 index 00000000..126d25ba --- /dev/null +++ b/R/TransfoParam_GR5J.R @@ -0,0 +1,45 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR5J model +#' @author Laurent Coron (December 2013) +#' @seealso \code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +#' @example tests/example_TransfoParam_GR5J.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR5J <- function(ParamIn,Direction){ + + NParam <- 5; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR5J model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- exp(1.5*ParamIn[,1]); ### GR5J X1 (production store capacity) + ParamOut[,2] <- sinh(ParamIn[,2]); ### GR5J X2 (groundwater exchange coefficient 1) + ParamOut[,3] <- exp(ParamIn[,3]); ### GR5J X3 (routing store capacity) + ParamOut[,4] <- 20+19.5*(ParamIn[,4]-9.99)/19.98; ### GR5J X4 (unit hydrograph time constant) + ### ParamOut[,5] <- sinh(ParamIn[,5]); ### GR5J X5 (groundwater exchange coefficient 2) + ParamOut[,5] <- ParamIn[,5]/5; ### GR5J X5 (groundwater exchange coefficient 2) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- log(ParamIn[,1]) / 1.5; ### GR5J X1 (production store capacity) + ParamOut[,2] <- asinh(ParamIn[,2]); ### GR5J X2 (groundwater exchange coefficient 1) + ParamOut[,3] <- log(ParamIn[,3]); ### GR5J X3 (routing store capacity) + ParamOut[,4] <- 9.99+19.98*(ParamIn[,4]-20)/19.5; ### GR5J X4 (unit hydrograph time constant) + ### ParamOut[,5] <- asinh(ParamIn[,5]); ### GR5J X5 (groundwater exchange coefficient 2) + ParamOut[,5] <- ParamIn[,5]*5; ### GR5J X5 (groundwater exchange coefficient 2) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR6J.R b/R/TransfoParam_GR6J.R new file mode 100644 index 00000000..9ae1ab65 --- /dev/null +++ b/R/TransfoParam_GR6J.R @@ -0,0 +1,47 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR6J model +#' @author Laurent Coron (December 2013) +#' @seealso \code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_CemaNeige}} +#' @example tests/example_TransfoParam_GR6J.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR6J <- function(ParamIn,Direction){ + + NParam <- 6; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR6J model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- exp(1.5*ParamIn[,1]); ### GR6J X1 (production store capacity) + ParamOut[,2] <- sinh(ParamIn[,2]); ### GR6J X2 (groundwater exchange coefficient 1) + ParamOut[,3] <- exp(ParamIn[,3]); ### GR6J X3 (routing store capacity) + ParamOut[,4] <- 20+19.5*(ParamIn[,4]-9.99)/19.98; ### GR6J X4 (unit hydrograph time constant) + ### ParamOut[,5] <- sinh(Xtran[,5]); ### GR6J X5 (groundwater exchange coefficient 2) + ParamOut[,5] <- ParamIn[,5]/5; ### GR6J X5 (groundwater exchange coefficient 2) + ParamOut[,6] <- exp(ParamIn[,6]); ### GR6J X6 (coefficient for emptying exponential store) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- log(ParamIn[,1]) / 1.5; ### GR6J X1 (production store capacity) + ParamOut[,2] <- asinh(ParamIn[,2]); ### GR6J X2 (groundwater exchange coefficient 1) + ParamOut[,3] <- log(ParamIn[,3]); ### GR6J X3 (routing store capacity) + ParamOut[,4] <- 9.99+19.98*(ParamIn[,4]-20)/19.5; ### GR6J X4 (unit hydrograph time constant) + ### ParamOut[,5] <- asinh(ParamIn[,5]); ### GR6J X5 (groundwater exchange coefficient 2) + ParamOut[,5] <- ParamIn[,5]*5; ### GR6J X5 (groundwater exchange coefficient 2) + ParamOut[,6] <- log(ParamIn[,6]); ### GR6J X6 (coefficient for emptying exponential store) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/airGR b/R/airGR deleted file mode 100644 index 3b65e3cb..00000000 --- a/R/airGR +++ /dev/null @@ -1,27 +0,0 @@ -# File share/R/nspackloader.R -# Part of the R package, http://www.R-project.org -# -# Copyright (C) 1995-2012 The R Core Team -# -# This program is free software; you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation; either version 2 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# A copy of the GNU General Public License is available at -# http://www.r-project.org/Licenses/ - -local({ - info <- loadingNamespaceInfo() - pkg <- info$pkgname - ns <- .getNamespace(as.name(pkg)) - if (is.null(ns)) - stop("cannot find namespace environment for ", pkg, domain = NA); - dbbase <- file.path(info$libname, pkg, "R", pkg) - lazyLoad(dbbase, ns, filter = function(n) n != ".__NAMESPACE__.") -}) diff --git a/R/airGR.rdb b/R/airGR.rdb deleted file mode 100644 index 30a4c85c4ec815191a24516daecd131930e8b65d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 46952 zcmc$^Lv$`q&_4Law(aEJ*tTu!#<p$Swyig~v6CCywr&4^-#4q7&74`yrh3s&S3OnL z=TtQS06@1#PV}ykfq{XM0i+S78L|qtWP`9Jv4J5dY79Ird=Bwl*U;vo5wQq>bnF%> zLO|G(zCjpT&?p$*;1g+S5SA^1>^BPo1q(wr_PDvsl+5&4_}yPr8R;nIWN8^?LsHtz z;eJZS7OuCkwaVYbIv~J*n34bh;OGCVSqv88VZ*35C)8?c6;v72T2z+k&0u12rf&(A zVNhmND^#pSbVyb9D1P+{{<xCKu9V5HN26c)bZiV<R74{O(zL&SkIPciNrgr>m|#L> z_bnbDQkj>R1=v6U_6rER002;Bj~rjcG5JA8WLI`!G7`0YfpbAvjCPWQ(?AutplURo zMN)nA?5O*doWCIQEc9|nnz+3j#T*yTVaTvbhqN)=UgtgFjINyG8(87jaEdYFh-BlT z!O6B(KOLL)4Ga;UZz#zZO}ybnfk1dh&R;o_q#2GTU05+RMytK0(ZMnMWkc~{Es!$| zGj(QMJ<IQDnn5>ea=4#;AtP`!k7)TPSm0>e+jIs?vkLQ2{bN+XvF3cX_dqj!9CsEl zg_XMB8cq3b#0o;p+L%FWsYN3vv#~ZFEzWD5>a|<#x|f}!2yd&3ZBh1hk$RqXtkrw+ z`2pXv7XP4<DSF(7DUR-kKet-#QeK#iY$vKYCVa?`&A6V{#h2=1-1PiGW<8ae|4ZAi z|9jeqllOSQz!{kv7#%<@TNk^SX=p?M49Q>?|3UwM+F1YZ4AB4#X<*j>F(mtcIwJ&# zz`@bP<_u)DHZn`}Mh0NYftmvVAm<)At_d=5L4wGmD^H2>h`y+2$S&%GsLK7Y9g&IQ z5K1~vi&XK%8yY4?aKN9;w<$&*Z*~v>^1q=1S=~^5q&_5YSjLDdoPmu)G}^0{Zqn2Q z@FYoXAuV@XH1(A(;yve(sS=ul4l%VgS*7hu!$tYo_H>NX`(E$k{36yE4m8Q~e=<P_ z;4IkA&w)IW^sBTvb6RK9u0?lQ&1V^$bN%sBuegR!%Y`}D22JDwCD0bZq-WE9&m5I| zT~`io6kapFzf>`+pw&XHgw2Jg@_NV4+Z*pDw^31r=>PynJdd0sf-mRIp(mRiJs-Dy z@TB?XS<+vW)9H>mNW_POW1-|_V-ziNu%*MPHzqow<viqi{Ln|$=%*UO*wU6b-0-$% zvzgD~-*8_t+zV$jUoFWv)k*RfzS`Y-wI$Bd73MiSH`gDVZT34ozRGzx)abBZp&&PH z{(T?Xk3Vk;g&zxleqmB?n@cU#s<0f!N8U+{zIc*-bPK!>jO<wgw;V5lwP9u+{@X?! z;bz>&?XAUavUnF)pc-^rLS8ExY9fDjMe2FpTx`ED+tDOf3U<_TGxJ2=!@hdjGmTr; zl25t>G%~K|qY3mL)^K2PI|a52gmK`{J28L#USF+eFscnlBC8GVXs_`!+Suyx<G=?- z)~}~JKu>5yc>NRmhi+TGB(8V^T9Ilt>Xrf_XGurxD$-(Wig&tI1}}D2v;RvcYoT$n z!94U0K>`V^ZaMe{Z{P+jV^^tIisS`4%ob`mEJB*cILVHDm3drU)HFK7$8PNx`!(x( zE?;_Wh~psrYS(<Mh);x1!^g9vCa>?OW-U|_fkMJ06;N&tE7c&U^!?!YOI)liHLjNJ zUQ&jj!Y)3WVDQupp~Htn@iuCER#u|Enk0xBM-<ZL7E@za^jKl)(mN_X_kCQX6NCYI zNzXaWYCXF4p{kUfggY?Dy&cu(3hTCIE%ngMzy2@RESw$U;okAJnq8H)O0DI4Qd(fC zHz{pnhKUXE#&q4I9{%8E2q#`gkNfmrv)O<HpubN?gZB6X{KAn%ru!6v&AY=^2b<I7 z(xmO`!j7b+(nlny{$p^)o3rbeo!k44tdPI8_&d{J+>l)~0r1-U(C!Z_B?7JA`i;@S z^f=7cJoIKQtFw345;HPCb>4?vRb1(xGdKRz5r}@b_HfDUp=+@WPh=I*G40tYNa37f zxvG9anG<frpk{lh!|N7$cl<M>h=~>eOHixDawKYK25AlNitVO2x4mI7VpuHMH<84T z9<e}Ups}X$-#uG*lC(-Sa^BQ!q}Q#nX%quz4RHIM&Mm;q-|W0}dy3Pf+ptQ9^z1OC zKAwU$g2MWeB{`%s<M-1g+)c`P8us3yG2&++%D^DM8?Qv1+^kSpq|Zz6LYtFT3kLA$ zS9ERMn&OBH+DIp?BXFZMc#Hgn5#J*`xuX)71s)bAflDeO%6}i0m>fi!jlr#9PZaYs z9@}AkuEs==b$~kV{P-8Mi2D?G)e*Q+{;aLNx0YalOxgOPaGFfS6dXsh+zFkn5(n?H ztFz^`l}<3KtQdu4pC_?pEM<)dNmszN+iWY?77rolc;G<1;#1z;qE3Ro6X!%s2Xn(` z#l#*u8@QBNC1D)nVyEtn%s#FwVf=91pzD%qni|m1BC3jYiN*`K@HjJ<j3&KduKN%( zDetWrhjTe=sqig`!V>y7!W28Czkvev8$+(zwH=NNb7{D`+8LT1ooG3q!X_B)mP0~< zz{xQVvD12JxL`&sV^tfBP;`TFI(|lG3J7A>>UqHNdJu2j>MX>@-6SYt&J$MLhTyw| zBx8%@cMb)o^5G^NI{9V$&QN^w^CbaVV*rBGkP_Any)grro`GyupAS$~6A@0U&uP=X zN~=}trl{ahl>jPec?E;=B7=%Pyccqi6nbR=XFJv@mTs512%I?aowN;#GA__!%PB#$ za#Mg8mgy~8BO4SU;|hW7O0WD=A^Js)m+yR2eIv2Wt$jP6P_(sE<*DQ>V!+iV?4~a- zHF@GSTX2=zw!s<PV(@WnHpc13NPLvCMmqbxYXh0iLvtOqexDtqRn)Kh<64isF={G# zK0LhY{LEFdN;^?ssc&p~FlldQhO5dY!%EAWDLHROmMh<OOZ#zIZ-2XW9p(l8gzV?# z$!4M{xsRUzh6y>HG1-s1&1RxWY3~_PyLBYfvfPb&Ili1sH@{x?wEvN<WGq*oezqEB z>u+D{9{(#v|5xTsHa~o{jQy|d*0NMMezD$M#fH-}Z@>oD6W*ABjcX|tj09$)L1^M< zl#2zTKphADD%k7u(Lj%IFvvrJK*rB77sC^PI`%F?$Oe1Ju_!+3^ZC;(<YeGSyuQlG zI1|lIjyTz6LAKZTsn`tSV4#|KaNI{5flm)rM(>n@pAq)2-_d|I(Rja)mXa%lXD{8+ z<q_cfjQ!6Tb<S{m*xkDeU#2<BdC!XDO8R>39bh}=Jui6=emhl7jEB(6&}rZk<=taC zxtD(aSm&E*Dp@k=#8HgZdM}=CDSt~EZ73qwDU0TVE+pE+ELZ)<1xGlkW5Nqd<R<l3 zx=mAF_o0Vu!GOMg$8M%5h;ck{oaR7^Ho3Ww4F>5JW_HpwA(&E1Qyr<{9n`Qi5<Bka z3*CevgoS((W51ZazI9_n%?v;_FU&IKs{!kDW?G;L*W7~qJCbk%zrH~QAmZw;+*`y} za1B%xUCyJ>_QuB(!1lvh=7DYwpVrF<<3@o@Lhjym+7;`mEAp;`)vqmSmnEuODoln8 zCm4AZOp%1}=j6}E7*Rou{ex<mQ(U9(A>XmEtX2bAy{K**z8TODw`#AB{xk3OVzV{R zs=|?uzNNaZZap?{ql06dwi7_Gi6#iH_?OM0Q={*t`jCe#z+Z#{bC*IR?}7$9^*d6@ zht(<Xkv8p_Dwj%Z`5#NtM1;sisnCeYd8Z^#x(Ax%20MwZP9i&n<vkNvN7yw@+8=vS zo{<J2-*^|iKXKB?JdS!v4i1rKYvsh74d5^=G}u9N=w&n)@-nhaNAecFitTOW3AIS} zX=4Yndz{KkGI;@{9P{;2`^3+!+}bV;aUr04C)O}^c-QSaLeD!Z#v3sT@#rw*vV1)f z_ye)=rLT}c*|qP37!$Sh8E7T_B|Wh9f8?$OiO@BO)TjE>?#i~D!?&XA@gyu=k;P<r z`eoo98Nv=WVa;3)*nhG~{xo&S&2DISdblLxsXoif#?0?e4h`daBo~yy=lE;p3r|8m z{O%HyLEN;LmVe4FxI(tjsg*^=K$DJwM#T=MU6ZU}WT6V=yyXPh2JM)I=_60L1fLHZ zL4v_GLx?=tDuI_Z(e0YLtHuZovwl(s+FHadD~@2_5lf0Sa+h^~71-xkl5x|<oVLq; z@MV6UJ&IYixh&KNwxTnfF0W@{{o!Ektn-W&udc(5s;yM_<w|CZjEPZ2|Dj^kJ!%Mw z3Bz0Aj-MzySFIG10R47q%O;s?`$u_1e}Q1$jtqBM^cVMC`Q^>xP@Ckv!M)oQ+iGJO zy8~>T9>RibASs60RE={}&F~hPp5PsEmB&X}K+lzyHJi}a<uo+z>NHvd=Tb~WCnO$L zf+B?FnY{_vJAC<zf7o5Ka18t_rU|<@L8_KNPXSE+2WGn|2oK<L392hW?)W7Nx}qed zYk%i};%gJRB#~#ibmqZo$+n*h-8m!i772fe07-Td6Xr40fwQDLZ!?QQ9=~ch{9vU= z1Fd4xbsJ-6fE4h8m+*DOts2v3-V=T)$B|^fl~aUq@WI;BbD4YBtrB!1ekOA7*ZB8O z^VLdJo2*<TpM;G?RH65dGp{xR8@TC4;2A`7{rKb@0#crrj0j6QX#V<)f}GjHa+8;o zN{*?5gq4cQq`b2b(5FT39!W6M`l2yu^CAM%sBKr)pZ9}Nj;GYl6*Y!%`x5zQ7Exd) zoU;M1%t^WG@Hdwk%O4(e^Cybr=lI}8*}TC0=XE~}o#0Qe(buP~Mo6hT2NzVZHJ_fN z*BeyDSTzN%(bbSXJ^x>`n;-C>FyP<Z?74y>L?QVc6h+5GCx`KUT{K|HCJ=4WP=Wl2 zbubJn5a`FP=OTT<he`y_bi6u~R#-!X0ug;m%chUd*7GC!Mmy|W$tNGXKa%qIZlFdA z9GfkLz&t3LRl5e*CW^8vkx4txUij@LX%L}`nObV>NL7qUF(w07!i~Y3j%dkvQDVyp zWRrUW3sRdl|1>Q8O)?Exn6;+txudU{^l!)WdYwAQ#ZE84^WZC5M~CQW&K_N`-&pt? zWR<!6oE>fhFVWu3pXh!h0_gl=f3e*vBQ`cted#52;1#+<AhKZ6zC3SU=qR}m7i4!& z2EuU@T;Ivte{Iv)#}^_CuHkk(r^L3_6J)u7UpFV;3wZ+l)CO_J?XA|{C5a3KTom?& z9~#i^F|VW9!17#7%Gq!tK#&?Ut?DyL=^4QUww(g|ix~H@=SRGuBr8J7Cn{@bGX_5m zYmGfJE2Dt%5Ka}=n5E3S9IJ=3fzHtKu-5%d^p$RwXb7VZ?p9w73z=VE%!YDm>(&~; zKf!l<0r0D(_uVl#5t&~S)2)DJDF2D;SwHG~x_3M03&Wbz?sF0A;$!G_An3yf-HFWg zAD>sy{Npeo+huOz@rFIOG0Llr`i;1cW*XQah_Y}b2fiamxJ{1ZdBSc8@DZx!F{J0g zXPKTPOEaY4Z%T7RMDqc-ZOcVbk|Gt$<Xknh0M5R)#cs=V$&h#KnS72c_+ux(B$#h$ z968y+39u%IC7=oGE<txvSnb<n;wxR#A8Fe4{}^s88+04-pQ803MWKU_zZ36mlb)HI zKBF=}XF+qYJgbDXT{zfL9Hb~kC<s#}T$9YEwN4*R>{B&v^3Kh%VfFt>o9Hy+ryE0h z%&8m7no#hs>MQLnbAmgS9?9$G3f&o_%KN!UhAE0?c!D7{WOIm;6RdJbNEP;q6~xI0 z*qWStgiw+7Lo})S@1A1Lb0#H+O(HzZ<*-&6Tr+Aj;^L<F&oo+IF2|-L#BaGfToQCY ztZFM+(Ro!DE~mR*p}yL~a60ktN1eEm8p>S-GLw9HCwdMn&r`wlFfZvTW~yMlwn!hk zwl<D0bz{#$in%w_hY+MNJiinTsim1#TFtigo4{Vc2#pmBr_3zkj8t*^Pm^}CRB`(E zHzm~DB(J_<mD`|s-DCB+PcB5eHFi6QH8NC)^E#A_V|BT_!kC#BIgj)AkpsKOanTL$ zC4-FOY7&jUq3`@r&>dNYP$X7_Q9|ltzkd>U>$l#FUCWDupe7}uwM>K{VInkVLcV4; zIj2{X4e`pSM!MFVeE#g*>GB0<J)lOsI+L5LK{<r~N=-di5VXuE$;LC|%4bOfhG<Q1 zRY&E{>0es7Y5a0SFZwRQA)5h%)FCH;!nb(2TD9>OYZ=9>oen~w^d>Sa*=<++dys^H z!ClKVB1^J)Vt{okAU5Orw(}Cc^Fv!~cv$+F=$q%8?PH=hh}9>-(?@e;DDkPboM_&W zp}{Hf8iQvFp5nRTL|$RIQ$u@jE7SiInkt-_Atu&pa+~iCqKmgSrv1iX>Zbn*0FZ}z z<V<Ow*>A9;YxofHtrX&Q6x(PJTV|Wsu9S#1)L7;i6KI#a=Fn{fK*Y%MY?_QM%(<=d zKPqgm6biEHHA_aNP>f=m2{KK+ym~_s5fKgJv!jds{v~$v8@=0X?B^jK)elx$s?vMM zG-7HC@y*fxZSGzq9=Q9J5zU=F^O$I?!w^F_-<5yE<y3rd>P?1+*FjMf7OX?r3bE)+ zSFvaOc6vT7^l>`8ofe?_AXPgJtP5CvwA`9rc>bQwdwED9OZRtYykD{e&)pj}R;ET@ z*vt=1UY!QLj`mtvf#_zd$tRw%p((-Gj5tZ!Y$->9tJeVEa)2<BPP2^xpN&Rm#pX^! zh(lp~7hEbZ4fKrSM#8PhVG<t}Z8bheIZE*+y{0T(;;QoHx55$&0}3S%Uc-?#^Dt%g zEoNjiJdz4!&$lMcvQr+;*yzMi=8ETYI&X}V+P*?~t6!v9@&@{{zV$XX*m%r`u`t?N z2U!N@cm{kB8?YA6c%VOm+JKA-cLTBUPZVwFF5=2UOR{J<L^!+Ryd~QjVaWnu4N2io zx}Pu(6N|T|2X78f9Xmd~BIiTHIyTt~?Ve)OXG27A>4&E$>>#_<l^;9y%@)l})z@pL zg|nA{77zWJ*_gNk>;qt|q0$;SsU9V?ja)Apn{QH>!}XLH3gUV_bCb>Tp$*i63AHqY zZwo0;9--;__vcw3hCAV#oFq5F4L4cUhlr^&%%`q=?>*FW5PugYet5$_<I7X>p>4{1 zE_gc5%MTMq(n^Jf1RkV(&a`$0C`k{tPck>;24}&&7P}w$LRuqt!iKW#=8@;b-J>5( zS9>FvImF_AWshp!z=X(j;dnFN&gU7!37%Zfu6M(=Bx|Mv>YBk!Ky0KmBGFV5vDN$# zc}`&Nx+5&<&bxMhJnq|s`C&#Nl+2s=w%jaJVwoZ)OILpT-rPHjR<{4!rEJkDa!A|y z?C@dgPZ#A#gu~k6^-}CmxwnHm4DRa5Ec8hfFl&K4S@@*R`jcb=e&?J>sIcJS7fFzQ z3Z7a1tXGJ*yNl2qV7FRe&*_CkYmiIt0U`x#W5Mc7o*xuzk`P$(o+F_(>PBf~#_8k? zDr1&E>}TS$!m4zOv`VjZ3$@aybemGUKl+hQSm<CH1x4e%*@rP_o~UgAP7boU-Rdlo zc`{Ggs^)B!zZ3ptHu;fcIZWh>^G=pdVoq=MB}y$a^%k&#l8Htv6>dwGd&4kv>LqDA zEi9q^o4p@e&xxm@;(_*R*~4{mmHb#;5K+HBVyNYC&_FA0yK|aK>uts|V2&la6kFVh z-a^#AM<zolYolx?a4fd$tF<FCwKt794-$(NXLgVnmiYT_GlY}!pIGLT#K+_u|3U)h zVv_P1t&~wgUJ}KDO|h^NpDLlygt#<wa_hNl>toW%KUPS}CfWu;Wh&@DxQ}wi(3fc7 zw0P^7*g{VnoPt97rf7Mg;yLIP5+&+9ibTZKWJsT!6)z~POUVv`ZWh!qN%KA;%@gR{ zTkr*@QyysG=xtpbROoVA3u4LzEVy!*e+wsN4OsqFf3UOK242i3doo7JA1`pVU)vT* zq{XK;d-Ev7rP#&iUVR0hq<BVRxs_VLt-H2+Fg$hxSJNZ61976s8BU}ye>qwusaU2` zM_@OPBd<}3$3N&@z0Ds_Uw_Y={o8UH9JRM^-y6)MQ4?vK+65oXv0}9mt54E;Mq@xQ zIL&8$19f)#duc#mg)<&|)w~s&b(F4Uo_X-b{@#;LDN(?k>TlHrtFnYt5B~eh{|`I3 zx6Lk6yZJ%teb#ymL`D3s+9q_udgZc9rqI;#amgOBTRNLT5@}pX6Bpoa&Wj^^B3qp# zxdGH~1MA<WGg$_@+tfmCh9tRjW$BFiWX=IDsq{@j2;z|fsE!w^A9!=??IV~(RZRGn z|HQl5lvQ{gF+52U)y6})Zw312Auj~`<fsO%b{NBF?S3DKO;GM9Oh#s0JZSXUJIwHt z)U5-CRA|+akOn?B5~{^{Qo3W*5#)l&;2fQz4Nw%f4OFvA;j#<if@KCWo)WZ)dMb#v z8h^tH2UquUr^SBwJDgG=Je^g`E(?2&_!Xd2;7Nz;5cdp;Y+Eo32@F%~7j^UHew4+2 z#IOFn5viHtKBd`<8P=U=(<kui<RxFB&a|0!-i3#ceOoVL(+FR7nsJD0`DGu6_7hSm z4`AaZuGz34u8LRbR#ZZeXgi}hNqKSIf^W~MC2_S6j{H_Sz{<RLt}-Bmz<`mHznqy= zbM8DiO$+F|@nofIj5lp!`0I?hQ64p*f=)26<J2z`)R?f~50b9DH46a9{PxJX(%n$l zP{(!`1|<)X*?4TlT(Y?c)yGZ|R+AoTX;w{<?JJR53dz|GC?7J5TZrxm|Hj+6*na8x zG4x&^)Yp+)U!b&QNM<KzCi=5~a4_@iXoFU@q^$Fjb8z$7^Wjc^>zQVlLB3G>E#+2O z|NC)8Am*Dq6Fph!N6tCu(_!#)=5=+ek>~th$$Ngt+$!*X?fp4<zv<me(8W}7Wqx4& zoOGG9c}OiZY4Udvxt)Nvt|k@#xd@T1Ep3f`9s1G_A?nszY?$Vz1kp;N{-WAPN^(2y zVkc?WuKT8!b2cwk`U^X!V>*<jJ#|jaUtd0hr#cu{2yDjz+{T)?gwP~@$&ZCt1lg{6 zbOU?Y>1}3hognJ8p2LZ8<<#nxSo-9wyF0<;SMnB3+BzItty(>Q#6p-**x4);HxDJ0 zab2|=*(8<6>UU4ltJ|fka6EUy4a*mf+*QczKH5m;Ij#_vKorOf0_I*O99aY7#yhHp zNCo!ae=}kK$>rIQWn`R#qb;DYF!`#==GZVb4z2uk)n7d#J0urDjm^$wk#`IFh^CVH zLf(sOz^FWU6ba!OP%o)lL_&#+prfgYGZ58H(3#fLDDefHg%GDvXsNRxS)2H^l8)IF zPXmMg(U0+#-)cv3G_hv4C@hmM(mhCvVB&b67ae8aX&9&9*^dWr?J_AaXzeq0($8PY z@0KQoP-jEqNF9Ka?H_`E*TT(4BWFl;Dp|4_GXinh$2zc4Pm%eAePwM_W3?%-0&$<q z>vN@9jYoe6VXyhuoee>sEim({F`|_O+KlCB)=O$DwaX28VjXM62e_|8J$g#dk|D}a z2FQnkdyPPyLMegdmI0*Y{nALcIVt&#v$3fqbj^B0RN(iWJxvrZo$IEfl8U%>L^fg0 zRSOcgmpAA+wwQqEH$nvGtOZUQz&mVbOl&YqM!E4^r!KmnM|E5yoMD#knVyDaSwjq0 zF3jZ#(5TdRcc^dY|4OJ-6(}dO6>*K@dDdg-wkLuCEPUXYu#kQCb#eiT<_d9?WjlEU z4**_Z<6`Mh&E^+iZpamX%bFk;E+27V>*Ba5pFCR`sLoa~^xri`Y<4$Tg?mpr6On-F zI<|KeM_gtu)NBEcPg%Qw4ht8gelV_mpofm=CORvqRhx|^maA-1S-@VearP{XH*B^+ z2M%%xh)YT{BT;|02Z`rs6c)18s0q{<f)lZ}r_x@(N8d3X)aJFcB90j6&#wR|BruNH z7q@|<jC5TRzU)kp**V5<zHO*C7_p~4HJ;$5Q3#uC4qX&bIzb1EEq)kW<#;|RxP3wf zIB9}niKc_qv@$jNUpbwaY^}=`G&YgurLa2UI^CCQ)eqD(s;vEmVzPnS4y=~cu3E?p zV6&53D<zFJkBwTSW$-PR3s9qclC;NVmfp@MgVTIl-<v1GQ??tqHb?+8*Z^aOMl@xI z%g+|5eIpZM;Z-mhxB+-0K6K|tLBCCkhhuueo<xx{`lwY85Yl)|#F@p?2y!&e;E+zG zi^V#OYfg2l=zV=Dz2;k8QE&dSM9|rFy`y10)0y9wj!6B3joxZ{=!?%>V!vS2ggh&m zi+N8x6NfVvsf@YU)-t^-P$>9lNGhW$r8}3Uw(e%(Ln~jDGrSm<*^OyR^;y=@=6i0E zHG`mSSGmpHVCh2g%o|@oiEG@~RENdo=o-h>Z^#QQA1(-$fkGL18Zwm8z2yT~p#$Rs z>&L;_HKpt=7z;UpvA!c}cs?m<d4&xwG{TnuS^;ma2Rs}VRPl3}{o7Nav56u4?=M$_ zHxKoj2o{j@>idusi6XuWRz;O<YwQj4rRhzNIe|!6&@d*%=v+RXs#I}l9uFg;>&);g zUQX5`H$rf!td;^Gq=N{`?m{*<sD8uXKt{blC9Y*%><F}N<fROI=Ws<XPt186jcyRz zmQtmJU0rNEgBn*%w1hn+szD1eiijgC<8bp8tbHR^igS8FNYDxcBtrx5O_sdwsVZl& zkpXbz-Xa-(cFb8wYn`#tV2sZcL)dxQ{ivnafA(SqgwRyEa3CzxFCcLi&qumOD2S6- zA{VqPV4`Wvmh&|s!8IT!jja%u1PaR0&qFC6D0~8ImS|(qmVDuLF7K2rqsi0Zv)Dn? z1p>M4J0z3fxrI^B9{V_fBgiiD!d++{ey@;xJ6`i+9}Ai0wq0OczA&-won*WFfl8Ox zL&h4;Q0UJIrL$xf8bi9hN~c*P&wizS_=#6jU$RUZCzog=pCjT_W_XBAH0a3)8w%9> zErwZtp$KhT4NvTUor;>Cus(B%20}eTD15}MV12`0x;wth@bGM~%8NiB`?NOvY%z$Q zNkSjfkz)tR2L(+NS%~h@D1hYO6S2IsO-UZ83U_vX+!&c+r5fV5!7@>b@R?<PV)IOY z%(oOzFWsTO{_F*)mX6=K&cC#9>Dg`zNt7`)#I3waoL$~5YVTo#gD?1h$iCBmaZSdj zXBWmLK#yz1+>>+RX&n@?$9sEuc)$TM5cFbzwlbZfBE80p7S<c?7yd)v!1+d^kQNB1 zc_b4X2}7iY7Yq)}0esJ`0L|#9S?eGZvbB-OIldJ%G9Dhs92~JLZ@W=`As>d7I4%Fn zS32;<&U|nD$M$;Ji3L^&1&Q<8LQcekwFmm7fLt9^Ez@{&nxGoQN?6jbBTQ-c8N)o} z)h+X{t*ygGGQu0zQ`q*d0|0x##7?-yEUeQis%FW{9PuA}xLqoJK>VU3!R;XDfm%|n zrix9VNg+YLb8m`aBkI0*flR;6*7<<{zy_{4#ah*KwW}gZ+%@1CyOg_wY}LA}nCJKG zFja3p>K%(N+6DD;8q_)=9w##2?YI~~*3Z>iQ8ps4_!KE(to{@_3TDn3UBu2UXhXQe z=4-!LZD3l*oAs|P*a#amBg-ba1>rYTBa6`;0DuAEk+Y;}YrnvVEWhD$!Hs<YR*#kh z6=StfK^YPPE-Q)0fC~=^K~ByuYk6KLo~dVJF4-4<Oe3t_s6*wrb<wIwu36H2t#|D+ zvvmN>MpB!3h|-tZ8cxD}e?KVa_#2gXGgWcpB=`yxzc;S+tM}93(^3_H71#89|6aN_ zGrq{h{c&;u>NMlY+$FU*fLBz<W?Z{a7^(uae-NyN@5dpH=P0R^W0459nh!xRY|FwP z(pH_Rwu@@F>N8kqiK+h5NDiF}F7=kvy6))+2n-JF4{nHO8SPm54HRz1fRe;e-<idj zd&fogHUfdRCQCg&4g|tzN$kXQJ~JUFUbmdS9%0RlspRlQfla3)EH5F>Bd%5McnmxI zIB_OD93$s8W>3^?<Cd@cT7-k`B!fJ~X=-qONl(B?+A){@CZNqp!6F7G9hEWV_&7EB z1#bJ)IGeD@NINNv^fIy)OPo<4N})yaf#7~W?EI>tD?COSXBtyE;+Q;W@!uXqNtzJ1 zhOF7y)<rNQcXc=BIqc<i%Xa8?otDkQFHOnCp@<fx3Js(xt@W(zFqz0+G(fLSY<)%} z(lE<rCZ$+gk|$W7>G<ZVIJcywxAz7ZHmYF<6%TTvfbc-J{E>=4JO-JVF=vFe9qGbT zO~<9R82R$L8n&~tb5;a*EZIWVxI_&L<I%~}abUza2TIUvx0I$ch+SThUqKrEfqclQ zm?h6|cQ6tr<ZmZ|&k!0A+{qFtkpth<d1L}`rI^q#wr2NK@M|x!?0me{q0{QG^GC8V zq#th8hOP+v$8Y+{8Y+5iKF30i@!o3Bc8_`_x&k^AcdkM~!{EPY_y*)W*pUWA#r;OP zA&viH%HyD2m;FZMgd-13Mw{A39knt;#8EaT;)qqKN)vN;bjAXaOB7UoI|@=sog}g8 z1C+C~QIO^%ejsSd9>P90bE;}T!w4uD#rpYGy46Nk&6I|ED&)P1maM8PDEXZ$d(}Lx zCDn?=Py0o^+vEzwu*NDyz?7^i=$*OuB?P(-xm}_AA^gSZUK`MEiBmH2pK<lWkl$rO z=(YZdPpgvvM!`&a;;<6ZRX-Cn3mpf(77ot+6Lqusr4Fj_MN$vehaH~{*wcXS5WC;P z6+_+`(Y-zDkH;1{KMH#%HEXhQS+U;6AWNwCaBNGD?T&I!$ayD}tO|81k)F{hW_mve zk+-*w><pGo>`iu|C)DPkO7@L^arT(7<KE%4rnWf&bzc$CT%3UyXbC;O&ZxB6jdtD( zW;MTcn2ZS^R9m#5g}ElTvzKxo#$i*g6B}j#DimjOe1zYSMOHL;002MKf5#G?3+F{~ z)by1P$^`I#{dY%UG6j-BvFQg0?8y6oNTQT0UPSsMT<cNIaP{?t!By86694rtsh6ko zsxA()Sk~e-!rJCm5RumLv00Ydv(fra3A(fNRzqwI<D_pj%Cm;??}tBR-)b>cb45S( zh7;ahNuS1M@5hg99ZkYNO#P9uH-5U>e{{do5P!;LmwJam?lcNA%?X)m`56~Hjv*g5 zGUTp)t4y)YUofCv0-R$lrsoy*2rSOuRLY4U`5BkInl@hassLfHX_&Y4ci1~H;(iWU z*>s&X&+)UQAOy{1MxPtT=Q7ch-#D2(GBumo`->q?Hl7DJL-2%at1oYhgg*z9RFJST zPuWLD5b`P%*z2?F;1y^;s6)wM20|0(s8kKIHlxWHYGDU7g}_s{$nI~CqxF}yDFp;r zMm>d$apr9RcDxKX`SCmUy!C)8r9k4=`fyq|oUAHgJ-UO8^VE6bQov)N@5X9=YfeBH zIU)IyMvw=6yA6Dw4h(=|U0Hf#qR@Kii@e=0C<n<32tg*^evp{Rri3kHV;%{0QG! zycFYJLS_qL_MxVEf~fS4%i<Gp?Y+dT=Bb}3%vX_=T<BW45k}uIhnN5f&e6tC5*o$w zpvwg%woq*D7K~#|wyD&NcGQJWy9I0rj(^>S5B(in3(@NkMf?1~2$u_|1?U|)ev?T2 zh)<?701K)o>Dli@f9UyUEVd#bVld|M$7~)OrrB=rzC3sK7{Y;hbObtSPt`|UI4#~Q z?M7!>X36CQtrc_xmA@AnnFa_Xqn-C??RtO2;sIn>mvMT@R)x*uGtk4sUYSdO=;5Pp z7R4l%w<mfR5)~i>b(kzTNn#liIfkMPGpCyhJTp`@@Wl;qojIZg0eECg+$Js+!9`Oa zfXGk7Z~^O=+S%D4d}{#br2tA(vH4$bTR-uMpX6FS>Mc=dr6l!Jc|eiTD8##_(rSJt z-?M=%gc(ejRayMUMj~?UaXdc^8<Zj1fKwl$_Us50FD3ToqREVXg>~(2X*{KNz48kd zY_sN^$6~VLF3!1PaP9E8;$%2DxRHh|*KAIP;994DAphAI>sWl}BGQmKnSZUj4{)+1 z6|b$qE`OuD1Q{d2>J#YaF#LXGr<<%RU$sRtyR3*xmHV&o<u)#eMb^PI8w>eB`cqw^ z%rMWfw~Fi&Rl%$)p~SV)m<3l$tV5=k+`%K$X`ufTzObHsXQFlBQp?X2rf=5q$QI?A z9cBGJ@>bFSF>Z!)rFCsVk?p0$#4nR&6rN+tU6m_Np8gKlwk{FoDD9JW^`==nvJy(I zC$vpPBF$VZd@|11ZJPZN1i~1AYQ>Vj<3?4%baScu9nx9usdpuNxek`jQ?-#`y4K<m zyJ58x#rDkZdPwph#0lBLmCP#rHeT$>Mg17q9Roh<NZ}N#_INd`g((N%^N1;nqiGAo z!O)k#_f~>IqqAP2P@lf?K)eZ|ZORcTm-dWqegr%qQO^hp@(b^a7}!h%#BLz?`x@N- z!AUI(Q!C1HICVAS4o|!=4K1+~S_S*Z=2jfS#vhH&F{FUj@1Hob;_@9HqdAhGfiA*a zoLPsq`|ISYs5IO-v&lrYO<I&Kq<R^-ZZ~b^bWjxT&U{I^q5;?=*W~D=2;hO?<SLG( zL@}X#zP89HK2wBb$mkXr*J60@u5Ub1qyU7b>qr{tc6eszqD5_7vVpPVyw~W-U1T4S zHlca^y;<jM*nDk8a+k7#5nDiOa;tKw5zG1SWkMw)oxeEFYp!>=VJh0r;2^E}E*8Xr z4`GKXlEL>9GE`CMrD}Jn9gAD6x-KoyAC~bJ!O{n9-ZKTkIp~BtgHG($Br%2ba`<Vw z{&#}7K`Dfx>3(RDIqlEF&ix@2J-u*ncV1J^qoO&rNQU%yg-ESMU+6(wVR#7dNT}`~ z9UscHz!`EXdZ8h2rpBzsEE2ycT&b#BOhvS+G50XoxF(Ib`L@7Ef1U2@i2clTbfLrf z<{uTGp3ZQyRTWO{)wjTU8Bi}wlb2D%eFD_{GHN$;Rgjwgbpkn|PMX-8JIC6RaF^Tz zq-BvVxJkW|2gS7px`h>j(W_plvXLwIQP{~-cj!5-mC0z)>@G%}^wL=WYQM!-m6c}S z`Y*1fcK(Ob?Q%;bH&I%!{q8ZsLrzXBi(_+OdDg(KrNyDo&8~Afxlc{eDb8s06xeeS zqAgJu)}8#Em;Ss{+lwLBUDV8sHP2YKDz563)TauyT&rw(DCV0j8VBUF<f3_B>s3#j zZBf_mKmD0Z!e3a-j{_0u*6NXRvZr*Nkvu`rEA90l`z8$UT|yKq`u1AKX-2m(bAdXR zeu+3sN?eGT15+^jbUnM@#O8yWEl5ofvjw0agwvdd_IEs5OfhmC&7Fxl9MG^`vrLud zl`C>d+icD+y_AF~Ac4WBLP54~LXUAPs*iCRILIlMJy$=Ft<-aNzneb<-K1Wv0Dlnn zz0poy9aAg7e4g-o+I#~n0r%{%r)%J^S;#vP^E#YT(`~bh_~%Vwrs#xH00??7F$>-y z2Htt(LJo+b!b)d69ro>p$Os(&oFOgEK5g;>P2OT{5mQbw8O*cCsK;Pt<}{EQT|^Il z(BlFx{&MF_L-C>tU7Ck#0s5LqjI&9uWm6vusO7HBJbnNBsln3Kj2h?B?<(G?YM)6` z;Pfc`69T`Pq}@H!g=Fh%1{?8)&t%rn=xYWJGPBWIFxn%(`+5xhE4+lN8JdhKVU2=y z?W=BLN(FSNpGDTt3x~+YwwT$Ys~A>0;yJOG(`p>g&)s0)Ax%uIUJ7?BvL9QK0HK-! zLwceHQ@&5GOcnL_x6AK@Q&Ala?lBPk>L%`dv8%nb3o6trctLOKVL9=6%;)k>J4uxq zlJNumuD>H#{tPR3s3*^06NF+dXxEYa^>V!^)A&ri5pTy_KS)UfXGI4ny^rmT-2(%} z6MvzZ^5U?29~#=v*VQ%B1dsj%z2eO*AO(Y@9ig&i#xjhzCN1X#;<Lb8o;sI3oKw7f zBdrkM2m=6$ga36v_?FHaBdJBdqDt^N9OLBINAz0U$jedbcv_Pyo=7gDP`8psGw+~~ zL~DlRgaSqkr53*bO*ab^2o(O|$wlde+t;KeYye0SOlPn(FWVz^eRS(}9Vx^rSE|y- z&f9yYu+v=T|D?U=J5?%IE%X}0GHJMf{Y<j;TJjf=O*{&a5jyxB4If{`)>5p0=FhS< zmbnvbtTU?CfNT-fot?9@M;7+@Rc7R3>A~`#jrbtPt+~1wB)(_KKidqCU^0H-UTqF9 zbNfZJRrniCG~$HSV`0$MddIt9_vo%v6j_p1q4)D`ah4r&<CX=4ZJha$feEblMfDWi z;NU8?$!(G%?-|?U2ie-CD*G!|jw9f{Wz$ssYWPgoLc*PQyk)Uli_S9A(qGAZd7}Jt z1EWGc)7HAomk}X!8F+{s5ckOkzI_S;b}l;HA*W4$VQH>46v(u=l)F;hiR2f-|9PMv zCWZ7R<w?a4O6k`(w+p<`K-MFpD@<O=W@annbdgnyaLb}iL;5P^OobhBIuO{ul_Gx> z7d$1s{*|49zvq+ktsQb#viK&(5HyVkb0zvN5WSEu(%ZMzj*g&P7%@^h4x-)+mo9IC zk-SL?BO10n+7wG4u%}nl2A|v^i|45XMSx4`L>m(khbbp}064l<U!e@MD-?%u(^Ny- zh^tI5s$&d|+7Xgmj@T|s9DCM1|3wZ#0$K+B3TN>S&q3gdKOqi<jT2rm%*&Ov?^P~p zWdGchj0JlpBZ=J>>Bl3d=Yw&meuDG-p${8u#GM|__ooavs^>*K65v#iR{fS%Rbcqc zGwKDQ*h@5K4SI;N_$O1TkcWV~Aat8LE7*9Pmk|d+I_xFFJv45%ozD+nSOBt8rG|3O z)+a>lw<nps2vD5vQ~ci`b$Hnv%G4o78zr7kE=c}&`Jw-iNu3Se04hc{wfVLhqWqo` zN*;xYwX&37I{8?d5Ri3?2_H`BnN!ogUHsV5T@p0c2VSs#j?sWx;_q4^CSpXQgg<YJ z8)4OrXl3hqSaD?@UZX<iDisSu>RrhD(RU=>q}0K`zt(wK<z%TT6=wofFmx=-YP5K8 zU>=aX^~F6uyk$BKTIJCl^c)FxtCGXvqNCJVz5`iN#cQ%Sh+~Py)U*Rlebvm<qKhfG zN*W%LzjIG@biF&M+M+TLsMbVb+o-!sT%}7(T#4mpA{!(>>&V{MSQDyNVYx>r%if}j ztL>KO_tyB&fOq-~q3)<z1B)iT3wlQF$OR~5z*1~rF_>Ly(H*yB_G;3y9eTX%eNa+E zV!iNgG2yHmme=z$(YG+k<wgec<6d^=E{t$(KvxD-fbpp9yj3_s*E>IQQf_$AUYPp4 zlDvUX34Njg!pqw#f|EBlxS!t8=KO$skd{IjrO%Pa@~=6|`F?Nq>o8+G5i2x}LPfo( zD(N!hXK+|UGIv9Ck>dFVKNIiuq0Tn}xXH|P6z{p#<oyiOz28fg)9v!ky|Ht@)nyk; zH~4B$zo6I9P3DQO#C{ox?avU$v9Q?T(c4{Q*fCtT7A;)<8+LrpSY>r?Pzu+?6lux7 z*e=}OlD>a^$V6s{vKSO|ky(*f;yi%4IWHi$f?ZquXJ$Dv+maw$jA49Bjw+zVl{Xji zdNrnpG7LUOG4&%d@|ND4x!3r8z!Urgzmk_)xqvY-R=6-nYPl;&cxaY;6fE3y)!uX| zWdM10duLREvZHfClNbz<bUUf5BfVOxIMR-XF)$5YS<lnAIAg@2{FqCJ#SrB|7ceTh z-<}nK@NrNlb;;9=FI_GV2Gd{y*^C^Zt|m$4^ZE)n<qs8YIgTE8+8I|ereIfMHF|1` zX@5=)WuDwU<e}^4?d5IhdgHT4o*^89Ck-~_O>QsZg-1d9a!zFFX|KyMT7V7b-3yEM zPQBgT$Q|z8nv{MQMw~ZZRp;1p@864HMEOyHMxQ^_zJ<<zFpo5r`CJW!cY|q<uwvk+ zQg9;6MiO5#yDj=eMa`~`Wg=qFkHB7dHj3)^>2En9rrtDI+&N^bIbe01K|b-jw!>Qm zt!*_l<ny>lHNHsr2OUYEUiep4qo&M?6AIVFsMxH53(Gd$+^C-b1ij)OJJyE3BIxB6 zG)bl*n<k#sgd1c&VPjI{U)Q9|b@}QjF*{=p{sH$45>o4A%h$_`{_*Eb{gwjw^9}S4 zxt0|zF65I;)DIzvT#Dr|T0XQ%)K|XD<D!Hu2C+Ye(d}!iAw#cP0cn6$f?5P$s_lXz zi6tFvaB<^Wkhr}_D%w%*jo>Mt#gX1%BgyN%l!G1q7#kKU_c#wDwan~3Pnu3?TEE2t z`B$are6J_N*`J6Kfn>?|wi^mx$0Wk7wa`574j)h^Q-f~ob$%w`EzJh5C)fa;2-q&0 zx^!o4^Ed3H-iEy~u-M{LpP@*u`kG5P2-eO30o?@DCy1n{pjzL3T6B7b|3VD49jERa zd-6crc34&WIY15Dz;l+(h%NZ2o*#h)8KF3B0i@5krde330EXN3pY(-EjJn(U@VPm9 zQSnr$5HvWQ8>{5yIgU*W;!z$-Cyf3rm6qcaTf3>AoH)1sTT?t8&*e|r;6A3{E|=lh zNJOa;*9)7#$TJ()Bl(%fE@nMT2tm3RM%{X)zdUz*09)0bl%HN7gL15jHBMHU3mq+Q z8*eaY4cYe6()zc~gkcU#iAABLP!We!g}eqC9kp6&c4EKH=R&Y{lrOw{n?~~4jcJJG zZ{<9yu>dsc$y%R9c<DssHlTFj?wPV&keio{u4*$})Xh#W*z0|dd#v?OLdb`rk(;1O ze}*2fTlrhr<T?N1>KEAyt5z33)nuJdm)W~At^Nx5r)G#A7TIO#@QF6;ND;?c0PQ{R zLFOa^N7Ubzvwy>K(~XVF^st<a@CY>T?VEkGF~zr#CM1{U2A52YXOuWsH$9r-i(K`z zH8*rf9|gVrGStRgyP<Q8lCWedQUcXE|1xT50h7kIcTaE5b8#WA1BaAeo`3Q4QAaXG zeu|V&6C*#|`0+nudwYHjF~20~7{&S7tV(Ii3>4ELK4(}5s{xNR>XX{BW8Q}-oI}gV z8#|Yo;oX6fW94bazRFSoG5e+Xx{`yoNCUR3tWu<s73MV39&+?k#47dB>KkFkknZ3r zukA>86V)N#=?n+Rn6)8ke`7Awv4O<DNZI}kj`FZ-*kXBnvP$~foi%`-ekv%m_o;`v z-+uh|gNCQBK5G;C&}L&h*g-2rh)-6bU6p-08~62Hq;d}uu@^g@rY6YxlOhb|fJwz= z6avULV)F)M_jz@Paz}j;hH92d*t8|-IocE#{}osh1nR+U{9{*)?$lz2Lg6rLQcXRO zRvzbJ9xNnWquz?d0LwFX39nKhP3$pnqMpDk@s5{p6f&*8#$F~AQm?z8C_<L@q~g?* znusY$;g>CDEnp~Etq$5Fq@~v+)K=1j?7ZJV$gCYk0-GUcxhI6CEQHQglSG6jgJObt zsVJSG%()OW$N4?i^c(h9WiNGQjzA?@ocv1c!*uRxgupDPgH2l*p>e94@{M1_+77$; zmC6!p*H)E(Vx-;7CV#Zu7Iw_lR?N56iC4R2Qyz8-y4sWng=`W3ApMm;Y%K^Q2)BH- zsp3u!q;4Pgx#fAz4!3f8r`K}7{!DjU+(awl>5&6p@cZ#rJNv*N6j+JSvkvi9Jlhdb zw~w)}v=5G|kuLV?ygDyi^&hV5mdxKPUF;(GRh69S903d<({~N|yd|2V_8zurmqVyK z<jZ2p-|DX_&I}NTeeU2)ej-XgW(t~jmp?M~_<sR_#*Y8K?&ZQcs4n4*rguq_l9tMf zi6WpND}h!-5Z~32f?}YPa7V>;kVn@f+w7YuDc3HYamFn;=ENDFZS>TvJJu|mx#Ywh zXj)%&wzLu?6$FKt3_cdNwk#_rU-PX^Z3B1gU;Os;S<FV7y1idMr}<uToPT~EUawo8 z5+zGWl{3HUi<mze$G`Gl$c+6l600Qjo_EeQNn8A^zkg`0wbxwqpC_X(e=?JJG@UJJ z32wHtzFeALv*{{5tc&1!Ds3a(U2Nk<lWw<EAM^&ktiXGtt_tg0?PcAr<lRMrT=Bd* zI(UHXF(_A2a*cT&QGOb}8`q+|xnGL*h;d)Be^-vUEXQ-p8ZLt|tkVwTj^iga^P^g9 z+t0Ezy?K|Mr<;x@b~Rdf+^KXHBBxERI}-=EMq>xw*eX4|+^PMaU0(3apYRkeZM&Ir zKb|6}N>O-*EsIkIF(>yP=kB>sEthQc+OE#!=u%GNG`Uk(!FFUVTj&q3B){uF8^0I? zzL!`08iu%A>%W|>iQ3ynxZQU9LTxur_>cH7V?!o6fBECpE-^nZak%?>=TH5;u+QH~ z^%^l-r2pe#GLug?0#8R~%zQPI@#XN|t|MT~WM+wT^Hq0)_L6@zW8rZ|6OYiW8M7um zV$JM7=@5OcK!#~tm)3Z?g+<h{C+j~lj8xP0c|=7k9-P*AzK+Ag{xfIB>rtwsVmqSd z-+r@b-liQRPG@`&Z?C)Ov!35*{7`+v`z8?0^k?Gl)Ah>>$9I2zq8Fw2O0P8&rWH=U zm-E*G@cPj_!>ql}h<2X&&^|M<wtZv!qkCAh#+3JneU~sh@k+PskBTXa->G^W4eiL9 z_K5vv@6J2Rq30YW-N93-GokM{qJJ1KLx=3d>u$b)_RG|tjhJ%tcD8=AzjCf~y>uf^ z6bDZ#`BSZR3qCmZW(+pZgPn9ET-sqe;B7zi`6M&ZdDW&FR$ft49^cP@OsW&7G;e}9 zG-Do`V=lp}dfwRmN2ct`U!9{Hg(n=mSHtq(Sgva`f8OVl=|<kP!z#<D*5Dsjs~T|r zIQ{h4FsWPNtZhG9lnv(Zxy`tLZ5innnEstQ&=6?EQ9j|czqa==y*-wp9igT;Kv0o0 ze`7JxFRE^dv4JtkuVFu+TgcQLMI7rAWmsh1JkIu;&L??5)hqswANL^lGTaG4l4m5l zHIDZb*x3KfbW2WnEJGt^GYw)u?*MV)v%)Ny@af2^C!4l91r9=Ire&{vXBoOJz_FoX zO6uBhl-;?*N4Uj$A2S@)hns7L?oHt{7SuJ*0yzvujz$7j;VW%(K{B!KAtwR08#FDo zEW{7O+W|NQNC_m}7@lBeeZV4(b93`ulm|fLJeYkS{OONZsh=C<CjDLLjP@DZFPz<n z43M5yr3nDh5)E62Gxq<YZk4*rr0g4U?s@;y9KgMJp})TM(}FV(m&joNxkzFXFbeXY zuD`wAb%*EgaZ?Gp|3lzE1>IrJuUspOxpt*1C8h!K=dPVYwm*$H-2Z{k`V*K=TkpAc z8vfV9uXO#F%9d*#_Q9(tf!Fj@LJu%A!8~s$J&^7(Gf7{C|C~rT(Lc+~5vsfy!(#-y z-=vz@#z}e4>jGgRo)K44_$ZkI$RTV4{&OIQ-_t)=Xm)WIAp;~24M$=Nq?6%)Lj>tD z-IIDf_;In^SlDhRI3SJm-|86E>sFlkKineXVQf186G+I{b$<8N%O(HS7`#}Aw*RGf zrjg6vmeup9mc57Q+|6uJ3iThM-Q15D@SaJtfHKJc9FnY`@nz-zZk_TNfmXf1wzR_S zgxr~euiW@OGa0}Xz<)NJOEP;^Qkl3%4b04CKagtc*Rx`or0ZRij%Q_KHpnSdc$Skl zi)%kq_xc}{Tjb66qS@c{w9ld`M&`!l{|ohhn0u%A%DN_QFg&r7?xbVewr$&XI!4E~ zZFa1V)v;}NY#W_qPM+s|zxi-6Gk0^h_Ci&yT2-s+{C{WHrYV$v@Rc*m#QNJjODr25 z1^PHdz6!7IsC%!T3A&jlIOccvVuF8avX@40Wo07ZIqW{JQ=5!uX=Q}Nq&8a@bKh4N zbthC>7EhQ9C&!O7Htaz?KR=vi50N*aVT9MsCLA-DS0V<8qP-tGjAw>Fjt4#zE&X0$ z`IZTKYbC1%e4x+um}D6D_#BCfzbBvYOPuiIq@SH1UbcL<3HedY)n{kl_!pj<7ue;; z^Vq(z7m2h2&uJf=@ePY%5x9I~vi43JD8l#OSkrY_S7&%3|19@&6a@T-tmZ>s%VupB zwy<n8JjLs~dK6_H)|R!TGI1Xbc$yt^5#W1B@z4JZx<xV6Va?9ve~NQ?k-D2W$?)X# z$@(=Cp81Sp>L0zypsgD+n`I2zGaLBC0kxfnh;{6A4bCP!sXFV<%{(YmIl-~?S92() zTLTc)%nW`)$<+Okz@EoS9%>-t`=P}=ZN*$<9xE2WP;}uOBM}=7G_>i>2KXDma9mgK ziap7TV<xDv^d7=|RKqcdEnu8Gk(~fAZe5DChY$yP%kg^29DF%u0o@zt1Tl%i84~ch zp4}2SIuC!$8Yc*RoUJMU=aDlv07%x5c^I1jJO`s8Ck|6Kv75j?&#XH`)GF|koKu+= zzyq8Wd{GoNutSglaCg3k&}$aQE&w<J*ZLzlCHU`h2qQl_Li;?^4uDfjKY=}R7^w9E zkf?AB+9xA0MuE!&b_HgGu1sfckHFf0x(w{1oVlxZ)tI|0M0?GKJw)cu4VfjHE3j$@ z{X3YC9|Yhr!3j3-fRutHn?olopn;oaiZ*06unBkOX6hy<244(Lv_r}iY~w`+AAFH$ zhB6v%WG-FnGh+#!@T*gwJ@?0~EeUh>T895@GJKJ1<Fx^N(rpz(bop=Z2XOhny&6m6 z|2Au}iq;n3XVn>M#QyINa7KeaxY5U<;{x^quk?XB;wGq=|7rp{Q*e{O<{u^f<(!yF zWQWe2VStGmlr)F~Hi2Wv;3pXWZu(Pkz)^HRLF1H9EwKSry8NF50BX?ef9kRVjLRbb zXV@Q8>YurwOa_0Y#{Snyf(eHt_Q*`&F5CkwFpjt=w1Ec;Nx%*Nt4ao6xn0sCpi1KG z!~qj9)WDqq)guE|s5q8)4`2Hbi23i}rxtOsMqQZt2{x*Mhfnm)i*y5ztx$4Iq53z` zKT2!CFItPw*Fh5h4{_qaMRKZtG^LSSiaSRRsNPp$k^mkQ!A1<cmNwj}XruAVrxd`6 zgnci%MxP>7t*8O#Kp9cEa5GtWb65UcJaILd=JF;DbZ*Z8eUIiLk3J?2d|)}kJVN*u zCg{a1kZUz`2NWM@Z|BDOomdQXQb6;q#TN&v!4G~}J?K?~0FmTh?Z$z6)jCWe^&9%% zr3reCSoor!Dca04S;%K4eA;|NbL>OH2xk5f(5hdl;z7N{MzBk<8ZHrcUjHHASo9W% ztenyT%49KBnlMvjI=!jBY7O%mGy-&v2Z-G+6)bCnPT*)R!+A}x#sJVe1YfhmL676v z1w!g-nQZ~{hfz5A;y}4pu@POOA6gPWrT$JHf<r9|bSVMdF##SXpcDIbel*197$JUg z9l-JPN{X-Jn!zRrG$L2f0p~0U2Fi+@iiU*@9srbuViID&&yT|m$jz`VLE9EEP#<^g zID?HWjGHJtNG<~87B&!ZElqGi-~n!;@E6rcVBG2kkQYj!Ml<9YzY8`KmLhm<LSYsi zB^eH+9EUf!>F>_;DSVw9L5PCbi{%|qBp%{Eo^STGv&2Ap5y}wPDNM+(i9q%QQ|Rne z#GQ1WK-x0oVd2T~eCR+O<mphTX#kAs5<a)^J0Q&*>sT1L1@KWktXblM&ragNCkHG} z#3&$3boJ<+bwM2Z&#k{oU%!MDiGPY6AqZ86KzV=#6ubMa7&BUU_ILj0%2VPHoI@et zgi>MjDMyJIq|e@Y!iX`Ly1Qv04<i<(ABqt$5<tod^6|h_11OsSk95R<)HT}YQSBrs ztgjM=dCC1Vf%5$#?(X^sA?!Qyrlmi87>Ycwd-@B7+I8IB?@v>(_21z_I^H>E2H#{1 zfImJ4vIsQV6@ot_bbkc-l<if6BIOa;opAR2PA@0W@sf}Uu+57AbhI5pVVyHUtT7az zF>k$bpcDHjctX#g59ck<^vAv60eka0702HN%Q_W-POxLs*A4|JrV|6YN5oe-_^{LU zJW~O$LN`HpDc*3P_n~WNV=A5I+lhx{f%m#O!As$WeD;RsU^1~W1KmVGJI}2cUMLEE z7RbUa7X^IB^wXs}`w%ua1Q>TR8{jSA`Z?h1(10!nj47ScVLQi(zzJvi0)VqZ@(sBt za0lOb(AOzR;P`0HCcX>igUaWGqEPsKPki7;d*VP(u|8K1!W?&+gc{lbZ)>KlPNreM zRuv%AIAi^BKTZi?%g^m<`t<^_Zyop8)ug*k9T@w8mjkHvMHnN9lW5Ue_%)!CxbTqz zu^R{Ob4CV{N%uO$XG;smq`LzY=;YvwrUc-N+wtsqkCwCCeQ}`1+bFc)2S>-=W#Guf zz)XwD;2j4G`ShQb93~dS!>8jjK!w9&ekBDOho?P0gFzLEC%DnpD^xh)8WqqAy1hV; zHpXf<;ei%vfCq(DU-fB<olXgu42a^u)pr*%M%|eI7~Cs=9O$JnA&?LzoH!s#ALzq? zPWog_M>$;J;-k)*e!n_Wpuy%nE`fm`bbs3Rpk6%aF5ezP*mcI8_$1%73qwuhC(%hG zqwX|#pruT=r-p-Gru-vaC<~+W<*+F*X(0q3lm<q^z|Ce^cue|Fj-K`$j0PP+pIcmq z!a|Nr2DXlPFZvY*_eB8FBOu@h44+0gXc7j>`0XEy&IejG`KPZ%rvgLWzGU+p_lc!G z9}_`}p2(Qr+uX3<HR|WFytNJc@qYh2idSLa1!wws)poxleGYji4=W6A3IfhBL_!?1 z`Iro1ahVLfy^NRPF&_zmCV90n?B}vwv<8fG6KtO+_0A4FH`~w18HacLKmd;k^=Y}w zA0hCVzllD>@~PWrSpFwMe>Q=fIB<?1K7;3HxIyaobHhonLz)Np3%2P_fJ{mLHz>Wj z8g=uM1EUM@&VSLAhTrFU`zPYAhGI^W&!%;0^`RL5eP%=rS84r_3s(_6ssB(T)#hFs z!rFbA=lba>E?+)}J6_5THS~@>@^+Y$7A%WR`vdR8&{n&E80$3baQtFO?EDWp(@f5h zT;DZiMO6g>yVGmWUq<;}{3&y@5c0awCJiK<>Wd?p61SeO_svB{w(O10{l=0{O>~d8 z1?#DGyg30kdzV2o1z;n-P=^O_O)0P~bc-AFi>+SbUh7Uu;SeRBs2n3+mGjx-!X<Wp z&`-mEw(U<<b*Pl==(hHi<g7FMRGf66w|!uQXFE8L@^EORT11l1g)eHf(|oaSlEd5Y z*ejoKQM7OL@4!8jlunXRtuOpV4klV_P<BpPGo~!Um?YIkmLB2ub5}(IE}%p=+xB#% zfjwSgJN80)e{xdg`#Wk06S`au?}_ZRU7?F8!lrhqQyHRctHs$C54GZ?=?b?>yo}OK zD@x3q)PAc7%w%5&U4Dm<5uXR2@q8lX6T%l2QKw&T)<vn*l&4D7_}m=ikNW`yudZM2 z1S1`D<(G7P(xtU@RNz}ztA6k2{7oM9-4^<)ozBaFh(b=6p#H6ege*%;kuvEONy>Gb zB&qU5t1>{hd{`wNE(;L;6?}@qPSSK1Yijv>iT+wbL^D|%?9XiIH>yV+I5;TzVDf5; z(z?@4clmIs1p6;8qf+~8gVfbitT)9Gc*GwhRWvi?$>&}bOXdqxDZMa5);Y3`v~{?m zzsLA{r}D?jEMv*-M^2lRR?w4P&X09h4o|BmU9F>~?p_rsf}S_IJ`8!zsTNtj#-vzV zQjZp$b*_wwpKI%^YjuJh+g#GpO=_C{kWb~g*O@Al=E<E>am7@Qv{z1l&@8{2q_@&e zRAr&w_WFIJu|09hsPkC2r_TZjsmzkNE33bZdU>>}<G@eqDSW+a8H`U3_IJ^p+?2j! z{PwwU{`tUu6%y^pv4YH@>Zih5cE*vN)P>#DbD@>Q<m)dur(A2Y**Pyd+XV=^=o=x+ z>KuU#qCaRpN{#4pX^ipY$%k&tw}<ZIW-}CH%OFw@>$ef#%Dpx#XZ{X&nsG(mF#hJi zR}Js=3z<qRTi1|W0V|gwS%cO8I(i<X8@{L;OyA++$ha`_lBP}0y;CMa{X;vkF&(!q zi?Iq5mpZZ0j%!meIRetQUgd_?OZGxve8s4<wWI&m<Gj?Kj*BcK(n4gfK!^NHvWD}~ zUZqUn?}@_5j|gY)%^=MKu3i<{{g+usq^l0X(i<G>04Vn|D0W`%pghX93!%*L^P?30 zsXwE`GpM49Sti#6vAtKxo-BK>Pa~dREbL_ONj5X2$5?1zeME*LUo|epTMyGqbgcL? z_KDijZChnjye64Yuj*AQU9`=;3S^CkZ!P!kUFqb#+B-a67}|ecL#-t19*dAqK&$9? zp6@iCo)vY-eofYCtk^Tkd9ApU7?b)z2d`FHM=e_yesj(vbS6MIhJX7-{X8V6NyVIN zQ?Ki0nxlZKlj-@|Rfd$Ct@H=$75B{5SO%T)pN)viGU1#rF-Sk;>9;39?vYuG?TUoL zY>Kp0zAHK@#?M&1Nu*yU_1{L;Os6XQpzG<{mM)~6gPcqtb<73q+vVv;W6ImE!zr8V z+?`UDh6*wFT(SuzUspI5muvAMrGm#!{t-FE7hcfO=>MZKj-&v?{-m2(uoKUraY&5F zrj))n$=Q>b^J?IX8_6xu!1B1#dHHpZuibmOeBHcRUn~3d>}F}7uRXvpX5f{-4DcQV zEZg?wf3NQbDe~9E4}=Wx1t3Q-k&&jkhX=8Xd6a&d4x-8g${D2~NH^6HFq>d>STK%C zaLJxQ6YFaUBeBZPPs$1v$rGwws^8%hXAb>^bFp`JTqQ1F$3PJJ398>lA_B9br&<)l zgj$N0l6F*hxb|;oZF(Ndt#6oa<p&|A4GktZ$iX_{7Vv#-6kxG6ty8&mF?2RB;}seh z7)7o5$Sjs5Z4Co7)KxGTO9gaQfe|7VN-JVunZSglO?Mljd!l>7mv3)#>PK*QiZ9LO zLEL&gr`JzW_BylW)U@1u%uWZ~=99LAKa`cxi}TQrn-z*C5*`of_wSSyq(+h7Xswq$ z-xGMp+3{HMrsE-B7`D)?>7%NR6X|Jf=6?PT-h4?h_S(Qc;G6Y-zrltgwl}I0=XuMT zwhzW;xe`WFOw;IwLUu8Q%u}oT9z-GFxT@~(#z?HhDfbtJh$h!*1yYR?W$g?s>nHf6 z)evD*Td2ydfbHow!V{5c&iuvRiaSmf8WZl6?Z+%=eP8F`K9=Fe3ZHgpN!kl}Kx-(0 z4?+$;0qq~$_~t<lDH3>B50Ay44{poKTP2HvJny;0Po`Y3GUwF>M3u(VO)P;pX*m3P z7nr=d*J~~k`pGppHNRKi+17ydrVQiMbz#a;J&ad4;}>{MHvf*Cmqqrf&rkGaT~)hZ z9o<EWghuaX9hKv?1-HVjYurX*TMydOWd6xz-fLZ|F5!lG$4KWmll>7PVc|HuZT4eF z^>X_<7xtAzu-ulTExMgc>`T8Z8~NI3wVCZX%5x5cSFP>C;0Q;^RtFd9CIq+rPmQXV zc@`Hs&g+Vj4S4ycFBc-})MBQ@o!=SjH*VI9an3t2wSE4mDiPQCS-qeWqzu+ER{O2| z__%)@W<miqOGe0`d@>S<yA>X`2Pmc*Y_J3v;<tjpg-iDmRe|+K#6$_dQUuEe1@C>m z)a*q4fw}`>pRxp+fe!jJF^z!<P>UaF=&L<%J{WP>aZ7yEXhU}@Pxy+P<EqG1JXV$` z@jefa>J28D#H0bCSBrCwV|t!LdinQZXX#qs=L1F|9aC^q76oMJo>LD%2W6^o)k1w3 zFMf<4_*z{T#6DOdSn@Ka;57;+zLRdIHkBo@ojy}w@$>#0{<jjyMOJ=5Kc!>@Jcr>d zM>n7;9*2$pyB2_59&gf-hYIy4ny#5rP$uIWglMNP&)sR(@Zd=r1DA=PA5ty4_Y^`b z%tIN1hJNWfM$3{&3?tWHKkGmHtIU3a-BLds|3c-7u>FKshH+<Qd{X-bZ-WC?&lWn* zmi$F?nPt9dCI3bImCE)s3~%|IctYWlUq{7uUGP_b$#a*lm3-wiw*+&)BiFJ_4SU`% z0~cmVR!emRj5atJL&ha3)A1F{s1b3pMeRwv_8Nn7NiCb@+__()L6VRDo)z-aUIaTV z_kM?<oQka#C|}yUnGb0fUOc_eO|7k+67Xo|jb{~(w=Jbw;Av3jRkys7A%Y^2dmDxd zZc661k>Z)-pb%t)`$zmZV7sMQ%wBkqp00rZoJ<;UK6XN5+Sg#^5e{iZhHvSk1*_O= zzYBA+++hKGpk>V@nJ|$|X?<v|;0Xj#Sk;Anu0TBi4f51nHT>Hp(Gwf38;+gHmYUkX zMG?!1oV!2*uj%d(e3xJ{#gBH^K;)E*UdA^p+EC5hu@$g}Llo23Ks}w<kcoV&COUsf z!OU}aY{1l#-{hK8bvY}-uw;E#J<}m_HLOZU`$8}Hs!H&xcwt_H*5S~PK`ejMKa^CG zO8TR=&f47JaUp3iae;Tqarj-sx#Z(lVst6?sdZ*ftjF)v6C=r{m2rd2+Yh2Oo13(E z<0eY(mB3)#6>05n%@Rc={_F@~KV%c^#Z5DJA8%RLTqL=r-<l}2FG)i1)Q7UMz`N<G zLvDK%dB5VoG@||r^}@-~>=8Qw<NNX?_V*8VUR@V&ukDAeB#ANDCUHB8m4G74%_j3* zg8EY~coz~+b?9a<m>UQoU^;Sc8oPS<Rle&n<I!rE!PYe&Z9(!5?-aj;LplWnglyw~ zx`Tr!65`0DB0b|1Lmc7YY=jb;1X|EV6(N(5^Q9EA(+9dG^t^VjQOmxTA<Zlu<#q|_ z=fx)ER#DaAVo!PU@EON;whOANYq|a~I~aGPbDB(N{G*00Izs7jGqErEYwP`4yY*== zDS%1HC-Pf;F5gcixJL0tC=-(y9{A_}QRZI@u2&_|I5&4lOWGT@+;)#mE=AY^zSl0; z#~1w(;vG*}iT2@GEO&*W6f)!a#$j#sU<#q}9_46$PX)j~`VB?F>~lPdU)BDY96+p< z0_9eN+u}iUP|LJED-CV4!mU6M?$gMI=OSN_a!;lUO{n6wUAyy|Y^~vM>o=fcJ~#ZG z9a?m7o+xyI5~d%$4<#|?D!x~x5CaASPE9}cJYOBG3wdE7n?3L$4e?t-+`nRDUnj^l z30Ir>x^Cdgct2)l4&%3O@SW=W%kkpgSm)(zx^n}Xm`5YApK5oFEje+6B2vbfft9_d z0?2KMO9G1iLZA2n5-J|k6jLwu^%m_U(sYwrO;h8JjWiYnYOB|o0P`wLCJoc~`Rtbb z-RZsQ>dgCa^^H(+dyE&!0F@OxY(y*IPjJE}C#;neL>8|{<j81LOv9<0!SK&pxP##H z7M8AL>oC*=B<3%xnnrJrHpOPlEZiur)UwlwHEH{JW#xC`?~da;qg(EgD#+%7_V+?C zk)tyd<9EIYHq+vQ|B4`!{AwfGJ@Sl#S#$qIEW{Mh$9Dlj1L1}G#S()c1%89)yBz5c zA{vtRmcx6gD@kbdN^LzT3n7RoIiucTj&2{GkT+YsT*|Q=pF;_UrP<a7eW3?#8e0XX zkz!Q^5??FWaK2!Y1o$sKbQ&?Pn|ZcViTZ!v&zi&aKc27@u<!-xe!~0hzVHC6O9d)X zxEBx~#ETy1`nfJy^kSPY5GcL1E3}&g6ECN$t!8sl)-e}~&P2YcAN4ob)K))J63D?R znRLT!uQD>l7e*TXLNga}__epqVqU~!$6h!lbM2s9l1ukW{f;$L<3tp~id^D64C>D- zpnTUU=PqOL6R_o-@0hx)x6L_tbR}HkooYD+h6qai{rpT`Alz9F^a}0Dr{J&HFIkfu zkoraOc|g2cbG&IeLWSgA4SrdX?a|)+MV3{G=f`%!NnQzGC~m@KyZB>2Y-gD@nZ6v< zptBb^7lImlq6%@lRq3>@40L3=8Wqu?ys-`+Q(fC1zM|AGDy))`(JxLsH8N?=_@&Kl zEGytBg=J7QNET=q+TTj*;CP%jmCo&(7IQBzFJ$5agFQp6sW^FLo!A3BDx1-t97#d9 zQG*m7G*s3t*;j=3Xc_`T%m{W=1Uf*wrJT)fIzZ00>GPy0qE8bJx%Niute&LUs|F0Z zam`RPNdJrxPZotoLNDLXJ15L1l4_c*daHZDg61{6ax~~CGawPnN6sSdKNdsqbGee* zRoc+eU-c;BI1%twNMg=j8NeP7fo1wm9$Shwc#|l3$3;r$nz!{pvSNzBho&Qn%g@>g zjce~K>MNPKAI)vAX}jF|nfO0XfM0@5$b!aljdt(yHH@9`o-x%5Ol}uaNR>$uLq=G1 z-=b5Qi-pa2N+4MK<~Ogev+$%%95gM}r|1>nd@+s)=1WKGrBO|Lun?)xrZi{R5yOva ziSG@oht-T@AxdgoB!$-k>>m!6jIv=dV-)^!`Jybfl6%Fu{gFjIIDcMskISyz@;fz! zp5RZ?2(FU<G488b_P`zft*l}<V2WI{`DHdu)H7^$3G<t~3dn`|bK#JSAom2LiDbj3 z2R!cu$1F3zPhSiEt%q?Pcz=`f--mj^=WtGnm*en#dm8-v=TX4i+bQDPyEK1o<(6yg zk<l-J=*;k`S5xB0NBT5BoItZ&z7}4~C@iDj=0~XByqMnZug;})_N<cqX|It|xq_v- z4=^aE%n1+>Od|KJ0gW}gc?M+J$3<7|JRJxX9dx?l;%VAqbUg|JWFa09Dp3q2ND7<I zs^WgS?@A<esQ5khSH1LC;6Gq%pv!tzqL*TrN67qzifps7rramTmzgJTOMvfQ6^{BQ zQ{gZ6^7BV;Dl=LQQhew)*S>C*xwp=?&9n`gt38b=h}iIvtaS}tv@Y-3|7N*(Li+=^ z5_<%w2laW2j#Z>sK121IqWfS?k`%sd|1uDcvF=|wHU{DXkx1K*V8W|M8g?L4w6h#- zc4Q`+aSB>1746}SJ<UVSni(_2bIZzPIb^f;#rUAXL@smUiOL%R;j2fNG|^=BL!=oy zdS*!SwFFDGQ0e^>dN(iZv31!CNCOqOe={XZ2|<!#7w1>SR}@6tr)9@DtB;>SZ<c%s zWv+VCC_R`DI+3-As&{2A%zs(FL=O@Avf|Zj>g#(b(iFS~w8Xy#qE}d*MV}@&*zh#a zB;{(hwx~a-+O}!VcGOMt&~>FQ8rCb%w#84k1wZq`)4cU{&sKKBK6i~<v~(`gtl`)G zMh$os>S+%f2r|aLP!d_k?^=I13^R|DoDlCi-?qgj{;I^Su4HRG;h5WDcFY*hsFA<n zVfoGYpz<+HT;L!bry_d2cwQ|cvCV4JAZS^wE>Wi{qkpjNmZ=sudN2|8TtkcwA1P`* zg<XJM7bL8aQl<pHHp9NdGgK!6lR%ZcL#cGaFXWb_!9HY$t&fe=akUIYA-<l}P@);c zs87sfZf!Ik?R(tG&PFBs9`ja~!rTpkfOMn4wd5cp6HICDxPq_Pqj^uvq5YD$!xF4! z&y@dLrPLa=%(E30G$ksn-w{p_#i1dgTh9c^Z7rr7^YhA5sD25b?<;hR48P#JJQ_&u z=`9tY7=Yn$r4m<N7&Rv!_`O-ACsSo3?%>6D`ymTKZgjFp)a}4ICOh3GBB!dWH#4Zs zK>t<{mA)iNq73Gj8Wh@DzVk2Do)s3SvH5MHr9!IP>^&ytwpPfoSeui=Q^WZ~5-@9H zvLgjBFfW0mqcOoBF;U9c!(AHf6_)lV-<W^63t{D|52pGB`DMGCA98Pr5GsS;K>TH4 z{JZD~LzW4$SW#$}Stv?Z(r=?2`igIx_QQtQ$MCU<#)wW&pNaP@kMrQ#^Uv=_q_b&U z6O_*Elpgrj1UkeD;y|55w*`&Dc7`ntnntDbE@AeqywN*P7!-4oYX_{c_kQ!v2BsHz zz9PDlZiyPoUD8s&uXW7CTCI#<y3?Cf2WFZvsk_8<QrR9o7uP!u^<_Dqq>fq{DZU7x z<+EW$Ql)@(HlJ{}B6-LXclAvrHyLFY7_v<tfluT59e`_kX~t*InG8V1haY_q4&S`2 z(XPi_=!c_ID;R4T$yr&>q`#=kBt!W~0;}7j;fttT_+M2^l#<ImkrbI2z9I<P9-xAN zeBu7QIF9Y+1dv@X$awRi!#MVYgy)DY{gvJu{9vK)#kKDhf>i|fOEOJJ&Drl)tNIDA zkvjms?vQ$Z;@k8><#o8+dTYD=Fc37wx>IM9K2GQ3FD`P(K`n6%KG#8vG8w);uvO%A zB*B%}{G^8a3)Q#vDn2@TY-WSescEv~ws9pT^@p%((arjN7sE{@8E3Md0VaOATnh|L zUk_-EPFop#EbWxeI)jI$qjsr8bhW`th12HaLE{?Tzi;F)qm&N?^Y$T)rDV<e>n6w) z%L?3NQES>*$Y8|AOH>$%reLC(>l{R--CoS5#Hq!VQ}!R|Jo!AFv4m3gMTee!2b*2J z%*DH#1ilL1!6TrZgFDTBC;>k+eSc#$Qqsh0^UXopiU9B9C&)Vkc56P{IUGu8ydp+; zE!F<swWnL{TrDr2|5@_N#=4hB%WVmJYRrjVlCdXrB?-6cJYRma*0c=hK=z6tsLXJ~ zB6$}ITyC9D+!X`oDVpA5fSd1kzpi566YbTJ<`@ulV&)-463x>D6aV1CgI<?@o=9Fz zc6+p;@zkIE5QoPA%I2~WD!Wlk%D82vT%$RtgnIAs-s~MN!%(f;UJ}nOoTe~!fdiGG zjgUpk<W|^$%Wn%<C3apdDC@K+^U<2OTt}`8c!!*;jfg!zbiWc2%LkgZK_MqX%D{qY z%*w}X5(X0iDy2{gb*^yz<)<>YJfbt;$C6s+?2i4y;<AENJ;9LYn21;#@d(K}q;4{` z73o{#Qv(B##-u@L(Lv1<5r-u3kaI5yd`9i3@YZsE>k{`=x-4@2g>L(^Z5cRAsig_2 zTA%umH=`?27#13w30Wa{P{iCs<neJjnA&@2j}MyoEFbqV2k1V0A*uma5A<Yk5JXCy ziJh?z^hwPMNIjfDHhb|kd<esplQ5grV|F4FG6Q55ymb=m5UYT`W+2ghXDbqEOJJZ@ zXY8SZ4V|FRf(u-e$GzB(NixtPZjqfqY96|o`@(PY2j!fPd`kn1ITR6+AP!tETyMJ5 zNrzw6@94Ino$r|QcRwOqM^E(6)@vSQ<XV*6Y;UNjqe@Az?_fT;!&%a>Jw<?{7XoTE zc-!~@N)+k_!)5&Jut5#6!7AM<X^|f-Hxeq}!IRUh=3gHcI<<X@ni>FqvZjQGjqC}H zW=Q33>JazE#^iDgZhg#&lr$}&FG8a=(9h_R^L0vv@ot-v#9+~2{4fazQg}i;DkS$h zBpqSEM~;ZhA&(TFc6PV45l_e3g1XjfGsKtz!PHx_IbodIVmBe5Iau(oPQjX+_Owse z6Ufg#QUxD#mc9>Mj6~|PojPA6Wpm~aMdu!WbnLf|2{&6$u~Ill9<%~0>H8}HA>cfz zp1uqA740%O5D<j_<FgU}k60lY{a1o#Y}q7I64qvrNRCW-BS{4#Sdoxzd<h82l)7&= ztmOoW(R3>4WW5+$-!Ant64Jk328i-HDO!Q5VD1SI0@7j?lI!-14vJGv1WeLCgmuCD zFhffAzvj0FFk(k?iBXpl;D;H1_=5uSU^zdG>yW92UhsR&USrL$6En$0g7*2#>EM$q zC*OM*21<P-Ch0?<Z;k43`*6&}&q_$hFpO_o_!4fnK)1GFkw9qjBMnKV!>q%I+4>q4 zgzi(eV<FL;@eQ1GzMJ8(y|qCL=6@`siwHxc=OwHU`@>&{(@$X$a75DCeN>&~zjDP} zvEc9Al5#TyDDaLVsS?S^bolKo@xo>vI-yZ3WPOR-^E%!g<xhL?TQ>TLp9O2%2wLwB zS^%X9zd|RIjFMmO=3^8pMShMg!VaZ`W;ZD@L~HyN95z}&B2ttkVH0DF@NgICg=PZ{ z4jw@W0k71ZGOZB-7b(R+466N|Fp^dXniSqwe+OQC3P#9+a4Iwjl*9o&#!<s50YO9o zMp~)w8wP|>Jc(17V;*is4@n79$4i*x^?R3wQU@wi^bq!qLK79M5<5>_TzuO?Tt9kv zIB{B`q~wgu@Q5Zr9@%gL4s>~xLd+JB6cmF4Gi<|0fgt}E6JTj@&7ve102#+6rW!!L zy%XkQN}&zT>VUG(?LXXG5o^E=Qd~YulCQ8mgi1ru#E~THY#T{s9?JUUpsrf|Wc)1{ zp)UUgG@&MrSOGk|O4dY8^nsC?4c~b08x#sW{?6E}#KEs!27GPB*fV=v5=L5*CbBx8 z?tMFzX9;wVpcYy198A)&sTL`gAGSZ53g#1L3wTJBd#FGya81^M7&r9)XN=qKUyS?D z-=ujQf=BiY7Ig*79A806Gao(1FPe*f{RRCxG^l5G`99ZO?{vtNA-)3RAtVzT2(HBC z1lo#Ll9q~iLLvA3K@$+g>G>>UzNPU7@E{JW1j8U8gbl#>s%Z<XMv9!Gztdb~Szo06 zIIDV`L8gsOOxuRAtkxiS01!kQ3QKeq;D@NB;qEsXP2MXR=sLqc<3AHWb3<7EX_&^V zMNcM*OS*E+2HIqb=ixTBaeX23rl5#UTCsOTo>|!ZJhPM=;bxlLp;YqQ30m80s3-UQ zWN9JP*(~LK<SFp>wP?xhO!!wZ_T8mESgYeYxi~LWW<Q|R3Be@4T3i8er@R%Go~t9; z8@O`W^moRfNC7D=O6;q668Y%UHwL`m{MwtqpC$VmVL12MC_%cNktbXiM}Esu2f#Zw z@Hxa^KXA9n5@ffSjFJAE#4Ac3ZC2K)+E*-DC{8W``ZLWiEtEWT>=LI^Y{a54lOH}s zPl%S!dxFby<BKf_(R`i|Q7H`hAhpI`4QI%x*oesjCIi{1-<Q^rkrSJ7e?irD4b`c& zd#@?#AD6GFv4XEOwe={n&qqMm^~`2>iT)TBczXIpouziW{?^L?c+!D0+}$vVs}YDo zHE1(pQ@KPnpac9hgQ*<9O!viF*O(tX>)9vp?kzi=J;G!M!6ANEKQcRQ({Lc1(gom1 z4_S8`V682%w;iOVh>s%`uA|25xJ8a&LMZXZFwbzc1578gHZJS8E2eunBccdElIiO> zR1y?JFdyO&Qqoyrew@e%lj9!h?2|-9s;i1<m7AeL85W=_S6xP(eJOw9)V_onLnk%r zBDn<=^C0<C6SuE2z1G0%;z8y4j<yt|L0J!jgr%=Zxidos6?@NGP0yM)P3jR;c&+Y| zv~Gm;(uK#uuD`h$&iM?#vi0E5xJ0|OO_?RnNr4_2PpV^TwH=bH9fF#y*yr`gT3pdF zXk39YLpH^!<9*=W!2awysd<H7wj}5XUR}dGC;9y|JJTE9B29nDL^u2*HK0Yv>fYnG zD6jR7omBA`-r{widND1V16qsIl!99kQ$A_y7*Y06=nZF|wAykFet}Epv6vTsbu#R_ zsP=Nh<8K!|FW1`M>FvI;?fTc3OFasT%dC==t;hRH{P?rIVYb+bF)sit?~N`QQBd79 zVL)oLQRmmx05Df-=cy8RhVp5X$nZip=SW3+i1GexGWRBu5EWQR_8w2y?=h@&kn1~; zMbU>Wb>1#EaEw|jcI>qXJgTA^w6U5nUi6mRQn)TI8nMOhs`)>2bhwXFHS~HfBAnkl z(B`~ERNeAt>BqvoSA8hmuqzf{A==L%OxQUf`SvgD1ETl7^3;<X8z6%>4f6*qr=*KU z6$J$l&)pb?`F1$!BmSHT-{l;kqrh9r_z6WW+s#&7?ps<QLhM*)dq0vchAYoA6w1|S zWNiMpGN~u4!NTQ#qOr3MeyKTw_ReVzRq7s^Lg!9Bgb`Tn0m61l?@s_fItBQ8x3=z0 zz)EtRL4I8p+)!e<l_GQ3Y<aR#-p*RsF-xU<oy0lQK4+!i%6f%Wgwg(^l(=5l=sJ@7 z4aQ&(Mfq_h(2W~;)Z_O)CdQq^-uw_JF(jNBTS^Q1e%Ek=$|H3#4<5VewT7X~VkU+f zdw-hg5uGE=-;{6<d<jUtQhmISw;}sRebSxVekS^@D&q0Eb><0{xF<6v6)T!f_UzG~ z4i4V|Gdjsq@BNR(AfmzCf?64qbnj9@K)O3@iV*Bzku9YIUYr-#ty7S`R@^HiL2j|` zBmXum)0}SCxZt@=k3eUR*CLftMAQ3A6d(1d{{<K?6Wobwu0<glUF;XwCwR4G>L{4L zb2Q(xF!3a!EKLp6RYb?=(s>o&-)((6V8&taIP9E+@(=7Hv8ln0XB`s!OfZ&D9I4U9 zXSNiboYVq2^K*ob>@}mN&C*I1b;YFSUPAOOb+=Nyz7ZCcI<VPdml9JXub8b@BP91T zGd&sHA!5TnJZdp0I<|4sb7^IzHnr<tMXFu}4CT7XJIe;Z<vP(-O6g1m^6y_1r!oH; z_=^MWiB~}bF49Kn3SbGFMC8hkB~=5V<@R?GUX_+FA>wO^!UtBeC!@0d#(#BeU>)(a z`>aMNecd@(X_LgJW^Phgq~T4tY<zMAEGLIr;0$}&&AQ<2#OhC_a031ZBr<5&nnP~3 zz#^)Lp9@Sk8U%#h`LmRct@4@}a!NEK8?q3YWMWq)TM!Ej3B=7Ti{%w^=&T<jo8{~_ zxZ)Z3{AdF42w}R<G5?Y8QS8y>i44CBm*~Q4ww%{bX3Pw^6Rd#c&b2jjH+%cXJs#{7 z5=v?W4*nI;L&n4RTi|=Y^-6M7T)&}A2Q<n<eRXnMd6_Sx#<_e=z;=e~7mu|L$~T3| zZx8j+y;?RG7P(RitjW4@D@Q`sAFyV-ZWGDV(sOx4clysdkNv(W-7F}CN#i<k!W|Z0 z{faf+v$Z;C6>l@ds&86s)PasHrB#ow5A-u-p77(4Lv~_S^?;d`)rC9?4k@`@*gJ>? zv3EB93ar>^t5F{e;^Q+Chf58Xm7if(MYIrrZa6KjGccw_ZE*Q>`B-ILE~esot6)N* z>_+NBfWr!4MTJbR&P>!p!mC~FR~QfaOrl*OJbzCwctS(cTJ0uitft5A2Kr)<-ZNa? zSI!d@RFf&ieGJPZy%JLTcnLlqP{3JNq){?8CWKeuYTL3`%ijNiYz4pC&BQr3OUSQB zDw4XYJ4e+iK<eE-uVOk!Ba5<LHp>8Rw<(~uGz~V%caIi@N7(R<G)I0JXDg6aQ}NFo zzylsN32aW=tbEUxB8^<w;|(H3w;Z3hyx0@^I86a#r07TgRzY#e3z8kkEV&OG-Z$J7 zfM4JEuF%p?zrBKpf!(^i6MF&2o`IcfhAjsSW>DnF2+mtrR@#lLbWUzcT8t5o8bGAL zFsZ(ge#4}kz|VER6<gyQ4wmo0FEEXOlp72XYD<Y@p)JSD)^cSUbh~Ah5!nu{(xOn$ zCQc=pRH<5>WROy8NzO?x)LS=e<ntI5AhOCPpdLsw+iR@s6F7*jWLX|>e5EoP0zJwt zm=($>W--MuFr$;Wo<L_BOl?e2?xXayJ}t9p$aUVK-X=LNEw=cwDk%8lg|sV(KTBf* zZR%2a?FD@Hl@idmDxx*DqbNF~3gScZ4AB&thyk&HrF$LI5W<X<?!F!xmwDqu@{$$n zcOD1!1lZeXN4`cC=?DnVjaa5u8NGc7{6lE(3npR#)}7YO+S<8MlC+G0)_-emK$V?> z>h4%n!|565B$B0gr@f&8F81<LKwB^`RFpVf5WJU>D1aAEBL?nfp<FP-rlK4FhaeEz zltQikt^vhfZC(?0z-8gIVIs$7WTSh)RQB4GEOp4xDSaCz^g)z9pFzuG<9pjp=!K_? zLH>GCfvnU>ADR4=!44M8>RXjqCG-9Tt3KrvEJifL8SBwHHObJ-sE#=VVuiD@xjOmJ zwr2X6_I4_jHq#xrxKQX;OlT7UHPt3WM)(e9Ds;D1$<{M!N+vN6ub8McFmz4IlW~8@ z>CI}?4Hx7C3WpzYSNReo*->$GFreZs<!M6A>hTm*o3ms&)uXl$r;L;87^~0VYli;O zj|Dpu$hYQ6xIse0fhT{BH3Xn#9Xni-wL)BweGqx{2`%OrDd130CDhWaF6+016%!r1 zy1d&^9lcgygzu$xM@GfKk$Pa9$y(Bq6BId{Y@HjcN_KxtxcO9OW0og>#ZOJ8nkRW| z@*T<>dSNX&Ueab<ES(BR)T3&0fNE}~BqgHb8K6f)aZ7bal%8LXFn`0q$8!9YUm+FQ z=&V^}!?A1oyNE{7G{oDKP2n}~8#*rn7-+#*j+SV>+G5MovF#f)Lp}ApwZw=rB($nq zmiDo3-Uh!)^a(B~%CZdyr{t`9!?X}9$16oy|93X=EQ$tUt(mjdpf<)H4!CC1F$KL{ z(@8<qJfxFUDBq83?S1vZ8_tR8M?c$yxs1(M0u*QyMRaaH_<7E>i11!QTI`whFchuF zfIqQiXn~bO4rYvZbSg*wLO&qk7$G^!(qOV6_7*(&$@jtobawr8zGgqtZ^JUr$le?U zNF{Ypxp8fdp=2<d6r^fX&61E!o92xU2zG8PWL&WRoQj0}Ar^mi`UkJC3Vk{!E)1d< zE426^$zA082n$A@j>hdIsBuDeyjL`;*YUTgEb@7xz!Pp1s1Rz{jx|}!oR)nVh7|4Z zG4!KqPD{ECXT*?|*{zH1k)6{HKK!H>9b#BrkMA!I6uF>~B$BW11Z7I-m>_nG2d7?{ zc^IJIn57vP2ZFO^$jnO4>KTIUm7Wi5ILOpIm8y{Cc;)`=Wlcw>k<OA1{5Gxs+0YRw zf3g>eKf6}mAq>QgVv0M>rO#d;!S&?V322G0P$}iLSn@V@igJe!;oq~-`LK2sbjVLu zcyxuyFVeBpxMIAL(OS4nHebRwOW}W>VM@dwLfGPU^Nok2$4e)vcyXO)D2X4ydIqZ` z#^suI>s7;Zq`PP-;3@0tam$W$qSxf_u&T!f(_xcW22#jrPTMh%O(ui;o#W*Xc~h`O zY<l;^Fn$E)UUZer;d-!Nbr0%J2Am&;yMIN~fmc~plh{Mtkv0~1JY_3aX0sEchn$jb z@=e|4^EG}v>Q6%O4PJJx{<|;0H=oG&bI`~7mF4mIJA-|2+LCo*t5jNt)$NiV+*2cX zwYc%_>NRw`xSsL7Z{M=Mj>E=}cw7*63csyzw2!8r!>z7<PGRc0w_247YVH?&<cEC} zAhI5<wvllZS}=_uw&p_L3dP`uCh7;nQzQyo_=H4`MSXhm<#^aRHvQ-z*uZi!i#l@N zN?+au2CEF#Wmg{rOoBIH3wAR4CnM9i-|pz|*=}mzMIoa5o#46$Yc30$hh9f!wsYRo z4A0%z99u5`#L||KNYa!rjWl|Omwhy(`g?<Vx59B%+B^MNc;pcl$9P`cYH^w-+!bYk zvQ>WYB(I-bLyip{(}N0|mqo=8wq8&1)K9qp1ykAa`w$E=d-`Mkvn>2F5bZR#NVfe0 z=>UZu_zU{q^y5PrO&tAq5HhMjzoPZ;Wwr()HAqpBss$+kaj_6Ij2ib}KlA$T#?*Fq zH<ax6*^j&r;g7I)-RxueY`NCW$Bi|w_GW*9^W|}ZA+L7(KZl*bZ(XiMPKA(4j!J<~ z%DZ-ZjJJOLrF_n<OiGNHycE=AOgY)cUor>2wd^crmd(!u`rSnH)S1>v)t+$S`IbI{ zSLf2o8drLT6>SS~(L~tp72fjC^9b7bxO@)LccX_*X8{DtXDf>S;+WQ~;9I4ql_91Z zHrCs9;*DB(P3==Hx**Z{lnRLz!S4EWGXWg(u-1(74v6EDYOp&X;QeUjcq{J5-c}bG z)l|twvmyk-|J!6Z1_N|bLAF^f-byfn;fT0;$FvHg_EGuFnaYlQXu;iK#;jDugVc=x zhZUR^BP_83E8ZX>hgQ9NX4vmXLe&D{$xAAM%a;V5rS?2V>YB`U5bxS?1Cu2~RXm~I zCE4O^XULpl8{zraM^G!lnJf(@nz=($LL|j@HXX-h>>XcdR)DQRIxqsq;n$!RNS{|* zChO%Tbm>}^*ITBPKwqd>rh&5C6I57RfSTvNz=*{nYel0@k=r0%^`umm+It4_0AQs2 zk7=1zZ}`#26Z1QKz{cnnV(}J~c!Qi}N+V2^_>3H8l$76~*g=lb__2|q5v9Sq4G+HO zpDGJDDgv_(4TXDlg4QjgYj;eCmWXtaFwuc5kKl|HyQlH2?4*>4J@5bD=O6eAYcIn8 zZ}JcE|KuOH-L4X#KfrG;bi>?Xi1d2;<weghsP;WxdoJUef%TqQKn=#%GS)Zkl%>uh zV0NCF8It9sVR$%amvB0JIEf}HUaIUWL5aP+XTB&}5zb0l%m_J7ND{<~d@1zjZlIj8 zz%H*IwvQ7GVnV0Z^jr;Nr#_(x-f25=Sv8Yy+Oyl*sV{kAN*vp*Z5_V~5`Ha6Rluz3 zxZu!z7Iy38s#UO4njtIRGfezx&Tt(CasIAGyqNCzm{F5t9vmTt`S8v80wZD9!nB$h zEL63v?pH;k^2XZNp$%OOstu-V$YJ3i9e4;Pf(k0_P)xuk7Dfd3d6CXTGCEda2e0^` zEoej~y30W~n1#K1_yrfV6FLW<#FGL^f}Gg!agZOej;c)lT7?8UhP@@4y!t*{z&+++ z1?>4>|MS}JK`+H?v#@98QA8oaJwcauMjC=3GS1C5DcU|RXnv@i8svs!%%osw7!qok zMmNo?{8C9y{XcxVFs+?uLHVA=*CwWg{-IkCTxdGuQX{1}Yiw<+YIEPa4!HRj<=_`a zBV)&;F{~22)_xmL8^3*<yF0DIw4Of{fuhIIZV6mlPeMicnzNG{9@Z|+6H01jGw|y@ zA{M@NWm>g(K&y>Li7o58Nna_Yl&P<a3A@x=0U;s>;14omDqlsUNo}q3_pZqY0&@l9 zgtcg|3@oUed$Q_|Zu$bhT<ku^588$;D~sfqTFWB;Tb6f{$__^+u^jp;VU@*$j?hM$ zL00fuy(vY_HPc}p)il)oSm5uEr>Yxj<L4~1Bd>0@5lh)i?>K0PdWr~Ke835g%z(&t zTuStjOh0s$SI_0pe7NAEF~=`V&#zQ>0)$-w!D#_mD&r7xU^gcnxo9^cg4N#zsv{>~ zQyqfSEpm9;@=!@@Mzdoc9fJ<w(~tI3B3Qy<oUuwBzbn|gHI{fy9N!v&<|>l>eQ6$Y zpoVN9Cn5587&I*7B*jzIVUmTU_`2BP)SYHxzNc5%uh#}3wnw#!7rf671MkCt+&nK~ zkzaQt!yK#P82V~j(Rxa!^$-uXIH_~GF`#F`0jv<sqE`t2$II87BWcPHETPETH%^5T z79ND%`u4t4b~*wiI=vY4bVq2?0*zVORTH!KR;7y*J0?6iM};~_Id+bnll+dzEZkZ0 z+CKe^lJ;^Zk?VOU^sb5OQbEeJ+Su}P1@-m)&2I^fU1AKnLu54Z3xY*6$1(X0XP_^6 zu>2qg`ck+joBYyrxR+T-a?GyYK14NQdb3XfJ5?VgH$Z8RQ?MPz0RKQFVwhB_oHyH5 zwv5;bvQwyBa#)_(fL<MtHO@s#5nD!IlU=f>7qO&pol!9)lp2k;D2V=(#)2Ia?Qj&d z+ckE2mk%9V^s>ufDD9(1-c5h*IHm*J-C&o_yyxLoq$3iB4nSo?P2vc3UCfyG>VmyM ziOpV^8gNLu_IvDm?(aG;XQR=O-$FKA>hF#O_$QLN%ErGNy)$0_a-=m2jh{A-=#a|j zH9lL{K>l3?T`H{me(oN$L0nV!^4su?p035NYZ%cF8(rY4Kiqdsc~6JCo3p>7+Jjb& zf||!IH}TdG-LIr$y-8F8y(&n{uZfv3T9G(p*GzL)M7l^(2cNLuj_CK60(lNLj=jKF zFl^8%StY$G9~Ez3f?YKRyPPIoWKF~7fYKJSx?7?HIsP~4&S;)WUlc*&>vgc&>(kex z^J^bR=a!%RW*V>A(Kr{ckH(RdlBkhoGLBVxMkoB|rUv=~`WFF+r)xO+_q<cnilSYt z92Ypw!|o^(f@?{go8gtWZ2i02^-G{cE{P%o)8CqlH&ctf{6La9wtSKEvECn7EUk84 zxB6emE$1#iz^69pw}JUb!6*FT<uoUToQnVbj3kIb;J95*8X6K6+FyV&);&N{8Fi>m zI6sj;pq4&dOOq)<#^6Q%x8QGKei43k^B47>bETetjvLpq74nF&WXH!j{?A0J%h z4_4wxBsD1y|C%^W8gITG%8z`Q6nCgN`XCKQ)Gb4Qw6J+wzl1O|pZ<-93G0*AYBo=& z_QWom%=K056OPVlT5UwvW%i%(Z?hT3^%Yok@`3F)I3Smg=V0`5qsj|O5~4NPQ4-&X zf38ROd0>bQkgei*lwhY3UR3i+finbk+54u{ghIeJ2ODM#!KkmEoJz1Uuj;2~WA$RE zYxf2n6<v8rP)J-ME8T?5pr^rNG8EB0Y@pk$7WYs3(O12LQH2YCS^Qu4V=n;+f4oRt z2yvVMtSF}?y6i-vBt4syAkB%vZzP*G{YtI%{pYd5oP;m^2P?bm&Oz?{VT}pe0c8o= z)&fdS3rlf|_0~v)s*5tkiOx8B#WsTTUXLJFiZfZm$~1HMV?ysm5AGC>!<ql2A~pgt zn+?v;TNnW@t#iy(H*hM8&7-ucY!f#mj9i*{M%}cS!zWl;4E5q~5WhlUs>H$$(b%A# z1hm!W+1~{5f-#G`@A_p@-jE<~O@=QS{7t`Ni^p2kp$Ku2sgN=S<1@BM%<pXnjtRc> z%g=%r_N{|BxL>tQ<0}0(6~VRp7YZTRa+qL7M3#==e1mPI*|>tbbxqKwN_gyypammL z^^OTGaB;=q+IKXo2^=w=?gfQPCj&193lD5cieVb8rOq^<WuNrB<WLq}ZE92|Bbkky zN;0j|wLAWVLNw>b8Y6&Eh-NmkVyYIIB+PAbI(sGfEpkhOja>8nCLBiHF36p{q$Tl$ zl2$z|yxF8Q5DGzzqP4XBxubmdaG<<$#B)4I`d=tS3<!lF_<uqnw8&HcYbvs(NvcTM z?cV=Cpb*W6n1+&Hi0ST|z*Gbl2!#;igRc=nUbzgnyAkY&hPh**@uStLmnI#aL;V)s zd`AzPhVWCgw|3<2L7=Ro9t=O6>QUh$CB52{)OWfAEQN6t?y(QnxklgJLu!kZJxh=i z<_{E&!~8cDkp!k9m9%63BNbVxZKgUA2Bsnh_xoo0pQ*@fLdg?P;?DPF9V7SNeD4)` ziYSha;<-M4=Y3WXLEvXhGUF0LW&MFU5;Kktq79pIHl<t5vy_Kgsa23+jnJVUBWJAI z!8c+Djbd!>b}r6^&Wi8r8_M~!v}j)i@Q8{SkR{~)2NGiP4-x`L^B*LH=pQ5`0CM^w z26ZC}h=e%)A4rIsE($de3Hg#!J%S5FLIyvPkk+byGZD4_Jrm*BY!eDM#0}C1nM#FO zRe>M<5d^V=QL@TS^Q16elvQJ&TMhBY$F<j>aP>!h$7a8>16Vd<_4i^El^8oLUfW;$ z9QwD}_}1ir)8ycx<N>P2VQ=<Y+i9nNGm+)#Fn(0r4i%eiL_1?)DG?p_2z?@=3&d-j zlv2iUbMJ6qCbBTET0DWOi$aM#>AprkBCV26sGsgKzfuDrl@IjuFI`rqmRO|v_LaZ0 z3LjL=HQf_|(xV(C|76mMy7RW-70Oz%leil!6M>vu@+HGes}j;2e;}D-(kvV;*j0jC zi#Jn&eGt=pJH`fU)SBi1M+NdF&&T8H5&yTUuW8tnbx0SSO=8F5%_d&B06}EI^0i^! z#k-0OI-=!D*rZ6*bQ|_xADL`S6W$Q!$o$7VAtaL>YK<t$VaWlREfRv7$yd%EdGtLh zsJ)D%HeVR^v~arw@vkZc=qjyi_j)nY#DQd<tz|^AMqs*N<vKX?+Pqc!dQLCKb$(M6 zs6LwO<}JzKt7xe40vx-w^I52|6m;n&U`cS+o0<l4^~{bnibgdSf$8kfjl+2_a{d1K zBL3_>loM#pSuh8V)RT3PD^}+%LezXp|5s(_*qmv&wdp7Bn4NTNcC3zV+qP}nwr$(# z*tR-$p4iT0?{}tZs^-)DhHKSPXWjQYkJY=LUis0v3JZVyq!=)4nY8P9^#&#Q0!Kk0 zzW($ko?Oriuw!D?-PQ!J2A@q+k08Xra1aSqOK+IyNBS#%nAy0SrFJUbEWq}_=AGy$ zK(|8}PfPikouplSq3xwWuKOOhrEq91Q9j8sdBLq|u-$WY=ds6Oj_IE&1~Fd%VjYv{ zLzK%jY+D+Y$bc~9T#!RE%i^?`ldfO9-=@m$UnzK0oqG~JE;k<IkLE5jYXevfWs4_r z2v4w(E!9@U8r2f1jk7>`Uw~VkNd_Trl!3lAJe#mArTmMr&!W_Ibk;a)ydUI@G(-uz z4nI8D?f|IUB)xBg8WI`nq+4Y@^0{8v^yb)%cLhVV`gb_F;gb{Q%Fs8&muwv@bV=~n z0Me<)rjWyY-{july36d%mHqPWk4vtM)Y^4wxb*R@F3hta_o<`BWowJ9V=g`vFeTji zgEjqk(3mBw?xO|0&UPsm7WPVv=qmRuR^=D=@W2qn$`r;bh+Q`5j~up}tB{B+%Qv=A zw<VU^AsF}I<4Z>e?kLdNq|^;o=$L|JIqX>%jv@w&LAxzD%N(<C<^UkEP?F981`gJs zW8yyiiGUvWFUQ2Bl}3E!ZT#yr*rUxNYeXTH)oKE&Z}nqWSi5)HXYrN@-eON!UcB28 z!0P>#$HTKLH4FFhRQA`hk128JcQ{-%kVqIbph`?yl9l=>?S?ytJ(<v+)%T9vuN0hN za#D)7g^%Hc!ll;{a-2msu5~2>cER7c)txuTift0eGc*lbmp>Vw@(}QmB0S>@oq&A3 zoinrCc-sklimx|$egSam7-;|i`~|nHO?B(o4Iv~Koa2X@5pTY-!(z6w6{RkrCNz-Z zL)!a!yS=s}6sovqJBP$>PGVEs<;MpkuO0kr{Ac8MS`r>Yp(sPoM&Lu${=ed60tFo| zrkr$B6Bn1|mzElehzhj8Rt-2Gi^kZVq?2N*3<cP~k|E+9-X1qTz{2HCJ_UGM7zTT5 zL|LwtmvKD8-)--jdMj^uK3w+F*qngYMW!%@m|x?}ZmH}hyQQ=7B=X%~I#R_+w;;-l zg*KCHoS87*(&;e`bpP6KM#*Ryt_^3h`2kfwLm2E6iB&vWHrScS0G0oU&CCRFszuL{ z`BXP><*<-Po7RDXivzNJXVzkl+mBjdTkQBbp!W)z{c?!<sxE|wp)u?+iG8F&o5py8 zi%^IFi>1NRury}v3dB`Zi-e4-P@?h<iWfi3DSK;**ei#Mhx+5TSH+@@k=I#998p_` ze<eDpy)>u?9^fNc<<~LAz${hEe^<`DU~c9{Y0I$_{C`0yH2_S^3yX!R0LQ>HO;Y;i z4d2hQ4sRIqhq8z`-mxP$b0;ZmKnz1B-H*)(hm>%t_=br*1DYNXB+HTo4ne^cGGxWO zg>`hIcC1T9N2CxubFJ_d3$U|f;Sp@6TglnzVgM#9K&gHxqLx}DU5<?b2Lt398|9gw zktRs?pJH|+#nyX+%}zW|Q@v%H+DMDfY|ao3gA^JrGqR0hlF~DJaH<S67I=*bTXp;e zcXM19Lht+HByxWZJ2Q3Jfepo&vJhsbryH6SXbCsR>oCDSd14XivM6Y))Oi6a+KMSN zB;|Rse5LW_ld?Xy?tWtrf!<_h`$}uN5>4$-Ki(Cu;347@81_x|ZN$z`f;L2Zrmaf3 zjB$BVk*pQJLjvi#7UMmdJiEw{p<=BFE1DesSjgEt@RCSGSBn6Mxu2IeOZ6WkT^t5| zz#D00WH$s?EIm3m7mMl85x*NUTRs#NZ4<2okP0T`hX-z}$N0wB>9|9?S4V0P^y({z zgKG3&SZyJZ&+uAsbWKLEwoH4`QFda4q)`_XaSRo%TjNA)76K|QUg*!wL!nFqp_%Lt zEQ+r?fc`Y_wXW=n`75}bb6;-2t)lf%s357fcC+E$ZXv3}lczpZ#r-;BkCiKD!23Cp zw}8-E84X0a*8qkZ5ZTlxB`HYe=WgACDO`q2UC^UNRd-{M$>k_)8G@@-{;AgS9kX#m zqop*s7JFJPVR*(QN){*uFn@R_ux-ti+|aR?qkJ$i1YqW}DFz}@rVovUP0KKoKCjw4 zESPI2G;y|a;rsdCeU}Md8WR2iS4IerX#IP`F@z&Z87dZBGy+^&PnY+;QM*g*HRVF6 zb?*u>X!tMWP?L}qVypv||GE*Ccxy@+WGpoo)JK9s7RJR0rrFhDHyzkc>4cFxrq=1{ zHA14tL@2l3t`E7cy!IVLtI<XvR(1N&g5j|jiWPWg<Kv>K!_J~SdNKMmD`O>gyt0k9 z$y#;E;jKnUZ110ihX>4`Nm={l|5~JIuh=^AT4i3ZWt?iPFcZa}qa+WMaP9}>>3d5H z`7ru$3HGTYM)2^abC`s>ghHv)U_3>-jbuCU7dYNwCg<+duKI`5a<tZY&cU<GunlrZ z+qZUoBo(#PtRpsXsv$v^s2A*$Cjq6VIWHL#Y<z!d%Rgt>VG)_;p_is;aqY}3a!uXE zBo2`A)n!cZHYYEWDqUz5c_R{PePGNrCl+UXi6ZM`Y;tH`8`NjUt(UjriLa`NKPSW9 zW4h;u75s2P|MZ<h(KLM6rgH#6Z-PA*Fa&fyRX0zBmv4qTRv@UdxJAef5hnVh+22tO zppj;+z&^dn8CP{Fv%=vSe7=uehM_-7{l5gx$ERAnRlr%aq|%XTlKUS5-w)bPktz|~ z>>iMLx{6G5R9yfGpL=<Cc&~|{wZ*&y!hVfBnydiTN7^NS^A~lwnQ$@9OrD=t-C1kP zqbXBD+BW}sUo^q@rJR#gW-dneN`*^wdb{5XoQnO!3q!KBQ-FlJ;&L<Sm|c60+z>F) z1L4wrwM&k=(o_#-C&?Z7Yd<VsD$q6E5Zwm`R~%*O?P^3xg7Qj{l*z(yc<pb&>`Kxp z#an-Nv?!~6xPPwOB^;<;HGNcgD!W0kX=k>gA!yw=cR&c);GD-G9*9%(CP*=|zf@&6 zj}Z4WTG3Vr^ON;V@JV*#E;JuqGb!8yz{MC!!DlCJpAAz>U{(7FS;+eukf$Q;6%Z!A zQ2gr0oljOi=0TBA5t)FPHixqka{G)|s)6qrQ^_mX;a!ACGhly@K4N|94E>Lhzedz< zG9Bhhtz+7~dH6%;iODZjB*grq4d*~It^k5wkco!d1DYONX`9NweDgC>bm>A-tWs1t z=v|z31h&v{9bgx=<{^HflGG@r6rQ9F{?qbB+E0xsdrFbn$r^=$g}2(8FrjjnhXqRi zBz`#At(rAoN8PE5fw%{BQw=6gAB^v(X4Uh!K@xN@>VQ2mpoh{QpJYMcd6j#PJ#ueK z)d?*2K0jJ};9E-h@bO4(6Ruxyk{525Sy0s9O3~#cF-u^_GO&iTw#5WH1_VsXPT>%q zX9x}iNL+>_XbC6TyJN%#i1#*$hHn2ddUr}_8hjPoNeS0>irRaP8YT$tX0&LY{P;^% zb!_SNhyfnu&h+%knpknz40?T>L09hvu1#3V3G~!o!3TdLv>En<mr!J{7!14PsKY6O zUS^f*0ztExt7}V=jISPII@twaCG|Sp?8->j5p?u(|K(`;Oj8x5cH{nAP6ax%D}#Ct zF(W(qa{Y^bYY$#bpkN|Ol9A7utl;n8$SEF&$63k-92wsj(%ymx?U=45P(iR2JLDe! z$lc%+t6f}?u6Sew%A%lpYY0Y>hiOf95>4sR@st_R9@b|&lV>}o(!VMa_&9vO5(zR} z6_sDJ`xd%uq4<0%GH-U}#8p)<!rY#()Bb(vtol=RKMv4sY{n4qath(2%ClNX@>6Z! zLo9m?rstB9<|_)bo!?^ymf%w7cVk&zQRk;~-hx&P;A)z2th{hZr=Oo|pn|AA9$ShP zkTrsr0>(Yc7@i4i9yiBU&l_c^Zi*-Y8QOmo{ZK5_0)|5*Cz(p_mFsS1$#LcyUY&ut zyuMfOWPRoO2E0%fVgrI3<BwVS2!>02#C`EZ{HUudojxs*$Ku-!*(WORANjMZD|u-t zVHdmdGNf{uQlzKLD04gU!N+;J3K4e&A0%KG-Ca+{fOo5OYP!JR+_+o%3bt=`P}Kjf zj(%5I{@qEj@{}uNX>{{A&yo&^)-zqsd6h!Q;utSj>|YZxX+~B*TsBVGw9uffHGcl# z#iXs9tH?jbo-=Mec5oZh2($+lAzld`kEbxC2hFqz$qe!H;y{9Valkks{{vy1E^s^8 z-92X)9F%k#4JfZOU6gz*dSj>_sO`n!j(woDiaH%Dz8H|14ey{lQcnO{U$!z21uvDf zP0d*#$xSihs*b_gc^swJwnu>-U?-e?1vFmM6KBh9p3j1WmOKilgcb?m-NYXn9nDRh z%d}e@6Fn4CyquNBwKPk8ypuQl0-hYL70_ioRQ)r#z-7Ok=GdEw8ogTmZA}faN@#~V z=`%~T@s(2ENQ<Of_J<q&_O|Ctgsw4WW~F;te)pV#1Jh9r-DYw(7fI63&jkDWiZj0N zQ({+&dGJ~K3j!_SQ62yw0QqkQcKpu3DaJ1><|j}g;_j4;3(UAWj7?psDTB-vV@L`c z`Cv?5qh*hz$i%sm;t~VBP@f=Q{`h@Y1|hO=fx*<LUZo2;)Z{j%y-YrHmlm$Mo88^q zFB>HV6cq{x+ZOEa<<h*L3VW#)W)j5jHEG|6Nlu44HSw*x@g*vDg((SZ&Ufpt+I86l zjY3m>Vb4vrM`DL_4)rj0R658QL>UCrgRZDXs6Wuy6UZu_w#3Vl6u9#wN*0?bO-;4) zYoQn9;e$9=@HhsE$$Snx6@U0O&l3>p9ELU5>|>f9{nAtJ1c#>%D|8NL0za|X0Q?ug zn><1n-k=J$f*EfySNu-<UUo3EzpbGKFZgScJiSLP*4RP=3LaeuRXu80Bos!9V>gX) z|L0fUW`Ajz8gsh^U=@`rEyGHLD4nVT{5uUl;QZLx$g=Q0=*;;9Kb@}Usgqt=`on%% zvX#_ZjdJh;PM#HhEmM@4rTY8d)e-@eo3WY3V{GJq(r^YC6Julf2pz}~)>5mKo<-@` zxxDi$+Wf72GNJE$_5J)w8Y=+D(1wTHNpf7BwnAx~HZZ~(iN<fW?q4+%^ED0%Q!_!O zHEqI!nQEp#{e#-RLYIoBTrG9yXIQ+hpG{TJXdQH(1obkgG0%8XfBmV)55Mh%Uc^Lm zVz0gIvn=78BMfI$#0URC?uC91m-}zwo=y2&;dw#*H;aw>|Il?gm3*@peqj@f;}aG8 zzbqcWB05(GTL}3Ni*>$P?2L#w(B9_|BD$Ssbnlkc^3CFtlwfYBfP~kmP_p1|2aD$M z4;_r<I~JZdN6_J}ba(Geah3=TkY}bTRW+{u8oAl*rH?Woe#keAiM%i+6j^Ep)9zsY zhsD(YVewj1`+rzWf(o1?WTx;x-5bbGcjb2~?(}lD`eLYz5xVwpP}Bz3>CHx8h0V#) zXq0C%>YB!m3ld7jOf~X5lM?oJM%45^xGZEc>dg8CmGlz^c7nQF28AGSF9^Ov(uQDY zG!*~Ayb+OMD~eMXc0n8cwZv&@TyMoq`dgF7@qK+~Abo#eD&Uos>3_%Jg6xXrKM43& zzTQ6$O8+L~kS1F>v&4kQ#>$L_Zo_iQRd4uQ8+RK1xLqKAf<`vpZ$T@$ZRXRf9?n`D zQ$*oV4jP!QfHqt2Q&<OvyBLB@{R6?2!@XD)SZJR<Ht#noUCH>-=0dM2h{DoN$_66G zN*uilb#r?qGjinTtPoC412TKxkqnZgFo43$$Ze3#R7~d|9m<0kp1M@K@%8@FdGp^m ze24a*IE=%&{T+uRlKn#ih>Zh=>uT}AUubnmydzx-G{>Gi1q^ll4KxU2VnZR4`K%ce zi!@<{0!7iY1AWFQXd@o?ahhBsw^G5b7la$Se$<>hxrK^%BlqIf+4U$_mDNB5Xf|B% zN3Tr2pU$!2hhq0#HgP|s<FGj^375AwMo*q;SS4$wy1M|?+Y3^5iLa-uyuC#rNRQp9 zT4@r0b4=HeRVVUvp=MXEAGzUh@1wA@V0_r2AzZIf%nI8<jj~1V)yG0D9K$itEfGql z^yiq-ttMWQG6(AVLwMi;wO4WG5+ynPvhz@#B_|t6RyhCJnny@ZNZV%?vJm8DShwdS zVDFqyGHE)pLyfAEE`70^?()lU<aewUgCR&?G*TmqhjSeePmE0#WNu``EKM7qiONST z$x>Qc#=pME8ZpexQ8ozcvI5=Pr#3iY4zisGb1~z$>r>a&B<cir$kM*@gj>F76ijgm z{>s_D3XD#CRbX?^aQsz!>fj4*962!>)KBkZ5cL(H27qQ*_x4-~LB9PCW~wI}w!Njh zp?J;)002k--`$4C|F#!qxCrk4WT2Hwn#fx?h@0@Rircix^*qNBi1z6H@eN}h;3Y5- zROtV1G(i7fjfTVjX*7HZMuQpx7O%0Z0RSiux2$HR35fwdv}~FAMR2t08qz(HBo+R? z=%E4ud&OcW!nTMDHL$4xahTxG#IFPVwk3gm=CP)+gJrQwFmbZu$?m6rqPKa3LG%f$ z!K5w8rLD4PG*L!H4W@JS=7mGLG8M;5OfD#msRD2*m+%&9t=}FS2#Ib6%G2i()I_s> zT2lKwdKkfCelPiO`51~RdXXp_sdSEv>al;K3`o?6zei5N7?c(&H9};k^o8~aT$ugA z(`S%0DuvC$p_T+#i6sykK<xo;)br#Em!JXQ`cy_yPZj{G4cwfsN#c#)eFou<nlr9i zVkMStJmKL};Pt>Bq>l_Wk;F9a0!<m$S#l22S}<0~oSYvt8a2SnroKV)#RV4q2$I;g zes>-HGEErLPrr4ByGRs^8=ZipU6<cInT-pUyIEWC?^a`q$BNs%hTtje>>}apJ@0&8 z{A1`bgx3Jj*rS~mwqSR{LRp(HVE0W66G{c9eJKI?!Q_5_`LaBj4I@Z6+-B8pHi*8Z zalu)OV?=)Ta<g*KgNF`K|Ipv9ESnu&E??%7Z!%Y3njMp0?eB^a2JG$25E(5AkAzR~ zdIF=f002z#w_#u9|GeKaI$Cu^t@L0tg-Txlb|jI&T(E@w_XBcR<Vl~AK=eiH9`L?E z(R%akGpCy~CSt>b^!Ya>I^sJXZFx%2Rs0}~Vt&+%wtm<hfr7yh;i#y)Dlnf@(d@EX zay^4T3SX1-4?JW_%-AH(wC+JuJe(~!SZ~C!5dwQmGC&9}-J!r7?8L_TDRxT27FdWX zIPpn>Vu^G}@hVZ|v%`kF6BTi|+*u-8Ju(~Sonr<-Zm=P2T7#QwU~9rsLoIUR6-RpG z8z$;*ILG#j6Q}}(*gqumJ9}(y`=TJ;NPTyTkgo!=bBCGCIC1yGCo&9lxynYVblO`v zWn<4XP`IBog4ji`=37j*&0)8sxCM2HD5v93k#Y~|E~1|)hNINVTHB1tby00wA~AVw zeRjtZU)Adg$iC?`tS0m@f20zsp$^lbWnOpxAwhRikLD7XqO1~U-x6hS+i&9V<IRRn zqVqwHhdt_vEz%l0Z8(3c>PpgjVUOm|GVyyx!*lTR!P}`-T^w{C`)-voIQ)z1Ro8`C z_mP3u2=0YXYK9cQB>a2(vhI=Y4r(!g>Hqle)+)D9_fS1@n?$u#@8`6j!!pOT_A(Ku zK%mf@>fY~+FHvvFFClNo2A=|RNRJu|=?Cqw7h01Z-HZk-6a)$&W`n7mN=^@LbM9Fc zLTj5LOli5Bm);wsHV)Df002AnpTUrp+~@n1BQyU!7#Awbv66!m4F=k)5ver4Cj{mK zC2k1Z#?Q+9Sx;pYkh-2D-(^1oxzAvxWD?U&Om0htYXZQ`$!6XdX1a9miz1NvNA(a{ zSC?@<xC-3#jS65qF|0#dIQRA?4NK>YGSa-!*wlC$$~QM0*B-@Dm3=spvLIqcg3U&A z5{l&7!ebQp->nl1K`C*COzoU(NY<)}>qEk04a(Frc)4m}v*hjHMP?An9C2aoM{(f^ z1*Rc_S~M6m&_h*-%_EX9OQ83VuGNZqaGr1oijXV$hTW<m@=83(E_okEAB*WT4Ge%# zI`{=^tsj1NeO)AKFg0OImsVGr+*esnG!j0DY9P-kPGvSsmJg!kq#*f!m6y&&uElj1 zFzSPEl?q6H$)!p<fY**cK@P&<yXMU7t9g=D%ntC!A+!|KDt(#5EeBmgi~s!mKtzG< zsN%25KS1O8&4V}0)3yiI4Is~k4wC&Fb`5d2EgVtn<jj7ltfP}rd&)k=mv!dn4T-qq z<AHaFYN)s>mz3#&f;v<Ut_AnAu(mZ_B$vPr^)Q-0!!xS(tJ`*a$<}YxP9*&{bqFEr zUGl{-ttIsO3kx^f@c#UyY>c`z0-THRK#XLe0H}Qgk3<ii=YOjbm~YmTJ6889LpC7V z+?pr@=1?;OqV1|auRZ45Q&nS2#WwrUT8oNN2gJC$^IfXRJ)+aKp4WaDMtx^uqZxgS zKgVx4rv?K6;J&RvQz|pxx4qF^vYRx2`-_|k`AZ^UFgGEDTXa?x2#Ec}0Vs15*u!MD z3R@)Z70nlEKVn??uKU*QixfltsmI=Mr!?0qi=XG%e%qb7>h`*5#S-{I9JslvC+YZU zAG!xijH<lmy5?e5ONY1BgrH&l4Hd!gKx|!Wi&&lxEA}O+B}4>LQU85=;*9!EBK9QO zf@&os{7VNVg5;SwJREPfR;Nrctws`2_C=zpr<_0Fk7XP_mPSyE?6J{o2jM12gva0l zoY}uNkusNwEdTf1jH;FJ;ynHO&)f*~JqtteNk55Y`Nqdr|JG+6B3VZ4Vi0n)dIQ-F zp&6Tnn+{t7UimhNY%ySJB)w<Vfn3v=D{>$Cv*fg<fCs&*NN3^?kQ+|@mny*tdIH)u zWAa^Cy4XleTqj@cv9MQDW&%A@0Z#QleT`pxM)b6Qm5OCtyZ#Z=n$?GQKwv3tDm-Y@ zKG=zgeE`vFA(!KMAt1t-?1@bJ{@&>Dud%DENo$DRS|AIH&kGWf<u6-ob#XIgw@TKA z2P*1FH~2q<<h<6@bpBcbJB-8X|IAI#yYptJg%+TBH;VD1a;XMnsV2QA^wjMK-7x&S zvWEWO#pj-sx=+67Ad)ItCMqWjweo`)k_wi4nLG4v&#u_&rDWdt<15AD9gBP!dBre^ zE!V80cC6EOX~I?G`|*TAZc6~znd6J?8ED0fi_hnmwzo=JcK?~;0iB)qTDubnk`@yi zcfvmLhHaUwh&upK8Th^L!EG6bGotR;iny6=AlX2wnWoeLnT;IpoKOXhtr?r>J&JO3 z>dZI?ra5^zeHqQw+1ScixzUJgpemJ6!8b`<zpq3gsE-%o0AnW>A4DZMh!}84<PSd3 za~(=maZ9ZH4*gSNpz95IS?lTXXx{<5PW2|j{qg+z_V-ig!+EBiQhH&yIqPZLZQ674 z?duJn<~`cd-Fp5_b9U;n&~(rDJiFcZC{Sn0{tDkve%DjRC0k|XbaF#^;P&%__{jUS zN&C{xx0dO!70*^h7Snp6Mu)?A4MD;1R=?YjHMR*J*IixhEF)ywf{FspSBJFv2URpT zs#Gv7&L2y$(^YP@-A%FGpf#=g9T$$>PWwL<jhHdJyVT&v9H;u@q%+vs;=nP{s1Toi zdLZNpxKmS~aPPP)PG@iuhK9!oL!3N<K!0*Ziy~ttsp%Yr^0~`K8C!A2rp-xTuEJ8; zsrCeAGnWLrNuy4N!Du}27fp$8G!&P+sui|O>t@uJ*2=6oiWS}}Zt^gxB4RGr%W5(E zCIb<bofXmpgMWd=x|Iy^FG@(<oW8i#MQlitwjiR+!ebg*u=QU&Q*Asup1uyH{l<lC ztsC?_R5`aNW}qc)xDMI<Xe|h=!3(&J3_EDId9gfXb=JMmMg@H&oD@R?P>4ju!V_l8 z*+bXT)5ULFF%L{FV0wNjjf5rOk<bQE+GzW(hJYiEO-KbTdQK+kY!GY^T+h(C(->xs z@;S?Vb2`LPyG)d|x3s?oO`Js?R9D3a47-8u617}IPtuA9d%_B@s8#)O030xvO5KZV z#HQ!eesl(f?LRmMS!b)u>*OMMeq%^`A3N#7zR)#GJU3phB3uLQgDr#Ts$A2ay>~RL z|IA_Y<}TQBE^RqFOrhL7wi&qw^3f^=6AV+GCK^)NVRuwiC6(VY_xgU4u|nq*i=Z&n z|4Oow)DKr`;wth(*IlhaP-tm;W^Pk%wf8xUvR1zf+4?71fn2T#Wc?juE-Hdy+#UVE zyk&=P84^syW#bSpAHlNV5asf00;NK{!b;ENY!w?qM^<ZvMeqJD#R-Pnh?Qo_zrR*Q z6RP_26yn+qzx;85wojA3_J{U@4Za!{SilEflK=$eq$jo67(HjVDHZ`GKUn}`Nu+j7 z(MCPgP*VQyOOjxw8X}S(!ak6E^@$d>!|1#~nBmCRe_*fMk<)If!{MVz0LEFK>n_{^ zyu~Y6e|2?l!Mw5=S~CTfDV9t&OV%g|sG9vJL$|E5jOL8}CDJPwNhhkk(6PA6+5J#9 z8foG<bfQg@lSRcN{*kh>G^IeZhP{GKYt7$IvaTX5Pla%=AQm#@D0X#>!j=a-@hn6K zpt`^pwt*6-`nlD{XK)@5T`?*p?%h(q!ngWkBvQnp0`s4<Pk?a{o{owEp_Pyj(|YQL zAA<1%T-zZ84?0-!P)I^}LgNU8#-Z$k2H*+Ef+9uo$Y$f@a(?srDCKPiC;$5KQKD<S zB1b-wuc}4=K}8x0gIp=vHTgt;<=zqJ{hg+A=7Ladu;dqOLT&>!S#X8rGR?D84)il$ zqgXn(Y2-lb)Maes>~plDKVaW1iPweUzRj~j9QxDc4pk^8@KM1QYb9?x1|F8h*(U;N zbe$q}9nsN43Js=1zuqFk#1MGmR^SQ%6xG?P(^D7jJ$L8U;nD*PX+KF!K+)ED_Tw?? zp>t6iM$S!QxanJv^A7kI5!i)bwj-+sL;aKy3{ROZLPB7{Foj@(Zo3?u1*|6|C~94e z1#kf~og~!m7<mhI<}SaYJdwBzi!vaJI1Ug*aHTML!lKljURqAJmP3rYH<>e?qf@bx z$L1IC_@iXXE!gnlqbho$4{OWkF9nNZE}$K@WiAFYHB+?doHaa#C}=WMeoEd*Y|MU? zY{uXZ&2?k^g;~9*^oybUr)=up7ORfe7nHB3;j?HyxUkpet60|*18I+IWMAA4{Su1L z`4ZM8{jHHy!Z-+tm|O5Pp?)CUB3x-YVQIc+T)KT*dEe%Ak|a7nFwp+>aNif(5O`d5 zNVRnCTOZ$U0x@BQb*wkA*5xs9cM8u={qy_Igdo-MV$DKZ;RQr6qXx!_ilw|P)rTp~ zv$;UYJH4?OPpZu2SjeT?Ys6-B_ad_mU79>=fY=rTS0_ubsqD^pr`7N{wn`fY*9d<> zBGKFV>kpvBLH}44y@b&58zaFLnnFv-bu+rY1_ai8!|hrfJ!|!)-Kof*@GhTloDH^m zrXK65ITw`)IadQ`Gfo02?*)}^I+R&>rR}aQun%$P$~E@J9j9-HbEsZXfY1!O3I~(( zOpLWo_?ANcI1{WXelDjEN))7S?8QF+NC6Klip!t@r74<N1Shfb{<zeFnu&C}aU+(| zZP3X!va6^v6)l#D_Z%{Pr~vp$6sRMA8NRFF51+9i!nYrk+Z+Vc%mbThYA26@eYaa6 z`fEHwYA$l#(CDnAv|uS$;Z28HY*1Pi1s;0z;Tk{W3bT6Sbm>#-CWHHL3)Iy~=*W<> z24*ERMj<X?6bMtn<3yB0<=w-B+N{y`kFoeuAWIU}V!<_iegWefatliGE3m!R{j9<w z!?fwG9Nrm)qJzK(aPFXOr2H)5bSWjmRd9UfjaDKQ*kEY4gPq*}c_`JgxxCH4zt>CN zy<vz=v56J{GzRJpWUeQz!b`4j5^pg~g~P-`-E4j!-OWDr<a1`JPa(RiOfqG^F?t?y zzFWD%n6RwcY}wU0`UI^a8yYQ{)O6Jbm$-_lzLxw5jm>5ANg=pVRk*jJB2a^YfD~nU ztwiJ?$O$6AZs0nJJ4xxV8ie62pen@3!LrGl1sK1rHYC}BLuu9Iw~kqou>cy;T5gTi zeqk_7s?(%ez6dUa27=l`+l;)_TG~A0YcI_wa>?N2auKRfH~OzfTX(BNwVN^q`q9fd zn1nDO24NeP*9p5U82f{4^;!jMZM1>vM8;*?l5)A}%-z=`Erjya9alAZRmsad6KRg+ zs{O!`?vaR-mc0PBUi{po($prd@|=`rqYi&s@P4|_833I<0LYc2SwGNIVxCLQ1Kp77 z)BO#}K#^6T$+b=_=Ww6ZCmC!^P`66YqJRhsiuFsZIHtiz3>+sr(zA6O`kkiQ;#1)f zbD7YDnTBo6c=GE~Wu@`>tOEiA3|=rV(K#|$@#aJDv(#B*Ds?cX62;etU^QHQA;X0| zz+&^B(Yunlg(lsdh=(&{c#L|?W4y@M&c55g0-j4#WK`lT@Upe~AF@BpA;)No8YYFm z+(Z1#Z|X3NIz)yn+J|_>Q2{5V(}@wYb%CGhXEzxbJ3=T}q9ZOfOo_^NWj^roO?6gj z*FOEpy%crK=Vh`|c_VfLeVYa=Ley2MT10spR>k5Ih(aZjhX^a4Bu2P%k+cmWAGf~) zZjEaS#Tp*#Fg}DbRJ2s!<~HVL+zv4cIPillnLNHKY3UG^U%gNs$I6Tw$_5OVxvG`- z(LaCW8p$iC*_@~I$Wrl!hrfwiwsY*KC6}Tk0<RHwamw6bRgz)w^0wF!0WW0-xPMxL zF3mSa2k5IU^J16kO69flZ&DmHWFmHZqWTc8k^Alh@1VT!jX*9_luXF3?Nw^w@@iQF zkG0Q(NM66UsZ1JsXhTZscgl6seJO)%(TnMvUOYaW8BWl6Y2^MA*E6;Zn&H$J-<V%# z4Rt)j8(H@?C<ihOb@)l443M`{Q5z_0x%kfk_8dmc&OV<$cSJc3tC5EPOj>XnwaUm@ z8Y($N$_#>eTBgO|Lt^A1cu&Lp6BJRWoFfkI{d$P_dJ9O~a0BY81On=oLGC5gfq=gQ z)Qrk>7ltTldmLqo9rX+MGajA|<Svq@g#j4Y(d6@+i^p1f89Y}ZpC^1VE^~}$A`WPN z9cKOYnimw?0Qrv-5?gCGqUNMY=0mN>s?rN^?a!YAAv)^R>iJ(8E-GZZ(m(3MWDn^I zw{(m=Q8SH{@W8adkzA=z=!$7u-A;rx5zuK!%dJ>{Db<8h)+?QcG;C%<_uJt^T0K$> znCKC7iuP#4UM`X&H?uNAohgEkI-k-N<9fB9(#?I&D@IHPXCKP1vC46?lLegW9CTlE zsbNWhda%-anA{hiTxb$d7kf|5J1In^k*13ECW6j&UexjQLfhW4zKE@3(aXOG(#XsZ z9<vDL7%OZjBJ{7DcRgc*uMp`(CLc3kQ0NOC*_)W<TOo_4rw<<^iAar807qzDqaJ@2 zQi+U7is{nnd&>hJ2-S_%CWype`;Urnt%6!mrS2o=#$wh^G(N){2=kHx&qg-ADVE<W z3nX^2li{oN-C+s_n<VEPkEEIm(sEH!R4~hsGDt(!2&eQ24%Dx`c#Be>o{S+oQbBOl zu}YiqK`zEXw2jvnbPNr@a;B-S1Nihdn{HM*qw%9(GRt6!zyP_9;UR96!jXK^cbe3D z2D109+IvQyF~42ecz*-5oE#<A?TOPk-LSY!XNDAIGX#5kKt54ZmbmM_2FV?US2&xa zIokVS3qpF(LXkxVZim9AkhI3wN;x^og>Dh=r=^xWSrjdS*W(NV?;)2>Q+T%~5>HHx z*diNISDS{@7>Xb%UX8d~OqvHXeDn|fMij_L_35B<j}lss#30K2Z*(yVQZiDxxi(U& zrLntpm1JxsGuG&b0aasGjK74_*)jEmV%fuQnT+a+wonrhCQLA?(~h@og~UM6??;u7 zGG!H(AxD)OY3#_~en&a*1r96rH3!_d!muszX{X4fo9#sCRp4kL%A_v*v5zcTOKIc| z^&^S1!0x|~6J<t-t*!f*yF;x$`Zkq<X0iSrN-7*uotg()?ROjCoyopP;6{(J>%PpV zy?_pXZ{>7fo>Fe|&wI1`&@^CsG(rQ%nMqMSboKd0HBF$bn!J#~8dpzKIAsplK5|Bh z2<S<I{DA>mWNfd`;nxDWBxR|yXH~<s<vu4R9yU8HVb@8)?^ITWEq2F56w9;y!mD>r z$l*^|e-(~@XuN5Z`}VT%sgOgxFLs&MkD)K&6ES`@6V~MOIt)De!VUXZ9?BLR^GfRC zZ>)XpGw8UU3g47ss@=l>O!@a~Oani86u5Lewh_j-I~K`sh;4;9nZ#&kED-Y9?%>#v z6a${%Wy5_#cH|vy`~;K}JI3aRROIz~J*M*N2o}S_s{fOwc|4G)AGC9K2JX8LiS#ac z3Z4p6*mI)z>!TPZ-d0xS(m?9Sy=eU`vHcmjQC*s645i={DVQuj!uXKiDJ;U+qh|Ml z%XBle5Jgh<oy)=}Y!AmgXFio*ofi(PwcA(7yNB|oBdK0+Te~_ey$1`$#3iQ87Sm+j z{il_A;g&?cK#gx8)yss~OxHbRo)=&aXirYhd|Ohvb&2ZTGV!o>Nn4d&;Pei|G+kMD z#oS<BSml=Els0#td~&5L3Rb2ewuqqSi#{K+Wq8Bzw``mS(5oivoowPpy%d6oC0}<g z4n%7nWLY)W@WAIBf$je}vCVPUNqwq#)1pW1o(2XL<VrZO6~1$8iCH?e>)=J#)d>S~ z3)EZmjBmI=LP;Kz5t0g+e6+0d<>!?p+H<;BTYt*8D(XT6R0hD=*}_}!9MY19{wUka zkROg1oAanpv&|oZ$Gt;zOzk|0OYKa<Oj+n$T^gDD^QYaQGr&86_<I#-W5q$au)yzi zhv3az0Ys8FP%98xx{Q#PelW4Q6V}p|Thl`O><FA?PVxD`2N#5~h1J0MH#n6#0@h1$ zSqBNU==EoD($k<wV@hRz6y4?WPM0d@FkhSBspSZoJhthfzJPEDKdCfQzp$>aqju8J zh_=owEG?a%mlsIf%*>;q_{={pL7*~yea}yjDFWPD-idmVuAg7<so8-)kKTzjpU%Sd zE%)!Ezd*Txk;iz<EH4I>B}Vm!vg|j<CB=~yX(_$KI8419Z=6L;YUpot+eq~oM7RxP zLpSHJF?fU2zv|bUA_wA9tXRZ)>{Vcgwmv^~oKS<4jK^Sm_`OopB}#rcof^Y|(h#ll zOjDiZ#j>EtyRsB4d7#?*(jjS|5k<Ez?|emy5x45Yk<0@gRTPVi)gxJ#=yoZpq%szB zoudc2K2ogUcYxuL3ac1pP-K5a5OB-z;M)B1q?WMT>Y*U_%%1Wp!#Jtq^dWE^Su%jg zFh#hGa>aln)y-!?NJ>xGz-+o-D5Od#UOm$p%<kJ9a}+P=naaNV^WVRwkG3@Z5~{`^ zx8eUF<{&QSyI*TQU2SSFsd5yzSgU{j2_Jnl)p&fnF`ML<5x9=ApSVOCNt5sZFJG9) zdoNTSdkQK;^Cvjw9m}~Orno^YbBgDCkgn=$d8Tdll;9Eq73P{0q^FSEztIny>9jb| zm4wpQiTO;yWD9Y=Kcrzp@DqJFfnD}_mh|by^B(g+0^v04_1-2sJJyG6!B1TP8JIrl zp$fupn(&JyoyCWfPNZ)&4xC93Ct9A5H3MyNqj=>6-V*44@B@E848)r6`$1&C@T`Z& z)HAytoFmuq-p2|k;P~vGe!1OCYUbvT^F$_fBMk7!uYDU=Y>AAw6B9D)$okRE(5DfK z&I85P?2FF16ikSW@iPx6bcDurgvYnu(R5u{C<O--;zIN^BkS7dB3pvCMARJ1YVMR% z+r}krdTdNpM$jn`x!dO9Hw@4#3||<!Dp4L_wxh=#Ou8TfJGb3D7i=zBJ$??9olQl^ zTQpzXN}cXql80E5mAm2Cc7n^U{EJV+SWNpun-jb+Vo?>;<R*5Uo$8#-ji;sW2f*Ct zQ?@GQH|bGlU!F<Zfr4Ht(wUD_;h7lE>-O$=OPOU1wWDnJ_on#k=<SHe+DK8qBuh;I z0^NLjE=nj2)_V6vGe^bT3l*vf6_FnuKDiV#%U@{w!LAG(saG$ky0l+A8KYqO*j;Ih zp-K*Wh<ExLd>tG4?=eeaUA0k`G`iLHG&;PDm<BTn;(i4WjrZSK(=YQX{?;b$!KNVm zglGyD*yV)dc|!)>hWPlX?5A>1txmL$H`NwiJ=039bpO!tVLCTc=EZ2{W16vb1l;3` zX4drC+lXZTipYC%u(CT(F<!(OKB8kQF|5zkNpCv$C|8^_Trkwu+4J{Cd^M?(>g9)f zr*DB+YLS3B@_;rguaMRBi_CvzkNAiMh4LCK9vThPs!Z@QO4B)?K_$HYu>8ErMg#j3 zb1*oUxfFT8*Mu}zojQQ{BzK3qz{1QbOqFEsB-V&q@BG-}*J=YP+}^-~iq;Kza*t3% ztf)(h78cx;BWjiAGhnEuOT2BjjrNvbtUojwQjf@c+ll^%eE4<ts2lxHo^8gx<#5rq zS_|%oO)v0KSfy*yz?NKO)=_*-jK<aACpF!7EIb=p1&MCxoT2AN+_1q|n<>L(JCRZO ZdXx2_Yx9bLh)bVjKP~z~Tr&G2`(LJ7o%{d* diff --git a/R/airGR.rdx b/R/airGR.rdx deleted file mode 100644 index cde25a5c4ef6627a5f4cdee1bd62ad9250dd06b9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 645 zcmV;00($))iwFP!0000027Q!GYZE~j$7ho?Hc4apq6G`$!Gfp|v`v)OQyN2jA={Xg zq9AOi$uwQu?5?w$R`F0R9z-l2ir^clU%;E-MXcYzyNF)BcoIDb>a&~OeP)~5z~q_V z|G)dpGqW>uIY|hKkSMfB)aj1EU(}0-pru`(M6wW%3;b~#|Au%JIXVvU3vvu{X5Jx> zY!MRwiahp`kp9=mhh@m|4f)7vLJ|?=6H|nwW{}U^B4qypa`h9$N642<Li+9^&;J1a zfPD20)HsE_@E!O7GTQ^;EpqEU#D~bsP;Wektgpj-){s{v;M>S+cYyCB-%CL~>&P1$ zVcyIDKR|x`45HvaIY@}Kh5Yn01fl-tKOqS9y*LJ;jQr|4tluw~v$Mt$iID`vKApCi z1)V{6GjzpFR#D_arBtsLiX}zKdh$My>ys5`FB?s3jxK5py@9Mr8`o%y$&k;}Qbnq% zi=5i3p?lJxASvf&3bLmUiMnChYTGl0i=0uLx%RB-*jA9rb<XQ%$F_=GwS!cGUNM?X z3%^k7=;1_TXQ@pKnyr>@*qoY%)>B=g#JRzRG17scTr8J7ac@YR=zUbK@9=1?5~%5F zsYzAsrZU@Us{V@gL%rfGhJ99wtW9O6w*2KD?RCnv+=boT{I2dP-%SUukWdu!JBh*T z19P0}){;@BociB&RMdK=G8A%!LAM+E{~5vHL#Affu%b3@2SWaMw_glThXl8zG>+{4 zRt0wYo5F2)rK>roN&4#@pqMvkoarmm(<ehT5u(Wu<+?SIq<b>m7Rnp-H{uHAs&nxC fy_@80iE*YkP-z%#lQYX=O(*F;hSpvz{RIF3R8vcL diff --git a/R/plot_OutputsModel.R b/R/plot_OutputsModel.R new file mode 100644 index 00000000..1ef2b869 --- /dev/null +++ b/R/plot_OutputsModel.R @@ -0,0 +1,331 @@ +#***************************************************************************************************************** +#' Function which creates a screen plot giving an overview of the model outputs +#' +#' Dashboard of results including various graphs (depending on the model): +#' (1) time series of total precipitation and simulated flows (and observed flows if provided) +#' (2) interannual median monthly simulated flow (and observed flows if provided) +#' (3) correlation plot between simulated and observed flows (if observed flows provided) +#' (4) cumulative frequency plot for simulated flows (and observed flows if provided) +#***************************************************************************************************************** +#' @title Default preview of model outputs +#' @author Laurent Coron (June 2014) +## @example tests/example_plot_OutputsModel.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param OutputsModel [object of class \emph{OutputsModel}] list of model outputs (which must at least include DatesR, Precip and Qsim) [POSIXlt, mm, mm] +#' @param Qobs (optional) [numeric] time series of observed flow (for the same time-steps than simulated) [mm] +#' @param IndPeriod_Plot (optional) [numeric] indices of the time-steps to be plotted (among the OutputsModel series) +#' @param BasinArea (optional) [numeric] basin area [km2], used to plot flow axes in m3/s +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return screen plot window +#*****************************************************************************************************************' +plot_OutputsModel <- function(OutputsModel,Qobs=NULL,IndPeriod_Plot=NULL,BasinArea=NULL,quiet=FALSE){ + + + if(!inherits(OutputsModel,"GR") & !inherits(OutputsModel,"CemaNeige")){ stop(paste("OutputsModel not in the correct format for default plotting \n",sep="")); return(NULL); } + + BOOL_Dates <- FALSE; + if("DatesR" %in% names(OutputsModel)){ BOOL_Dates <- TRUE; } + BOOL_Pobs <- FALSE; + if("Precip" %in% names(OutputsModel)){ BOOL_Pobs <- TRUE; } + BOOL_Qsim <- FALSE; + if("Qsim" %in% names(OutputsModel)){ BOOL_Qsim <- TRUE; } + BOOL_Qobs <- FALSE; + if(BOOL_Qsim & length(Qobs)==length(OutputsModel$Qsim)){ if(sum(is.na(Qobs))!=length(Qobs)){ BOOL_Qobs <- TRUE; } } + BOOL_Snow <- FALSE; + if("CemaNeigeLayers" %in% names(OutputsModel)){ if("SnowPack" %in% names(OutputsModel$CemaNeigeLayers[[1]])){ BOOL_Snow <- TRUE; } } + BOOL_Psol <- FALSE; + if("CemaNeigeLayers" %in% names(OutputsModel)){ if("Psol" %in% names(OutputsModel$CemaNeigeLayers[[1]])){ BOOL_Psol <- TRUE; } } + + if(!BOOL_Dates){ + stop(paste("OutputsModel must contain at least DatesR to allow plotting \n",sep="")); return(NULL); } + if(inherits(OutputsModel,"GR") & !BOOL_Qsim){ + stop(paste("OutputsModel must contain at least Qsim to allow plotting \n",sep="")); return(NULL); } + + if(BOOL_Dates){ + MyRollMean1 <- function(x,n){ + return(filter(x,rep(1/n,n),sides=2)); } + MyRollMean2 <- function(x,n){ + return(filter(c(tail(x,n%/%2),x,x[1:(n%/%2)]),rep(1/n,n),sides=2)[(n%/%2+1):(length(x)+n%/%2)]); } + BOOL_TS <- FALSE; + TimeStep <- difftime(tail(OutputsModel$DatesR,1),tail(OutputsModel$DatesR,2),units="secs")[[1]]; + if(inherits(OutputsModel,"hourly" ) & TimeStep == 60*60){ BOOL_TS <- TRUE; plotunit <- "[mm/h]"; } + if(inherits(OutputsModel,"daily" ) & TimeStep == 24*60*60){ BOOL_TS <- TRUE; plotunit <- "[mm/d]"; } + if(inherits(OutputsModel,"monthly") & TimeStep %in% c(28,29,30,31)*24*60*60){ BOOL_TS <- TRUE; plotunit <- "[mm/month]"; } + if(inherits(OutputsModel,"yearly" ) & TimeStep %in% c(365,366)*24*60*60){ BOOL_TS <- TRUE; plotunit <- "[mm/y]"; } + if(!BOOL_TS){ stop(paste("the time step of the model inputs could not be found \n",sep="")); return(NULL); } + } + if(length(IndPeriod_Plot)==0){ IndPeriod_Plot <- 1:length(OutputsModel$DatesR); } + if(inherits(OutputsModel,"CemaNeige")){ NLayers <- length(OutputsModel$CemaNeigeLayers); } + BOOL_QobsZero <- FALSE; if(BOOL_Qobs){ SelectQobsNotZero <- (round(Qobs[IndPeriod_Plot] ,4)!=0); BOOL_QobsZero <- sum(!SelectQobsNotZero,na.rm=TRUE)>0; } + BOOL_QsimZero <- FALSE; if(BOOL_Qsim){ SelectQsimNotZero <- (round(OutputsModel$Qsim[IndPeriod_Plot],4)!=0); BOOL_QsimZero <- sum(!SelectQsimNotZero,na.rm=TRUE)>0; } + if(BOOL_QobsZero & !quiet){ warning("\t zeroes detected in Qobs -> some plots in the log space will not be created using all time-steps \n"); } + if(BOOL_QsimZero & !quiet){ warning("\t zeroes detected in Qsim -> some plots in the log space will not be created using all time-steps \n"); } + BOOL_FilterZero <- TRUE; + + ##Options + BLOC <- TRUE; if(BLOC){ + cexaxis <- 1.0; cexlab <- 0.9; cexleg=1.0; lwd=1.8; lineX=2.6; lineY=2.6; bgleg <- rgb(1,1,1,alpha=0.7); bgleg <- NA; + + matlayout <- NULL; iPlot <- 0; + if(BOOL_Pobs){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+1,iPlot+1)); iPlot <- iPlot+1; } + if(BOOL_Snow){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+1,iPlot+1),c(iPlot+1,iPlot+1,iPlot+1)); iPlot <- iPlot+1; } + if(BOOL_Qsim | BOOL_Qobs){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+1,iPlot+1),c(iPlot+1,iPlot+1,iPlot+1)); iPlot <- iPlot+1; } + if(BOOL_TS & BOOL_Qsim){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+2,iPlot+3),c(iPlot+1,iPlot+2,iPlot+3)); iPlot <- iPlot+3; } + iPlotMax <- iPlot; + + isRStudio <- Sys.getenv("RSTUDIO") == "1"; + if(!isRStudio){ + if(iPlotMax==1){ dev.new(width=10,height=02); } + if(iPlotMax==2){ dev.new(width=10,height=05); } + if(iPlotMax==3){ dev.new(width=10,height=05); } + if(iPlotMax==5){ dev.new(width=10,height=07); } + if(iPlotMax==6){ dev.new(width=10,height=10); } + } + layout(matlayout); + + Xaxis <- 1:length(IndPeriod_Plot); + if(BOOL_Dates){ + Seq1 <- which(OutputsModel$DatesR[IndPeriod_Plot]$mday==1 & OutputsModel$DatesR[IndPeriod_Plot]$mon %in% c(0,3,6,9)); + Seq2 <- which(OutputsModel$DatesR[IndPeriod_Plot]$mday==1 & OutputsModel$DatesR[IndPeriod_Plot]$mon==0); + } + + if(!is.null(BasinArea)){ + Factor_MMH_M3S <- BasinArea/( 60*60/1000); + Factor_MMD_M3S <- BasinArea/( 24*60*60/1000); + Factor_MMM_M3S <- BasinArea/(365.25/12*24*60*60/1000); + Factor_MMY_M3S <- BasinArea/( 365.25*24*60*60/1000); + if(inherits(OutputsModel,"hourly" )){ Factor_UNIT_M3S <- Factor_MMH_M3S; } + if(inherits(OutputsModel,"daily" )){ Factor_UNIT_M3S <- Factor_MMD_M3S; } + if(inherits(OutputsModel,"monthly")){ Factor_UNIT_M3S <- Factor_MMM_M3S; } + if(inherits(OutputsModel,"yearly" )){ Factor_UNIT_M3S <- Factor_MMY_M3S; } + } + } + + kPlot <- 0; + + ##Precip + if(BOOL_Pobs){ + kPlot <- kPlot+1; mar <- c(3,5,1,5); + par(new=FALSE,mar=mar,las=0) + ylim1 <- range(OutputsModel$Precip[IndPeriod_Plot],na.rm=TRUE); ylim2 <- ylim1; ylim2 <- rev(ylim2); + plot(Xaxis,OutputsModel$Precip[IndPeriod_Plot],type="h",ylim=ylim2,col="royalblue",lwd=0.7,xaxt="n",yaxt="n",xlab="",ylab="",xaxs="i",yaxs="i"); + axis(side=2,at=pretty(ylim1),labels=pretty(ylim1),cex.axis=cexaxis) + par(las=0); mtext(side=2,paste("precip. ",plotunit,sep=""),line=lineY,cex=cexlab,adj=1); par(las=0); + if(BOOL_Psol){ + par(new=TRUE); + for(iLayer in 1:NLayers){ + if(iLayer==1){ PsolLayerMean <- OutputsModel$CemaNeigeLayers[[iLayer]]$Psol/NLayers; + } else { PsolLayerMean <- PsolLayerMean + OutputsModel$CemaNeigeLayers[[iLayer]]$Psol/NLayers; } } + plot(Xaxis,PsolLayerMean[IndPeriod_Plot],type="h",ylim=ylim2,col="lightblue",lwd=0.7,xaxt="n",yaxt="n",xlab="",ylab="",xaxs="i",yaxs="i"); + } + if(BOOL_Dates){ + axis(side=1,at=Seq1,labels=FALSE,cex.axis=cexaxis); + axis(side=1,at=Seq2,labels=format(OutputsModel$DatesR[IndPeriod_Plot],format="%m/%Y")[Seq2],lwd.ticks=1.5,cex.axis=cexaxis); + } else { axis(side=1,at=pretty(Xaxis),labels=pretty(Xaxis),cex.axis=cexaxis); } + } + + + ##SnowPack + if(BOOL_Snow){ + kPlot <- kPlot+1; mar <- c(3,5,1,5); + par(new=FALSE,mar=mar,las=0) + ylim1 <- c(+99999,-99999) + for(iLayer in 1:NLayers){ + ylim1[1] <- min(ylim1[1],OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack); + ylim1[2] <- max(ylim1[2],OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack); + if(iLayer==1){ SnowPackLayerMean <- OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack/NLayers; + } else { SnowPackLayerMean <- SnowPackLayerMean + OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack/NLayers; } + } + plot(SnowPackLayerMean[IndPeriod_Plot],type="l",ylim=ylim1,lwd=lwd*1.2,col="royalblue",xlab="",ylab="",xaxt="n",yaxt="n",xaxs="i") + for(iLayer in 1:NLayers){ lines(OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack[IndPeriod_Plot],lty=3,col="royalblue",lwd=lwd*0.8); } + axis(side=2,at=pretty(ylim1),labels=pretty(ylim1),cex.axis=cexaxis) + par(las=0); mtext(side=2,paste("snow pack ","[mm]",sep=""),line=lineY,cex=cexlab); par(las=0); + legend("topright",c(paste("mean snow pack",sep=""),paste("snow pack for each layer",sep="")),col=c("royalblue","royalblue"),lty=c(1,3),lwd=c(lwd*1.2,lwd*0.8),bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + if(BOOL_Dates){ + axis(side=1,at=Seq1,labels=FALSE,cex.axis=cexaxis); + axis(side=1,at=Seq2,labels=format(OutputsModel$DatesR[IndPeriod_Plot],format="%m/%Y")[Seq2],lwd.ticks=1.5,cex.axis=cexaxis); + } else { axis(side=1,at=pretty(Xaxis),labels=pretty(Xaxis),cex.axis=cexaxis); } + } + + + ##Flows + if(BOOL_Qsim){ + kPlot <- kPlot+1; mar <- c(3,5,1,5); + par(new=FALSE,mar=mar,las=0) + ylim1 <- range(OutputsModel$Qsim[IndPeriod_Plot],na.rm=TRUE); + if(BOOL_Qobs){ ylim1 <- range(c(ylim1,Qobs[IndPeriod_Plot]),na.rm=TRUE); } + ylim2 <- c(ylim1[1],1.2*ylim1[2]); + plot(Xaxis,rep(NA,length(Xaxis)),type="n",ylim=ylim2,xlab="",ylab="",xaxt="n",yaxt="n",xaxs="i"); + txtleg <- NULL; colleg <- NULL; + if(BOOL_Qobs){ lines(Xaxis,Qobs[IndPeriod_Plot],lwd=lwd,lty=1,col="black"); txtleg <- c(txtleg,"observed"); colleg <- c(colleg,"black"); } + if(BOOL_Qsim){ lines(Xaxis,OutputsModel$Qsim[IndPeriod_Plot],lwd=lwd,lty=1,col="orangered"); txtleg <- c(txtleg,"simulated"); colleg <- c(colleg,"orangered"); } + axis(side=2,at=pretty(ylim1),labels=pretty(ylim1),cex.axis=cexaxis) + par(las=0); mtext(side=2,paste("flow ",plotunit,sep=""),line=lineY,cex=cexlab); par(las=0); + if(!is.null(BasinArea)){ + Factor <- Factor_UNIT_M3S; + axis(side=4,at=pretty(ylim1*Factor)/Factor,labels=pretty(ylim1*Factor),cex.axis=cexaxis); + par(las=0); mtext(side=4,paste("flow ","m3/s",sep=""),line=lineY,cex=cexlab); par(las=0); } + if(BOOL_Dates){ + axis(side=1,at=Seq1,labels=FALSE,cex.axis=cexaxis); + axis(side=1,at=Seq2,labels=format(OutputsModel$DatesR[IndPeriod_Plot],format="%m/%Y")[Seq2],lwd.ticks=1.5,cex.axis=cexaxis); + } else { axis(side=1,at=pretty(Xaxis),labels=pretty(Xaxis),cex.axis=cexaxis); } + legend("topright",txtleg,col=colleg,lty=1,lwd=lwd,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + } + + + ##Regime + if(BOOL_TS & BOOL_Qsim & (inherits(OutputsModel,"hourly") | inherits(OutputsModel,"daily"))){ + kPlot <- kPlot+1; mar <- c(6,5,1,5); plotunitregime <- "[mm/month]"; + par(new=FALSE,mar=mar,las=0) + ModelData <- as.data.frame(matrix(as.numeric(NA),nrow=length(IndPeriod_Plot),ncol=5)); + ModelData[,1] <- as.numeric(format(OutputsModel$DatesR[IndPeriod_Plot],format="%Y%m%d%H")); + if(BOOL_Pobs){ ModelData[,2] <- OutputsModel$Precip[IndPeriod_Plot]; } + if(BOOL_Psol){ ModelData[,3] <- PsolLayerMean[IndPeriod_Plot]; } + if(BOOL_Qobs){ ModelData[,4] <- Qobs[IndPeriod_Plot]; } + if(BOOL_Qsim){ ModelData[,5] <- OutputsModel$Qsim[IndPeriod_Plot]; } + colnames(ModelData) <- c("DatesModel","Precip","Psol","Qobs","Qsim"); + TxtDatesModelData <- formatC(ModelData$DatesModel,format="d",width=8,flag="0"); + + if(inherits(OutputsModel,"hourly")){ + DailyData <- as.data.frame(aggregate(ModelData[,2:5],by=list(as.numeric(substr(TxtDatesModelData,1,8))),FUN=sum,na.rm=T)); } + if(inherits(OutputsModel,"daily")){ + DailyData <- ModelData; } + colnames(DailyData) <- c("DatesDaily","Precip","Psol","Qobs","Qsim"); + TxtDatesDailyData <- formatC(DailyData$DatesDaily,format="d",width=8,flag="0"); + MontlyData <- as.data.frame(aggregate(DailyData[,2:5],by=list(as.numeric(substr(TxtDatesDailyData,1,6))),FUN=sum,na.rm=T)); + colnames(MontlyData) <- c("DatesMontly","Precip","Psol","Qobs","Qsim"); + TxtDatesMontlyData <- formatC(MontlyData$DatesMontly,format="d",width=6,flag="0"); + + DailyDataAggregD <- as.data.frame(aggregate(DailyData[,2:5],by=list(as.numeric(substr(TxtDatesDailyData ,5,8))),FUN=mean,na.rm=T)); + colnames(DailyDataAggregD) <- c("DatesDailyAggregD","Precip","Psol","Qobs","Qsim"); + MonthlyDataAggregM <- as.data.frame(aggregate(MontlyData[,2:5],by=list(as.numeric(substr(TxtDatesMontlyData,5,6))),FUN=mean,na.rm=T)); + colnames(MonthlyDataAggregM) <- c("DatesMonthlyAggregM","Precip","Psol","Qobs","Qsim"); + Window <- 30; + DailyDataAggregD2 <- DailyDataAggregD; MonthlyDataAggregM2 <- MonthlyDataAggregM; + if(plotunitregime=="[mm/month]"){ DailyDataAggregD2[ 2:5] <- DailyDataAggregD2[ 2:5]*Window; } + if(plotunitregime=="[mm/d]" ){ MonthlyDataAggregM2[2:5] <- MonthlyDataAggregM2[2:5]/Window; } + DailyDataAggregD3 <- as.data.frame(cbind(DailyDataAggregD2$DatesDailyAggregD, + MyRollMean2(DailyDataAggregD2$Precip,Window), MyRollMean2(DailyDataAggregD2$Psol,Window), + MyRollMean2(DailyDataAggregD2$Qobs,Window) , MyRollMean2(DailyDataAggregD2$Qsim,Window))); + colnames(DailyDataAggregD3) <- colnames(DailyDataAggregD2); + TxtDatesDailyAggregD3 <- formatC(DailyDataAggregD3$DatesDailyAggregD,format="d",width=4,flag="0"); + + xLabels <- paste(substr(TxtDatesDailyAggregD3,3,4),"/",substr(TxtDatesDailyAggregD3,1,2),sep="") + Seq1 <- 1:nrow(DailyDataAggregD3); + SeqLab1 <- Seq1[substr(xLabels,1,2)=="01"]; SeqLab1 <- c(SeqLab1,length(xLabels)); xLabels1 <- xLabels[SeqLab1]; + Seq2 <- Seq1[substr(xLabels,1,2)=="15"]; + SeqLab2 <- Seq2; xLabels2 <- c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec"); + ylimQ <- range(c(DailyDataAggregD3$Qobs[Seq1],DailyDataAggregD3$Qsim[Seq1]),na.rm=TRUE); + if(BOOL_Pobs){ ylimP <- c(max(MonthlyDataAggregM2$Precip,na.rm=TRUE),0); } + + txtleg <- NULL; colleg <- NULL; lwdleg <- NULL; + lwdP=10 + if(BOOL_Pobs){ + plot(Seq2,MonthlyDataAggregM2$Precip[1:12],type="h",xlim=range(Seq1),ylim=c(3*ylimP[1],ylimP[2]),lwd=lwdP,lend=1,lty=1,col="royalblue",xlab="",ylab="",xaxt="n",yaxt="n",xaxs="i",yaxs="i",bty="n") + txtleg <- c(txtleg,"Ptot" ); colleg <- c(colleg,"royalblue"); lwdleg <- c(lwdleg,lwdP/3); + axis(side=2,at=pretty(0.8*ylimP,n=3),labels=pretty(0.8*ylimP,n=3),cex.axis=cexaxis,col.axis="royalblue",col.ticks="royalblue"); + par(new=TRUE); } + + if(BOOL_Psol){ + plot(Seq2,MonthlyDataAggregM2$Psol[1:12],type="h",xlim=range(Seq1),ylim=c(3*ylimP[1],ylimP[2]),lwd=lwdP,lend=1,lty=1,col="lightblue",xlab="",ylab="",xaxt="n",yaxt="n",xaxs="i",yaxs="i",bty="n"); + txtleg <- c(txtleg,"Psol" ); colleg <- c(colleg,"lightblue"); lwdleg <- c(lwdleg,lwdP/3); + par(new=TRUE); } + + plot(0,0,type="n",xlim=range(Seq1),ylim=c(ylimQ[1],2*ylimQ[2]),xlab="",ylab="",xaxt="n",yaxt="n",xaxs="i") + if(BOOL_Qobs){ lines(Seq1,DailyDataAggregD3$Qobs[Seq1],lwd=lwd,lty=1,col="black" ); txtleg <- c(txtleg,"Qobs" ); colleg <- c(colleg,"black" ); lwdleg <- c(lwdleg,lwd); } + if(BOOL_Qsim){ lines(Seq1,DailyDataAggregD3$Qsim[Seq1],lwd=lwd,lty=1,col="orangered"); txtleg <- c(txtleg,"Qsim"); colleg <- c(colleg,"orangered"); lwdleg <- c(lwdleg,lwd); } + + axis(side=1,at=SeqLab1,tick=TRUE ,labels=xLabels1,cex.axis=cexaxis) + ### axis(side=1,at=SeqLab2,tick=FALSE,labels=xLabels2,cex.axis=cexaxis) + axis(side=2,at=pretty(ylimQ),labels=pretty(ylimQ),cex.axis=cexaxis) + par(las=0); mtext(side=1,paste("30-days rolling mean",sep=""),line=lineX,cex=cexlab); par(las=0); + posleg <- "topright"; txtlab <- "flow regime"; + if(BOOL_Pobs){ posleg <- "right"; txtlab <- "precip. & flow regime"; } + par(las=0); mtext(side=2,paste(txtlab," ",plotunitregime,sep=""),line=lineY,cex=cexlab); par(las=0); + if(!is.null(BasinArea)){ + Factor <- Factor_MMM_M3S; + axis(side=4,at=pretty(ylimQ*Factor)/Factor,labels=pretty(ylimQ*Factor),cex.axis=cexaxis); + par(las=0); mtext(side=4,paste("flow ","m3/s",sep=""),line=lineY,cex=cexlab); par(las=0); } + ### posleg <- "topright"; if(BOOL_Pobs){ posleg <- "right"; } + ### legend(posleg,txtleg,col=colleg,lty=1,lwd=lwdleg,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + } + + + ##Cumulative_frequency + if((BOOL_Qsim | BOOL_Qobs) & BOOL_FilterZero){ + kPlot <- kPlot+1; mar <- c(6,5,1,5); + par(new=FALSE,mar=mar,las=0) + xlim <- c(0,1); + ylim <- range(log(c(Qobs[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero],OutputsModel$Qsim[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero])),na.rm=TRUE); + seqDATA1 <- log(c(0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000,2000,5000,10000)); seqDATA2 <- exp(seqDATA1); + plot(0,0,type="n",xlim=xlim,ylim=ylim,xaxt="n",yaxt="n",xlab="",ylab="",main=""); + ### abline(h=0,lty=2,col=grey(0.5)); + ### abline(h=1,lty=2,col=grey(0.5)); + axis(side=1,at=pretty(xlim),labels=pretty(xlim),cex.axis=cexaxis); + par(las=0); mtext(side=1,text="non-exceedance prob. [-]",line=lineY,cex=cexlab); par(las=0); + axis(side=2,at=seqDATA1,labels=seqDATA2,cex.axis=cexaxis); + par(las=0); mtext(side=2,text=paste("flow ",plotunit,"",sep=""),line=lineY,cex=cexlab); par(las=0); + txtleg <- NULL; colleg <- NULL; + if(BOOL_Qobs){ + DATA2 <- log(Qobs[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]); + SeqQuant <- seq(0,1,by=1/(length(DATA2))); Quant <- as.numeric(quantile(DATA2,SeqQuant,na.rm=TRUE)); + Fn <- ecdf(DATA2); YY <- DATA2; YY <- YY[order( Fn(DATA2) )]; XX <- Fn(DATA2); XX <- XX[order( Fn(DATA2) )]; + lines(XX,YY,lwd=1,col="black"); + txtleg <- c(txtleg,"observed"); colleg <- c(colleg,"black"); } + if(BOOL_Qsim){ + DATA2 <- log(OutputsModel$Qsim[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]); + SeqQuant <- seq(0,1,by=1/(length(DATA2))); Quant <- as.numeric(quantile(DATA2,SeqQuant,na.rm=TRUE)); + Fn <- ecdf(DATA2); YY <- DATA2; YY <- YY[order( Fn(DATA2) )]; XX <- Fn(DATA2); XX <- XX[order( Fn(DATA2) )]; + lines(XX,YY,lwd=1,col="orangered"); + txtleg <- c(txtleg,"simulated"); colleg <- c(colleg,"orangered"); } + if(!is.null(BasinArea)){ + Factor <- Factor_UNIT_M3S; + axis(side=4,at=seqDATA1,labels=round(seqDATA2*Factor),cex.axis=cexaxis); + par(las=0); mtext(side=4,paste("flow ","m3/s",sep=""),line=lineY,cex=cexlab); par(las=0); } + legend("topleft",title="log scale",txtleg,col=colleg,lty=1,lwd=lwd,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + } + + + ##Correlation_QQ + if(BOOL_Qsim & BOOL_Qobs & BOOL_FilterZero){ + kPlot <- kPlot+1; mar <- c(6,5,1,5); + par(new=FALSE,mar=mar,las=0) + ylim <- log(range(c(Qobs[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero],OutputsModel$Qsim[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]),na.rm=TRUE)); + plot(log(Qobs[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]),log(OutputsModel$Qsim[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]),type="p",pch=1,cex=0.9,col="black",xlim=ylim,ylim=ylim,xaxt="n",yaxt="n",xlab="",ylab="") + abline(a=0,b=1,col="royalblue"); + seqDATA1 <- log(c(0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000,2000,5000,10000)); seqDATA2 <- exp(seqDATA1); + axis(side=1,at=seqDATA1,labels=seqDATA2,cex=cexaxis); + axis(side=2,at=seqDATA1,labels=seqDATA2,cex=cexaxis); + par(las=0); mtext(side=1,paste("observed flow ",plotunit,"",sep=""),line=lineX,cex=cexlab); par(las=0); + par(las=0); mtext(side=2,paste("simulated flow ",plotunit,"",sep=""),line=lineY,cex=cexlab); par(las=0); + if(!is.null(BasinArea)){ + Factor <- Factor_UNIT_M3S; + axis(side=4,at=seqDATA1,labels=round(seqDATA2*Factor),cex.axis=cexaxis); + par(las=0); mtext(side=4,paste("flow ","m3/s",sep=""),line=lineY,cex=cexlab); par(las=0); } + legend("bottomright","log scale",lty=1,col=NA,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + } + + ##Empty_plots + while(kPlot < iPlotMax){ + kPlot <- kPlot+1; + par(new=FALSE) + plot(0,0,type="n",xlab="",ylab="",axes=FALSE) + } + + ##Restoring_layout_options + layout(1); + + +} diff --git a/airGR.Rproj b/airGR.Rproj new file mode 100644 index 00000000..21a4da08 --- /dev/null +++ b/airGR.Rproj @@ -0,0 +1,17 @@ +Version: 1.0 + +RestoreWorkspace: Default +SaveWorkspace: Default +AlwaysSaveHistory: Default + +EnableCodeIndexing: Yes +UseSpacesForTab: Yes +NumSpacesForTab: 2 +Encoding: UTF-8 + +RnwWeave: Sweave +LaTeX: pdfLaTeX + +BuildType: Package +PackageUseDevtools: Yes +PackageInstallArgs: --no-multiarch --with-keep.source diff --git a/help/AnIndex b/help/AnIndex deleted file mode 100644 index 40110702..00000000 --- a/help/AnIndex +++ /dev/null @@ -1,31 +0,0 @@ -airGR airGR -BasinInfo BasinInfo -BasinObs BasinObs -Calibration Calibration -Calibration_HBAN Calibration_HBAN -Calibration_optim Calibration_optim -CreateCalibOptions CreateCalibOptions -CreateInputsCrit CreateInputsCrit -CreateInputsModel CreateInputsModel -CreateRunOptions CreateRunOptions -DataAltiExtrapolation_HBAN DataAltiExtrapolation_HBAN -ErrorCrit ErrorCrit -ErrorCrit_KGE ErrorCrit_KGE -ErrorCrit_KGE2 ErrorCrit_KGE2 -ErrorCrit_NSE ErrorCrit_NSE -ErrorCrit_RMSE ErrorCrit_RMSE -PEdaily_Oudin PEdaily_Oudin -plot_OutputsModel plot_OutputsModel -RunModel RunModel -RunModel_CemaNeige RunModel_CemaNeige -RunModel_CemaNeigeGR4J RunModel_CemaNeigeGR4J -RunModel_CemaNeigeGR5J RunModel_CemaNeigeGR5J -RunModel_CemaNeigeGR6J RunModel_CemaNeigeGR6J -RunModel_GR4J RunModel_GR4J -RunModel_GR5J RunModel_GR5J -RunModel_GR6J RunModel_GR6J -TransfoParam TransfoParam -TransfoParam_CemaNeige TransfoParam_CemaNeige -TransfoParam_GR4J TransfoParam_GR4J -TransfoParam_GR5J TransfoParam_GR5J -TransfoParam_GR6J TransfoParam_GR6J diff --git a/help/airGR.rdb b/help/airGR.rdb deleted file mode 100644 index c2e536114b01a2fdcea611ade64d2a97338450d8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 115007 zcmZ^KV|XTA5M^xJd}G_m#J25ZVohvKCbn(cwryJz+uF>xyU*^A-Jkt*_o;j9)~&vE z>NF4#h>%-GV$8G@C==39@oJ^b6H$OUVQxDCOc><XS1yr;R&YQF^JEdqBzaxvy`(oX z;Sbq0=rz6*;?XB>6EmL)R!|^_Pyt$K$7TJCY)qGT3qhF99m31%w-8_GXojdT>0g}f zY<Q|nWs~*xO+PfZBbJ}61q4PQ6I4pVof?!7ANmgVQHWL%HmA0p<Ot+D0}?(6M$xsT zNwI@7XE#ka52MbP#<;8bajidmYuUuDDn#%$ix^wyGECHe+DesX=jlt33BkW)#dmEP zK1cy;Ck;FcYTL27@iZOfj;95Avpo?eBYT*rAf|idGb*_rD?uvZavaSjhSCckTXOk2 zk&u@*#0$Qc!}%i9+}iz2(P{(&LgjYLnAFggUuQ&<vpb7)SZ^@5N)ri(K}#9<+fUG9 zofgzkdWwVsen3W_!sg<j1M#-+8Mu04krpJP-2j0x`XPtg{&}0}<aLgx3fDh^!?jq) zWqPDn5}o%dX)Lze5$>K}acz$%9f4<!_*xJ=0ZUs$6`B)OP!#BfXt<DHRFJXD&s@vO zVBH5O!)IOQU{9ZXfB>-qbzo}ZIQtzt{c7gE)HDU)S5NZ2^fLb{LA^YIQjW<o`q1$W zR0H7!egm+Um54q3%%;3cW@_sY0GziiY9Yc?rg)!o67z3u3~iR25U0M`S63A%$roOk zT?xyu_!S#uN4*|ieu-3G8)Px2OME4|)(EdsEbTM>x(j)`$b_nUQB-K*gnZn%9}#n; z`i0$;pD-S%<!<K}{#EP<4%G*8&mfy@Ei<#rKPU&64z~lc0!t;W{=D{5b4xGRB&i1Z z=d`c{h7;0d4OsmW#mq6h?hZ=`yQd+59#@H8S+XQ;NRv<~9Y^wObN><M%SBQqRAvfL zBy;ln09;X@Zth3aKpO%rmxQ?ksG%TZ--HlmGib=V2#h6(6J=Fs74Bt=L#Kx9>q`9& zV&t#^VKE*pi*7h)Q4Z)w0#nt<k83k>x<xm4?;Psd^5)>A4sff{<D7!AQ|B(Y7P!aT zgzUWMYQ^g0g)qci*~9{5?Sc}33s@=h^TvgVTe&TDX^Z~>VimI-B_dCyBuVMP{OI2z zT}HxqDV@h%j1_HpItOr*O5T70J0x?khgZDuoSw@zG3-}cI{<p)UO)HBLor4pjF1|k z-~x-f3VTB+J;ZWZl0CA@lVNSiY69ELA`(k!(=~!+73t{gV-xNHdsnHI`CsG#$<ydE zM7o;FgmH<{2hb1f#%VhLcNQ^fGC-Vs?fQP-5OWbm#ED7olpL4Nov$`5%*E!k=NmHZ zaj(B|P?FU96tp8-LBIkdI^p`mfQ~nhy<IlrpscOm8Hvz{QnBk5ZC1u5iGmK?TIsAR zc;(TBQQUlR{hx5EnMfX?jTSrcJOurH<9=z<Mz5?58|~|`eu1M8TPxY_J}#ae^2=&( z<o7rU^GW#a*<(#7XR8OgcO&DbBQAqRn?c6Ws4E#YjYgpTQ3uAB*HcQkZi89RxNF#? zyurz-3qP4G`kbR@4{#@}d1aQKN>(J3oU)E8sD0T^ez2_%h`~@<Umze5!T(=&BHHr> z%Pmx;bfc_arJS`UN&lm+KZkh(yikytvl&ki=d~?vb~HS}0%Q>L+#g5O{IU4qZaAKe zP{0WF`FLd1@|ApjeV@ZA91?ETuZSK$#0z5%n=pC!%bCIDuG33IGO~?RkmjMK;iUmY zf?c?N|0y%Souit_w41^)cxg^V%+QWGOLwxBw7s@rs(cz_?OOlm#Vn2$vbZai%oH2N zDrQ=`)M?1yt3s6A-|sz=`d2kRMSh)X-`Pp}s=>{(X*YK~EXccY`F~}nGmlC}r6=i9 z(9%fUyT4;1$+=FEwE7u;B&jc~(Y~nrvj^hdaUq?xB7lI<U;fKZcI)hDNeq_O&9ZY< z{dzA+X!hqiYqn4|$pxCtIT|q2xF7?8y%G(RKbm72nlHZiecjqN5SPAT)yEz%jw z(}8b!P^ix4hx_}5vs`J%%e3J&PvI@t`QsPUItpvZ9h8mdEu}lWBEiM*-eScOVsrQf zGZ>{fVJIj&5*|TdaUfoC@}Zp<&>v$0gIVq*iDn+xH#<K9H#a-!L97UaX=@R)wAJcu zJ8pV=@L_oqlScEoc)1A8JROf1nPc^@HFO0nfR$=2j!M~H7J@uP(tI^;t}YQJYdCo~ zrg;r`2#$FBk1scuhFeO+Et^;MNCksE5-lsY%~F<ts(ZS^-q>uvqSCyt_%zvDjaRw* zG9b*8JN#_!isO3~5thx)32~Nt_4M(Vb?6@{dwjC&Ws#(JAy#m|ly|M|1#w%N)W#co z4r|1j7z~s_H^4mWjSkNVL$=SoQ~}!D#mRrla_*7rLC?!ft)eA%g6QFkz=JIPRH>eb z@^vbel^Vs>czIBR>X_rq&K?XXIyy+Ae#l`#$$*yPqOjy)LfKXzA(J9Rmdsd*U_$SS z2N^P%7lh|2j2!xpH3rbubQo~%Ae*+)^!bPDjAde*DffAn6ktUgCZOpBdUx(2*TZnK zi6PMB3;=<z<mKH^UGTyjLkN`yZA{Mmijz!(Imfo><?o9iqHR!bP4T#Dw7akuB>9-g zK)r`WXZd+Aoa}Zhe>??e7_|kbm*Haip|o6W;w|I#&X=o<!hxO4Am7-G?W&jgI0n;# zAXjt^ah@IqhKC95W)Q{>dt9Nx_Op{=y}3|eQzN*NX=OjG{~<qCx~2bTL4c?rV}+(g z!|%Ge7yW6t@g%uK3YjB12{H!yHL2U*bfj`giRz}>Ha+|+ALzbeA9nj8W7gadLN9=u zB?86Ps)HEI{+{N_!h_;Ct`{~K(15MXkL%4=iWwpLNMh|RhE|P{Gzbqza{R-L`&!C! zm-Qafn&?lfMxGq|W7Lw5_KlzP2ej#LO4^VIM^BH%Cj@8=CTmP&<1bKc*B{yKT%C-j zW@Q2NI?Q}i7ca?NGVf2jI+sAAX%jiH)zeN_<Cms<xyCz?H3BMlp4w}mf9>4c>oMTo zh0Ehw(#Oqh(5CYOR#In519kOpL@Yk%S1b^truDK9YP>+;P=l04Csqv(Jmj!fllVW) zt~*$li*xe&sGGLU&Xj{x76x1)B@R#evQ+W~J5k!?0lM@nE_HvC&EMd#_(9D}1~ndr zp47eDl3h(=VxBk3thtLTK{2Bala?0u`@6=<hwOwQJwIG&J4gba8lQ$9+?t<EufR8M z9A@P2ui!U8NFEBvBCGk4Ir;iEqB_SQSw3tMcTA_jmN#awyP_pt9i)xOyBT)ymre(C z_LkzpbpRY7x42i2y{89z``JY<FJ|A_ROCCG#{R#~dYFl?Apr&!=r9Ch*6dQO=_BNO zi^=z*UO;RX6hEH|LQJ}^jLnaRO=5w80tX0_z*^6$FQ>mxdnZ3&0(b1}=zo8o_T-1e z2eG+z^suAKQrM3aIkj`F>CMkPTeArdNTn<n2C))paevMI^-=={tmkf@ylvfVrmM%) zZ40*wSy@o#*Kl-Z$zyE9Zfa>BFPewjJ~OmE{)}w=li!X;ew-G64m&AJ_8@%!q!g+k z?6Xr)?W!T5+@nWh^q$k{s@1`_em!F<+t;<mfb@SI_x|4r)eG%Q^|wGM`U^)2k@gV~ zPzbzR#-Xm2_PQ7j8*m>RwB))q$E2tO(aM4!^nuu3L6AK>un|%4P6CW4oRrCU?7^=) z%(aiYuiOj$4ZHP48p2g$<M^>9jZ<ZU0WOWc4A-O1hyrZ)W&t#qOlW7V^;EfV7azk9 ztQtL%^BVh+p(=&!;Hx83Rjvh7<=NY~3IdBZBZA|C?5M>1+63iWDLJMT;!*d|leQvh z3oC*76N9sLUNa@RaYog-FtgmBI7+h$x8jdy;JR-mCK_U67<U#PuB2$E-2ETN^`jI1 zRD_xl%kzz$HSM~d1-Zq}NsY8z;@z6s&5aKr0)D<FFXaSh)pcQGw6EI=C*|+IX}=s? zT-uHh+vdxxvDiGuzIg7t=fr&HZp1GXsg#*c^k=tNd>1G$fKGQjPFkh}_$eyi2EIyF zm7C=uTlj5=TFxGXZZ+{+4;c7*!gnw`<F(bLU8xz4PaAb9*21q*o(p%HbTRR2VI4g? z6W4ogXj|)Mf5<{2{YHVY>A1|i7`%auOshm$RTZKFgY?7fVSuu2>OvbYZj4AQ$ALNp zLhwg)-*D7rqg$T6s#~<xT6agNbtjM8Zht$r1T+0uBXQ8;ONr50!xJ+{x(vAT*kH<q zNaI$v==3k(+u?ui%CWV-AO%nl60_&VvZahM_Md(Uk@;s`Yo9i2|FHf9Q+IXr*?$qj zPi%N_{39#TOz$*{t~ol-cuE#oYNS+`vR$)2`$w`6|4z+d5b%aL=856Dgs5lB8{NuY z2RSL<0@p=5GC~no>BQe!r>n#((A;z@BPEe>135l@v?T4>9Pf0d9ge&7`H<Pj_EhxH zhu253BM+A9q8P`IhHj>1gn7KwgppUZ_$ZkBVY`zDscWt*D$HNTamoz~{sBUIpRT5i z3y%W9HE>iaQTF8=@<%78ErIWkJuVzHw%)p9yVZx2K9AS%Tv353*&Cd=rO<tHkKwi9 zZ2$Gr+OzhK?sa>gyrD*w{l<?8sB3~}KEcqx=h~wN6{%aDh+c4?8b7X<&JM%xxZ`D) zwDhZio_d~wo*K&zwmFbk5WPS@#agh=Sc~*9D3GCd_*+W+PjV6(AwICp#=<OFX9KBr zke_3(#p>nc9pMLl0Y&#l2QsHoD8huS1Q1{1X^jga2mTg&Xz6B_b16-eOY`&--XX|3 z38xx9z8MN??y-ZWAFgD(!LrBkTC28{A^GjkvcuwEHdJs<Z;#>CB)jNVq7tcndP=rq zb-nC^Zj8bN`A+ce*&W6d>ISv}{&d@ys6Lo-e*w(0gWVl=^AZ=nHqxW1aEc!~=J<yW zYmYvs5zpF+sY<8Bu{4dQ$2Zf6H;9AWTARtXG<4Xn3)7hUCl=O(k<9Q0_^V39KSMcJ zgDD7Ups#unCpqFhMBh)CA^!DbqQ_V1>p?f>CLcG<31e~<?7kRui|JNAP~w<0_zUdF zyK<Nk<O7ZeOo*%#rEPP7b<O|m-3`MW+5+zd^hu-uo|?c1#t-~-+q7i?{-RV$)V#9F z;74UY+q{pPWP(x)<OTb=R2?Tnk_F-m^hNAPmU@p5wC&%0R}OGu*%P|z-G(eYjipQ! zw(dn5mJPA;l)UWy1)m&ul4XT>jrYtIUG7l1Q0Z-6wxoUXtSq*yav>o(PF?iQ%~J@K z&Y6}oO8to65m<OIVOeo|#ydWGCc|ZP@6iBVAL19X6XFBDk!+9N$LhvS$uFD7jAsP< zyQO+Y3!#Z+$0O5SoSsczECJc^DKtoIgBjDIk%h{t&&J<n-q}C!V7xLI>*?)vDPWzE z6qf<SwU>{V%mvddd6y{2bBADS-fl8pasd~i7F>8k;6KEP*Rl9lov=@wT2VLPjsBBu z=Ru#apN~*_YWXObjwfyN8CD=y2SK8r=pNfTtY(o6^^S^csEy(rvz*C(0)b!W>IOdW z$t3UK@5wpO{GqQL|3zB%PddnT>=e)qFRkRdY9c&n(Mh$6#JB9%TumHD3=`ccrg9>j zxYBX=e(w13#J)u?W^yV`&sN~yt4gy5*pf^I9nKr#<Wz;CR^VJ8di+MJPLY*?2YIEl zxLTn<K17%*4m68G#okb!X`ZWng3r-8ad+)@y1~h)B^Iv!bC=zJlQU_*csZa4*BA9e zLGVL_LRb>!*Fa>GHLXK0CsM00t&m{007eR^(~+vwm=FI2Ry3vTCcR|OQJtE&W-(o4 zmxn$D%4R=V{kI*ao0!%QGhlBAa0(i-64a#PE436I#+Aeo$sGnUBeD$kdt+5C{lcT9 zp=>}fmL?G5QFV|py-mpn^ujgJN*%Gj*W6aOnf))>q&}#4uXymVec;&vU=M{6gaDbo zsMpyMg$XJmKpdP)AM<dZ+`|@*6M=t=yt>_OkF^5&roKn@T2)}v7UCJ?JviHz16T)C zA65#VRFQ#efV`n_s)&EgvQ|%7m%-gk0tOnNy=lpWCwERu7_t`nWSYjxQL!1Oi?#aX z7rbd>iuqjT^MXvjX<VdAx0n-(<1w2MPaB14CJKSogPPCPkG>}m&sWECK3PnsH?D!l zWGsl8#%-sb@*VY$v0*?Sq#OKun*K{lJGGu1=Q8-<RcgwDNcSd?)Xto~DbkO;VSniB zplmq~7%z~^-Cvkba;~V)Xz!(r#ZKveB^F(KxURVbPhSDY<Aoy}WYLYah#TW=o?0gN z+#Cn#Gv^!UZ4mVQH*8RUI5=ajxm!X)r*(hC{PEd=zsB_+?JJN1*#hfcCD%Wr*^aOk zx(B-^XbCAl+~m;)b0gGw-<VL&po8-QqPMg)bDDZY;)LC*3PuTBFXRzS|7BMKy(!%T zaGR6&O$W90w|hCUi}qXJS@$n}EU<)p#@Xl}q}x(?`-rPwTe-B{z71rPxHsLgxnB1X z9pXm-;DKZM3bqKEd=JI|Y@;8xkIu|U2^~DjKf3WEsJroDzu<-69@%SFK06(R-k;&+ z#AzEOxmT30bkduhT$QFr)gF-{!!tfonJlESc5}65u`#3Ih1vcaN>%m}gftiw+Ac7> z8V(*LP~`qQLij4+=*W$g(1FEz^KEWhmy&5>Pd$6c>~FBI(W=8ilY99l{4P6f;aWht zNXE{{H;Rmv8ga^KnY7_UyPa3knX%$kh0F7Y-IcDibN=9x-3WN*7wocdo}7S!;u)dN z6|38B#;M3ot&HoKvUtm|7!^cVk5!pQ=LkZBZ=jXOc?+5ohJ{U$)a5adZ3-OSv)>~- zMpGi^Cu*_OVPv<l;77~1E_1_p=iAJjZfTM#9ONt$4_@KdW;Euoq<L7$Z`OMy@l+;A z!8Yk?BL$!SY(#{uH3(dObJO8=u*K^&*%f)fX*ym~6l1=TVNZA;%4O1d-TdhP^UV|O zLOlN_(oQaz_O>~ttwf_%vl(J%bK1?H=v){ejpz>64U*m=K)}$7NXA0rqGZ+s(C9q} z1HiSq5@X?tm_0Act#0;_WGMZm0|u_D4_F}8&=gXz&V>hj27C)xC;63dp$d~xcVj0G zBy1f`<Z(2!@ZGVa$WeBm7YZKu9<B{_!iLTFZ|oPmS7dtB`Urb{(M(-sV_2=88cgr; z>)vvWo8J`Df-2)}YSz6e2XjXRV{=)(>h4wO>Djd1i-^+fu{OqwHSauGGBzA{OFNcw zF6|SkdVLA}(9_dhm~)|IiIg_qmhrJ<Q-JN>q;`Lw7X8Ecd}tt7O~zcGT57|m(<{;G zvRHaBGeF!`zAiR`<ZIeUV?yl2a8MJaD8oSDxaV7L+6wj#%7f&q=4Ux5710TJlZaGb z%T>g_>li!C*n3*?me~vp4yx|a2PZGO6pjrfF+P19&6v~=v}FH9@T2KYha^KBhRLv4 z%AU*ZSsmBp@)qYW>Y2}G`+~5B<lhOlP3Q>eNulrebWeqx(_AVaknfSh_>+@4qzHq4 zK6PL4JP2$QQ@1Wn%O{#-?(n}4H$FrgGUdY2hvQsjBn7`bOR9JW%~JLLsuOCp^#h9_ zN8{Uax7Px7OU2LXK@y_pfB^8=2jcFo?sg>N!;z`0q)Q`g3lb1N4OkE>^*`c~jlp;& zVKwRNs@&G4{i5?lh=cCmF%-P5SJ3T>IT|P*A23@_uklriQ4i^SQ*eW*hpyjQ?Fs7R z{TCBxT{S|2=3<I$@Hm0qDl76;5BwowLL2J$_r}66o#WuDEQoH^Vb|S&XMJA$Duy0L zq1kM&<1JH+e=9-HV$%vYZkE{4cY7lLj(y!`jTdc)KG{%aQZJ)LNqDeEaOuJ5>%lOP zC41ShoP4J@l_`|IlO7Nu>vO5q{fxSeo+6O~_GAxXlh}GDw>ZESSw;}CKuFIqL2)Uo z8|)r*wsRIBBU@<7q7(xkFWR>>vif*rA5rg{;!`osg#kNHpi6Va61(<MZ4ql}O^yRw ze7l>{3lnP3f?1&7qak!m-W3uZX2YaiCHTEO^`;$$O<uXwFZnlxM!gBzl8Fq4K*X+v ze2k^HgK;6Haj<#a!es|l0k0|4l>}(n)U8|Zo`q7EYj!}&WXH~Z%7vcJ+6oP1V!FCa z-c*kaT<Qv`isCU&uJ+m)Ib&NU<mDw5M|NH5*_mGS>9@UUNlA;NvbvtbGRAXRzN)Y8 zNZBm{Oo8f-jy`ei4Xm*ftTT>7tI9rwG{Z8j%!v#9+$v5ou3Io9`A3x=%vv6A%Koa> zWtPInXFylDw^i`v4G&3|Tr=~pW7&eMlEWW_GJlO6zUyMie|2&1zaGf%`SYbFPo&=Z z=owu^@WJo}twtiPe?1UWc3iSFSrgQg|LS5t%Q?B3OG(7h&#&pJiSN1?Nr*CZBR4kr z?b7ngYcz|84kbS8>B$xIW4}9Se^$~30pr$c@`u^HmVlELGt$GMwbOCPi6VDT0Z3xx zkFY!lnuf9JsoxwY6#&56gKP*PWHI8ETx`l`)&u}6FrMmn=E;RuodL$h)S6bY8vMX# zH&S{&x(aWEtua<4y71~@*ojg}@eX0|K^KJgG>p1kuE(Gsy|l^uz+p2^2fi}PwyCgC zciJ>k(yk{!L%!)j%`oQ@L&#kTmHlX@5P=@p%1W_AlORqb<%Q^-hRt)=>eeoOQ`Z;> zX!4tZ{VtAO=hfOUnn7}Z`~~Okgd>Sr$|X-0l7?=PL2(2{DS<|l5+WI2Z~BoG0T50d zPpwL2t2g7%`eJli;_lvmFS)z8KUeoKvBND_32Q3U>@R!ms6{(=fAZNj*KcUPw--@N z=p5tsIo}+f^uD_N!apQLzTD+J-S;_U92SR7vrxgCWU-cBoM^ki(#tRHvc~cdw!ul7 zWz{(<(+ez}aIh9%d;y=xEnlxPT>M}uk2+(z=o@?AXj^l%&Qx7TP)_*p3>LUoYi+x* zaJCKg_4yjw>yP}T(G_>qh(r~T61dq15<mcUHMqL}SQ7lyX6rxjReRAVdtQDKGV4sq z>|A()h5V)Lw8_t(*<JarZ$DFg{!;o?COdsC<JR(2%wOc`hht6GV!JJGm*=w6*gZdO zW`G_AquL_tjMVG#6*zeN4m5>E3h7T_m@N~1_k$jiovxCr1n4Pu21>q{Kk*J^BRXaS zaVli)5Dz&Zqy9*&W)<`u=n*nb`nu;MvJh5Z99^4Z*z=DPGXXF`h_{YoE&i5ClC65H zy(rQeC|)pMn&T+`B~2?IDU-BK0O2s$KrD{r&H3U$WPbt9eB~XbU0-=kb&<}a6j-r$ zdK;?X3C=a{%C-dc$%^5Rf-2ZQq~o`*c#C3`BX0a-;Sv{^NFivB$?R@Izvc(+7sHO~ z%A_O<(weGL%f?wljundQS+SS1Nnld0QO>2~-e;5Gwt8tCZ|S?kG#4)R<r-6z>odt+ zY5zhqU(z`}t43{B#oJYkS^gfJUd9jflrNU)e^6;JYGMs({?egwlXSDyIcDfF6vFPL zy*UpvQ<dB;xzx#DWlkOAX|EV;Ayqv(ow)TlYbf61F-2<+pxDLSg*itbt=wNvKZrGM zkhmsYBiLgCABZjcd;V6K>XXx9e>}7Yl=KS^1t}!qug2LGH-=iJ+Pc&7IW<eTWvk8R z4eUH!S#Kyf0gmY6SLIY{;oI4|m8&h9v8M-;^N$t?PuaL)<+5p~+>SP6#x2U}%5Cko z{G^44w`M!c#bcX5_xIw$*7YY03ZpkisCPu@8#b~|)J>Ph*BrwUZ3BA^qXOTWb@s@i z7rSrQs>Ur~5-jWskPNuXtcfGl22mJfOGG!xKm8!wM2)@}Q!aY5i59q2M~(48bVGRL z8qF`$O}aVmVKDTi@|KxSs}uuEb=Xm_>5c;^+u7W>q>z<vj`vvAR7;j@3O0Hf^%|xP zyQnXh_lVaJN>*FV*JO#tXae~lzImRQJjeLNgrSC_Tr-^y$AMhgB)Z<aMbFH`&C4nT zruT54x7`cv3qP2FrSkPaoQvuGb`TjuLK5d6>5QC%Q4}jCF5@FOabYvABj<&}3(nlD zNX|HVrtC_&raiBZOW)r_zj5CYUBRrkjD(&BX6Q{~bBd{8BY#KXg!OchsJ!_(gL73@ zmh6vcATUzKM4kca1Nqiofn(fP-V;(ocvQng?gduSS7o+{MF=mnAP$j!SlCHg0sV)R z@E|I;K?u*%cq8*HbTsWU5FhMwoONjUW-v(DD#BHD;MhNvV@PBVk1;!viRld`MbWsU zyi5<mYzqrDl*`~Kk}0+YX2Qu>=A8hT#V#TmlK9m4633WC6_rsv@`h51X26hr$S#~i z+vpafs5sHppgaEQC}pGz5if*~zLjgsh8WX7*-(F~OpqKU8>IX9hjSH<iIEHVGyFMg za^bs9;Je%m(N$fY9WaNXo!KG)HB@v5<GivW&4k1O{~7Et9*=!=zz+8r?Qy;$?EqCU z=JgrwvA(0hLu3r?KlcXC!8oMI-U?Q@{gF)VI?eg6k_IcB%PJiN7Cob_Y@{g)*OhRq z%c5-7oCDR~SWo0Kak5lkt?T$D&-mVX+}6hrr8&Yk2{AR4wavvcXOB^#HweJh4AkqS zI1^%{xvlvam}CpeK=wu;Tb~rPh!I$J5rU;%jU0UlHO1WET*AU5Asuy*nX7!qCH33r z<}A`MSLmxZwP|4ls<*Wx(#;H$Q?H57(Lx4p=FYvrpms@DsJ7;}bpfcQSKs>#(UC&& zALwKh)Y+cV9DndRcj1UO+M@iE0BqBC$npfVszh6k=~=~$v+DFLZE{jA1TJtNO?a8& z-STHXoBDdg$f~_+xc*Z>>F>jA8;e(#$|;W}xZCiCCi8jB+olDtLZd?a03lDrXT+7S z5o*)mO{p;f!!H&FO~Has=^uD6L=@*rI38mJ*U6PbfOi@IWo}KHqGg@hfJx;_(<p0J zIip*Zsyn&+=h!<D6^|_0G+VK(x<N2~AqU-1vvswEdvT*|^#Q}0tOCriAG<YA`S~0A z-tQXl_QYf$3Z-fA0pi92F?P1%EnDVs+y+T|Fwy(mfrK}c=0SG&JmS3=rD7hZ&U9_d zhC|Vny?{wNwqaYbOM9xnO@}zDTdIfKH$wY-OHJc<Q`c~l5od33)WP<Uk5PbayN;O& zcBc<6;-ZsCxpe_SZs6qpOrGmvJ4pHS4<G#=iay*Ly8=AF?>znI!%D;yxdqOXivdNb zKn-kwICz8nLce?lf<mv68u8~iizURvMTz)ud_INpd#9q$vb>W;bV4zg56?m!{P>-5 zSX#dQw2DqQ0|`46hhZ_N{>J_j?xWLS)Q$9xbV;9DeWXL4BZM1<OPVyB3;KQ^2o#}% z1hK2{D54CES$A4ER{1XozO;VEoZL*`Ok$+39dLmQL|<O*Mw+Z4hM(FHnGt8#$xtwT zZ#7rrQkIr60l;`qg;R%JNaxnp?Y&cC{R?<F6}6!x7uW2m`XpKNX1ffmkskf~eLwIe zqf1ru)r=9QlUG7-(7isSl$0nW;PUFgH-2|!CJzuP@qp~b2wje5VEzL6IVB4_^unM? zbY`fZQ+!b@*ZZpbDk3V7=SN6G>-8gI(N^tw(S@$+I2jo~NZw$)jjCwTt(;uS4?m*d z{`bW#`Q^jv7jz=?A56K#D!bdL9N!PjW6&>#i4qLY($ja6{4#giNA~0DUB=vVo2g~$ z>Xv-o>C!RlOX#oF-@=(9n6SmyFAKpx=#7fM(4U3e;9b_*D~*Z-6sdr#`@6D|?<thJ zk&!|&%#5a3OXqaS!K${g9PdlwF|9)oUqjG{r!~g&i)#92W^q@(>Q@kJ-+b!-zzeN< zcTYxb$d>5<e~72q%eR8vhZ7&MVn28@QM1y1PWF-#{H^kM24z62ENe7+qvQP&>Dun% ziPCjVk?zD<v|&;^H0`O^E1&<Rd`$b@nmlVedYxA|qA9zjM)a3t+tZin2B#a5ZuTp& z26kGe`=1WwAYXvwM;LiHPa1EJm^eKW3qEm)CxACuFIzw8MZqS8{_b_GP##jqN&Sgb zBG~`FfKoKe7$ARwr)C^zFemZ!aKrT)Sh{^5Rs%=*5*}|rp80zL?X4YlV6?EwU>G#w ztk+D(Pa9Erzx>ac1Y0ET%f5DYN}D-Mj9<|~I&KB~Vmr<=u~*M{Z&d8v{>nk&HJI~G z_C(3T>3p#3dg)5!2u^W%HZuWRD^xeJD7+A4BB_WqslGC(?b^Nf^wCCXQ&7e^POzi4 zo(-UZPqwFNrUqrzX6Z#AbD5E6o5PeYeeNrFaUDDv4WTb!15k+l{27iJ*EEn@C+k*2 z-XH@M&*Xhi2HnX7+Fx%+F1U*#mkEBHx2jj&V!B^iMx9T~Pqj{6WAxY^%DQp`ZfMWY z=kfp=>w{Bw5+)EdYbxgs4n@UGh_aeR;s@L(I}a_gfO+g4u9do@j$?Oz-ljF#Bdk}o zFF=++tnAnp%k#sl#|N~O7oJ9-?s!wNoXY7B(5BerDaKe2YN9AFivtU?8PUF73jp2O zJsC6czM{bqjwC=Vp$g?tnp7S(r0hVLG_)T($2ziOHb3^`Ec&nn@WO^*-6MAwDh;g? zSAx}JUgK0>{aYdxWNbq{UV}`POhK$~xAfqZn(gl>b~Ff!y5#rBC$go=q|}MQd6W|Y z1m=Eqs<%?nQZAR5E_U%Pmfw8R9aMXan4=k93pmdpewt)KYzZ&$WzW`VI4cU3?02$_ z8)A_n3JDTU7;;PxF?Afu@0lo!m589+G&JriU^*`eR!V@h;3dVYE4)dEvVb$&!VeSl zE#t%Y2FMTjqpu`dKg5>&{Q<$lAuma+#0KneAWb-&@B<Y(q&S-9_t^_-?4e17xPR&y zX)G4-kvw7OqD9X4)Cq@Ukb~+T6whYGr$Y2fW^43+8?Dr13>wpMY>59kTxrM|=?*!o zo_RD2c9)?QkWnDs@9FOOlx{+iQu%~=$35>p6cq|x*#7=rF+lT`gVjlL>OdE|j}`p0 zB~AICEusHqODK2}?aKpYEptbPJon(9lab;-kcrG7l+te46lrL_;(zb+LhH_VxUaK= zqRaNUp{2A2p@bqEd;$_QzGFg)AD|K=dxG+s0%)iY=Z~3byCG3g2;sAHO>VbpTRu`6 z1&<e$=Ly#hRP5Y!8M=N~M^PE%ypFE<N~v^1NhI|54frVT_(Ku<TK^rAWLf)CL@7c2 zsPama&iq(XWB<&#eVZ$6cLC_{VQ-bg+sPaV^7c#iC`g)w9m9ndZ|&^cX1d}wt9T?n z<*e^)+L{J{AVk0EPAH*-_JQsQuhbEw;A^9VE|C6P0TcmM5NrTm6=3SF=p7i|8ikPn z+>Aa{#0V@!KoX!<>|Yj#C<&ndjutY9I#-D;gQos>^K|exz#GJhq?9Y3#&6vzHN?;{ zz8&vxU|l3_#LxxMf53<W${_H7gq#r2R=hkFi}bY|9I{|sV8T^-?J(VZk<&kZoCO$5 z+UX2!kwaFvze?I*e&CfJ?Qd;jqz1OY+}O9>EDB%luWPOQ{^$v~n3>l+UVC6q?qn!3 zrx)vj<_>EP2O&dygpsT~4NTWsw^|9D>jMUtH`4vubIlS@)YOK~`h!n`K;`^#nU>4( z_wWcd-qP@BEHO271T$HD*4y6^fJQ)>$*g-Q&i#gW+JVB~6<DfOZi+L#{&ly#Vf~fU z<R*R5YANcZ+n*Og#{E8Tbd0H23O`x4W+P9BmDD!SuVW`;f2FBhekY)<a!fnjq=)`O zH94nwP8Y|Z2oyAJ*bEqci<R|(=bIBY4|I`i65NLjW%6}wX8MwXUMoSGx2^WM<iirj zXzSldY48od2k?IHI~#lCz_34<21ucSJ%|RrM42)Ju#7(85~OGZ$5iG)$||S}>mfbS z2EMEX_B_Nv>rKAL^uRA5*H$Z3U5n&CGm*gGqL?_-8E?3Z;LM}53y(nhsv+d^^6xrf z-b+b|8Z>nq9QiDNA~aJl)uG`y5*PYUHds_I!8kRIPY5h@a3j&G3HbM(fZ<?vA{iX8 z#G{mngcA=Ngfs@gw}tnBufS?TY=ZB=uTb#^bNI}7L+Au$?$rw^LA8<XFrTw#BfL8a zx>h`iQb4EJ0kN%6T|$QvI-K>uoJ%DkH-jt~j(emkz7J(<sQSY-RRrIM;(l#I?w;<~ z;C`XP_MQ2E==}h>rSQ-0ldB~TO~&pX4i3uh{iH3QAVMMS0XY}4ZAj6O1)A>X7bwW- z=P7mXW?6-0481emK{+p^HMWIlf#Vqzqw|^YM$qx6J41fDSxnKW1hMPuO66et6h^Ay zN6?OReXDcX^FrZ7;2B)T7?zF@*bx#k#Qwn^DhLqs+udwM)Bdd+##BoUL}4HgM|I@# z#cyQvfo_l8<OTkoT9OV?)gz|}yf41#zC(Sks;P+iRs~(#2HgSvmUNKE-EhKOlv>5- zH(gG|o%jVb)?&*1AZ?e5N6E0!TFdEo*nzUajmUJk{+I8ZpVw23&1TZ~M^u%&N8pxd zp&FZfxU45IxD-}b?WwS2L-hQbUB4mtq<zwOtZOxCD+~jRQdB=beK<{`+3w^01SV#2 zvH6}8de#Varq#QFE=WGoyd2fdIVa*$QvXi|i)TgyLygk4#A2CfuQs~^$Z-Q%$_l9D zy<Ys-t47#UE8~3-y?M=3Z^;LEj~?Gv*6P;Z&c%CKus%`e1mdr4AYV{dJzb=u%cc*q zUzgl699p{7ml#)TTYIpw&p(-bx+?mr7q{9bCA&7j@{vrB!pH7Jbxt?)79&*`P08;F zvGLO1>5#}(49nw21oRrq)_GwmWpy4quImi{Mhad3xf1dv0V7Nv8Y)-bpDeu*KYboM ze_mS=DP?8nV;THPZ*?@)%FN2j%pwTagGN1hvU!$j0reD5+V+-=Teu3}IAIvMqRHL9 zQMQ2Zs)FymdM<515F;LwDRipl;M*K6ETD_d>Dd#Lqe4&tZ_E5${H7_=PTC+t)_at# ze)Vc3gsml1G!$LkZl6{I)1H?8{E87Flz^?j{8rFbkKx@UaQ^d4&h?et;&0+E;;!?` z@}Y}|SDUvt!RrKKXYlQ*Sg9wd&BvCJ$@$>p1HpTH@yOM^*V}J;d5(Q4-TLQBU59q> zEW7l{nw#~oY-QYQ`+SZ7r#R(4ShT|9h2m<fCQisiR%Ze~mljvx^}>P{`|c2X3iknd z(u8&SvexzTJ2D5&wQu&y<2~jTLC>dn#23`;J;np-dx~(S`<=}A>1U+ZqzQaU-JTR~ z#DDa^e9rH|g@~mLA;VRy&AUSagM_3R23K!!A=5V@iWk_zjmQ%R2>06Gu;@`>Cd)I( zA0jV5Bd9x;7KYTpc7yfi(ifh?YQVqYRf3FlkiUr+_IT(%)EQD<h_@6#nQ^aYUJJ^f zF`}+z0Q-lH0y$nFA9?5}Y0aff)<cks4AWgE{mWN0;Rnxkf`Y<*hDbNWH&n!@tNT6A zgiU&uv~DFPgeP{o9XKBJ;ROrKR8@n_`Z@+^Dbc3_imybYdR2d|Juoi0p%V&o--@=! zh|U3Vza^V6M@nHg3S`?^+Iow9^~DK!=a`1>xenSoAp{{5LthtVc{*8yEerP6(hiZ~ z(I)N7{yMh~AYpS-3lUdJM)!Wfz|cOLSxJ7cea+7^sL!MrO`XGelBR)m**KU<6+X|s zg7SIW-B!^dVv5scy$s`Z`VH}#QZJ1%%0|mrG`UgASn?<no>Q9g*O6mhl6)_vNU9|l zerZy(On;fahHW#i4TsVT90HPDf7Vp2%9fU#BDE~1#IqeyqHK#qN~X#!P69(B#s=wo zbDR|J6v~l2wYCA8(U=lf%*3wjW8ji?Dk#U~bl`xKdr+JC_+px2UDvjzPD*B5uKU`f zjrQ_HX?xU1g8OAccMR3@*W>-c;i&X;L8+$l2dZoQp(R*u=Wgm0#asHsd>bswM|onG z6~avY?nYNNw?^Ybq&nS_b44*xzpucaXW~6fUC4T_0Yvuf%mL-+5`Wv}7jXWl*626! zE%kqh@BbtI|Bv{VXe5D3Qp?>jOq~=9HH)tcb$cNDztsP$Utg=KFD@>r|634t^(_cP zef*z-uq)f*{%_uUepJ#Y3gMr=_OO147uwwETVLztgc*{bKbsPV<IFEeHV%==+Qvvj zaW>llBH<#uT>lg}|Ms8CR@~`ZW&876W$RMkqU9*=Vs4YEo=rEj+l{rJ&$dJob*Yr1 z^HZ*lft4e1A$nHezkdMyzkV3vFVVoPScyguHhjp1H=E-Uv{_56sJ{sem<ADGFZMTW zQAaF%D4qVW+#lj?W1cnrt3x`DNnsQx)s8jnnz%b{B>M>;bf)(U2q*{PAMx#}KR<#) z4>CT8+g8<fIjBK}(Y(<Su7>EU07g3!rov=Xj3k@BR?wDZ=g`%E`4V>AU2nd10G*kn z#$i)5`cf&-f7bwin40>;96uqWhag50YaDCqgLih+@TUE_59S+Q6TTl4$rlS8#p6^~ zWja<?h%G9*_!L=ZhL4sY52^L|gX*VfWlrjZN(E?9jpHgMjiwI>&HO65GR@_Bc1n_E z>ioRe=p2kxm(s*svnUDQaFD>gEOoPa>03sqZ<o2%?xEU8su`EInLGVEpmR^0LEzQj zu6KLsLyhpOvZIJa?hDo76W@oJ#wR1IOZN%3Q&X31lAABYm*-ahI7k2Fwf?iBp-}U_ z`0u>2?-JDoNZC%AlipLde*BW>!PP>!#Y&KQ5cx*^dQRwh)<y7wHR!Afz`F-_2lE|u zQ$gCUtpo#S(SXA;@|xs%ux8l+F`^DK@9hJ9a{#LK=c0995$rSH^HW@T&C}r0-b$z0 zqT0hPPVPa}uzzu{ymVEQKP!z{Bp#x!ESNKJNKc4YRqJP4+8NHhh82@f#y7odM=~f+ z*pNXmgdRPJBj}CF59GV!v?-qU^Hk1!To&-Hx&iS8los)&1BZIh5=9Z6o#CWKD*V~s zEnz@eBqc(i+RL(b2q|d`H>1X0G~o*7L2i{=m|~jkuZoLfzy&`>ZKpw3RWc@Hd(+!A z*OSH;Z$#w>_9ZD#a43e=Fj(@Bl@?PUHp5J2A2!Q}7R5E+4=ejCrnZRQ-moT+Npzc= zm$tTo^Ja2`Ib|0W<w<u)DaB4*oB-dLA#t2C+OJ)@*2;&HBsuI%grNUX`&P{@XlH5b z?UU;-#r^tCLJjgSMg1z@qZw2hWX{IsDxyeGDQvM_E=pC%Ks;*c2B5tyBM4}E)iym@ zd-LzMmU#aJ>tnlSlN8NVu+DTUO{5dQQL{9&adOa=q_$#EQ%Bu6XEVD|4`(S)ht1C# zpF{izLft`~<4Hk}7tbLV6M=yMq`eNh?DIti$V2_<SC3tgw_d>Ir(bCmUmZ5A4KnYU zex_JYTGtl%TxDav(pXZ8=rD>7OT-Y#21N)&lqPU!&>ZdtvJ2c!;@>e1o)bi6V%ovK z=85ZD;HXBAuT|4}qQ5477KW}|cl)VlRyMe1b%wr!@EmpDwA8rwMs9TE_uWL6#Ox1g zkIdr?mG~AExsqXTL6c2GhH#mcrr9>l1X%nN_1#PD_pb<{GU@h!UI*5|IY=as6Ghqo z;qhN{{HCpQHTelDT-f-^$j?C${NLO}CFHpILm9|BV0=^^xoxY%szL1nw&AF8Q4v7x z{I_9L*~vTLGa#}r71#+J>m0OYJHa*}wh^eYQKx`>!N1r_Ok|#co>AUSq2if#5f~w} zV5zaQf5|L}K}_|<T|wP}>_LUJD3{P-@}xzSFMIHo6?uwy_k5+Bc;V>FtkjxpsG;ja zLS#iq4lpuijHV=PLO>)$tXrOv8SIRvh)e*1$`1kdfEg!7zol&dE{gF{8<~E6-#P?` zQ)MO)vT0ozHSrSaSlv@>ws+@t#CW$}nP&?9K)?cxmXsU5P;&%v!+f_@fKC;O0J`$u zhE)|JH+}Mt?)k{5yD1FvT9O>GVSiLMz~RMLks?Qi?OEQb4wM=N>@i)#Kc^!Vnanjq zdO?2Dmn3)%F)8702X-S$FOe#?`Em9UU(#BR56TrC@K3m1Q>J#6F(`FjhnFvPneBU& zrng_B6)lhT9_y^mM0!USy`%k=({=Vy&WOB<p7%n0L)h9<I$eqvc{s$QDY24SH^2Y< z2|GvtV%EbV$c1-0GDPdfPRlNv=lGuko&GuS#Qx)Q0Y5seJ1`kJ3*^ax#8$X+JYaZ{ zVWh;V8T>V+3iiA(%Z45hv}~0QtG79E!Hn7k_T(UOJ~`PH=#O;i_vR+w%_mK+SPeFS zjNovrs7>!OHyH(cx5qn%p;jo7j;6}+r0>vw*<b!zLc*CDzba*^Nym8UT4a>Cm^aE3 z0dDS7?rA18d;6H6XW~>SgzCqpOm%z5&n)Ux1Y(?KH<=;m6Q@-R_bQYn{V?4@leQd2 zyDU_g3Hpif>8U{P2|OhB4EaoGcmsp-U<d3FB%DzLRklyRZY8h%K>6&+Ntw%-u2@!Y zCSpE`^?OR?vYcpR*>NMDHmw|?m{%roV|fgn8<geOXeWA>YWVL&qHblHw!{XCizWrw zVn2u$<b)^a@*WbhYb6c13=wZ6q>zO)9GUXN4=I22N-@~K5Q?J7fVK_&tg-EiH6MQk zOa}=IW#{o8YJ_;M@J=6^6Nsc>Y<Cmp0+GQ3$w;y^GO?_Uv5C>&Nx3GGd*W(M9T@!n zYQzb(Q)=(O{H4^hABPhwK?!)CzcLg}`n3Mi6))iaGHaa3Qg4aKRS1IJfsM<|6VP>< zJp0oa``aOuUeUL5yI%So$w5t`h0@7k{Jg3vb;&B&Cl38CjHZp<K1DYoOq9diU1(K3 z94EEIlG<H(Ia2<pVR`Q3k0nJ0cy^*n8}Q)AvEqR|k{Blt|4i=I7}Mt2!FBevY|wGf z^vi~7Xrt94;4<JlI2SJk@+*ClRxTedye(Iv>b}(=kA+%FykPIp?-VEa4dfh45(7jE zJ4$QM8q%uH*d=~6{2aCgsYMNiW@$g$K=2@*oJJL8D~>;Fv=251>yo_bTz)<K^^PbU z6pz?)@#Py$T_BqVH{Q`LxWT1BJ~?#>!G^a>j`1siF84A2CQ`im4zemNcdoqw(Y~oc ziMBnfkP!@YL}1Y9Sb!0uQl!XkSZs2zaA**zSln-#AFE7`UF2d*+i5YVWTiSxJHRd3 z;k8<S;sBzcU66>Abgn3cu#|U6p5uy2p`5X?HBO3-l{!>uHk1S)5CmkB14N8o-*;3< z3wl5!;|lg+6kHO#R8YydMz3uFh(S|_Wa|(YXOgW_tDPw`VqOI(gMQf8GBr1`1t$J* zysY&>k}7&X@OHzZ)k)-J0O!^Wj**C-TB^KYaJ>9+e|jaH&#|hW|2{5lxS{=ib`#|^ z86Ktzi(Uog@0+^KB8`qQafIg%Tg)<rMaKi}0`f(+mH<$#_ayJssinIigaRzZzrkTb zXaAr=K=a_Dn5SCUlzRj>=D0y&xk&(!1ADH6MU=i5L8K2ECI1>qXqDKZqiB2tG*{8= zae#=d|L@YgA>duYWku>@$dBq;rRFB4z#2r~?+rU|JuC!Zsr_&4A?l=ZaDW6PL|n@g z3iZ;zmiZWkP#jQvb;Z<fwu&guIzRA~XwK5_hb`wg9bwbctgt98n$$g2A0b>0_x!pa zRY@<0RU4JeM5R+%##kHOi|X`u4X=g{7AA|<DcR>cLtx0zE{mjXPP-bkY7rvDY;Pb? zwxq1j?k<|xCabW~X6&{<<^tOG`ylcNOz$desso5SfG+oC@5u2h$Z1X_L<p}*TFx(a z)2j-`d*+}_&k^+J*QF`x8rI2n5O)NAjcoiL_^?biH(%14A%NThPwrNEf@Q}9-vWJd zD6Mi$e?xX7eD7jSzr)#+SY*Baju4*dx4B}}q<BgEeRju)cs80REhHZTEbwTELv+my z2{-hO;Yqg+ckoawFoeKy98r(xfdXoXZz=LgOm8N#`D~NrFAjgF9VbDYO)Pr?FMf&q zb_gAyCkLZiM6qTl9T5G~nAyxSUB=abTe=*W%l(L7R~XF@6Mp6a4K1cQJ;HJCl8W?> zZlrTZb+!^s8ShR}t!pbM2iuPb8-Q2dZ%N^>$lfH2BWLV2&U0f9Z=eVq$o|gF%z%*+ z8%zg+Pp7eP?IU{{*`%v~_)fUs+6J0E^u}<((dLm4Fnu6H2suuC8Tt;Yy=F9nB^M5C z`?@nPPILPSsRch`g#TO1M=Hm#0cWf|n2wLx&pj-F5t1AH#_+_986&x>!w%*1&k*aX z5AR8d2mBqBmUpOU@bYvp`oK3V;7;vL=N*{mFxv9F4wyt0K45-uU+UJf*LiZ|GFu$@ z`;sW<HPkzkO(yKGa#xu&{)%vdneXVyzM@<zY5(<5mWNx$m(E|VwF;^=Uv;1&{Xpx9 zf-d#9%Bve7`FO(orZ783TV;7znDBI*D=SEtTXR!^SE-VIvp8Cc%Rxa=++o!T?9IWQ zv)Ep{6-0vh;X-vYkHxX1lsXH-?RpIKP0(=iw0qF^(v^_^BJBHn996Yfe3rKrVmuaG z>wvfZ0kGm|Pd_$KEj_5Pv>beh;5zSk{FLcmrzG6ver_wMqo>k;YgRPVtW=>}6f^3t z!Qe0J)28D+yG9rbmJ68t=zv(s>fQ(@!8Cmh@B0wVc+koV)#Dm8;jVweyr%sm07IqT z2?N};(+qA9Jb^f(#(V!+pN@#)dGjAQ!|!$H!Hzs6Hwq42i9*rNisB28B9EUPErtH{ zJ^lQUG<9_JaAf8_-L$#PuL$}sC&s8<GvgbyF4H?^I7&92HXS`(3oR0y+dvN=FQxjF zy9(Rqu4fmNJ6jekkKCbVgD!*UG&!yv12*~xl)bAZw~(2YmAoG5pC;jXQer~LcT2Y} zXhMZhVU|mTjr5~)MnqE|A6n>D2<65zt2lVH#uPfe=F3j_#M}v%9aA$2v~6{>L$<=( z*Ne%mT(E2`J+sDN5fh>nT#Aoh)Z2JfqorY@t9@)uCM>g$-E()yyO+1TEg{GNUI?GO zto&@SqV!|;rLp-;+8q#!WoHwD?7L7c*{HY!^37IYgxt~3w(%o2Jc|>jW7fAL$_t(A z3%p^HE%5YKOKq;{D32WRw#vm;`wixm;WOfto{V2!o2&d2>_F>or*y<yv_tF&%30Dh zaNPyNd6U%$9Kj8#6>~v<Wh8HcpKj^%BZ9u=d~sv#HxIWy#LRe-&0B$eFfbA=z+K2` zIoDueItkclayK~!mce0LS~6}h?m>Nl=!FuI+_=)W21F2$4y3Hpx9Y^Hj4%X=0AI*5 zM24Kjl%`>OGfZxauY22%X$7Uep2rxwGF$j>EQ^nA$1?_&`aErN=VpG(^LX=4p=KQ~ zsNZOv<7AsPk0Qch;S6zmu=<`yLNRD8q7pJ<Bhz!TN8}vXNz+!Ek?8f=gT0q&mIM(t zY84e#hj%iXoV=q>?n;!Px%Tlwa`YHtE&gy0!BfBQbuwPHnuR~HTwz5w%52Q326dfK z$>{YL8VoudlItvZZ}b*0DG73s77NkXGF2<xB-!XNqN&4-Cuf5cKKpHSP!wMatX0BV z-9C;VeIP=$^Fx2Oeal!Y5+a%$FEp{t*P^4(!k%BBTiEjts}&CNCVq0QvTE@!Htv0{ zC>5HNUIdLLQv&7MV+ye5-k!uo=PLcJ_`nxBq(O^iY*851R`4m=5WRu=Qp;tI>_d@) zN`xPTD_FI&%q^%FYyXf}5gqvx^-JwxUWLB;q~g*Q<G6_8NL6}Mo2{;lzgCfbi)lQg zrWlq>;E8<rDr&or2fUHf;ox+|je1#Rmgy<J-_-+VLaF?Y@S>j7`S^a$R>f>n{oyd; zeCZgaJgK6HeA5^5fAIB|0d)jHx+t!}CBfa@o!~CP;b6ht-Q9yb1ed_U-5r8MaCZyt zZugM8cX!{u``*84nCVm2H9gh!RXwbS`*CO$RBW_-Q$UHRU1*)zI4Zt=gGES_bOA+Y zWdAEV^FPuOhk)X!|I!j!GowMJ87Ocrk7S=neL!$MjC!wW(c1U-I<{*TE#qKR8FV-E z?Y+FV*01`Gn+jot#+$FNYqu9SOk2(Tbd2Bz9%VQ~hL$&MlG^^vJ4<(Zga=fQ)Z|Dd z`Rw>{sl?(OT6up)_Ukg@j5nG(9=Lh^+}$DzZ|<!rdzP6qL#w&6#_X^^1+A@UIv>?R z^SpdE_NosI9h_Q2rPPRoUOI?81eE;x`;nGN`2dcf5&NfHL}=rvyBYcT0|Y(KykR0M z(zT3&mb&F-oR@ual+`P>Ruz0z$Z0#4Crh9U6E2}zHDr{4z(+LTS7gfME&7J^H%c!T z3>@(i6rIU>2Bjr74vIrSDKCG62obR>fD!rm8;S}>dAb;C`vT6x-{VHOxzvy@0-z;B z!6Wo*W<l5HJfr2hPuJ?rzr~98UcbFdzN+y?&HH4rUfFxMW8RoVkgqn;d(!CKXJRV; z#i1&nT34pY&)MbK)UE4%1MMBtA!o7x{GKk%XFc7;`6Df{VL{DKMZ=6^MpJt|U!~Hr z%BM1we{QO)95+T!U7+obkm{x87N~}>UQYeo7Od}Gt*LigkF<gQzWNsCMD*3#``2+2 zzR%j{Ct9BaBG{K5RCkoSj?kQ=OFzpsW|xhZuM{uKk0GrM0vs+yTd>GUa^o&|HzzMP zdpTReUu(}7e!Eq;hf4ZI>YY9{2p<Yw2%bD|J-7P3GFZU6zGg{q$Y-8t{xNP{{KnvX z?#HjuJ|)I+8%cP9d7^TvvZgv3fF)bTUe;@?igzi$Xjfa+`}#NKIq&J4ms-=`&`!N^ zn><q@cicORVHfw!slLq5>sD$u9AB$2WRM>b7Gc{I9UBPrrYaJ2Im@H51MdPP4Tx-< z#$7mOS3B3!8us0U_BaB#mnoIKZ*5o5do@=LC-UDS+zd97S9xN}lU$m1zX(49R0R&H z{kfNyzaqb^zd7V`x9Ox=<tN05LO4hr605X<pr`u<MRNmtBI*=IcTc@pct`b%H0pL6 z&7Dcny5)qb+ztqLNri?!xiH&A*i}pd%`GRR`kwXGacWU&bVtuqG*6w5ica-1&a|#Q z$a&2D9|vru-)DS#ejIqVDAYU&E&QA|RjT8>0SptmXY8C-7>6lkY%=v_r>NGp(^Bg( z>r_b#BfMD*YWC5Q)r`(Wv7%mAUr%3q&&_dWL?<JQ^w34No8R2&)y>84OSY*1r>(zD z2T5V7u-3q0p14Ze(%$wYQmY86ap@-!tkiS;NH7IrwUuY`S*VWxHNrE(48uNrIjYz$ zdbB=W(dx)&IQ$)|a3G0}`Aq$hi}=LfeQ_g$$nxBcev(i)gx02rF$&>ufqIW?Ntgel z<j=?!^11O#TK@B<sn2brYN}U!O^{AyIvH@&hr-|nn2y(I<er%<0lUhPQOYOU)x?^h zHu}`6&e3uB+l{K^r_pB4_xDnjn58gA@fWs}uTF>0<VRgl+nXc`Y2S*^(yHJJmeOkV z!}vP&>||ZW-)+w_3>a7Q<A0tV#*}%+n6?}@s+8tfo2rrhtRQ_aQ(MT%!mYG?JYSht z>qF36o0idkAS-K)?|i4MI9j?vd=>iMNle5^-|;hdIwlBoVqc`f_{__TcS%(J-ZMZa zHT#ax-y^!pGOOOtuG`qex%8v7l}K+n_WqvQMt49tqe8iz!jpbJ<iv$T(?kQ~Z){8r zZc(NFSw$mL5K-^jx7M=b<ce`@L&m^`@A`?m@~}C;%1SDWRUCWdyPv_oZRUq0`v!oZ z)r2<t-D)~>nZ29|5UvHb@O?C=GWi8_Rb))Q8cKWK`852<%=;^oSB3$lMGvcaUn5^~ z>XbO7ZO{64!jsf&>W2p0@EfpL=Gt|%FQZGJg3<T4F(TXBS4-y6udgy}GC`o)!lu`o zljpdcT!)d{!G06J{$rf^&?oB|YMaQu6PdZ&Sq@#K{RWumA~xBrUi)FrGOW>Y;0}<e z_@-G_fhsrSf#BqvcQ1zOPki`B-&?k9ES1t%xDWB*l~jb6wi=x}O32MoZ3R-PI7=!z zOO^qq2ny<VV(@-*wh+n7H*wSf+nj~xa)OsT^^c6T8(s4DgZPkfJKE$GJkXaTzV^J8 zs(`N6A|BXIa$0V@&~J18v4sF)Oa2!>sou9ArO)!sq?cb#jBH#-D`7emGg?i=ukm+U z{-!9nhs;i9zKP}AQdp**%R_Y@G`9bKsNK#1vstvk&+DvTLeA*XkQ=BUDEWL6w073; zJf_#N#qO!nZ*+R9=CZA)a@=W1D*&lafw17XybPYCo}tcfQxQ@u$lQufQg(-2swhb4 zmr=g{)H74P(s9fn-61}>!XZ=E6cK#O36>q^lP%nV6m;I}t6|u&hcUlG%?<7qDBQ8v zLswlT1#Id&O021=3C7}r*9%&k;20^y;)0y$%}!QzfPF<a<Cj;qg1$gL;iH)Y+{+AG zkXR7v_;+-hJjmu_LvP2WUF7^Q%b}Ehu%j_ZpmLOcC@exr%DH&0(y8@4hHW8#Y5KDh zeudEq)cc~SZU;%68mtHi6@G;O>fwh6-9qj?odCN><vpkP01vrJK18vVn1b`ow^zf- zsD->i9W0&PJAoCYR`!A1Qt3MaydSAn?>iTT+?5z3d`|sMz!iqCV5%&tzqIz(e~+?# z$A$M}7w)C9`Hvs!!9;&^pMK*+_#lh|rB?od+!lQ|;X-=!Q<_Nc<e=h1VL2G9^aHsG zp>gVk^lW}NC)G<a09olAm;tC8iL`C-#k0PKZYuT!=yCa|pw2+IMahoFm)HhyyNBZm z*@(-zu!)|k52OLrDB6{Qv{#&L&KxDLeWRRgi^pwT)KDuI0@^O6Nk^d;RTjlZFsYHp zwrxv}Ckc9$yq<||Hoaa}+nm5iQq*^dXC@jB%i1#FIrUbuYJPbc(CqGrj{Gc5s8d4? zwl5TZ$Yg>eyqG}sK~If9OoPNR-3cjFmy39z3|MFbw##}z%Fy?}2bli`9&x8?YUo_> zp!?!eaN-Ws)RaNu9BYvp;UBV{5C`dQMBi9G<6@HbzpHH!gP}H|(Kk-Emx{qm=n?*1 z#P-Co))NoxLsP7uiXGHk3`w;*q62l%1uceytUqf>{~xU}hltN#)?EI-wD#+>)`n8A zsxR`%U(zz#@Wa5hfucPr)g~eJsB%%z;<R9_?NonHYfc-XX}b3xG$69exhh7i*l0hw zOKJ^K*SN19lew3&<Cb^~JbnjX%jeSs(AO9`%vW1-RY7(A{))CLh}~pUYN`<E7xKE0 zw9L5#po@<36xOn;;JQ0v{U<@I3LI|s_|aLqpyF|A?*#zc$i%pUb+KOI-lrj#isX7E ze;v@k<jZdByv(wMFrx|+$SjvC8xoqO<3?wr>c{-~7XZ>);Kr=Cq%_yWZKa<h0GMgL zq3V9CspJmP)c+|$xh>?B`-Jj_|CC|3>O6odac%|dpM4rICpXMPS<M#OV15{(ETM7R zyv#PG@P{>z`InYA{9gYfGlD>z7_6wgFYF4RBgTLrN3}(j?$A*dES>#t4#BwN0k!FQ zlz$fOIRUW{RrX;32^S&clXu&+hq(W-s+K6dKhzJhdlQ&l4~OI=EFntxoWil76Li53 z>P31712tAt2-JGX75@=Kl-B#{>nC#fqY5I>xF8H0ZI9|@7vw<x&7oOJp*jrz)uBTi z7PN$MuZUNI75|fR8gg%7Gt~cFue@yDbDp>>M71($yAdA-a|o#-^?)I5`cU}qC!|Ml zn3HjQ1+_Xr@(2AJ2WBR1E0(GmQ{+PjAd&0}H^S%i%l|XBbZ`&G!^B#MA@Z%nB#$`V zUMi(12)+&<Pfd80N9gK;m0y#HhOOV-94vUy=NRJV?hgOG7@HKkI*)hijUs<dk{^RB z((>i>Ofg;t{C!2r_j_C8D;bbfJF!3kp`DVPN7>{$8j}I?-_(BfboIPxoAohBKN4M> zSHDjTFiFiaK{ym{e;#hkK1i}}<58NQzaI6fP)B!@Bi^Vu*fHpX+GVvNkerF3^KQzH zEhs~6k<$h-`0cHpV`<)L8YIQ^#)K4uxZ{rj!oLCkkn1r|L?+a~J3kFM9rMu8`O6ho zd^jU68wwDADw@BLCI0NxXuFEQC-TRCtV$o^g^Gj!ke}?01#fA&3YDfE#s6`5!j;;S zAVZ+sN{j(bpOx`n(yLVYpVFI=dBCW_@YVajPaW^_;k6lc|I2G9FLPQh!M{89zG0uf zY$se?_x5mZC6-A4^A>F1X+iE;y5fIWnL5bHDm<hnF%M&WxR7bs;<yWpQ!z4|*MDz< z34a|7L5u%%FYy<NptsXMGv^-y%?(<9A3T4|{VtOL07(a3P&yrUiNYJbfx3EzZ^}_7 zZG<U^U@gK`>A(4AoAro!RoU~%eQQ;^*1Z;aOafsn-S`>TfOD7ghUNVvdoFn~eC6ev z8Oh4C<|DT8EAzxOvza%R+yB@-b26J&fzpxkmK83>`?hb3V7XG~Kwl>L6~>iEHkR2y zo>t4HY)egwI>7vBCtA}i*A#xgqJbZ6>1^G4aiy(A5mP;qZiT9@;_XJcN2~sqHG9?P zbSz)TnJaZo39nP9j@{H+)!M9DeZ~E#n&yGF5K=TVgC-WHhHyiZwV6+K=~QFFeKrx< zf9f<8bHN8l0=NrrA`%rrXrOEf8=I;!3Kb_^j^f?>Z>jx>)ho@C^<_&ion(e)^11gm z_E2}>H`c`(jhx!yJkXtp+Vj?15rA5T4Zgtf8cdXtj9;ZOZzgm0y(nHY7VEJkx#}mi zwm{dp6`<$YGjJ>H(|F{z?nR8t3j3+qn_Xt)%6MsW!Dei=UlP}%Vx#aSEic<8^GTo0 z*&=(O#e7ej;kiOb<c1hOa@!h8+r$}1dwg>uXlrD7Pg8%J)bDC%eQtC>ou(F8@ieSP z1icaPs_?59H{vfetO1IQ<w2#GnhQ2R?6Xdo*=3;#+*tR76tIQ@u&rBXqq0DMDJtX; zc@{v8N5Sxg=<5o*OlE@@<Es5db8%Tum=~_|v3TGz5qOh<otrC%e<44lez$LriGp-~ zCwh30#+bK0{0=!wN1Dfsdu8f9D%-~3b2ve4I(h!*-Op^&b6Rn-W8@5?xhH9lafYTl zuvB(mR;Dy@-I5=J%*Tl^Qv-$TD*&L4AU3tzT1!eUl0<ivf#2HFkhJm}oG;?DHe-CE zm=6^yY}L?X0J?;%p=bQH@P+ic`1tZgn}NujWKWEw0{Rr<Rn*VIBl;l<$AlD;Z?3!T zfX_S*L{+FfS=AU%JBpGEat<Zwx%rYpNR9JL7gEae-K;09sTWfD&Y&Ge$e;zqr-**c zzMTo5>kskq5fVy^F%2>CCjje+L3aT{g_gE1XG|eSQ(}2829p?X<z4#f7hcQ{VLaLg z3Xsw3`{5oSPl$N&zDkey`G4(AX;8rD^Gztp0e!V#ef_H1n<jlC_EH#YBUk)Hy?FT` zP3kG^dzq-31>MrGIL!)G%*SFk18YNR9)uP*-2b!i1<ja?g-U4yz8{2R(^Kg+2R*(k zch_HR<xW(y1Cq#1;0q~LX{2C$mhA37=?*<UaFLni!&+0AhoF66>6|%T6O!zD&JFw~ zDO?juh(0LcGfQIDL#ODUC<f>?1|{F&-H61VAcfXwCy8~Cf==#6c$?85TroHj%`1;{ z3lFf)Dn>d*x+2}1J6_8aRu7@aQLIvaO)SR{{bjvYlhvSd+(|X`TYe(?memj15xZw9 zsxS!90p?cfGkFFy;w~EcQv}-=Qi>g{s=8ghY}pa4IC1$@%K=gKh>XRiGDcN_g9c3w zbm~zoX%?FL^{6wD+5SEvt!WARHVpkIkQ@H5q2=HP>hgbVsd`kZ6^mvU^m35yj5cb_ zn@pw^xS;exeOeN;Y{A+g+M>Cf2F{)B0u!sLv|L*6yFbu{vxhOESraHu!;Q*``<a_$ zi?O^*2d3SF)kJQ!lkx#XJ#XP^InQ5Spzf#+?^>AujPr)33O(~`hUlIe=RAK}4PE=) z@#FG&_17lb;$*X&qtvWZ05|z0oUZPI+=4AjW#QCdQ)GLO-PyhRa=`Y9qd{fF2%ii$ z!H>oLQiE6igA=W}`UXdPvbg<Z&cl@6O~Uxa+5@FLF?ftD-X)*r0Ez;fi3-C}9xd4l zx4c+T>>^t6wsJwHAzf=IT5;E@<?;dWIoFN^y5f@Wm=sgox=A*o3i&b1Wpv7-lvUIB z=DD2N`8R`2jchg4TtCU8Xo5^N{n6`YV5`+jPLDw8%oM%zt@`D(cjIQ)D1*YrADupc zp3`K=hM7^S3(lT)Wm8eoZOW6j{ylz&vGtsc3zOI6-F_p-)~t@VUrU%HTF8o0`opLX zbtLtSzUqelQOdE)VD%`lEYs6o!^!$m9F7uLttP#lvsyD!*7-Ruv-v4CeKR`=go;&V zXPWs7w{>{flXo?cH!_f?IGeYkA{rG$HZv2{avAm3by=q2WXZ^tJc<<4@0JNmO?Sz* zm@`c47L-WN;I__m1C{)2se1NMd4p==lP1!#(>6`^K}Yh$se(WQyz}(f^_TpJgYQk( zfWik$t+=*Ccgq97E&&OfJYu6?r#BNE<!;{0#q7iDF&SotW@y%v!cxkSU}%0g>+?cG z=r`S~gCW(Pc~zsPg0-0j59jI1d-xI2c9`dkRbfTqCWA52gTP8I?e=SX&j|<XFog<6 zfi$b7d&5*U_p#6$;mOyHFIThtwymb7=POpWHe*g*$`J`0GY^8dP!!|{K}eK>4G`jJ zCQq}EYb<TUI|_!Mw`hzpK<UCvrEsxFQ0LsS?v3KR>mG&UH`Wa0<?EdeJ~Y0mPi{#G z)a1I9x|Udxq$4NFKDP$Ejq{U9S;9#-E$xl?f&*mc@44r*!DayHh5gG??DAh$rY}O} zdHsM62DA3-T59^I$@&NRJBo>VKGA_ne-6wHYOnU|^-<c~tf{=<K-7>y2$l$B5f0f{ z<f_N19u8VHHZA)<B(c;x!mZn7L0diwzN)AN{Vkg(@_o}|hSrbAadP;<0@TuPysGE) zh2n3xY}L?vS;%ixR8?-z50%vchIX?WuoxPP!64D<=54q^OS+X6A54F-Uip(VFmEM9 zhV~gNLiuKWoz=!p?L-adGSlKRvk`gWt7K33l<1Ld-65;Kkdj!sF6Fr!j*rh8HBPIV zC&`3=D!bctZxB#}HTu>?H*3X1<>V@j8dB*Y7oBFWg-XtgkM+DF*I&#)Nk_&Ys;gn1 z$#2^#FI>zZ4<O@^nqMBl5#5SC#!kf8^n>a$%Cf*+Z0jmHDZes_ovE&<B|97EMsh;f zj&KZN@2liHg9VlVpHvmM>m02auD+ifUTj^eL~Rh={P+2}refGcdMUfSYB2-C337lh zJV>n)qdKGJ9t-T{(TGhz?d-<XZ-=>H{rD&N1>ZdG)$v4&q9D-Up+$<qNYVK|)4pOS z5z&@W6JF}ms@fJ*i}~hV;b4j<;n41sc_E8W?v+^4?q5W{>6BTgd)5tVZUlsXzJi+5 zV@O#*Qn7nT*RE6fjF|DOf^m^zyxo1W=IesMy<zn`?Ta4=7blM^ycunVi^DzOR<mYR zL|NlzWFj4u%r;}WA|2#Lhjh;K{jqbG^97h)tLyn-C|iY9QAt}+b$;oUe5YoT)hN1E z1e=AOtv9fduL$#S@D7=76A$+PEI{yId6*wXm_Nri$Ou>0V<QmCWJIH{ji(q#{<k`( zDgxxs?_c@Yh!Q;@z&??>Y3}aTv@Lh(b36WmX1Qt45m>#MyoV2a6n7nuXF9X&8MU@P z`W(TzGqS4Cc)!gqAPXwPtYg*^kH05XHE-@zz?_8%HkD`RdF$Z#_;7~Ve{ycD<Y;BV zT2Rf_nG>@QF-&Mp&wD#3bn=c^!vnaM37xV*D9FPmZ&QwH{r1H3K&2+5FWMP4GDlXW zj#=Fl_~om`V+D-eAnsP1we+IfHBK+9cWm&HfyOx|%+Z;$g`#EOZ+uTJ*i?J5f)uMH zl8EFi<lZh52EDz|7ucXd-4igdG`o*9%wv6wL0n`A$IH+PhI#E@N-=pzs8GB4Jij8P z)NCa#B&ZpO$+gx_ey<^!cim}wy={C{9BA`M`NT4HRx5f}@-^&$Vk!6_%L8=u#a1`@ zY*e#YqxnlE#)a4LU|}LQaY8nj02#S?5$o8=-e7$<vI3Wv4PlJY;ZCSZ)y8UF)yDLs zeV->Y{l!L&!y|hs)N3Hn0=L*pI1hO6w@#gY-bL<VdMEv*u>zAo`b9<e7;$m|ud06R z=P)Aju*yxQN^90MqE2A@>_sWzfeN(RPRv7&=IO@UXGb45Tiezx$Tc4MnsOMyXFtBX z4M1M3^UIvO+Pu2WlgiCmO&4yOD_ANC(?aF(%dyIA>(>XqXzL8l1^*SD_H`)+O*aAE zp;epS^piZ;2Zmj{zMa)1SvPf!k#X8;jARLJI1lD+tVQU=6NrO#d!8m{VR03#GU!a? zO^=}iiiPj@zn@;?)79tH?=K<6hH(_ZCWQpaT9%(`btZ8<)R-EHXTkCP`B5Fm39L$5 zVtjKNICqm~Ao7DHl)c?plEj#gGzR=~&)`3kFv)QKNL=D?ax4arj4%MR+;w2{gDvs0 z{1!M{*{;j(u`{X*r|F0zF?ZZ&zi?pObE!8Tu%XN+RwtT}O*W8^s@|$K0V>G7tWUVV zp5un@FH2=qSkp65_#7_<VH0~pJ;sv@P<^SB7jHrc73CtN+Phlma+ujn8O*tiEV7Kr zob@HTt59TeCjRNqPa+Vc%22dO4@(3aBpA`?`&R7`$6HSYEe6l0Ihaw@rZ+k5<0uH8 zNWqW9)4#Zubj*~gN4#$MGmy<G|L3@T<k31GeUD^R!R=y4mX>dA9Hy_nM=dkH&_Z4J zL0pdPxf*XqvUc1dSf~Gsh;sXd&9K-}kw5hmu^W2BUfvJQKO^G`a2EYkrz#hfD%I`T zxS>ZDYe>$Mw)u*?&MB)k6o^7k_!qdlRta8bVdXnH{wi_53ca|QG-MctK7rebbkYn* z#MrS!T@zREA+;ktHU`hz%#WB2bOQb~`ht0b^Ynu)=T~s3`OO55@n2BvqC%P?vQAXj zXqiPYBdrFv(+poI)CMMYU9YOEjwAdD)cTI*Sfl&+pgJz0OE1hQPO*mugvb{QTD6!> z36o5ZeLg1R$tkz+`~}Mm#?zmU#dG-Z354;d-7QO)x!eLiNNz$IFNqGNETu{5Kq`o2 z|4`+mG*#*58FG?Lie}mHE-BW75)65%*BwriS_KyjdMW>R1tA!Qzn#lgZ!Gts2X-BI zeJb<Y%#!kmG;FLO;XGVbSSZOn4#O55--Gomzf?8HJ0!lE&u(5twDekWSiS?WUz}0E zYy(`)_dfY{u+KPI*KWBd6RG8_w@#nh1o3w#`ofHOvVJsrq8AL#jAT+`KsjRe=Z6;V zu`EaX3Y-h{&h>&7C-nP#;9@Ol@0)_R?mlDMq}iNtx3}cmvA~s=oB=(jI^fO9OeW|v zHRxLzQk^`%SY~I+&8@jPNwg?8Sl!>EM;1q<(ot6FcU`Yb+d&rrm-@gh59lvYhWzSB zS(K6)-{2o7OBMy=pPK#|0CL0LmJ+CBpl$18;R}*?{I@iyl%rH8v93br;$3T7TNc3f z_8LzZr>Pd2ZS$YC{^r~HdU%cksobNsv$D`@pnlUc%mP{paTs^S_T*`2Ko2S~j*Kl@ zq)-nr939DVBfpWKf0`%zY0W059Cphlh{eN+pJ;UzQ^2k(r}W5!L*v-obIHCiW&KWO zRocGUL$PJzI2`8Bt<|RN(3M%PHuo~IT(CVxZ8?tlMx$I|?S~ostmZ%adyO~$<Du|{ zfIsS+y04W^m~&fcs)v={Pr~8^w*@~X{RD|3xvA@unxd3+z<2N)JTSpP{QZ&a;(MVg zXk<?@Hpnp%<f-=8@mBN*icRcY2I)@M$WrVXq)Z;2lY4N>Q;kilAre!4zpd-G4Dsd% zn5)bZF>2Bx_;AvO;-@;0THAG+G8vf8B(ZeEhojQ{yhx18EM@&m!l*$3jfv2i5c^i_ zNZYm@yC5}&iFPc*Ta#)9eX*J~1=yBo;6c4*_5ndpm1AFtOD|vC`H*r9?>8)pdkGpx z^-2KeXv;lgiBVC;*y2oPIlQ_fPhTO&{Ib`Em7ia*$k!32N}AO5lK`z36#5A67xJl9 zFJ!B;&qfVJ1%x9ycYMvIr70Z)$R19&=tl|P{&vfZU%%$8Z(X7_YWOdZ=-X*zP@x|L zzz@MoS9D0%1;p6>U7t17t4W58dV8$QS3^V7Oi#gPDX>%#*f3O(8lq|ae7s7B5L%4m zHPJNw$l<8$_T_<ZcLP+^W3b&%P+BjP2IEfnj4vN;fMxs~SUC!UEIY+bhVZ8~`z~%u z?7~2cMX0yw3v27gFP;%0Yv0`~LFMs*wSzs1v~A<W|Ao~H1|<nX5+SOp={<CPdUPCO zz_S{lv7+N+;P%)H<CQ6`35#J1cCMol8XpX>BM#$Xe%2g!Gj%dWl)?QLRxSxDQ&{*3 zTqz%mx+``rkZfxTTE<PCmU<2R`wAolXnqN%Z|G&R-6c>X=Ud3ZwU8!}5Jj;KjKW7; z$ljkG9lZKTl!n0;NU9_$@X<?=J|;reD#wO^k7dO7eAa@TA^>X?z(<ep{eII+Qqv0c zLx!82QNzEs&mgqdpd^YUuwDq?T)1%=k2xX|X*HxBFWFzZ@D2*ZboUF1I$}bw<Y#8c z4WbwD1++$i@Bik3p!_#aH)derjlai%&^t>vZVE9LA?%sZx`mxLIV}%y7=C&MoEVUp zSf+m4h+jP_0yGU#M+0%dUu3WqLZS$<ugsp8@tV325)^{ypY1XfT)lttqY~|v3q~TE z6vQZ<>Y{egSA)D``0j>RHbhjM=<0Xh+zACDO&`p{WZ7=oT}v+vBBdqh&Y%}Y+K5=G zj?btRfQWO;@{|)e3i8fk9Zwp1b&evfDCO`oSfVA_IPWIvcwQ3XNKg<UyC@lA-1SsX z%t;qg1`z7iOzVZzc2&)!^UN!B)|;Tr(PCTY(O38wAEuU7hgW(zoI*9)V8}pkzN%kC z)#f*ss0MT$Hs8mr5*AKeoc0N`Idm-FuOJLPZ6V^r&E-;=3;H=J%0;FK-a%F<qBA^| zPxWV83XF6L67$YTnsNqoO<*cPZCxHeQ>s`CcFGCIkD~S4phFosgmhZ8n`Y<=1?)L| z$_J$#o~IwO`vq^!t=nQ~CZ4qwXOn)H*$p_#{~XM{0c$IS>=3-avF{5b7()L}oD#dZ zihqH#YZhPIa?t%bu8%+9+KBUBZG3+pOMVUB)&+W#a2M4s`k|>+quVV`6rb*?sWr9x zKF%Z>$>)AIeAW&kUy2X|@RKgXr2em#@_S$S@bO#myKPYe{|{cAG9);GPagK}_JvNj zv@@S5&d<oco#;d~60}5(`OFXshoH-RIl|BNfuY;Ph_qxheaX2OK=2Ljy_9uqR<@x` zQQqOAR4#RR*BR`#JArF{;+n_&;_;<XHsTza?>B(OL!2d(AJd?v@wR6TYezfEftd<F zl%HNYN-h5U6z#5ux?5n-&*N5a886C~$&`|a@|;IQEByv^Kz%z$a11zgdpEn^@b?Wa zi_@SuY#kE3wHx2%X;5CUWN0y6L~M(^m=5&IL7TWpy@ZMqeF9ba@}QnEo8S{PQg>0$ z!#KDe+s1Wk5`Cf+fX)wQCA1>zY?F2~#y_UIuYOqR*OMMkMsI+YjgWvX>G&CgvNsqy zVkFA6_=m|!bo6q|nKv7k$muP1a-vw1mLpYWAndhmRQ|8b1Hu)ZmM0gt<hKqg{35%! z^}6i!H(hhwRt2Jfj|-R|{7Hu*5&IUu1cQ+?T!K}O?(SPgmZj1@|2?D1da`10jEPI0 z-exnwf7fw>MDVb{T|e6Ry`Rf&K<F4gXiqr(+cqFRjMe6(-pD8gP-!WXyXlR00~dk; z+`H+W$Cso|MB783!ALAn;WA4gE1gOoR(0g(;NwlqkdKL-P=Nh=SlsjTn=4a!HDHCj zZ3F50)7Pny{o{!Q?Cg?Vb&2KIbZ76sx$h5Efqo)3y%5G)RzF|7`n$S^MAHdbw%nnZ zFlT>`+^#-9i8}2sMj9qdWUHS3EXGFo$#9~-tDTdR2bmW<D9CYq*R~>#=lKdtxSlL{ zF`JWuw%AnZmP?d(V*9?M==_w~hR#3;yniA}9o6HqAMGMq3keO5B?)WMlJs_i&g-{Y zhD1s$;c{qYq#XF0i0yY-b;LhQrW4RkDm`aCaTu<SIl3RgZPZXPd0CkI&hb=}pX9-+ zaGoZiHc5rM;U{y9nvmEx?5-Y5#h@oW7<BXPTv)4@VW>7n`-+I}^9MIIj>CTC#tM?^ zY>{No+QRPHSnNiVR~3JKs3n`BJfsuy%{sDFVlrF2RK4r4Od<O*3cilUy(8X`B@tXD z$BFu)Gi1R$p`f7TvgAQ%J@Tt`i<U?}h!=rvEft{2fs3&JFb1WL|InSlG)<MWP5#6% ziEj7nSLh2@A8V3!%&^B%>%-ajtEdM4S2hodn(QS_DN7xu<sz}`^_>fbeQk=K=zba@ z8rqH<)n)6E_q!F^ESq1K`$rTi1v4trx;Px87Qm=224MQLTS_+l>QzN!9ObI^Fae9l zWUsZGr%sTs70crx%V$^58#&5T__q%AFP~fRI(RJ~cqoTH&5rhWRzp2Pji5^~30DSz z><PmdXcFjMSnBCuTmz^{?vtam5ds(4s&rQsIVc!F6+KY-EBWxKNGT8$8hn~5=ZO2w zH`g2a7OtyAh=xB|$1`^~a9a_`H_kpdTG&1(<E68s?(gz|i`wdi)_zOOuPN*a9D0<) zvJSKQt=A`H$<M*AlVj}VwW!rd?@XEGQ+8AKdL03wSO?EYE~t0%?jiO-H%n}N9e$CM zgO3&i3j3qkiq4&;y`YhxG-=PYn{Bqi=m}eiEKMG)K8cwPPKIAxsFd{9m);aE?#E0b z&yv05^9uG3y(6AJz#Xy&5)hGWOPxPFm{HAYKrLbQlzfqPrC_EVHdsiK(@*JA8NnLo zJK7D3rV<lLmMnR*rPR0QWk$-;O3T4(`?WZ7mk_T~U&AruK5k<*wzjAA+>(WxMVQr3 zXCh8ybwd8b^ojwF;Cg+@uc&OyhN7{{V!VTQ-d>)I;HNo<x0>SmP(@eOMXMn!?ez0K z_68ne6)B4SaRq~H(cnP~-^8Jv%e2coWbnR@`TrMO^nZsbEQ@mg^@>U`EfAY2v@Qn0 zMW0Cp{WI$SdqQHmDOfl0Wf+Ap;Zxb;bqJ&%Zk!0!L)f$MJt!YB*H2x?akmbSu9;CH z*(d%lLM8C{@-Ca;fXX8_0h&v^D*=D+552};TN@e|K}PU|*FU$0KF)6sXIO<N_vU#m zPV5;<i@0m@p(+8!_ng=rPvtDG?*p1dHV-1dr{ob5>ByuSi_jWX_j#VEicCsKHiY+% z<C#)Gaf*a5U(KJRaqULcNS&7ws;i#({sS&rxlZ$A_OyjHV0Iwd!`Y@_l-saqpDu|- zIyv)ZyK6a8qlM%hM(9mX4h$?I#{K7<?y1|#ERNf{RN@UqQc5UtB%J)Qe<ruhGG)Mz zMvIKjLg|du%D7#q0d@2M`j&*B>^?X@SOGB45Pa3K-HQf6J^p=yHGQs&O|OX6T}B(f z&&Xbl_1icr@O8C!K^-qNQ?fRE&aT_;Tc(qpOL;)0JS2`ZODl{_*C0<OO&cSsLk-G; zZsRFK`$UULSAco4zY~nBsHbrRvT7=>C6uSgjV_@n3}lNPc?vRQlxva9Qip$>b#^69 zVcclZp_f+eb>4Ii?*=k3u|>UW+|Kl+79-x*j|G>~vm|K$#iBzhw}y!6C1iL|C3~Jt z0Md-T*!8~-`{w0WA%D8T^3Em68%|N{rh4uodv`+gDcle1?bx@TEA|sVpMU$-T@T|< zc<15P)k<_GQLz>Ct};|??zDE!p4!Wy48MH)IgCmXlSCeT3T_qJOT)e}%F!ZiW>1v` zWxmHM7*zbW_pHYg%0xiQ4k5)kf;fpotx=}B6kHJMnWTr&IxSt$CATVR#gTTBOvcd~ z+%~8~zIr8NA5*}9T+OEiDi8NN-O0SafQI&FONMEV9$)u}I<gW3*>D#h`p~yOdrgtL z7Xn*wCultZH6Dzmprdzrj6HN)D#A6PBq5`MH$9^Q14r|hU3;_?RZfR+QgUvI^S_)0 zzf6B)PsHZ@kfvI~n>UurU``IsFg0K7D{}<kCjB;*kTjaEPmsycFkV~PY|D=}hv-#W zEC{6aRCas>dJ6hI%G}*LRer9mQmp#L5X2+Q*cO=ijixuTS`h)bNhpnrm%M<LNNdkc z$s$b0$)-p^l!beCBi{k<oK+RtA^BjRR<pZjh%?~x{SW=O=2)A0m0x*wY+=;GvHbCd zMs8%P$B9>_C9(F1Ck#DGj502k^LVQJMaj2?7UsWeGvYXClDW2}l!~lc==jhXe#qTr zNAKw&)6jUxDWzg9uWLy(Xa|7GGliIq0xJq-;!43Ozf(cEpm!Q&NKx>J!NayNT%?4N zdWI+mwoMWc_^_@cMB9unWPj@zA5-|DnAK9abUjTwdiyEys++uKQuY~LfppW@k1X*| zemPZ9`5$v_2^I1=9E#DB2hQ&huKvPjiVoUnblPZtI1E5Ny^8F^(UBcjHW^UpfZSXt zx5Ld?wAZcAGSp{x<=N6S#TjX-)*MAr*mdd4_)DeByegUFp>6dl1aqzjrc=SzRO-r+ zwz5}1!&>$dl??f!eIqPP3pzl`1;OIEs%+uvs=yWFiCbSj<nqBietvM!>MMwuWK0V( z$_POkyD(OGy5umut|*zA(DB(4)*{++kx-kF)@1eZ=#d6`6Wc-GV7qSL0>H>>Od6>- z#$BcXyf5jkHnLK$FtS0~fDEluqFeKCssn;JGLqCzgyelhw|LXY7~WwZO%0el+wBsL zO1x>}$kjIsa2PhRgwJQNdLcdy0Fl)IR8r8P2td;?OG@_ul>&d)wO5-^-8sD9K`JMS zDEJPJjzg?c66xSuYkAGoDPw}FEFG(jW=iXj>xgEc@gwmaSv%6RYXj&CBJ#pzu_}z> zDq_}-`$Jv29~`C@c@I$SaZ1%N6xJqHsVb$|ELJgms@+v54OUFCiOUbmOQ2{1%e$)W z*W$@ZaubbgqobCsD4|a;X1CDNRl7Bj)KWMDnp-Oj=Ontt+VBiImJnSz<Lj!Xe4^Ca zL&)?kMjC(oG|ql7dLc=7fqMd`BJL-%8vTW|9hr~4lq9~jheU>Z==Ib3Rds@l^+-0# zz4Vj8-&lLR6R=b`EQ;sze85=N``?Ir?vZ*JYNu%F)FmrU2)(m&H+HE$$`v}dI4Y{e zLd&J%)-(sbvGr%PoU}ql=~e?-X%p$WrS)3l8o>ahik5SA1~+=sjLGP36L&AZ3%<n- zHQ7THG70#uuvZ_=ezC&0z7IMCAnZIer&vBCN_#7>L)u`dTaI;TsU84r=|&@mQQA&A z#0TPi6>KxwbV6^+G&yJ1PQZyAO?gw;G6dY4KXElcYy`flH$aUroJN4eep+qrFZCKD znq(j6h55lCgpED6+ao!>a6&LcwKmkKQ+(<{zJWRYV^->SW(o>5&i({3H7=wH#y119 zy!1SQ>X_(4sv4zuq+Fgo9@&+Vi(d6y@RgF3C-QzI16)^LdT@n8MyGJnS(S08+LoVr zKgt&KAF!MM)`W8p&)Lk{T!y#FO^ITX*mzq1&Ih-apC>@80goz*MNfg)pSNYR7;Yr5 z^B~{L0cQVUl?FAKYu#wQ?LG_!6+y>PZNiu(D%|UjVkHP3(d6X%Qf5u8KNH1ZoQeV8 zS4an0@3KKRkCHF(QMwcr{~~igA(EjCP-7n()JGDqwcb2sZx`D<nkj(UqUp0x{+m+& zT2FfhD!TGL!CToEzmt47h8y;1p*Ns<kC0LB39Z%3UujWki!3EUrYebe2IeGqji#i< ztSC5-&Ec;ea!z5xgSY1dx(CA!#a~-jTVrd-8<m6+-cMA6_MUuPZOrWBnnoL(n_MHM zt%_j!A+Nw(OD^g4Sj7Y{w9#Ps>P*_C_<2j;K2N632z%HQ0`Ol2gPhB4Xf3*+wO+Qy z_h+5}Vx^<H!|lvv;j662R})k_=(CWHCV&85yg7_xV_b11!>HP`|Fgk4N^>+>5%>7g zl_9)>(q>|H4(4u+q^5JS-k@G6n^E^nwW7vQx{DKh9aIrpw^Q|GhzX@sp#;c3YA`i3 zZQpqZCm%yQtlN@xYzm%8YToL_NwG^h`p7qX_W0<)%Q8vf=L=1BY;xZQ_ULMVi+MHz z9i&6*yl5(PNvl?Z+jS$4F9AqzWkHT*&h9L>8I;Zq{VcB|+Zo{N^!1Lc+_OuXJR@N1 zn5(6emHn0SG8{tuK67%tV}t(MGL{vW6vi9NHEs}X<gakVNL4`7_YDML>s6ReaK7$Q z-77<~Y~8p#MiZ2*osxKp7LBY}IYL2Mvm6P^*q;o)hBu&mk)Dr_xE?nGHoD&=W^=V- zy52y`x8e0xakHtq3rRKsREu+fM5a06hk3s|Jse%CF?X3Jf~on3IMoG)iP6X7SA|pU zLHK?0A-vhXIAgIEQr=;1N$F6pz{odVI<F{G+(#!iGqh=#83dsEr)C7NhE^X+B`ru$ zLpu~<b{*(-e+J9i=6A`N$kjb8llmK`08oN=^%KLZ<fdfxR|Hv35C#4JNHW``s{RW9 z?+?8ol4>I+!ZU?Y)wwf=)~_qAw=24VW*B1mIA1!g12s<}Ln$)<1~bEnn_<k{r^#b> zV7|o^LTJ1sPr<Nk%2w+GZ4W?5S(r|U=Va920r^d<YW-)6A}q02><g8}9QCfEuaLgT z&)3z3SYk(r$V$M|Dy9Jao;O;03+VVKyfEr58M^H7=29qwkeNu8;-6`(>>OJ20u$NY zzQJmWbm3xb%-$BzHOsJ{WC6lDAOo-%2=S7mqeqay2mVb+(R5$dbt}e#eL28X9sY8` zdqQ0G%204XPRr%b)KjUNac#tM$$CL~lKHjbCxn$T!ONGs!8yA_MgN>$WY+PeZwkVN zf;*^1%WqF~7l@0(#XNW;G~u(UAk(M&<<7djj}{E!7@4obsg#p2wQI;Ab12OA5Z=i< z>=uPyijAxk%zNC)(;Aw)C~&YcrNfe&i^$KlUrW=U946oMTZ6D=t-$ejAqT2xsI(d5 zgsHPQ@0asKhDYZB<?>%!3L<Bw#3FdD4hj>CbP_B|asj<Rx>IbI%w_d|G+W*>o9}tn zCFbA9+}O6ACtfp=o@If-xpgC7;Krh3V93wu(+d})HDlZ<Y#F12zEy^1!CIaNBGM@y z6{aKR7{BA4G$ITDj^mutsiK-M+3!(#^;h})JF30PaGYWxK(!uq#?!pu+@bE`zYVM^ zeJ48U9QpmzD|$b!^r@o(!hsM5RI8`bbW8y9XMljpc-k>2QtHE^%5sn_%Tq2jX5(gL zD>XkmaOK4d-HgE3tw!`#U<(d{UsPl$-P2znoY3V(wz_PpEeh*PDA69d&b+R~ST*vF zZ7A7q-9+pdnapluUkEIotFb-#LVFY4J<t8<wE8IJhMK~|8UF+sMjePErHQa+HA&4< zk+*xVEVjC8HQB*iu{(1?9dEtGyh(=fi0<>^AkDUG{DuT~xDMNCK@=(q4?R|QZEn{W zjgwz%86)@Px4DUSLAFcCMjlG%!N!Yw&f`u^cz!tvDlR}!0jBZZvkWUi2*W`0wx)nx zZlNMQy01&fa@>af`dwiWzD?yD!*7pHMWVP+839Ze=68qSGXYc>#i0~nEEAxaD)9Xv z7&+HBc&B<0dd@|xbtTpdnOCDM;!EZHs15B-K)zz0UNA&9Y`gF{KavDt<g6Ut%%`<g z#)>pxd=kC5%Fk!#M@j*>e9(?Ph+nR+i_c3!k+J$Om51iY-rwcO49y5e98;Obf)EIM zE|f+$@-{x@HG)YQf?u$_6HRW&$c=+utxI-_etw{~7_i%ycM9*0k32^*5Bw(w;&W|6 z_<QrusAV_8K({UpyLWU?7#E*nh}%1+JfrWsc~bD=Q7C*ZL7{swyo16&<J!!nr6>~c z*G_U1SJVy1wj_##CrnooF%-f?XbFM=uY-&5su|UmlfUVQZQ*|KW8xTTYyHr&q}@@7 z_fgr)z90W;uPTSl*%KU>Pb?!AOL%n3>s`p?O1wU|fERn)|J?Sp{aTY<`Bq?J+}ihD zftnXFlhEyaEk(Ysy*oA~^6{r8jFah@!|&Ydh4)2Agk<tv1r>x+`*vdlb=9Xg?by+} zTDQa>VG?7%dWJ;f4SoF`83#tp8^s|9fxz;|eJ>b%_!g>1_$@Eq3Y<F#rf}+a!#F>* zw(s<Smem&#+C2)Z>o?JTdRkXdB~=l0)&o%BD4xVAJmg1heIcc)xMI01yh?+G_Z(~? z%MyTxIk^TSqqV+Js&6UFd%+CTh4{wy+EePA52fR;rovunMjPj==)7UJnV`O6i?n(R z18d7><KC?{PzIH7FZ?1#AT6I(t<`|yWgeLnMRZ<dFevj2TFvd#Yrsr%xy?0zIm2qF z=O+%`QqDsat=m{&Rbw1*f?~0sjzPN--6oZsD`Uk-=k<O%hlQu8fBBGLX6Wy*`PTDi ziz$urCboIOUrmGb6atHS6F+_+?hNstJpQ>!0mZ`l{Jlo=jWhO>=p1P)Xa>&A*D@0W zs6|@bs1jv?#hBjvvwwuRvLLj-aG=-D3mD)sQ8&(=;@7#pGxoQ|xZWDd%FMT&bAMUn zNT=^9nfIb<D-taF1F8_~<S?-wALxVYj9sqYqrpKL-GAc=7@nh_OkAIIdRUjT&mP-p z9L_SKW5-$zd{>ivekIzMrC9s_Pt^c`K$(pQ&?pq3l38bzCTs&`OoveqV9SMB-`lAE zGgU+D|CXxZ=iPjm^G<<}#8hh)<Lzq)#Z)J4qerp)qwI-uWBq#OhMwS?vO^Y<)v(e& zoq%3G>vFLNI4Z$Yu|^J6sv?ns@R%!ARD!l_BB*Wlu)8N0hSc46qp8w!7{hn{@bRe( z4b~sFDqo`OiI<WAX(ETIn>lJUK1h#*v>LJP0Ojs=M8lW-f2|_45kZ*DUf=&{6`_jq z>{-S9&F!;{mogrxRfH^tPA{5OgJ#|*>GBh2)HjA`_e8uaj?{PE2QaX|J0BqsZF~Gd z7Xtr6p}>4N0H$<@q--}p6Y+Zw7fCNAv_Dfk7#u35v_Cj(9nwi!9a~wtme9AQ8lyo+ zB@l>gktl+0IP7$!;6zpMDo2$fIkr7f<|IjFV${QTmrQ!^G9Jk7V>WSe$LMA;{vDUi zpwxvCyDe&F?S8#;&8h9#6$IB@8$s4<b+dOEoO$t6yh?>@<Gy=rR$1zEaO^e6Fk4Kq ztODw#mpXA+70WO+13Ru9ioJk+>y<djbfwt@oja|%hQ+ObI_LMS$l5yXhY6~EnbGXV z-xQZjr|mo-6zDM@sB6R`?Ll*_@3zTjrnUe(5#PE!6@eF(ve4n?hYgvFs<)6a01+PF z%2j}FYiWxuV$Rcs`WqMZO?)L$eW%qh8$T$mW95vfp7|6)FUXt0eIthGh1s%=@R6^= zdihR0XG6PuN|HeHyq$yNUIK5T5LuvGG!BJgu!SL2S2ji6V!@y9k9lwy3DJZ*<XN!H z8Pvhru;W>7V1|XcEi9*QH(6Y)lx>eLA{P^K*5Rx*5}qBY%<tyU%|ute!{d!+5n8Rf ztmO^J!L9y2anI<sEoUhy$4AkNmg0KZ=%^Gd3EOr|lq|@fBrCS4GqNv8ccT(+w}*?+ zom>Vl=oa$kA_iHAW%7YF$3ei~l`RqJ!=;?`r6<^^;*qvv^}ORR10jcd$83qvw~=ZU z9+g!vH=-6PJfXS(Us)$wL^T(kEWKt|`4{N-7?Iu9yWG!kpi_J);BoWF67Dr&RTbR@ z*M6E;bOl@8<+j{-K`WD@x#<I7H{(>o25yifRu;HK(V*b5USdDOGtTY=&AQ_;y1wb7 z$%f<ixWC$~D%>%_ejLbQmnmT}Z_ug~tve`Ck~#@~MIr6Np9@@-WQk4eaNk;fnf-3u z*zsM;9qbDH5Yl^mZhkpLO3}YZPduB+)1<6#Ht|$;+NgAz5%(~FDpD%F8kTxUTFF+{ z#g_%2>b!JsJi#dQE+fzBK*<7EY>ppK53drXax`^cL5G3e_vd#kn+zPQA9_STluiXV z5q7Z-x4O1!WMEl!g$QaHhnd9YEqW9Dsh5cFF#&X9IC^=BJ*QX_FX8p~eShFkgcSZX z(4In+K}Nypd8i&UL6opa5kcLFo~7~+EF0o=!SKUB7CIxEC0n*Yrh{+N4E-X<nZmeN zO|9YX@WORRzT$!JSgA}!fl|7ie|kc=K;Gq>eg>f&VF`xhz|KWF>9RiMY&0QehWB&Z zqg~~b4|pl-HV`!Q^N%z0RZ<ER!>0OM#Vt(Z#@@s79vR^{^3aJA#<N0+4a4vlfLp8# z?sU#eyNR9k3eg*hH!~d2d93J5{uvW?nF6YD`@DYO2kwxgXVkiQ>qqK)XER1+Izy%+ zRZwZ{E<BOvfJfVZI=&?PV3!EbPuFr8xE{jp=*r~xJj|<RNF74t8wah1{Q;2J{^~fj z0*ppVy;yu%oEfiGHNuNBFi;qeG|;_SKmj)+rfQb^Jl^^TQ*c5gdpr^XqZIGov%>Z2 z;VTxpUPo3{XwqLHtw=HV)0G*H<yH)=vnDxPSRCls==<1?j`?h>3)?kI#Tw{<GhzN3 z#QM^smDvFjsCpsZ9CSe0!gWkk3cOw9yatg~g*H!R??ANpdxNwYgAzSOe`WcyJ8*fc zIp#-iXL%Rzm3-myqs1aXbsSKOVy?!Du%l;>X!m@GNM(Ve?spN^z74Z!srb81K@iLD zw!S~?y<u@g#U`mD5FuBByZ3eZPoQsz588jmao3!>wrIGAe~G`VV;-;<Bs1c0kwjdx z%GWwF8J}{F<#FlLVVfVGr;e!)@+`$Rq9AFX1)<Iz0{Mf!+zP<ygtq^*=b|CtKGmGg zLQXn^)F2+s=*b#%A`!@G+rmv=-TdBTr<7<>sbOd9X_DO4{b0p#N>I?^vbjL)$G~uK zM?aQuaU9o`jrA^E*hxYx!#N}nHjlu9b--z-N;(a~)8ON7x$-nEe64mW5Tmv=Sgi_i z{aoM)8!!|1Yv$HO%ml_AvbLP&Fd~#Gv#{HSQ3LKLfJ8E#x-R3b``(VC5jZDjx2mWb zG1c$XJt_RA19&_3&?MaQirW~Cj3QRf0iBrR?dl0xg)~>l`pBm%p+$6+K<OQen>?pH zokbE_4>WpMe_vAxS}?zy{KMhLTCZff8qH%VkSgXf>N-w8Wl8Mj`J0z(M7i&UnuK2B z6b0O7$Q3YuPkIwtjnI;T1x=+4YR8g*<jC|-ug82BQZR;MS4@3Ja3LI@O0geQVzrx4 zN#Vw8E$dl_%A`hdmU*4nSw(^6fLkjo_a63$Vg<RGQDCW!W9Im=Ye*PA`!C0n$TYt) z+%lkvmvLk0fJ{*REO#xAi&7Bam}irV#E*?()CY%G@_}J!V<gf6wNxMNgGtqYX4=vQ zLK}w%>j#9OpM|t*)HYPs6EKm4Ll&c1N0j_B$E|!1AFGbDk)wN|ZBnuIjW(E36pEQb zPz1468l71sWCzE_Ws6?g1TE*jYCT%yChauetkTr(npu-AhOtMUu_~)=)3_rOw@gSH z`IDjyI+drgHBYM(&4W|GQa!$UZIQiSUiMmb+~Do6iDs)-0flH^B%ley+`0EUZc-Mw z0(}LmCa6?o(5CDppmtyPIHdR`#?nsHhVz?6t1VwW$@uDzc9kP?S}}L<tB~?9J2a>W zEEaR0{k&%1CAA&@!pChH&fo%;-%V7XehH^vQ12FKS*)-TW9E-Fa@fwR2>rM_ExQhg z$9X%6SH#v8ymP3V?`2V(v$2}fEHen%xZ4PJSJhp*fmJ$#{5iDjhmA$WPK>8@n8$*O zpk#_t$~DUWu=$>B9aVZ9`g>*8;FHQHH@WDcSC<P4)nw1Hw0#+JB@bwK%vyG<A2WKd z5c%ZGdeXn#(H9o{jp7CiVUr2|7hCTb9qIFif5w<-Vw)4&=0uZ;(ZR&FZBJ}ZY}>YN z+dZ+fJ>TE|?4CWlulk&RaX)ueJyqSGs;lnn0qScw_#YD4)6FZ<%qsy{g3!zZp9yit z?63n0kUS3x<xkjFH8HeqsF#59J1<hEf93)5UV)=c*fGN&7)_tN8^bmitQH7&3AJV9 z;ZrR_jeyL9ADyY>IFMB$KkNX*OL>@Ns-PdnFRj4{gk)kwJqz>E0J6znm4lU`?DuJ; zdm|&Y`#h9zmT=f4Oh$!VLGqt-hQl9kCx3XuKg@`?V<Zkg744`lLNkr{8w!Wsao~b! z3?+_w)TFc315{JLCg{ewXMUcw+)-CBhaGDhlf!h+1kj{K_lBPf?jXeKeYX^*MiUU; z<!MaZ$|{WkW4wKH7B*?+7#mzv5ez0=GfG$9o>g`1hc(Jp)EBE7F01<F{+-mPH(>Ud z;zwnqTvugf9{Cm3**_=Xt&|<J5aNyfKtVS0EzjeJ!M$P6wD8Ao3YY8ovD6~ZyM-mA zrF3=VsZrLAwi~tIjdjP>5lPm=h7Hs$WAu9V&tQN#e)+{Ej{XHT#Cag+Vu$hVbW7LR ztMutxJ%weFx$RGzG*!Kb@}&_kg22|mIKXL?u$cFRw!stBzg7pS<sthdkcg(X_S)7# zHyZ*YJ4Hn(9>H_`-{iEWet*9Mqr7mk@qxO!rVXFf3iY2B^AYTi#28?MB?#b8G`a2q z`={P0b^RR9NwDCUt^%$mOc6eqJkb;gRvH`(2QxITd=$G|)c&b+1=V~xYbPV>HZ{+; zIx+ra;_T`W*K?}l_Up$(l3HvmE4tM;#!-ONqFSudnw9x2DB)|D#gpOHpvgu*PMoa< zou@*`VT)M53*3~q{hdor4({Sj5ev^oSdPA|xbrMbB`06qt_!IPcfhDQ?Oi>G-tLmM zg)tMd%B;T;IC*d<7g4?*F)A|~h*7qQ-@^pupdNrfu;#FO8S^>Reu*5*LtK)?S~wCe z+l0Z6T51EXSSNBt2KpP3#=w;*#98uVp(UqcVYyZ<L2DH)y6jG>nUQjK*4nbt3pYqK z5tS=vlXjF&rY0TJfJ&_?NZ@=G;i|f6=QA{kVXqA(^<@kz?gV^Hca`<sC>02XN%Y#P zT7+LNk{p@CKNiT<eyNeR&D>F^4^OA_agd$dR+hd`-5s8`85l<#q4=%`AsF;#mmyc( zFUFF0BM6L)?M}t?l_}_=0LgwGBE`!3Y140o2?^K5l>H*)PXk>F`=sb}9Mb?L<uNvV zUSEDT1{zaT87AKM3+=J4vHU7)@Sv@Vm8^Kkkl6wICoz_N-~wn7Qs&VKe`p4Oq$VWS zlcLEA%Pe(OKaDpkB^FKRfW2f>t?=RI@0Rr_{N4L|qd6+@zDIuCn}e?;6*;)Ka`IQ1 z+E8UjU}rh8$NNn*UEtH4<WlO>Ue||3R#sa40>4L3RN7%*uKmiV%RTwKxA)sZX>CGB zKdj-*r|Ql%@W!&^O(Z?*eY|H|HNacYm!`BnzqtEr`8MQ-Ad~OFIB_xGTsQ7ra*X(~ zg4^?a#qT>?m`mkhAp}qdG>$*OAT4<DKbm=qv*`dT*QzWlQh!T25+UD!{mHW^GY43T z5$)gPpE5V)*bs(5>1x)e8^{o$K}oYVK$(jRs!O!A$&`vz8GB8MXbXYAK^U!$OAx+8 z#%aL%pw?CNG*NGzC@geAy|ErJ$zJU{UP}53Ob6=Xp)U00iwdy+%#X%asji0TMtWX1 zKkHZb+xCAWlzyope_4n%d*=bR$9892`H84}Ks*VIY>$umfi_o_gfYGy*en%?3=cgx z;jo!~Hjna~*o2&4UaH}6j!lU2$`8Egst2(60jUnw<GlyjF1;jJVE#&w$PYh>bB>;B zuu}_DVEM6Mx8*-MGD?dWs$@}tswK3FyzGB?s3F?m$zU5$Ifw>X4%anX@y`dOO~I4K zzxtIP2Yn3(s<p};1%0jUm)SR~ssMd6O~8Dg`IYQ1#7~zWBelaqNN#r&CnNs&iv}P& z-kWzPNUpp*aOaV<R!YC`Nl=OI!OK4O^4npVlx*ct<X`mNkYocwgDKB@!VgGE1l04; z102lLp6Iu}Kh>dS7SLGM1BHUulfU@bs4MHH_(Bat<cu}iB%YPu6-S(vnOo}GUA1@1 zD0fSw5WPdCyy~R$xi1nEFivK*z3_g{SPl!adPhZjIuL*UEgA<y*o%1*-Nk${X(NsF zopNj`ceqT?XG^mAiDt_jA(&fGqz-wJm-C9>l%A|dMk^rv(NxvhaWNjDmyRTeZm_H@ z5+{1~Tm)ZOXi*ry%S3krPD^%)?~n4Ag@5|yu;PV=EDcg=Z8tPYT<XJ2Fyea$m>1Fz zE14yuM%a8cG>L?j*P8sYy(woOMK-k`v2uW;BGuf*n*NSEWeXd~3}X4itcGpiK2R3R z$UNeaIH;8>W*X$Y6U{UU4T%#Y#`Kb5_bhC3S}|XO@%#(bA`YQPPd&hBa67R=ZJJ|q z{*s9cJ2VD6qMtgSkp}&I8|EVkjX&tkCtc<Nzo+}?u-WaIPg+I|Gdcjtl=b0D3}VF+ zAJ^MP(f%N~o&*i%JEU<vw#t~PzS9Uj8&~Kex5YgdxJ%sIBSFH(1Vb;tc@yR)O>r5G z>BiRWqT;)bqp%?QS=(S_Mdc?X27Tx--Ajb<t>HQ=*LfMHceeNdE|8Q7hDo}}oRTom z>74>t?Ed_PNhrf)xf|sTSJx*XB`0CwKIMFxp)bGt<^cOGP08(jiagx9Hw|Sggb-O} zHpfVLv+K(nK-VWb#doC6<&6!f=l+bX`#~;$`6LM3c6*l6{ZNi~>Ch0GA-99@qSBfl z_t`VNYo$j0cm!)VC%V@oK<~()o!Uq!xqu~t>&oNny}zs!_|}5jpb)kh8W8W|xl1H& zQGC_k!Jm=T`V#fWTlB(*kw&TV&i*yN>ggK6rha6ji-K&Cfh6K!$fC`?J$%}peWs&e zsIL(jV9CzAYX_2-D|y@j^UPbeI)U6;MBV2_N0MEglHA8q9WFo4xYyUY<+)(iQ~at$ zeK;!plfM&yACVqY-an9KwMwux15YqM;UZpMSYldnpbfbjaK=|#W=@>PG#1{)X5RNx z0|#L;mWZF4CAMUx773wzupHu7kL6L*@IE5HJAjqRwZPtF2Q8*+8}Qv<apvoOa{1Yk z@xwj;a<F>8#$PXUBzFjf79UmX_Qmmj*AIW+THA&tl6H#_X+tRyRhz%D5YNMY`f{L7 z;q2&I@i7S=Bl_b8b$8!jD@!)JY0h6+2&h^p$SrMNi%^EQ|K*7}#}0H3m<cltIUbv! zZ4$vUN<s?*1V4b)49^Hp{6-?v)NxQQvx5t-42*Bcry)8O{8LtNK^ZR2#O$dXuW{(7 z`8PhmH1UdZ*w9_N4Voq-v|#MOpK|0|j;5Rn4zr^v7J6x&AL}%I^d;%7%nl}e^Q@S` zvpYh;t6y1sT_^=wXU~QEcY`EIlR+`G6gviyrcnB_7+v!fZku8r!YKvy$k{GX<ureD zUWq(Ad^hZy%?fS_vPK$EVwrn?(6~kWE}bHx*ke=w7f|`XfIJfa1^fmII0)M8%Jl3| z#<;By*eD-1H60A2EKPRbp*om!+N4r+$9{qz$r*`Qr%=iPfhfS{mRx3s7QT7XdJ4+& za~xgUen0*SvP@>oCgJ-XMEx;mxGHigX0x>Ri~ssA=Y8FgS=(@?r-hDHEA6@hHptI` zNcJBt>Z4Uz7S#sO85`UQ6Q!ayORH=_n@m}wl`4Emm2Q4cM{AMkvv$q6m89f66)ddf zAW?0Wrtt7zb<7x`g`EIp!}u<|YIC~*>zHwXcgiE=D9|Pa(ZwbSIQHi~pm=l{vWpcj zgwhV~NXLYgE?5HX7$gVM)A%b>Y;eNzsMjAcc<%G&Jf+f8{cpHP{u?gj|AxyxcA$`$ zW?kfm18l3oI@NrI=Zg1Ng3O}l`im&m+i9h8+el28cC!X*3Gz_f{K?xM*w_TGCW3xN zG)#1mSiEkJCOnY=)cXX7v1r^<eb$bN%dKm=HAmL-G?O3$lQNd?kKn45#!~-lPh#IH zMVfu$e~(mTY}RbX$dj6^J1MIFGXF-0$<Aw?-a%Pf<h#+J$kFj@OWx7G=+t<z021M3 zbb7?(Ktis}f#`|o;BoFgSN!m{2gLIxgP~}pkDv*Vj6$de(Jf8W8`^YOmtj?IVsYt_ zSohPjS8B)`18}BD)~GIwQ5tnW5Z{eojg*mpQib~GcP08Jz?v1?19LCi=)T<D@|mOZ zh<RL@+A5T<^KCJGaKUhJ7Clf=)6?un-!aMfmeN9f!D2_<<`j+gPq>(mq}h4TrnPye z0-I_-R-5?Kv#&{)NAv2RSkYmbT!}kYe0_nj=yEgHUw@~C-2Z`0Bidn$JtS_EGDUDE znTO_w(p<{*oShaURSWf(A|YO-(&1y?Wfp|StnvvL@d0x~yBTFqx-$N^&ormfX6j!| znlqI+mj#|3?B$Y?Sf!xS20simu<M4?_RHLfBbar*;s;_K0L;%eaDWUW(k2boI>$DU z*TP-(^1P3^!pBr6&(<B*Spy!JG$W_xo8CKovD?zh=T{J1q}0zwp0aTSaUP&f8g&#+ zVd0G_5Hng0)=j|t=(-cZw_e^Dm^e_uPj*6n)dfe-Cg7ZQiY8K(2hcsQ_j4#Pshh2d zd4`hD>k0>=$)ujK=k!EGO}bCoF-|&XCOIE?AiTl#lWRPV@5xlAb*m8wfL3&ZsHuAf zpr<8%i=_I}`Y#ZhveCk{*1@DuEmiv#9?FvX4e7(iS=z%+z{8TF$dnEK9(mk|eHo!A z@wM0Ycz&5UaO1|-d5Ag5D5#ig{maF^Tw|iP@v(CZ+T7fdc!vuPyeeF{kALa^fQ}Kw zYfNXDSle1?qv~MC+%)MsM}iM7_hvI-lLb9kE`z7fI^>~J-!@}h?&z3Yipm>B96m<) zheHwlhs)mx)o!&ZW7}h{u@K#<`9sb06k86zox{Hy!sbSQSXu3)2wV6$?F6{E1+(d* zqk*52)7cDVgL@jasrbKb7=;4b(6&Oo^wc^5zsYSnV{T=L^F4Bq&Ivbzk`<Q^txH^; z(9v+DxpKW;^^5H#<u??iAnir<g>n;R5~14eMT-Awg|bNDBn?5g&NQfc5-j2A46FS# z??W@v41JJVW+4PQ=#&~N*b_QN$xJR7@R;WQO)MrE=QZ}SOU4(a<hFaf`-|RBt&sH% z5i@i;lLkvN(lm4$V;V~`bUHg4^^}#FI*~AVQ=H6J01*LGXj}Rie~5MKD}s;V@7K>5 z!KRA5_@LcO02ifd%L)sWrRB@4r!5jD3B4$z$x!O}zuq(SNjG3TT9TXYuJqjeg&+5f zxAQ%Wqfwj*9@W>g)naX{&g`rE-%$I%p?yf6gVqB_T(n8d8tvFR#)8oisJbCuJZ!YL zVE>xII@~%|v#9#dfX240&Crd#OUv-A;V3!u$THgoue@9?tE~H*gSXs*KQlkW-<E=x z2~HyBlF9^akJ%V5s-vn6f*c2e_1u)?;^Sgo7=k!DfCw}^=z^L|*~JD*#z7M?Z+rs< zf+_`K3_@0d%BJ}fWVfUHHs}4XuG!&zq}rL;9P#S1s58_r&9E}1XYo_ix~h}+8iK`T z{+!2OMBiUeedo1;F&*ykhpRLTz0R*~6}RMf2Y!(@8y$XOERR0kn;0o8q0eQ;pAKvG z!v8HQw*qLQtTzqs%%6oWy+jT|f~1uq${n&jmI0kuXbG}$uyFQKpRe6;fJ|rNG>1R9 zZ#PhVCwZSf9qga(fbbnkvlVem?yErUQpnsZAlJRRi&|<i2T||ywVKve{rFznSrbS{ zJi26Sqo$c}AdiIm;fcLnPO%&-zu^L#U?rK5>iq=ZJMsR6-4Y)&0G*&I|0`=c336M< z2)1QYUY`<$S{4-LWBd|<kK6d+w=zeIp^a!xCBvSOIGWUU_dnN}BKS4UQ?gN>&<#(a zc+h2MD6;nN2M1M~YeLi)D~ka*9#h+!*^elnXweEWb8Hdp-Alj6oRm(fqp1q>+ES|? zy?pJMab5}v%DS?pG4j<bPLyOLM9bf9DB5x55d6&68>hD(qp!Cs0#e^he#PVM<A$N| zCH%dxn3`FyT+36<L0b9f{sppJXK=^ae9&iCniywPm%|nnfcYe$aOK!~{JG*$a5x8R zr0O<=@`?2C&a=vdvt~kU^-*Zhu$=&!9!iEs{=b7XQ6439-HAL|LTyo0x>`4pf1c~B z%o|DR0=MaJ_$d_nj$mL8IR6gPtX=0NvDCJ{i;8~BZIEs6>2c|mCLHv~_}(NuKd{RX z9NP>zpczdTWo>OdIx8z9c$aCHF4TX$BXtjGcPx~ujbEv8pa*0)QcX89tWR&WPG{ko zOZvEL#TVF=N+n(q=|5y*e})Vy2kAfvJ=Ut@VQ}+VwzQp_x0T}j?sm2=w7`uh2T;{V zR9HBwR-f4bgA6Pt4wGn`F_-Ik99t?KrQ$u>$%)-8G(GoeDfK0~i(ENA9qv!!qAS-r zXyCGQrSk5=S;4%ZUT5Q6?;~9?odXeWQNBI#xrJx&v9Tqzl3$-FBMsU|f8~90IGz48 z18Do;^-vMv4(*E6z5F<bTV&iZT!{(X_xO0BXznu9b4vWNIrQS8YmaGB<JFM6#s6ad zpc(k(4rKi5TPBvXmq$GEs~&5vTDGYA7j2Tq)P+AJe05*f%jf=tZjc4j2}(n%PvDFS zqK-Y@%qi&P&6~m8_Mx(p@%Og%K}-4z3JYZtGWc|#U`E3}48n#ALmW^B3C9^+DD>UE z+<V!3z*VQ%@P&bV%oJ7JoN)Z4{1qX)^yT?;xvnaiJPXP-6>#Lt3op@p?u1ccwkkIt zDPiL{Z@jU?*9$;2PFY7DS7`w>v8y#yegUW>+FYBgPHq_4s6?OtQDi6F6})&afV6D+ zV=vWsPpeucQjQu2I%KmnEI;;*s_Z&!J-&VBWiLe(|4Ny*Gsg9!FU>uo=8zt6vrjj! zCL#Vlfr*}MQ|EcHy0&M)>4N#X>)pqH;iaV7F%8i*wjRsm`My%&QI%jE<5C_i!8lT9 z8rk)w&T4(Wl@3`aRY!X?W~gc%>`cs!_~HG4k9=BD=DzJg`44ld(TuO-T#yX;(JowG z1OKJ$ecP0>$e-Z?{-7s9h|Lcy<to|xy`j0=q+uo`*Mv*EMa*YyIW+dXZK&6p;coC( z$(wxzojVz%6({h1`YdT$;sN9z1{`=IiHSA%A>E>K;yXx%=yymg-*Wu5ry7)b6}aT8 z$%aJEs2uOddQ(T1V{9&1mmLNX-+&sl`LtD9RWoMNtEhpcXvD_&Nn<AH_W}rB(66e) z11>NkqEC1a=L<n>yOL0fN_|&sPjmxK5!NIGeuEU=SZI6*d+$n?rgYAuQ(mGrn2Irm zw~0tmDMx!{k!8-v{~WucOV8=^0)XExic7=w3>tC%B^fFAv|e51BWGdYAP6ghD*4iA zG{})t`zBpw5cY9`&N~mFsCVR!wu63<88&i3-W35!*f==+<tmoQ!s5|f$bsr%gt2Ki zoK(lRu}jYlV{-26cxhR~_Q%SkY;J?YccT~l1(*hHMi0<$m<FE4A<Eh;JbHc&j19^r zGV%aUY{#1TuKWzj&xIx-nTo6uEQfs4K<Q%NqKrCenxP3SCM{9d(5k$-AciU!rXB7+ z+6#+eb~o@^u@)pxJ`Tkn6&G-M1worBpfs!(cXoPL4^u0;18(5R6Pk@wpRUutSQcYZ zJ0^5dW#Qs|H(70RyU?=o^jK3TzW3NGS<{S9SK-*SxAq>tB_2p2QT2v0>uutt>aG6D z8>G5YDF;W5;9$^5_^+Q{@&D!DE~32{KKe{1F16BR!>ot?$EK}g;L=QiMt6O$iz-H^ zx$(Jam@viC%8<WmigAy-4-|!9XK;R1VgPm*@8S;eBy7>+zrnNoH+W|i)7@rx34ghM zV(A}PXw}iKM@*eI(T{&6pOA+UgHxE7u$9c453Ds|(e}zk$aQyuV*IL3AH_B+o1UCu zjK@Tqy}NZ=jmxzgGVO<TG3D&MP2vPMzr2WAehJsqR$eZ9<RnrnOB7{$R{6k-MEx!x zy&09cV888e9!4|Dem?&;%NWsCX{|7ENifYwOKTdDS{$zMvt*epZC1E`sWx0pUY*PA z2X=k7W&@Z$S@AZ2cZNE7yl1%v;Qp=3|86j|b;ECx%ns7UAZ4o!zpCOnwf;+w{7Q!O z?CX@Cr4GL9;*iF0%H&|hFn6B=fy2cY=GCv(4kU5}wh-5SUF)@Agi`0|Aj#SfS_ltG z<E5Zx6F;GzkK9EDIu4RW<)4=@nOES%JwCDNADJ5Opx4!C1rwVdP?(!V#mX`6<*<5D zvMno-ylye!c=ApOn03NK7Ec+glXH|cHvaY<JV;_?ut2*edDlVufv(1hiTc=~^;?r7 zZqCNtG7Qs7gtT|P9W-GrZFFiI$D!VE&GW{95u-XhvR7VewrF`EH6d4*9Mw<RK5-Lw z`H`TO3P`;^pESI*ujT5f;?g0Tg^P8m=i<i#+2o?Wmdn>DhOE=M-tbJlU5QSnt~OJ| znlS3ZK3KQx`S45I5XHX~oGaGJu~Pg&HEsn<mxy`Io>$tae471*`aWv=+o%}pdw5nH zOJ_N1(_=_v>g+jx&a{-DNOq1|aT8@FqGe7zWGz@Heup7TJwXmv54mcQYn0n%W8=s7 zH2e7zfbbRZ+ksdhd|Eig7-plF)6v)FrIcBspz2@LOYn$wKqjhjx?i9|8J;zZs0%0T zM$M>P^LoA1s6ODYkyvy0Ld>3Xe$*~{5??7xiTpU$pAeCL;Aqb0SlRmS0(>nZCBUhF z2|{!rzj_RNcp0!Dc7V4hwX-2d7JV}{_RFu4T3?)f#L_k{2QOvW;lB7=;MLT(0&|a$ zF>y_3rX$m-sxRe&{$&0M{1K2~E)R3nyLApUi)`rt`3b!~F8po^Tl4|Vi4=)y8IdCj zD_1O}W*qiuFQ}DgdKvl<|8Em{;&hO5@>rCthCK~Nvuyy0Xi8<@T5IJf63E8_CnLqZ z8|2h3dYOs`^3)}I5BV>w)cR6&B{tc9&u}%jnu!{SkjkkN;c76c>GU#2Lw=>BdCr^= z95Q*6>;Z@y33G80;p2S2Ug~IS*J6HY)t?9zkT{~bP(;$&D)jvSXR%;3%lq1)l_XJ` z&1$D0BZWoDc<pyOo;P426ktA?xBY+Gp;LqDJjm))SqgCex{vznxSpmK2d0QQ60H)E znL{&i<Tv<yyaZvyaA3Ky1Zr-T7k^Z=EoV6gZVPoGc_dnjYtNmrqCq2ZZ-dFK?|&f; zvAhW@GL0^bCZznbrt=02a8mo|Wg1v}7K{|h*kG(=u`26v>-#v~XI#v*B95!+;aHEQ zKGV&h{y!nb>&@oJ*{WnkwkSZwm{Ogn@JJNhLzJo&tH1Y}B%XtmP(=eaDh3=Fph>ss zTvn5hquZI`9zsWB3zo39@5)-dDQ*?ay|RbHH(+C>`1frccUrT_*km<+%9@4xb970z zL4@gcfQ@H!z>W67Cjnr`tnW6yQ(Lg!)&0lKX0@z1F=K~0$!H%XtKqM?|5+Mb9>x3< zlbQgaQ9H$SwJy^*^5#h_jX|SH_K{YjI!)o=Zy_+Qo14kaK!*#_#=$mpe(!xFYc|A{ z)kbA~-3+!5yGD;f6@Vy`^Gcol#!!*R7*TtE^25y(qnK6~b(*;CRkS53d`eT3^L=6< z+SqLtzl^)+-cnW3SHGLK3g<h}S^@jp_Y&GFp{pL)AY?1*Z@wL0-bm9IYJ<#Ltn09e zw)ZTOC*g<9oRm$+mz<IW))uYCYh>CrUCwQemduhjGczYxC+7xT$GNC&x3ihYS%dvD z$K{80pS-X+DCLZdP0#}=_ipes{B*v{cgs|8l84P%xXckb)mPyVZ_S4!Y2v;*)m@m% zz5=&qvVPI)GzxW8S1vjX4O#-)WaAFQ;OHVgQk#ZSyBJp>Is0!y>Wo)gR!5Ph3y^lR z-6jt_!iVpN+4D?z^D@+~z=aM_h)zP<FZw<4%%Pm^_yJ+$!%Y~&v+`0Cd{$B{r&Oo1 zhwfu&i6*R~RuZ$DWyZTbtMS$h-<qx}92)77$=M?1#cMg(1GUf{R<uGn#I+-OSlyD8 z@<|N}rD_O3%kcZq%G%h4cD6B9ad$TZp09)x?reuv<(SpkQWiZRLEVVcQr%@RtOC#K zeJX=;^WZ~Q^HWUn8&kV6DodFz#;LpR_AKEhacB53(yX2_X!|YY1ov;q3gGM`_=)rl z>A_YyW+UXw9?pv~5=RH_Ypp%%-zO0nyE~V?EX)SJJ0~cBAU=XZEoGhcc^AfSF3_rL zb7)czQ@o0}`Bn&?;j?4Bl9FJW|7Dot*F1Cw#H)<bY98Nsx*0D_$Cp=&c8Ke7<LSHo z%SnQ2n&}cq-xmJ+f^gaq&<b3+VSy#|!rJ4$5^l@zYIdgsd8AMM5Xe+pPXuzYB9WP+ z9whkTx>S!>ppSL}`7LcKAiAuxtz!4_E$`Z0kc&;kmEFDGtQ6$2Yy|k+tzyePdFVgf z`OL`llFII5!yL>sds7y@sax{Xa($AijHAuG%18UMD5S;fAV>Tjy*aCgaj{JA?A$zN zsmc#hP1|DS&^68!hmIhrSnH}<G19sK0SI^f9=;#gxlkhtAkq{Ck!EZ!h%~>3{J+a; z!Ae+Qg34<B-&)Q1-~a4Q<Nmv^YVlYQO7Z!bkoKIa2?K_R=Bt5r(AB+`f&K7iF7l;w z=lYuQb=VhPA(VO$T1v2+B|v>}CEYZ<YG+JWe(CXzS!fJ4aX}lK+%k$#EBLtp3S?~B zd^;UjABs{<V%#ki5y2-#4pM3Uy}a|FioKW`%Tw1wYWnD2Nzdn~HYV6CV#YNWsiSLT zE}T=C6)KYn!MhPq=^}D}mjU-=3b&UA*mAh>O-0NY%lCC<yvB^f39y!hT6e1Al(r)j zLY7A2-<~9eGwz3}F>L)DqENNr4fCZV*FA`MgGHnU;DCXdqy8(Xb*YE0j)e?&vj=Eg zuPU$X#4p4@`-&#)&gO)Pn)C<;D(NBS0GXeV#>_T*ue|=g^)S6@>wGMiEzQVMe?`$s zf$8%jJ0UHc|9Hdkis#X|PtBJC?eur1easYFmD`cy<6)*}L{0zTH2+1!U8|etRGnO; zG5zFjvI$;=ndK0;BQg)2#t}Zlcs;#3J1fW+6Yca2L(qdWYtwN7QXTEHzbdM=GU|-a zn$GZVrtBd^r(=xG;|X-MFj47?O3Z6%W|5=%n?k{za@Rl<m$LGx(IRylTbsqYYS36W z|Bck?pBSf(>MqOSS%McGr^Z`v%thoKnuFOnZ__Q`M8G3#cS-t>Nt4stbmJxKB(N@> z>7zLmi<&~1YjE8FuhMWU%lOkRmIW_{^(_C+sYIb2{fxCLgy@yvSI>+I&Yr(2I?9(| zyo5dDu}tHfx{pUg`MKdF{i+79ILZ;djy<xmg?u{O$Xu)@OP7@pIL=^&Ji4Yym%J}x zYnKR*Ei@$2N3|H$Q$nI#Q(Ht9X=2GNx50V+)<t-~)hYd((;YSVU<dloo+v96xKZ47 zn`|?;M;+Exi+@T3h;g#R-Y~=RC9Y<(vUS|K)dQ&rJ0bRB_lZj#nsGf1TC(*MN@|kw z#B7r%=$A1c%pBcqIp2-M^ra-C_~-|THubb~@DVGuP%3_;24u!>FJoEX|53~1Mfd{p zmEQBpf0xiZ75YXVUDR$}pk{JX4RX$0dpA4w+1N%mw=un#y{yXfbYI`_9b`jhbDW?< z&?Kx7g53)8Qg(T<o*3B%mm=k=mqVg?bL+Ch={dr(L%d0?$UeVdtmmmN_Pz!yCQ%qQ z+t#{#Tdf#W4dq%`yX`TJ%^9_|)?w3yt!YK^LVj-b;<UL}FK430n(tv40n~Y2^N+VC zDJS!l6|Fn7?;-rca!~79-5_Hk?kR#CA$8O=LCAUuQ~e=KVBL2`aB-Ml;ZbK|Ajp(# zMjEaRJqy_Z@hnrX?5I$$%vSpj!42jv>|$ZFF!9BX;Kpq{o~`x?iyPcMuQQ%aF#~E! zIGd;Rz>8Fey+ds)Lm@_>GVmD!$a8=`5)7V}rZEBDOv1&69Wp*Ku;;mhFv4WSql@i` z?noH*h}MGO{#dYaHD0$qdDGE0(Fmzq{MiZd0rgy*{Gx~T#CDJaIP(<(^Ywp|<x>k0 z2X6Q1k$$e#jRCzzH3i;~ZfvcUJyFZIp$BHEE*N`s1+&eJSI!ldgDK>1X9VKLGT9G~ z)Pfg{h;3gTC)$Z8q+ZoEeh;JURq!jfrs!(rC<i@`pF0LR(|F>xKtDq%83|YD1jT&q z@}p;v2zf9uxL5kGf6y)t_rr&@nz=}c;%k}l&!PxDWoWo&9t?|`8S~Bptvt8covYeN zVg1b|)y7MZts!O{w(x%PJh5kJO0+>He7bXuE5#Y7M(<IzWoj*CB{mcN48>)HkRLG_ z7yYTh^c#Z&du?d+G@BgUexy<LGuna><95T&f<fi6_xlG~V`2;6ddaStN4~mnX{7n6 zwN8DOj$}2xA)XDY+0(1V*k7Y$DvU%Am=QQDl!Vv>Y7V7VH-7MC5pS3lF!x+zats3& zaP6Rul{(ZfwK(96BDxmEsH~^}m?{xnzS{6K!(d&)316_TfVZ+jn`US)q-ST@O-7^z z((}5Fs{n3h<n>7Oetsa~fot8Ri_39T8MY<vmCUFtxo`Lg0}sBecZ28(H3>4$q^Gqa zgO*KUkBNMwq?JM>j465efyNG19Ld_W{?9(k*y>T6^K8P#6M}R#Kiu&C<cXmwU3&P< zm5+$L814_mByc2ZCa`Le<gFclox5=*OE)*doBL$vS*BgPAU%-}88t*#+KT9+S3Eb! zn<ya(9pT@$ki(=oJ!>1Ec5UE0PzNSelfkZSwtfk*)a&D?MSdWGC1A%1;r5<;({Kmo zAS#)66Y}3-A?Q<JhiznXV|_uxgHml8<QTlH*2%{Sy26?P{+u1(>mqKT8vo)uiPf_E zXi>mEcuI~e&2ciBA;+~?(cCZY%o@t>JXlwjA9D20m74fd64m4PBV{BpCP(D3%4E7i z=(Z}uR}9mB$~a2TAuROKxLI*B-0TbIuN^*UM*VyhKaEDi>HePmIj@0^#8#1IkVi@` z+LC=0>y!ttXfUO1z|#xl-6c5?(X^-t3%W*Pu}>*?WtF6hm!(5d9&TEpLD_7-a60q1 zupAoe0@c~jg|ECoqWS($QI}kIdtoS4jx}u-9HCV{R(3kksTi#6%+LE534=WGuef}m zeZTOiRH?n=Vidks0__a1ee$aI@z#ci*^)1;a$k9D^_W5D`@qOmE2=Q5!EJu(qp%vi zsh0a<xGJp3sS_=4EFsYd3QET>$e3c7<h;OA74|p+mrqJ+YIORzR2hoAz+Ew_FUIh` zL2vo&gXItfx`R?Wl~UjTO6&av>N}y2ZSlho_J__g{Jc@Lz!|hCCSI0M?<h2A-@0G} zI|^bMVbRnwg6=vzQ0Bpo^$fa5L^FEya#=iArBPB2TLIcUFf>q2h}s-ceZp*B5dS&I zSK(?uX-lg-jBL|VCuZP|ZBdX^l4v@E5zBs~LB}U1jNESJ%SEKzLpOw{OiTT(KtYvc z<mJ#2-KJjBcc5;>W53L6zR%}NKXOe6o=_GRVH%bASk_|i#2?bPzQcDSpBk8HnN!k& zBqJyj6`{yQ>&94Y%x+_}rRvftUu(Q5NT9{Ui>ot!$elsAjiE&fE%R0887&eoA1ocO zoCwM-2K%)gO?kM;8j^2sW(-+GMD#S@uQBE~xJBrEdaJEE47lZUhaTEhNK7HO3Wavy z#sa1L-!s-1^ltkYj$Gi5n~YnC_C<iwUIwrYSxl(Ucx1fJX>+ti)m)^JkSLP%$b2F% z;+G%buCC&!6|ImiS(Cl4_UwGx>{J66UnP%EQl-|N6tl8eTV5E@r!yk&&7NCJq`VSH z(LJn<xNXSVT(&qFNII;9lp%?Amxa~#%xMQH`lpC|CfW|wfsG51&{qZ7>)S#e<ENQf zo2V_*F~Df8^q4p>AZX6hr*TxEJD}+Yc>g1+>mSzKFPiV-Y`r=sQf_Umz1$6yR{e6! z;4*?uI#fR&C%H09CwLlKyv@!uvH0-1*}is>Qsolvq8XWIa9j&A%WuYTL}DA@pHA{f z91r<B;*{%1BmbzM;guJODcvWfk}6K=`mxS|+2X3Af+RKXZvCDp?)4UJP-0J)LuQD0 z6>r{gj8Y_aE`X#1A6&_qW0Kwh3k_dbJStZ|UvSO-O%IN^wU6tE1Zyl?j#*x&zfVvx zouUtlHT*iW;s<)7S7JI1x_`KX$nx*N+-HMcMf^1VHWVbd;984yr#}d{@)yFy!Xkaj z%>C>LnD7AZ{sYe3x2qe{J92)V%|n6)%ET=l2a((RJs*Ze`}Bt9z=dIfZ0L(2c_5qx zded%QP|doS&(KKF1ddhC`O$iry(%jUvqqW+pM}%aB}*bzVppoiV2)?G@69DVH`+_g z7mnNWMlBXmuP*{{00Gg==My-VG_xf*d+;_i8Di3#BP{Ml*`OJ!uSM;Lz7jiEQe)Z7 z<O4&+YQfKh&!e@2l(9b_GV9R3mmDfs!Z&<rgkP_LLJJ|jk^KX_oBNY!qu_D=r(rAm zj#JoN46QTW>c!=$d%;WOxUp+(VEaqQw>ZT^3*N|XS8^W{6Bmo8+_MtUtz*f>P<4h| zOxFwjYxuaib6qk)BI16K7cpYWtptA-(yzHwy>B_EV~$c$i8;=<SJ5h)^YXsOg)b-< zcSe&FL+udNW=<19A2HiGlIdoBh6f(9d>TARh;P+^d?EhZVPEjWtldx$en|d5{(b*% z{J@@V!&3YYKV(5weJ82n#XDZ&yTVZZP+dY@X5YnLe12X`c*$Ymf_?q|Mk*cK{&Du< zr9Yg5T)+(X@o?nj_LKs2@>0oElq#p2ETJ!w6ml>{pq(&k>MDPKBO%tG`>C2ZWX8tX zr<#($nzINt>T=?C)8*>*c!XJS@Tfsm+Q^;!Yb8T>nh9$ncT-FAc+oV{_KB(M!At_5 zNXnH(PG<1uL#sg>)*0!GC#idhh>%_1GT$1%p|Gx{(Ob`?t5%1ArN&7e6{+4OSJ*!U zsR)(tRKzKLmCc1HjRGNvl2nS~@o$YTZlVO0m1mj{Iu6f0x*J=6DQzV%uwSEYnUmVq z>g$qtn6}_@x*Hu0?b7Rr_{A*YEL292q#0M=f?}aW>tesI^f<s+B94v4laCsmrZm0g zdbVvA3AuK2@WpsV84q8n^%+Jc?CM&rwtAQxO|i|HaiXOc-CKCq-91RJx&HXzrPL$4 zh)cbz)x%Ft)wLs7*LNQV1{tnktshp+q)}{j{gRDDsQAS<SU1X1+06xPMK6De9)6@i z@Bw_@21gx7NwxjhLWM5f$9Sh4_oEl<fd__%C?Jg~U?M7if6=SFalA{eK{hd^w&nCP zAhC5=w*KmLmt)zj^2NL0*n3|Qki9$mDRKSKWgEK&IpKdyJAB{y*}VoM_!NV8$X=PC z?2|PyPP-b1IV0-$`O<f$jXtQdAK2r#bG%m4Qkv?|5Q&{JSdGF$&X3|Fxb*j2D)1t7 zFPD?fW)`f~+^#t|lV}GTh)@Q}4cvPU{F|ocUw;3Ww{QVl%FncCx&(Oxm|SzyWTWB9 zfN>9&urum1T-8kKA`l*H|EiKa4=!$=Gq%&dC$c)`d2nm{81*JNzCNh5iq5!?1zNT# zeo+oHuHJ23kpk#b_@{z~ThfeAGg>#YYOPk_yh7SYF?K|q$9Y-{5!AD-!t-YHw7!oV z3nwyiWcx2Z7e8XBj})+C2xD+mnzl`8%*W8Lx@f<!fh_d|UiQN)5!m{-5|LIZu4-ZR z7^)e52Md;p3}o2hd1-aRrs#AnTYcpNhZm#G=mXk&57;h%QuPd6Opn3|*8;$O<Ma3U zvGXKS*-3RdPG}bUI!ovI*f`=j!N@FRZG@_l1E~w%o#&w;s2f`iS=>{+KpmW?v1Xe~ z1>FJdBb#KJwPI5BRq^aGrbiQ~iFv<Xk)3cGy_3zYX3Ye#+`GKE++?odYnyvSw<8No zIa?g5s7Xsnh-mLY0wSqeUsDvy$zc<5$#IEN+CVtl>3FXg-KbmT7QvQ~N$_pWNR@p7 z7Y`3_LmeoOC}SNhg1jC5Wq_r`ZTvN`r+&wDU4R{>$<vIg5!+9_x4MidJqG^>(GE}B zy=mRSjtWx`%(TaJkApj*fv<<DxBFsY$IGJ8>bbF_zQyC*9_mmQ<hD(Sg8=wFQD6Yx z0=_j>%e*lnNBe=e0ky5N2z*H+NF`U<((_;6S<kX?AtvT%cUL^1>svubUEj9c;o8}D zYJ5NKvF+`?w0M2R2l4^0_fm1=dwd~$AwEkj({@K?4DbIEKDDnL=oXwEgXIl~Z+-(c zgm4lO_ASzh6mx#?RAdM4>3h3!pJZXX`Fgj^_$14N#d4E;Z>2R%AEGSR%?4YAfC<K% z<zny|hfTlnkF@9>=+V53XQQ{|OJk#BI$+)D=54j2B%D~|3de;KHh)x+m<9yXU{PE` z85g*?B7XS*mg~cqgueTvO&JpTcT<&z_K$s-t2(u`Sv6D%`9>@v&EMy3yN~$O53h=s zYBS(m<7CR)trugzr5>s}G?U*W>hmssNRF}x_0R1mEX>--Mej<YbIHF};&VbFCW&c) zsdLu)iWRH7Ku_|YPbG#})FCGvwwhn?X6k0$$9&^y(oIfKZIfyKA=36yfCXhPbg!Ri zzlm94rXe|N7fi&7mmk(c<DsaK0lGNHZc{Ab!ZdDC?07v?KpehEZHbV!bH1OntiFWR zxBc=8`6Cd>`DDF##N42o;^sYb`h5U1X=%odkF0@XhD8iq#bep_DhVX&<jmiuw*{~| zVMR5`Z}zx6v`9o{*sF6QbT3bb2z17Lb?f5+@~9SbO_T|ds%8hX_ML^XZj@eBE+cxT zozi!O1Nq(fu$!LrxScnW<<A7+Nn|F<h&b}Hlr`^(H?U*~qgdl4sQpuVnaUNk0NSP% zTLP3uJ94TLj}nnfB`!{;%g5H;{pF3I0@i;wvGSC9EO(YwpcyCwAI9RP8w?Mc>AwBq z;3z9(N6kxzVf1HmrY-XZxEBW(8G}5wWvq%63eL>I6b($m{2Q~fI0rCwF=j!J+vE~g ziUVV1@Co_eCh1?xB94{-LCZBzZWQ+HeFf}r>b91&%#OJXE8s`chS9sKBacs}?kV0G z<EL&Qk1sO?O{6q(7%WTIIn?E`b}7v~d}$}N6>ljDOn8#{z2mR~OAH)*DGHWve;lOb zd{fEVRHdB8+xP7xh$!pKca(umct4?(DHx{x%6H0ZStOJiv4j&-)Aok72I1iOY$FoC zwatqEOH$&0Nf!MtNs0fG9IT}>HvnkIEfo7t_pGNsiQ7rc-C*zFwXkl(Uq%$1xr17J z6p>?wNlkG9JaGTfvPc(!`Y)R6|A|)hUo`vwqPY%Q>6Fn_&bS1b9<+|SKyRv-buSZ8 zcA4)W0I_wNB<JdoH^9^%N<_>oDO5B5HJjt(NBIh=K5Qk69lB872}RB8(sx=k;iAE5 zJn3Z`X3nMW21>$*OC`&i`TFh#F={ajOO2hI*mKNTAqY`0m7TNDn-<lA9a%-tTxh4k zqP-*dePhIP2AQ=qjqxxaa36*#NJ$NEuusVRg0k|`i__pLZ42ymxgWaasWkeqNcVAt z*BVWsmoRs5c?msN__U?p!P2mV#3*(0dsc90!==HK@Xvk(=E{&)PWA}o(+ue-Bx>KN zO4Y16HkI<MbB3#6L8~W!VaxK&oJc0N>py5WIXOt2;z4>NdV6K`{AT`)4TJ>}8|)Vr zoNfPWZ;I{$?T2(ppKL}1ZXU84r+d9jp@cF#oKlwow^Lz!SsYki3DR;ngRkJK_zyG= z7x<F1-N=3DOT0BT%+U3Xp|b@Y?IU9;4Wf)@!n9vS#3>BDAhxn?+~_Mzx?qP$uezqP zIQOuNOzHG)*PL#FK{BMJdmXT+%V;{}#svLHB?(;HZYJuZ)LRK;fGXr=n$PIrHkqeN zd^CD}ll^Qdtf$_HLq{dm15DJxE=Fau>Q7(8kb$=61gp>9IO(!|^nT8nw<l5K$3kM9 z_L4rzr|~&FsHE}EnpcgmbW;$l9Y+A3^INfUjAJ4w=X0V~)lNcjSh<z^<n4^rwUB8| z<q>Y83`T2F%syItOZb}1ub)%a->7kElipVt`I5b)B@aoFc_wN~Pfza-o+fJ%Ge)Df z(<YcVIZdb?S4TGvF2k2smy>MAmC#3yOzK)URFZ=cN4fii-N1Zi4u6L=bU+gY5D%FE zDOB}fze-f*Mq7;<8b#2*iq@M_R^=bnrHd+CZxE9?9himAii53ZW4x~!t`}SK70o)b zkro~|jNu5op=v+VtlijOY8P^PbwK$@ccx>-SRT*pz?FO6dzY29KbU9)mAxW9@jM-8 zSvdP6{ZuF8Xv6O@2cA}Oww3qb0$psR(7I-IV79=!(W@o75IPWini15R8(Qqx0`5Y4 zuy-yy{IR<hC&8C{`Dy~!svFvb!1V&Uf6JSQmT^La<-O2`(Lr(Pv=90z<o6a7F*7_* zqQ53*WX@sE#DO)vI(&amFQ8L@%Ss*)YRMcWsMHcVtCK=;2oa1b4`bGMb`dCQdkJl} zBb%I?!%*?cE%`VtS!*xnZ7N0aF|qM+*%N$xnyO<c)<&Nucx?o3z}s*~mM3lVwO%+q zVClxyPloe8PE?&SEZnJWm)?)(0o^7O-t!wn3}N0l%#idrO4gr`Ln#&c%G;RLe2ajc zTKN4M)HWptVQ7;BjcY$>8uZ?nJ|X2|-i|?RAoY(8W@Y-BF+!&2rmQ=^_F59_SB?n( zl`L2yMdsuT_Q$4_%@<!6j}L3^Dqz}!EE#nPs8aWcyZiL@n0n^cqyiHraR?RHy=pIi zy$u#{<^9^<^SYifzB{Vd$1gO=SW<W>&Z1??R!P*#fs5(EzrAs&?~xhJY+f?)r7~%% zvF7l;g<IwrQ@G(Akljt3x!K7B&GIaevbcbgDa(8@Srl1LS#RdLw8VSA3PJFJP$Qr< z7ZN(FgP1SMn&{1#Ru<$1_o2J6vHXWvWA}`~I-7;08k5y$=ZueGD|>drbu~7&`hh&i z_=yO9slRE97IEP{DK>i{D2nG!3p(W|sE9<T#y|1fAk7<q?qOj0U>mrh9SjC$7z}~~ zolgL|6p?NhJXGa^mZxbqccz9I5(_x(_v+4K5~cFIyu3_1{)7vtrS*%U_W&thb5EhW z>?ZZs<1O3!qx#nnD+7mRBt9c|f~^!I$ZIc?qpazvt7ru_5FA)S*4?3e=LJT;xyW>h zuTb0b_lQ`l>@7s>uOQR$g-{dpH)({oi<-u}c?N9i>a<SKHYwlBSD6RC$Dw3vEW7e| z(P`c-BMEA`zm(j6U;f6IM;4r!mt%w*Zw#dY#?;_tq2W_zkSaR&X|}t(3+P+Z)25$l z@-ir~0?`4g)6;O{cAqHmspqE0Lb9pbUGvH2$1;P`tDgkWz-^=F{IlHpBuZ$3w%9tq z1CxEM&MJX$6@raW9L1)hf~hf1&RP(WAHj!HWYl^P(OR=(jnNMh4rH&gb6v#e7kCmM z7|S1DbAYT9n*rm>H*yM@4JlO28z2@#yqT$cg3&TWW2+>SZ;$AP_ttRM6J-NmZgn2g zxGthdY)9b5f4XwtJW$1i&SpdWGbM^d#(_5fTFvG~ZI!&-x79T9QDe1g$xET-H$d)f zYt(O%pxtCXqY%<%J+arc&v0X+{z5L7n=L5@KLBNxI|vgPaaQH%Ad6j9VI9>so2&DE zL`pc3=sr95{?L<4Z4E>RXd)OKo2I#|TJ_EJtDf2~Ji}MdMDKRXOTlS|Ag}j_@afe_ zrfYufv<RJYeW*-3a4(TggjdFGYp$3qzaZ2kZ~eQHA82=Hp!4x9!$ucJ$)Z_ogR!YU zS!~=s8nR18kgZ}24%<E^DcO;A!xvu=l%$q|&s_bmdzs3zQ)93W6#VLU>d$UP6)P{D zf3m@6LgpwNYf(3)(TQ_izJ9Yq^-`30ZL&Q6Yb<4_Kv3GK?vKBNe+B>)LHJ((Ig;H$ z2U3IRpra-WL<iG;3cWdHXP(sGObyzAE&6Rb?0Zx{VV4&}<%@h5ku6^QAhb)q04_>n zR8;?I!<-Gn)CpA!<E^QW5@rYJi|ocoLi|C@Mj^m~LM_0Nu;%KY(!*4mogRaCL|{kc z)n%H%R{Dg~0+wxbmDO_~H&+GO4feU$LUjx>QO0bznL2yfSk|HGM)HF2L3Gp)O-oa$ z0LuxW=D{AyNRuAa^UK)DDC6BCNkDhRj(Swz;e2|qcW!qK-L%nEc}{0`kw|&J<^ckL zww`OBPCKqU+xHEh??_JqPmkskh|)Vk{@s3`bM+HIqZLg^FX#_ij#li_7mfg$Z;Gy8 z{+8|6nuLh;lIeiFp7{k32_T7Oc`2<_wZ_(ZSsA#BSL)-fGXenXh(Wl?Hi@lL=QEO& z8kJQG>a9pAJc5M&(4%Dp|KY*m!A`l|_MITg5=}dtSmz4T#q3uv1f9?t7+qO;YHC#` zvamc(wKRsSix*XW_e;j|D6;Rxs?qJe`7l=jSlP2nAUvp7v-yVysK4>2k%tub4Q2$n zyyGm1v|ZeW$feX*?+#n`DriF!6xon=Yc8DPVAhiMFc>-P=Nt6e?8SO!xPxdJkvM{P zpjD?`p|jjM7ZZ#A;XzWXc_P7&YDSph1p>h1;V5n8ob}IG!Pa%SfQFnS=CPJ!sB*ky zMGo!U;iw@fGG>3p1(1!QMZ{2J#mM!MW<GC@-Zz*yjqX=FN^Ea$UN7&<U70tK{e&n7 zT(!TRvNbX}Kt6mKKQLNcTg4oyGKJg#07=M(CQ_L4o}8T)a&FD`GBwsjDP}rrwZ4R8 zWtsw5XvK9kZibV5H`qAqjOsxL{U<Li+oCD=9aM3L8G}1#8#}Q#wtY9*FfL+yk`FTN zP3YjFc?zzVx?C-|>ICTmD^6$0*7#^MKBC4&6GH3dmh*=Fv3r<G6tws%*p{lZ(OB(@ z%5q`bBA0?(+>E()!u56+dBfLk+)4vWq<4&g<7EMy-vS>d{^3Dlb3aB+HXeskI%8fs z^cGCFx3(hT3N0TY`zCmme|6!}UAW3-B#F!z;@=9abdp^b{5`zth%1R0NKf0a0y0P= ztrx^NCwVYs!!QaHw33alOmU>ik1hS<bMH;Kn-5+_QWS@pJA^<!0T=N(2W&SK?X=?o z7jY$LA<!G>I52{AJ$xF5@;;}ZeBwgsL9pTpLIhlr`MH0H0FjCZLWBh2!{}6RHVLQm z=#!U1^A@sesyfXb0iZZi2?7Wa9{taE&PzdvaL){i$Tm2_MlZlDF@~{uCH^nRi2vm% z_rDw?{>u@gcjyoIcE8sa*TI{nFMH=^JW97qZRgz$fWpa@cJ9YtK5=c1z#-HzVI z+nv)z=!6l$K5Su1OTdgY+_jROrh^p?VM<R>{A{H=%21Lp4{jpo&!3Q2Lvzw8eb#d1 z`a20h94K^E%MqW9w4-ci9D_H|B&pPh3({O_?h`l6Aj8MZ;*n$jZO0HmzUbtLk3fty zKdqOX;{cb7;)qX`{^MY|kWn#P!(S`w8pD2N>DfwMpwG(yB7{xPe1x_IU0*LgS+0%m z1=zHh`Bre{Ucy}aa?bO#nmf}wLXRsyrN_Jdt9#}h%fJ1b>@v0-muo*iOM<Cn+<u36 zjL*5!ulI*QdSHXzoK7wkr8sa_2JaA=HY&eT78Nu$comxxK86t5s0MqOD_m8UOOL#x z_-ft&j_mp@?K<m(?{3O=ZspALt;3^M&w^ZXx~zuO#VR0g9S|6JToe`@>h%!!`pQM6 z#FyoOmP}SAf$HG@5Mez6Hy8XUqeCZuPF@)oPRVE3?n07M)esf5c~FH8=zTWA=h-)_ zee^FQ>f+X#Va&H(v}fNHTq?MFBfR44yIHBb9D!ncZM22wRHm771|dSi1wBN%H4&A? zx`$ij>sI!rjgfXp$hV{@0gr{DB5R%>5?>|c4VkK6IAV@h)ZLrnri1x-{x8D5GAgdE z+Y$@z8a%kWRPf;L?!n#NA-D&3cX#&y!6Bq@EeP)J(v^GPH~Mvt*Q5Ux{8+WmKKs;J zYt6aloK@rjR|x8FvA%SQe=CHpwFDY+k>1u!3qWvAF5+UDv(vH1hXfjMWvijyH}wnX z058L92k>o#<oS|9LgZ}tu$Ew<xK)9r?jk?^$hGxLLUWCtG}q=*+`USNBe;oeHR=^z z6qSo=4Mwx|cO&USru`_Ol51q6?0TdJdc8s32cTt-lxqr4_-wQ4!T6XMGp_l0=hKM! z{(jT&VMYa!F0Gs)%U-%YVf3&_uNJLA*AxFc|BId15!B-kkzS?rsit(Y42h5M_XGDn z*%%3_Y5mX_!E<uC#Yb82g|xa=u}cH;eck(eOY6T7&s+?9ab7;2-Q$8~K`bwPIW$#q zNaDiXHX9jmyuHbMhayuIplB{^oco&y*REv0-E}9iJf|}Mpu(QOQ6Ik#uAz;gzb~db zak9~5ZDV9S``Aj@b*HIpB7!=tKK~}H^?dio*WTRT+kOv7l-0ov5a1Bn^vcJxxC$+N z(TsWZRfOcC^o4l);zq*SN)?}A;r{!_I%*T+Vfp!CB_*Ea`U2%$VBYMHm!7!D{j1y1 zOm`&i1bMYXr@HjtC1Ic3$oSD}`5%wlC;Dxd2q1gW-g>>ch~4qi#ltD8&)FV>Dz`TC zO!PU|!~5g=g?MWXJSu087dnqzH3P3f*8-=mX@N+fagX|!yqq(r3*LuYSGP`akOe63 zHXpcda9RrV```<cyYotQ$+wPq!RDEWH}J=!QwSQ+pR^WwVF_fY@CN5P^EMu}=xeU0 zsMiAWur8TDs&_nCB;D3B(-uxg$kT7g4X$%s@mOG=gCheRz25vDs)x5C1bkmUyK^y< z{Rp|`DxjO666y?%YMzjxDcCj<KUI|E+R$ITBxU5RfoEbd=ot{`bs1rHxjyn6@n`10 zrw3%u-(EZ`kO}4G4Kk?P>)UN$@b=Yud<Pl^l(Df^{rH2Th#I$`6NiszpJV%|KG>=6 z@2Z3qYt1#>@TR^g|3#KHPJUa$I<9;cDsf?{Km4sMc=HXZb=KbK{{wDBDK)#|Ad;kV z5>j<$Nnu{Dq}_=7LfHLQ_;n_YHum;DGd($CnhOCDG)j!=)p1^XHiLJ!cK8Ju`W#HI z3I~&`W=3e1KeRMw(@GrMR?c&@Q5T6APH}s9rIVCU$Pv&t>DiQw=qz28jsmqmpr1a) zS&+h&p~;qgqV5}M%p?dlK?v(Pv~v=$z&)K_(JAZI@f{4fY>|{*xnS*#HcFNaYn-7{ zP5G`kAQYAPOmG9upx09}#Q?k0Bl1&m&9`iLl_T?!nGo}8-9NY<d6Qzmduc&8G^n!= z{dZDkJzKaz6$sP11~(coA&QBl8uO#C#hArcz85O9LJzz%8ejjS8?TyJngk@hJF>}7 zvuD;-X;1{5Aut#)i{2q%ODG>DjK%uwiAfaXoXMfbU$<qg&!YFPt1Cht0aZSmI|vy= zL#H8Yrl0q(_$iYv*6#hzea_e7mkEAz*61E5lyph{&IMjAM)*e7%Whj@__PQ|MyfBm z>6LbsvgiRDmYMHE1}HD@Kj;QDjyuO?p)uB4^{f}n5U;Yj`}WdkKdgG^)!GZx^!#>l z)7&YJ!+4TS71V|e<N$GS<sGHvjc25Ozv<IC+`nKl>NC(8pPctCRBUVCpNHpt*<T?o z0aq{HhCb>G0KX^08~gibf(re9PR~wP{h8<Ys+#lQ05yiPT1AN{LG1+Q<pfmA{0<Kn zH<OMy<10_03(ki_T>4suQWl$QUxDY_e)AA;);qM~-vd8tKucoTunh}2%9P}Tvf~Ol z^DR%^uD{np@myik(zIQMuuetB&gr8k=1Z~lAc}ct4PThmIhWGh2ci$8b}gr!Hnxjg z*t7QgraTxT$qN<8eKs2?w(Dj5@8+9x_Zeq9NI@+8KkcaBOcnbPYgHW&de+-)b9|mp zFnur|I?eW+zfrMABOO+#sWD`S2f)ias=D0}%@F)Z!eRa{PS73};)^PFs049qSIz(C z-4Z894^1Yfj3tbuKE~y=nR@wWHc$HQ^TlDjWE@#Fr4LT}4~w>?bv_$KjWTl0O42)O zJqSakym09F^ZDb^IN=|G<4Pa-t(oay-QbmVNa}TZ3{1)~kuc2A24+Otdkt;u3Yo`G zs}i2aWG(K$90<BNSATXjl`j`WA%Y{-T<0R48U@>r_19I9evI-p>I=$501-W8S7y7} zW_gKl{@Fb4r@ElRd8^sqpT*I1G$a~Zz5iPS9QD{`+<BnPfo=NW0%{FniSQRDc8j;E z9g%!x)lZ1ajIcODX5=Sqenhea!nPM|*gAt9IP*)9X!}Fyo5ataq|}*1XxWqj$UZ5` z^HPoWBfk9ntkJaD66mk}s-QBRb*}riP8;eLi=ZS>Qf1d(Q6>+99)zagiro@VQj}~z zAqcQN&y&<F4$=e}wp6*0EW@7^rg@y%O$u0wJc@!`F1T+(QM}Dn8W7i@9Lx+q)>u&E zv<0#B8<rz>8&LD@QD@(KfU6hxt{-Q>!FpW`uU_U!fmzcRVu(Jt_uisQ3y1)S_kyC! zdo)lyNa&}NsT9=vhZmHWwzyd2__S{=5$FAz!{#UAmHudCGIDdV{RU>X$D{RipQZ7X z+2ob(p~DBlbp<G^)jP8sqneu6GL2b0h(|EjHq1XwHlwKS_gbB^acE}OO{eU4$j5g; z>IWf=b=y8BKiG{Zj{i*i6STWYKdsDd6z1$izf?f&2~_|F99V{^N2TYh&<o33=9N;r ze1r{_{Ch%Mgg+h@kGn7Ws15oRq?}n!L=^t4>3HV;6J~_F8hehts%*w{z|{toP;IZL za2O}q%Dj$f+O^Hdl9i-gFSpe=<Qhh>GCzrpo7HZ{<Ir7B-43yjzSp0!zSLKE^dUE& zZ>BO+MN__F(3rPvQa=q?B|B_`SZe}vWu9Vw$UP>dNunO}38>hDU!w2vVIr$F10Y}| z*78$a3q-D?tQoDVlESrzMc$HToN~0*nMtQ({AV_4-t^)2@b~etqDB$RE1Oy{xHL6z zbN)E0fzmB#=}KuVXJ%cl4<0-xILHh_r`NyL^|#8%?VCCP0Eu-or%N|l?YSM-1ngBE zInKuFX<MI4%IBY9!v4*XdW1FJBFnF^lQB|#k_X&lH#%#|fpTRR;OeDcx1*!vAv8%c z)>h?S8y?(x_x2RytNDFP%7`RSbjL0qP4dA2rmx)p*UH!2hHh_}(f$m2$$L(V8n#nM zv$j#)-XB$5m?^i9_Rz{${S%-xb$mM!g3}TvxY^nYhqSQ3-2!DZDPV{?R)07MZPjc( zxB86xS2L_0oMHUbDOQCykw|hn)zGiEX?L0-w_Lm_@b|e3k|jowfq{rLbm_&9tlS6* zLvj!)G(*xd5l@019n4Le+(mvflG9*x15yv#@Yqp;k|{ngejsHxdlWxG&5sZq(roBg z*r~h4kl9vBc%*#9-=Gx#6%^y2p!oj;wHQ*HM_1kx9>M9YaEU%e%w#Oj{bKvG7Xid^ zVL_}ATWp5a{-M_PU2A7fs?s0?oyxr8Qne--6=5}<K$N3NKI(5^aCz|0YQX>kc(oP( z1TK>(qUXwNWx2DI&TrIuG&dX#Ib4V#k=IdTgPF=pRotbt#1SX&`96`+NoV`YR8ud< z^(O`90`J0*Hyd0X)b)FSE|-PAfFGuU->=Z}G;=e}DwtHZCL%o!gnX@k{t#u%h8!q= z-N&M@_y`5Yfe=z$V<AnFl%ywNl)OaNE2PWW6A<fspHH*A*iIh{LCOYhAF7CQ)3w}* zqNS|LB(2`zINE3Emai7qnjdO$yc}iR6d?X$m4hA0%`b!x91k-MV_*zHh)gU}oB1_b zV>~Z}-q}i@4SKF0Dtgg{z9s}k`1_UJr-U4t$}rK0!UesN#^L8NUT2A|hCV1hAM3V+ zS!xVjGa_5381)Liwx7_NOM<#idOZDd{P4B|=D>`OuzhF3v0j*9%+z?vJk`_VH%7D< zzcPb~^pLO#`W(NL^6AnzBgzn3>ukS_=^dKo;5loV4VI57O^-J#=7=;mNy^8pAC475 zt81!@`t-+F3HNNgJd&HT0nI&92W!`|T?%?MOGRaPOP#b2kZm$PP5c_5+8OqQwom%P ze((;#n;PnE!7A%#tb;c<{nt^t7S7e6%vO6`#w}?fo*<hEow2k&FPrwb-IE^qMmb(5 zJNhwmhe?GQ=F+4|$H@{o-V|wzJ&WIm%gcw8FWY(|Pws32KCe$VzER?wgX(HI7Z5M` zgMaXUUlFsS<;Ke|N>-kLf2icc2erLoi9q9^x;8&1$QdfGP`ZY@Q3KNnd7Ba=IecBg z;>RWFOste}tzQ~HBYvyu&;?`VLThfoaq|l&(R&p|><`RTX#zno@`#X<TK=}<`<0nC z9*JCAoh*UiK0`CZk;qJmw`W~Oeix!1gu@`hY&^_5<pr!KgJOgPT4!{>_{Fg22XHz~ z{V;`E%!}{ZBro+2`+(e?GT|^=WRKsDun`un<4bw;2J4HuF&^A4d2A>>uK};DHe=)| z;yB?#;QBB}IBAI(P8IOf+P&pc);lMI_0i1s)>I;;yW;Y4d&}ceF*l9k{Yq}nC`n*V zm$ZZ6Pd%&A!L)qMGh9=-RFBbNni5;V=)0@>?m7yzA{t77xtE#Mp3T{H4wvNq!em>m z%O_ulu&lG5*x%<luGVB+;hI-#xfR|k+SY@X`K4Vi3MKk`p)(9T9iA;3F7l+OBvpQ< zR()FsikrA%B^v7HjPIskoB(M`i^@J9gy_X5Z^IiNu6oFp8}NcQ@g4Z-KS05N%n&Pj zm<6!5Yc&`?*Du6QfRWZf3_Qc&WQBvvpKMD&wesIcL|s^}KEFkOzrP>;B@rP&phv8c zC8Two5&R_)<v<RxUV=$Pw%!kEtTXYAs@7J16(8-IIyB<fGGh?^3~JB4g#@H5(p}Ze zLl<QBb(T82E2EliAqwp_uXg;-!Pane5o6~a)g?bcdf&Dz{q^-3)5W`58W$>NNI*A+ zfv>ZP?))(%#vgGK3y56C)F^gDFYXI>dtqOP5H%gF?qeXm?7m+@YYH7)#>JTTPGpAo z-jb3r4&F=ElW^Zk80C|&gx(ZW+fEj=(YJ@_R1IGZUwt3?q1JTaP_=|*m=FLh*s0e9 z0ig`|4~qyF*8vh)dac_Hu*xaQ7Mp{qqLZoQ{aYXiQ-MIlTMMd~Z5R3X$K(_$$;6~n zaIXEoSwx!tF=iv<BnYug)A+e?y4>++Juds+2HjaePCF&SL_0^R-v!rKi^aYXj$e!g z`;F}Mw&yC3d6|LwK)l++rISFPA72w6B){1SzN}W3qM(HtI9daj?jH+Gx7zSGbk^68 zy8kBGYQ=%Tn>1UB##qQ`&~Th)?6{`7oa|o$(WT2va=jrV(^SC1WfaExcJ3nC!9$)+ z04G6@DadVK-E8ybFkrSRxQ?$F6+#wN^3zSU?!B%x0q~|=mR&pj8SAr&_>*y;*&{#< z&7sbo*&{)&7yK%O==)x{Q)?_S&Ryru0YZ<F@WgmAZbkVV^PMPcry-e2GUQX6+?n_& zK7;{OU-8N}iuks(b*&h7y{fb}x{{60kYJ2Kqh;&o#E%8y!DciHY!rxV&||Y5V9BT} zNKdXyzw|o_nT|L8;LO=t)oQ0A-P>+L1u5Hl#llhV#mBY`&(%*L-nf}c5raK}Iu}jQ z5&3QXZ@o32H>7UicIe(BUJdGru#273`GYqKB4LpY=)zk%Jqd1262F!eaq5-^^umhB zwBb8Foo<H-$IF9r?Yr_bASoKLs8-X7*E+Uf*WlT@ei{bGbFGAt;}7u*@ms65v&%ty z=tVlIkE-}ce`w^1h1J5*nQkNIJ5ew@G#H1HbAt0++WpmJ0W5INlDs>;*K<6c)UJ6v zIJk3Bj6p}&V4%`!p5k&W#+Uek?xE}mNm#jtSiGDL0<RxWjjBe~XA+A%GC&CWZ>ROb z0U)%msW;%~MD9=r**4HN@3YE&+9z4wfwTsxDcBvKY(}=k1jYqe0=qz6mBtQ<>ZaPJ z@OfF_CQGE^znOL8MwLW4J_Mp;!MJThxS)zU0-27)oP585yqda<J8?SAV5qj-mYQ%3 z)J#yGtdAv${6D;*AaI#h8NQd4>4ob__~O0^YoT&U=7_;RwZa!VkWuW1`hxi~VSqAS z1~_&H?Y_25h1Oxw20*Mqo)2h!WMfZ?QU@`6W||mvCuFF-;5@**L{|0_nmd100ChVA z`G9<S5W8eYjM~U6eMQs5$&FqFpx+?gL=FGUK>Vc*82&lu11W-p%o^A!gWh4@VBd5% z=?BLo>R}%cU)0U5SyXO);Ahzj&p1!!hjKN-C<Z9Or~oIa0Ae;oo>Uj*iJG^P>o+SM z`;;Xh^hg6t+x<s)4!gm*4u_TS$!ZuNFlDc~^^mPiLG!CfBfXCxmH+Cch1q`9Md$7& z!X7PFdckrw?p*~^uJ8f+LcdK0g0spke~6{ET?&KCeZ2ur>!uyC9gzfYRpTZ~-khUm z^G});>cR>qo88{2cB6FRzRR3^(iV*X1IH?6^Hshy;KLAwPn!L_Ssxe{=t|OV0_WA+ zv0g`(q*H12twT%`UWdb61J91AMj!N+;hy(hecTj((af~+l@w&Egb%ygXTUL+Nv3_X zv92|l+YMLGELo+d&<|K*|0XANYM$&afL?9AVm^Npg0V=TX%tj-AP!A;U(9W@MjzEN z$g|Ly!$&#=mzrOaw|wyjKoIXhsr_uyj`Bkn)TTxg-r%gebt_RufuTyTD!T71b~5*6 zF(y>$uyONBb>iklK%y_>Z0WZvcWkSEQ_vq0=d5p8PKsgTzmC(kH#YcK`M1~~8Y@=` zEvE9)>1TxTja<a=&(&|aEr)Z=dBZ)(yCHJ-%=1Ag777GlOkf?o&}{PdBEsFE<akpH zm!2q|JyLu>=r2o+MTcS!KdY)N1Ub9H`9_J|M&4?Kp$k&cFH|!cQ~mByIHVlvg5ZHm zU4lWXNT9_G<23Whpa{k`RiY-5I!Hab9}a}(Z8l%fcqU<~17{!TV7m7QoKs_qG{;a4 zA?Z*cVBUQuv%jd6V&+9V2@s*g;rRq?{F_x{vvPp5YV5#qtZif}vDb($y|iVA_*uby zEDJFe1DM+2x_cflXDGa15;X3ta1tX`*$aM%ezF@|hWpfUY&TwHni)gQdVPK8Ag>sO z%t-Btk?JfB%ovNHEQL_Z#n@kw5zBxh)_f?PW^(^z*_iJK#TMxo-9G|~f6gY5p5S)G z(_4OPSgJ@+6Zjif#pK{XhDFuH(ww{CfWQ77{QsRmxd{VnN`2M-$zlmiRS0^;SP5Ng zPCG-Q--%yr8m@K|z9Rrn%m0&6bE9oxTY)ob0i}xczZtcUju9Qzr3}Uc!$X~)LV5A7 zP`@T<`G05BkyuAvIuwzZcdP{)ZLxl<mrk~mQlI|WC8~dSN$KBRO8IA(j{GG>QX<tn zr{XtzwQ&IahI9PmRkdGh2C+iTMj9eG-Mu;Q0$78evlE#D2IQkjwHl&TJNL;iEH3h% zvt_~E{y;Fymzbd^Q~5>=zB#+Ug{)#<q|3?E+;KQ0h^y@{?G;K=>WN_JHeoSWD~hej z!B5_lTP2Zi?g=>!TKp^i(xyq5vP71!EteDj?nfI{53ig>eWPdFVJ9=Nzj~)V(%sm| zHB!R9bCGEPd@v^WjHIE)>G3Rk-Ls@ZTP_<k%Ay)?*R`*Vtp%|EJCf1S>wQfbj*et2 z!1&ym(JHp4g37fVh@z%nAbx_&!j+8yGIQLW#p}@R4)LTw_6rKiWaj@of!Tg00K&Oo z@PqG!vyuLG#(RO=eno8LfYJ$d!R?7QZQet5umQ*Xje##Kh4DZTjydT5<kw9`YyLB3 z&<z&|_d&z3=!_ZM#?8dqyev9H0&#n0j*KaCcPCcnfL~0tivncryF3_w1Y%(qTNsn` z6E+*Jf);2OveMnRHmK`31&E1mu-`%RnQq;d{%dCO_X$6HW39A2byTlwZ1v}3(wr#P z-O&Rea6X8?l~w7?*b_WhcVF0OXr$Wv5Bv4@ogJ)oKE@vNWA%C@Wu2{<|G9q~acSGf zy^u;-1+4b1Sl9z2zH==3md>+P{n)Q5Ceo{M)8i1)rQ+@T?l9+gQ*&-p=%#DuZu>U5 z?bm{Rx<qYXy%$B`VFh*lK#A)oxlZ~HJ!(o3_May1jLhH{^q*x}bFDlPpk+zR?Sgzy zjCVDRkT8t`5SbjHs@k4Aah-g_SK4q0PRV0cyP4<E2(Wpdknw27t_Tq*yn`Cuz2>HQ zzmLFo<_gBK@7n-)gM)n`WfqdlJUWcEHgWV5Sx?GZNd>mdWyf7hifF$vsBn%LNz-WO zZP>I^Rmy;vpH}XO75{25ZDfB-e<hi~ArLje5AE?~@5*$Mb+<9AQO#rO-RgT-DdN%~ zk2zEM7|TVojF-81MnUqeFHPow;0l^Szi0R;1L{r%^ADU|FL3)bBkY;k2J>$I4bBL^ zS5oA*z5;*<?G`}RLc?Wbf~r41KxJu1fhWr#f+@>E80w)ul{XaiLbzz62i_WTD{ywH zW23q%ft?adyb&*w*qdaRr7#)8WGYH$_LVm>s2CYJ?ikjbRh0Ypih%^02UWt8?z=*O zWPn;<=$XvoCq8z39ESmpW0zBXZHt)=pL;S=dD^H%4GB-_ct;o0pg#GlI+)VW(;w26 zfAVOI$IagfoG6b-C_v+<XA<vVN<=aUwh_lKkqlFl@23ZRT>|qgLQgl9>q1d|gI5&w z=N!{_v$T}i4@b{8s|d<S?423B7v=1p%NI6(oAFYhOnd0~Zc|N6d<2m#h5Kp7UR4py zQLep6A{eHr4+$C?vee$`C(O&AbozxbJJfcgMYmJB&2CnnDJ!nY&Xuw}m6t-q_X{Gf z#_IVd>)r(u-U1_uyAH?QS@p^W(2+seUOoDLB!gO>KWRZwOGu)oM6%SnZ4EeOoA8#@ z7lKRo=gt23j-$w|B!ujLAW<Xaqt+o^RRYoa{XgmUpE$JS{8;(4RcqWGUJ)@Y-LGA5 zVTJ@SplLn3P_{??nhcc<?PI^RQu5p^D^EEm|1v5EQ-B<A*6bcI(ss)_(pJ79;>{|1 zK}VKNO20bl(UCrClVHCsiL$4)Wg8d~USCnDCk^!1QcJqyOoT}GtG_q%8C6^VR6A{{ zd*dDWQX%Ci+(AV%rZEAhyUNBXjvxIAo5$drH>Rb%2SdE|koEp7$zA1=mfWO2b_h;H zzr<Bi<@vVxTD2=0ZOj<a^<@@ySicViyxBo+#gIJY;d)JoE6rD5nlDSUWImRRQ)MHq z4wvFJ{@?hm6Gox#C-*rjr>=G2i18G_nG`i-^jExHmcnw$YDim^K&pD#Mq{CdEJTe7 zj1XtZCHZd#`pGF9COsS!jpiahRMB}=d&sB&F$-{E%I(bc@Mu(W_}i!})V^s49N*$l zelya<GS1dm^%K{7*fTYj_EW(0LOc)WT<Q-TnZXpSVYmbHHSyjTM?3Lq#V}QJgFG`2 zV>vn+ZeQqI<xZ4m01@zvBr44D<k3sHT2^ojXO^zQ@FX0zl(B5HJ=*<<ODVe14fq!* zU>w-r&7xbYzET1`O0S0cD4olX?Z!#>%?aH~!};sF+~-+y#&0SB%H8-$#l>8665WMF zr^M!fyud4{iLYt94%*WVha+~{o%?v#9xHUcF!!hA*gOiCmT1>vV?c{#Bj0ovT``&k z-5*NQ49sY2MW}^uI1%(07)$Y{@%NU*&ju4l(8bt9y{SB)<t)^8C2QVqN?`(^@w~!2 zc}JoINgr#H)A9o<qy6LuFEx!>!Fk;w<Vi#$xn}R0LW|acw>P9N=1m0HG=8jbL+T%` zWIAU&y`fp$LD$v3zo&)5j4&QxPgJ!x6qGJ_k>gHlr#$BDpSLohD1iG6h|p|ur?A{p zP}g>419+ry!jpN6${#q;QV_ZJiOs{J9aTP{-{^dT%o<hcN5OHdnCF&e4J)3_=f$A| z=?H(@fc-Xf^i`!RL$WJw#@1gTPu0L3c`sd|DQStK7ZL@g^J`b*%@X{r)<UYw@Q-n0 zk`({nh!ZQ;B>1TMEY{Y_47JQT6&5x5Li8S2IO@8pEx)a|i&h;9IG_Oi8{cz?X^y*5 zw&)CKoQ{j_Q{NO4(#bdgf*pS4A!TU#A><=8=J=26WidMs=C9&hkHV*A`9=L_PcG?b zPTr%_F6UhJ;VwQp4b9b7!#lo0&~Z>*vPE9nzQ@@P!<VgIVZwx=XsBa=hAItI|JU8o z8|Rq@+0)>*vm~YyjJD2)ViS;p0TG;?fyVsR7PY&o>SE&ki_1YxKkt&;G6s(UO~BU# z|3BN8Wc3dsD*RCznl0+kZzR8(7Mbf<oQ5wCbBjz|Dt=^hY<I{Cvxc0PWj+;kLTzd- z864q@w^$>8O*&i9E0Kxzd^m!%{-twhlY|pL{QRE8YW>-}21u>hbCl5V{6ylfiC-8a zu=8^zrkRbR+axXg^ES`xa{y$M7QZU^Ehqd}24d!~48+g>a}Mhh`J1Q`qi*Q8@V~a@ zO_BfDmiu9levw~6SP?iR8@u;2HTR$7goc2P6k<ehUNv0L!)tvx{DK$^I=7z*e-1!E zQ$&qYjq`Ok`>;6N-k^x7KcMcSTzj@`-<uXsThT!`9@^2GGUufYNtso!eEB>*`<kWs zy>SyObZ>fAOv1>)m!l&ak+Q3y`C#4x$?k!r`Ob3C24B*HPHsBp({h@`l1#?P0cmn- zLD&mKN}Z%ZpHja8gYip#$=?~Q#fV>K;y-#<j{i#r!mURGJcH$82KA2&#EL|k(~!gz z9<50tJpg|g>{o8lLHQ2L;Hpyq0U>V())>@#_5o`QsvCS(lp43kvox~E3E>@ZI^iEJ z^3-J|>rV@}Q9+Eo{vb{;Vr@1d<*emz)AgEn-_}TQNSpi7N_#nXX)0}uC)IR+jqiS1 zmZFa!g|fnsz)|KsP!z6~FW_gkDDpE=wyTp8ffK80x#k$(6f;(rob(juG-pa>@rwZ$ z%KGPdY;77G(Gp&|`KqWIe06DplYK#ujIcoKu4?!tDW7Nk?NR=t%!Hbpjx&sWy`}=b z^Ej&`v2V|zKHI)Nm3$fMYy8e@c3$Cp)6~?Y4v;SlTfeoMT6q6m?`e?XgvpOIvyOfx zbLtI`Z}q)E+M3i6+IO(a9yCbPg5q}*pScU8F<r09(>3`><_u?Ok3;ey!mNb^+TcUq zif}`aaafdk2j)&EWP9`$*M&{bQKxXo)~6v<4=r1%rLj(GT{7pVKrqr(=m)rY9Y_iV zzni$&pTDW32AO~-D1HzFREpJym0FIhA_@ibSvPM1kF^e9dAv7zFP<X`nSHe@i?+Oc z44U)tOciP_>r~_>V~h-~I4rlQ)(zwn>=%+xIP*Vew*11t^E`znCf(&KvTQ9nMZl-g zOS#d_Kw5po_yQ68_e+gHIgKzLF$^qHS^ugGPmP*+yNO-tZK8FLbxSH~1MXd!ME*zr zb5D==OFdH`V@Iw*FgSP#21gSWgL%sszOyp2BmP{qqm<}I<B?2`8>z&eBaU%uKv%w} zrO({Leo%vR>+%lIyip(~pb=6Yrk03o7Zv{f?WphXxRRJhr=9mBi6f4$`io<{hV?Ew zS5yBp=w6&lOEWG)+=>CG8}=`CL+k^b`i<Ijaijcd)tN>ABB*Xyv#nM=0982&8r)ha z^5mK>XDR2gpl|FKy%1F%04QV+U@2EH*>ui}P~irZfy%bmOP8B53ro?oU|FJ_b$2%6 zD}H|#JH&7^xk!sI{FxBscWr56iL1;_C^7`TD>>Q3k%yThmjlRU17+eKQ>Q#$B<;w( zYc07M73q+*fps?;Gn2(NP=EmdOO-|LjrU%wwGZI~=8M@PuX*V<*<T`3=K>oCjv=&R zP~XvTTn2(KirT<@t=r@ugY-_R0jn8TKRNYC(PR>30A#?UX9e-~_bvrYWwthrb5t5* z68Ba`dktO}ts2ep3OdQ1$-~T?Atzo72mJb<w)xy#MbsE=-|5T<mP#l)qsA?0jmIi_ zSj{R^dH!C~8cNoLV&O*(d<yHmuqOMf5q|6}2^Q4X-OHkPxBFyD%Og(l7q^8!r$5H8 zP5+q1Y3vA8=BT*))_&-Eb^hJYY)0%cA+FM&k{fB`9y?AJrDYh4Yj!<nWn1O`tEU&^ zvz3f#rM}goQ=asOaYww!xnvCSQKnfNXVRBAnWYzy;w*~=HJcMzpRSTW^k?XevE6-3 zV8n5`O&FLmtDhzD;1Uq#F>oFg)hoP>9Hvv=UH6wMlZNA-2X{}wlwJ?J2Dy1?{bKgF z{iPq<=hH86A)tH-7*I4RY6Z$|30|OgCoyaV8P{UZnD&tDw9j-qx}BG}z1#bw1GT`W z^%3Ny-VUduZa{pb@7YF;L0i|}DTyVn=2SPO-svZ9pOd$kE_4fzc{P%c-IrNK*CJ4y zx9NR~*T>C|ql<_NUl1hVZ7*%1Jh5KP7j-O4$zi)cF!Mi&=pNKzI3R<Wvm$DU_cYQ- z>i1OO@vKv!#fL!YJUD;oH+jt>2iOOuhc^A#UcSFrpbx_n38V|CV<M`z6(Gnu?*$^f z0O+H1?|;G9JF^A}z~%;eIG>h52bDpnUnnrQ!S~dSi1mGVgL;$I{Bvdjssr`8bDhy% z04_E|hV^%HM&uUyg8G8rnOC$2#iLcU+hV>8(-0=|e}_ShJ%8yF{qsw|({{=#Mig5Z ztKiV8kg)OS3^Bp3WKu&al77|MbRDpz5=L$=g6C?;ak$!P{yU^PV>R?Zw}2<em?Wm- zQ|co}L(()OQyDPhz__EK*|T95`c78rs^O2<a9)lJRI9m)yU$!t*`FaMAEj@E%jgby zs-_(FqP&CP`7&kmlk0D!jNjvbS|F?iOc-?Q-!65G)0>ixrE07THJEoVj*b4@2ns?5 zQ^v&cyW|CLlK>Tk^91I*NnV2+yh$CRy0h1N=d3XW5f+9klY~&xf{0UDgbEw=lF`<4 zbI2)LYGr5gv!j*okR`|tft%<hPZ!$i0_O2!ymZF1Z3y?X6)-;bGObus(jemLpBD4O z%j4T8Htf%?F75!qw5gxK4Do$HQ$qsv;f*;jab9#TyVJ*s3zP>!qc8xKR8<%Yp9Txt zAi#I9sBD%qCZ`wq?+0YcM_SHU%z<@96MvxfIS0}%G8PCyS))9A<9fQxiLv;6%e##6 zJti}$$g54=C?iw+rvzG4SAAvy;>N6(wU5yq&ff@=wY)~=Rw<p#ZF3SXkVEJFn4IJ; zZL1BRRWNNP7%JwUkH<n?t^KHSCW`?o$A__|;6C=kkM=ae&`8n*;*-TwB+<tFeKwXM zKMJG9HPy^oK;uSHW&%@gcnUIFKbn|!HY#!4hrNKCr!F|8kEH{^o}^i6sVikm2}6rN zEY|aGtH#8m84{b~xZMy5$Q=UQ#xO!Phhct`G~(X^5_SzK`#2P;e=5Cp$qbXW6N|@Z zVl$dNV82+Mi%pULUB7i|PI*B|VyR_wWj9S!#d397jeVlPGCfOo`D#>cicGR?jv@B) zCuWXylzP9!e))Q@I>;%Wu<v_bEPMy30?wfpaLY_UPC4)_`T4NM!4gGd3%=GU7&F8( zv)fX=-T*NdCoK=zb*3VMJ}BRv6(~DaEmo`}xusjqIkyTY6~xN8>UJEsdBERFLwUgC z;8;*=Br#=CZ-;n75-U2RrW*y^?I6nkT*e2MYtD;ZKc?BvC^(xj<Fjb|k&a$yywoVQ zWB}_`Vmv6HH)m9R-!Um$o&3T@A^ybDp#rq}6=oQ)yWRUmJhtfrj$zSoA5GS(o-6gm z)n#14=#%jVr+;B<%K@{cPe44dqGb*-PHpF?P>4hpXAYh0^)2I?A{fVdBDTxrY+eP( zC3<pPl-bwHP)aa9@JwL$(RCpBZAR#_Lj_L2Q+TZ&uvu!Wa3G{O)H`z&{|<HknT`yc zWy=0Pr~MNu#q0kuh6PXiQ)SAVCT+L;V+^}coRhzvM3VUWo|lsmKgI|N0hPc<d3E(m z|1^(<s2vEFwcZdC)Vo&%%UXw7fQ>Jk+vj7(ZB>r(?BylI1;*PvoU(I^q2=f+8+|K& zcJ4HOyo%azY5-XoK#4u~o(_-9J_5ns-(%;?aw;Z{+ynI-9eEp*V6d*OVWFZ9*7V)* z`_ycd27ipb$wz&<u*L}-V2M&RC@*xU7uIj)FIaaQ2I<9;aEZ0JX?@`?H|3kggrE%| zCI1(!bH7zE%0HV9z4`~N`>SYOQ#0&q1vbtwDh<A<n>$Hy80~|MGB&V;fJjRFD{1Xu zh&6(1pp5-(A-`u~Wp$PA8wyhhL}8$#xUy0mB3{M(w-#CUp!q5L&aT<3!WWQu&*>}d zEBq_btJ1x`&;E&^Z0dJQz!;^fKl2P5A&AFfn*Z8@hC>lN^zUXVIXv&AmM%FH<xn;x z8zKoq?Z;p0hIFD!r+w10Wyj_a-Q;EPi`3a9iDR+Ru<2V4LxvtO&P~jJ`$6Wcqs#%3 z;mIeiX2ZWx=TTvCjF+F~V|L+tWR<F(e!uWiFpiL$$cx%WzEIVxB2w?2gVXW+&CP-7 zu%fHE{JI+h{OP;X={=~Bl;=uvw`)OQ5J~^!q3GKY257%t2yMgTCf>vOnExi6{!oo6 zmZOl9WQoUKaFZpHU?^Uox5v2&(T@HCtN*%w29V&c&Yp9eYEX_lR0L176<#l-CKNI9 zJ#*wsSJhavO>v<;L8or;GzRFy5}v7K!}Y{`=+>A{5X0gfv|NS89fabbAQPYC`tjQM z3eVt5^}qo<D+1s0$&#De(3upu`5NrdtpSV^SG?KH*^9{7xOW(nYrw>)eFM42RjaCF z#<U)WSW?oNOA=3^89HET>nJ(yc#}#j*OBC|`=tAGNA4f{1-7Uio7jA;gqgthm1Ke( zhHKe2d(8rAO-&f5v9Z|8!O)ye8ywl(<33)ovHBgjIb!39<Wm6Fyg{25O>k0cJye z+1g(1npj>`M16K(ewT9S1s3nO_RQRBotD;onnWlzFB+v^Az)|stkKo|RqcT`kEspM zfhLls>&bJ%MqaHxw3G04mabtt)^S4!ny-qZ=eL(4PF1j3kRY5TO;fssON+_f?p&x| zM6lI6MNwcCj_Y~%pj$jZW6dK-(MTx8aIMs+r+UDg<bms?Znp_Tzt`GXfzdq3rhd_s zYE!x|IQdVmeY!nyXglg!NDrNmZP*AB*Afw={lG>dPU}()X#+cXge-=;K!j#QBX6Sm z>YiAKByJM78<_$`QhgQ=XCja@Z-|Au8~(ZQq_m^qQvfPaI8#rPZj%``?rZ-<JxkR* zJ5~z<i1Xx7qh)d|-^{+e880Z_NXTAyP>#_aqVL<Q`YM6Bu@eedn;Hv;(471MJ3TnZ zMt9JcT}qXd$F^1uC|P}lF;oKIr3zjIlU+LB>tRBAjMerzOg)^tV$<r*I8TM*Vzo*T zpTr%$4^^hQvXj^!{-04pc|L1Se|`$EhgOtKEM>NPq&tPHa;oP18s}I*z!yHZ;>=K_ z_)aF1Lm{Z{kNIGlJZwskVG*w}u!q~H5k1#g<}ml^mZTofor9(jHRPPvhsn5Y7k`0z zVue2s&<NYc-=}<)SB-mnBI~_<gzcKtk$d1$-?C-F_)<v$vIv~0Pt(P@C_2_IgDney zCLQoEmYeu;t{wY{`7y<c(SG@^5bCy4ErT4V94Cct1VB6;?()RV;0WYXDp^1b#c&Gn zr_`(!gzGzkf56YDPpQDe0T-6zbJ2*{#!U>W>g@W-nN+HExV6A?8VgRI*IrNX3=_F6 z?^h36RnMU#OYj+uRX5i6;1<sVURBn397uehmZ2BygC()ybfjZCpbLwTRcK&lipUl1 z-BC&-BU)fzy~48#Ex>+-FH63aLG{S6-%U5d&n?Ibt9nLzKD}tLBTixurv31PYDqRA zMH-*H2h|th*=&{CEMnLsA7RyYwHUcU3l{e)o+*`+<cS-F*aXx{z1<_zM37gJXbK4f z<gPUEQlcc1MAJiD=_oNF%SObw+ajhnIyZw##A3ERyqJ!(ma|coMBv1<wW&fkY{Es( zW7u+(^K|jdRqy^StRHJ5#7{NVXZ`k$VkQXRXsOVxiVwjVweOJVYR@)sDhEc}nzJc# z9S(e4v}OYWx8J^)&uZd&dAu{t%5*ZgHONEF4B8JQZV|+nM~Fi`ke!q=<Hv2BR<W5@ z2i!<CgT>4SdKb>NcoQ-p4Z{8OHRQk|wy9|(>wd=GH!m}6Vh(fDO+>qUT}Aqu-TVKj zR8JMTZ8t)%h4xfU2F7chile6)V|p7PnI_enVP>9e=2djnIk?cANl_H$uF%vAS!E?+ zM#Fp`FmFVBD%w-G+J2_HAUJ82r3HUutB44NpLId*F2YVdMGgUqJ#NRK-1z)J*tP(i znz%^h1gfK^s=P?#yaCL7@~=_2S{<5#3K;}_T@K$r%S~@)z=v84i^Tq_`npzm9SUMq zJIuS{YM9SDhRvmci(lLHMItAW>v1qU`^pQ}z?w)}?9SB(7uCvga5Hh0g4~r98!lhe zDU;hzAUwF{DU-q1q9l(H>${?Yf#7D>^f&UIENz1ngnF{lHdo0h8fgBz5;+I7ZBj@S z%!?|bjv{zRDy3+hmLboqE2Y6Q%F+3mm`@3~qtpeMm`|gPhAhCVD&8Dvs8yDNA#zAH zWs%55Y$bdIDt3;3cj<#S#4ludEgDSo89D#MI$pc}jnhfMsOPs+r&}|aL0SKbDZ_~Q z1&1oxQywxU;h)8Hg=jDqmX_qt9Hl8aTcMUmg<z%;gKA4NLolm);4A40NNs{_G3m() zqETzct2Y1VAW0$Q(2MMYMGnWo3pnRI`Sh4FdhUT;nbw$Kb!qbQ(vUY%@C{Z%K+tdP zfxEH#?)^Vs6t}eHELh&c=A=QN-ppj4%#Zjo7rK(XV8{%vy{dw`V91)~o3+dVjn1d6 z5E&^;ZJ}cqY6RQ95byy}5=WpiQ2k;?nLIiPu}WFsy};0;D|8%vPo#u{K*h}0uP@Jq zK&9b>p{6R5@$b&aL}%J-b$pRNcKkO8QZ<IU%75Ep@M?w&OTlec>;HKfWq+5!l=SP& z|J`cVjzJS{wOGRdBX@4)@sQFu0pjh0P>xtLi{-QI(foreCiu9@r2Psl5Al8rPjsDm zucmKvE-p3YrLy7m#+A7cEGRs|L?U6G$GGPK#n%VeHYH=G0s8a4z8A+NV^-x+M98wy zodTgADU-=c)W^E*_OYJyY@tGm9b_=Nlp@s?!M|Qcnky`G$(~pq=@!o^T?b2bF+?+L z@9Oqu6?p2sRThRvYWt^&NxLzv@)sVbmA&_2gt;j}@w;>U$ORf=%;Z+^vS7dg>)_#u zVVzNZ6?NNB=>Trqx>muBGgAVo+>Xp0(6K=L_5RYYXXn=${dFq^qJW!Xn@nfZ)KB)J zG!wjga$}i~UX)C2?TXdMR1Ooh)ObiBM@e%p4}i{wN6XjaCUhsRuI?87PQEuSK*00- zGKn$Zx9EveX5>K6^=e(`F+u0<c@;;V`NWzNasskHCi3v@J_)(}N0LBxdWL|SFVN5S z?UP)H;z_`1LUG;pCbE;*#1ZhQ8B>`<X3qxZE7_nKRocERHI~8ABvy~n*+Fy5uZu8+ zE{|VJ&RR3(r-{1`&Ij<2oQ(bg_Ox#w?h%-lQmd7^5kwlQ`A7)O1`8$dqB>35n}wte zLO{=7M}3!=49`YrI2fyZmYD)pE6Lmyo6%E0nn#oNH08M10ynUwlbT`=XXU&(IlRqw z#Gi&!18C&E5~m{quvD#ZImGTUaDM>mH=8@orS#sQU+`O-H?(bgK54vzUurzwYy;`O z!=8c8G}(dcllnV^Dlv6Bl^@Zz-Uc;jf3jc<f5eKqjL@y!!mmSi(8aE{x9<ugL?y85 zwoI9s=0CB%7BgkPlh8?!Uu`!0`cB^UXST`U%y`jqA#$XVy5ZWXP?@cuh8qjR_9^1X zPIohh&zER*dwkc2O<!yFn;@1E>51T@swEe9zb=Bz@JMuhmRF!83isc?g|{)nigHVH zZ*Y26*@lj2!P1jdOKCbOekggW;?*NT*Yzc&&kqYjgs>am{Hkgq@9{6VPgbp|HlQ3a z?u@H2>t>0CB5&wfk@!{@x_#g$2kZyD$Q{PI_`aa(u6U7Odc08TfIaPO56cSOYPzzI zOKlb{-z$_oi=|IW^d6dek~70Ae@Dg(U?lUlcyDcso3C`fcboPBWOcg_8@$lSibXSv zn`(+Y6!~7d61Ogr!Ey`?mx{H-u);qa<1fug9Q?jB4s*B(aqx2Ij>QbqWWf%&GK~II zT*6R7Y&g87_x4btw4L2@EtIb(wqrGozOmJEWYo6>u;(j)#r~C239FQUa15R(y)(94 z><;durP@!CkN}WBbOldu%;^v6tT;C4T256&WRk@HkOiAn{EnM$zn-Q6O}sUxHR?`? zR&^`+_PbTRtXTW9jDYZsKJ)oYrlt{|-&`H%e}_&x)A8zhpLU;Z*_WMW=;da6vK@V| zqgClS(%pV0<w@6F4eTMCcrWmHdS})00PtZL!m$Jk7!|iDi^B~bcB7XZfxHTW6~+qn zp;7oo^z5Aj0?wAI>jLSvyq2c)Qd|OWSM(X~^=JvCb0_*_dp6h`bt}40v0YizD=Y>k zn*5+U5`un=_N#I`T6lwmH$f-1hUTtfFN8Un<Mndpyh(>u0vNi$%PPmz3*Dtn8JF%t z+_~e2_6zSAqC7<6c*9ugtrJrQBJhXOFLYuR^R((ce99zs3#(b_ur5C?%7c;_SxCem z&OE5c>w0QfFb<t3B~BjZ4+*j<ktMZ$qjGm%#YsqvPByZ{P;xh+=R9zk!TO_1xT>UN zvLnfm$<)xDM`mslgeF!j&QHEzfvwq0l8bY^JU4{ulPX2HQ=}F3@d*iJ<Mnf+@*oxm zl9jywJWQ$7-&h7HIktC}TB|QQo8>WOiTZyue?7nS%M0!c+3bIl$l2+G1V@*DYnof# zwjaCEvt~BHe{r+@0T51P<wrZNX8bWI4!p~i#G=P}ow2<Ux>PkGxj~@dpsOtY$pk() z%N5Eg^7p*&24!%E^CaK>A#vNN*y%U*$97SYG+!pSUvA)I>GL+*nmTzJPnKBP_v0R} zEe7uQGj8T@%(_*6)g%l)B^iv(=g(nmEC=jr1^IYCHUz%g*K7;qq#EQ066@`zHZ@hP ziW|6}eqkJ}W4ZKcq5gRV(NUXkGHO-&j{WvAr{ezk9TEw~#uwaHQ2g6g_`lt<EcCFk z0p#k@?`D-sj%>vlT7?;6)O73r5fMcBZ)RCmf6cPmq;_^|!SiJ_C+&aDvNnX)^8T7- z8KC^b|8=UtPg!nXm;v*Dqr8*r?v26xU$}HNHM2*N^@GF-<533hiQ(+{s{ymjG>F+& z2S2cu;LF1v_R!9~FLedm=e(~=_?z;~rIUqVEy3eC3+U!|mS208;tV7bZEP{q*rLn3 zQHLt!UKffY&W6Fg7NJ#b&ECU-jIv-YK^9A}oO$WLG+-_v3jVP3gs%d&N3lP?tmh!? zO3Qn)g)_T3BDA#PHihnzMTTY||In{kM*2$wUXnHphJbjy2X_{7z-Cz*onhjEP^E#; z1;A1cHI!1fD6Et2L{6R$BJc%YVnn^H5(}bwh>=XkQg+gJfZ8@%W>YW0{&`J%llRwX zdy+X0WfnrePd%|tVChm@XpnZjjrq1VSY~?KT3dH55X6<Al8asr_{Il|@E+PYUdXmF zri({R#_6ULMAp>^J9U-U5moWD)O|*8m|E4++sicEWm?U&biI{1<|@^V!wQLxvHTy4 zL=Ho%>@KBVl14~a1bw>SQ{wcSwKJl5M1?N@d=^sph800`_qu@arfatTmH)+X_<hAE zDr2>&sUyR$&#BweGOkJS*G53?OJ2aQI-*Cr_o@Z`^^*7K+|y^fyg3RG<+k*@n`8i= z((2{?ThXiY3il*Uw-Jd_PM>F)GH-;?ooRz(RjjM^I~Ir(<GmsJ_i7YRuf6rWJB}B2 zisTE{w$Q7O+76rRtjTx(#);p2uF_M#xXOaFDL_<1X@#|8e}wpZIh=b`hg%xoh)a@l z$_88_X2kWK$`&%Tn`JsX=7nc5SR+3#pLQOvYI;awLLS>?l3IM&KFF21TrS~rYdSc> zB}Jt7ZYW$x*Ka+kEV8Z~WSITh`&z|K%J_g~{hUmIqVw~(+;1CmyQKX2=g2YD9=2VN z#O|rmC8a6s5QgggX9F#*j-Dk6YGRrX+YzM!a%~P5H;vj=U2*qvVZ6gpniUEXQ#P#{ z#Hf1ZSmozfB7Aa^=Z$WXtJVMmKNtj>q7%e2)MIReGTexwV`2>}0ChHQ=a(<*2%MY^ zq)q{NZa&`e=fKrIbGu$sam|+TN`R)CXgLXlYJ{qCe0O;DZWVZ!?G+68CLy$2G!FCk z5I=`{($g<KS&F)SL<05$K}6dfv;^(?qW3IIaxTkTnLhZwaSvWMQ+5Y?RjAgu{otMd z*h3(AYh$rrY)qmj+KsEe|Gbn%o04927=~4du{gjqq&usbb=GJN$0ga1xGkeLkL!6u zq2Bq0D6yO`_Q{&Pa?EtKfoC=|;X|^#Y6R9-OecV1LLq*p&`(lo0|{TAqk>1rloyoG zai09GV4iPrKf(}}bL=Fg9cH#T|7ukN&td#zxb-R31;RE>1Ii?L0Pq3(61W6wu5!ur zfPBe;4`+_~K*UJKJj~4+aN?mFkIa^2en6pa7WA1?*#q`=-c%88@6X1S)R*CA2u~>f z*az3Pk)79L6~o$$Tl%Kk?Xb?NaP!>HzK*#nHpO`zlkVRZy6TfFVp^B7yw5ql<tofZ zxrtcS=+P9G->{&rX3P|jXT`YIJj8g|U1%%Z_CnF)EUXS=pV(hB<cQUDt(e0pTMYOQ zt?Na2mp%2W+O(=yK3AQh&d`?Pwq$C|trNS|=&UQDJs>J??GNy8`_|FF9C**3<sV|S zM|rAeCIlH=Yki87O0r^9TfL(QdNPxtCJXXTkn0?iEGXQ=Wl%Tor1#OUw%o&=p^HwL z@K!E^^U~30Xpyf*$MGjgrpkCq`0}bktty0BK4w4(^ek@`h=<{2QDx7OgyQ1U9~v{& zb<+g2ffW$9=)1i}6Xo_3zU-ICm0nBbQ~M;yVHK?4COPbWlN)n|L~tztjHv<K7B@xO z%xqesj*ip`QsqYGE#<6*K84DcA|2r3QOcAeN#!G{Py;_uDkaTQ12<X`c%2Z-T_F%S zKdG{#d<uf~PLe}0@W64f#iVg>{=T2CA-W4a&#=;Ot;rP}Z;&}L*OCxhKgJmdL-3t8 z1NQqDXmBtH@al7^fLgy=dm>;uX;s<v#h~<0<k?e}Qm2-rq*s-zCLK40G>vtUh{65< zG(d66U*eI8hvb+Cg~?;C7zlHwZAle1=}B{3$6*V#ozrBBf{<N38XFo)BUL08AGrJ? zo{O#cRov7*#aSNHH`Ffcy6HezwQ0U!(;uQ?aOI^1jiBl}xe5cw&?PyiI-SF3h{oNr zN|C2zgDTCu&x5QqsPZJ2ZVPqWGK#FtrRN`g4Hl8tXS+*ut2*YnhC)vqW)X*Qh8WiE z6Uv!QlMdW2aJDsPyM)7$mW#I$EI)A<Y67=JxGP43)raQGd7TVFuXmIaFib-lHxv_m ziz}P5-bXJkG9e2$vqm+Cs>7R58>Yp&rw%nv(M|xhCxwX*-A8h~=VUhYfXx!4dHt17 zl{$B+=0~Uu6`6xGVaS8lpPPiE@A2t#J&`VJ%A-8!PxzhD$0MdNPSx7F5T|H5UA8>Y z10p{Mdgezv_Xs@*h5waXL4$IVTDZw8>JW-=JiG@yR?OK6%J7CNSto(YB7|c7#g6K0 z;?*eoXV3$1)sbjK@~Hgd6r{Ri+K+VsDS>6Xl++*mV;_!3ON)<m{LS1RGq!$jNa^l3 zDO6RbmZSOix1@>Ym8#+cLEPJ?>54#US?D$4Zi=Z4l8P0a2vPR)m!j=ws)q25jJCC5 zyBb^xJIt6(K522N<Rw1ojZd_(9*ODLOGxKytEEd<3OO5MB@2vcd6U;z9x0coRvoS8 zyj<&diraiA$Oy9#R!X?%luRf}g6EX#T~NC>3R}210=EiTIJY{qEz+$1=U{P0CF65S zum8o~Tens9ZSTVhf=WnB2}n0eOAAPMH%NDPcb9Z`ch{yAHX_~9-MQ(GXQAhOf9G@b zyo2X2F0Ose7-Nn(*IM^I?lFBcnHEHJWIvZKY^%~;3?xqy*k3r(p1eo=0;_){IXe1e z{X|l>j#^q0(vo}WA+lHGsG9f1B<Az&f(R9ACU`;Q7?#(#B?g@PHL>NS_3jRK)*v9+ zBOV_Y|9*ZTmJsJHV(&^?Zr;=0&9qz-rOecYEC1hCI@{9M&X8cWJ4S~*qo{I>ZsC>2 zfdEA!-;+VcLoB$4i>|f*Y+OXuriJRt2GMh%&;4uTa%XagZ~StzK6|^eG8XqRQzz?3 zoY*c7z}c}w93m6tAK6+@#JVoTbl$brAglh(#aJ<p8}KJrfy7r6C2J`JCMnvue;C2` z%NJRW+{rJ?SYCdIq~#Jl72QiCu|$sj&LJWW7uLf8x&M-bSft-+Qn)R|NWi&^F!9Ht z4EBXU62O`+hK*`i8sB$=j$Fx$guPH*3zia&oycE`cvm@ZCN8BlZMDSoCjR$wh*Lhg zVk-@1!I-~T!soHA(ZYAFUu!DbSDbq|7;6PyOM@(w89|6#54=M6mjCppv%t|^^b|it z-A$v^Pd??@>c!wjpc69bxnwl!3(?gyr7zgv#&V4P{SZfG1%l~j^A$2%+_0pb1w4$j zJH}DuKcnPU^mmUfFHaD%{^}a%$We%s0lTAp=|GcP5Uj9owG+9qvDdLPIj|2X3LHJk z9^-5s@XGF<)~Y@DvNcAY<YRDa%o?K4s1x8Do79>HMQ-@#<!%8+UQ86Bj?wY36d8`u z#Two=E{3X)<BLIB@cy~DnWG?eLVrh=$%o{0RA0w<yA*D`A>00HbA{GWA=PPp2UEIa z54)Sglfhc6A3(%r{lAE1D}9_$o+G;p^WTGx403w?`HOj4pz$Bm*<^iO;&f+2hC0WR zlbe}WHNFeQXSgj9moO{ubZVr5lBNp!kTSs$rqdBCiCa=9mFZbxf{Mqjj@9JIE#H+A zX)|j!Z`|(OJz_WLS^eEG4fd>Oxg1EwqDTCRGO1fHIa-a_CU~ogvrD4D0i0k4X-XK2 zbirITgQp(5>S|-HpLL1jSWh#M<Pu3fggddbh>>EvJY-+lMOC5NPJY@haBDsnFRHWg z6@u)EsgO5s!GX7qS6QB5WtcZ&(cX{-=Ky^RztRpi%gtR!yo6uT%B7c;JyU%9swa#o z=W;_Nwo@3d?}NB@^ygbaQQ$}j6BGp*d^8S=1^0W?V^c!Bp1LuKmn}Zgr<WZ)hK(H( z7MW1<w!zsBT1g?7fg{#nE)z`W?xfTEYX{cY+Y8+k9>WE90flF{nKXi;staDn*px*s zz==eRr{H!%BC4Gmc{lV#<BS`M>C<03slwfE8_LO(n&3Pw+bH_X`cWk;wzlQzI^&}q znW=&<5=R3u6#h|k&J7v}T8Y4!6!mx}<wQl7V@u-@lhWIM78eY`Z;Z$55jga4qMAaK zeoahDYx(giELOf12-zqDj7831SuEoP8-n3Lvp`yL;N%v5Jh?}NMJ5p_!lR-S+1`^8 zV=U~7*vdhO7d;L0m_GgK6JyEW6RB5cQva(ZfIk;5uXyQj%70pVRbx>aJ45#x=H~8{ zePj!_6aU?K^t>R&pyy%?*<Zxx2$vE#P#AD1frZYamqlfK{#`Hkrk+QG>#GX?`1K!l zL{PUmqq-X87RWBt<qFiG^8x4M!@d}BxC!2$=Vg^w{EXV;JyZi%;Zg=CK@+o%YL5tO zK;)L06X@uR`e~vHWQ`^Vrr#^LLYKZR2k*t_3Ov^$^dRN8#m)4e3Mp<PS4d&Y*-_e= zC%EOnb-7rc`SAks<Kw#}q?3dzOiX?zcf?zcm3Fb=(+8M)=p&w7YzmPHPk1ol^hdU= zOJ8F85btW>wI-Iup5Jt`P;c_(3(?wFA~<pKX|IEbaqQ1p1tm@}>DBCMhd`$Fb!7?4 zB4_ye22lpRWrlSt)ZsP@#j^tWugg&7`fj&v=JPdRIqx(iHu1HSPHh5<6z<`2uJX&4 zGnpBJCHYH<4>mZeW<suv+|?L&O2bp72({tBBN`by9A>Q7jMZg5avFmm$8il%#f0-a z>j{{?{Ky;7Ku9U5$F)P5g%!WCRV!0AI00EJ1k@^3YHHu0Q+E=|!`~?-!*bajXl@lw zVEAlh%fXlWL1ZXmJ;{8REaOSoXcqTyC`S4+PR1=4wt{6c>5bOI_#2@~Cqt}0gYG~^ z-q4!h5Hgm@QX82wEw}MKn>e?~5s8x)7)1-a`Wz)%xrUur;$d!s*5>&D43u$LuzMdk z2ScZgl1D^Gq#0K1*El`Hbug80;B;}lNI4y^ZN9HJUbUTMXQ8K)nB5aqwabWIr?*|x zv}Z(@k^-tv9*77JU&}Wj8*L%o4(y5A9?9&Y%?biTt?<d;*~%(p7=3TQH$EAiU(>Mj zEXa-MZ7y33EehQr^Kq03kVQ_>9e0vPG`dFoU^kY<t;CpE%w{sM(lxzyWH7HF(bpw+ zK3qCec!<U@FSGlKdJ-`%K~_$~gMH9!U|o}|x`@rqserT`rA)bYC*P5n=^?;quQ^je zM(`+@Ooy?!__C`aq{X1wL=tb=S2B*g_~0-q(1CNO;x4ZFB6NK~_<Mz+zpJhRd#>Nq zgH}XasnbxHED!d;v1bfpj>%W58NNDXPu{r+<_6>f*4%a4OC_*poB^45@jV%GcYBqt z{O|z=Hr}eS6du3O(V6Cl?-f3}Vb<Ns`uRD{*YyVnhXE5|ctVcJC5pAV+Sg(@`x?2f zWHwxfZ?93A1#U5pDrBU>r79W*p*X}jMY^d4Hn!=@B1xY)+~u}6sV`bg-^cLHyL}w% z#&m@@5cBVGeHtpQaI3;){o+V^JlxZ5et19$Z#?zMJ0KA6jM)pbx&mIAM0j-sA`9q} zyJItd8q;{%&UdR&+G<H94#9m6A!@@lh2TC-KzY|abJGS3A#5X8g52P@L|%GSxGW~M zE;Ps|z8Kq1_eG!&ts5)z(Fd<9bIe0q!5=BwrO|D9iB(f&Mkq&$YHo$1b&QW?C{dtj zbXg|g+`+Sqsn?s0RyQUP6OMaAdH6S`bc$A<zCYs2wo18A9Q6gB&dZ8p)lLjOII!)! zw-OcXn!po&E=kFx)&cueGJ?bfr^WYDvh<GbIUS*9NZq0a420-lgL8Y{1M?CgT94NE z0@=~FcvP{!$3BpLz^e2WxxpGJ9(8#;=Q^t(vKt<rx&d?cN2=1TSe1mJi;BbHvHnCQ zlO_4U0)wyWs5))s!NbQm)aNKjf_XQo10LnOEMlghR{1Tb<%*ms$lEVYua262fMwnD zA%?cPtJ8bRR#mKT4+Y<WVIh^Qghf5&n{k(W?;(}UDHBW(jcNm1T8YHz!k-&rigwVL ztFLp>0#T5J6v7O%mzq${TCY^D2a%ApIF*~Y77t=wRx~$Q%zdc(7f0XBt54g>-Vfnz z4&sTmdPSpV5PG~;D4KjVN04+;FW3+gH?&6UXsw2ZuiDRPFfjw2pH$Y3|NPyhIeL6! zfD>)8k0rkHA;De!MQE*AeA)PXTCy(f_`Z2POVaEQC!S-)pEGSFPFMc$-&RNuje0ZK zDsPeQ8ch48U>mwQq@~a;FepR0=y+vgqGnbL=J5AHA`L}9%c6JQ`>GLM^n5Lb@KIJZ zAr+;}HZGp|>(`w6;Nr1mb$Up$0zgkRotlG!?br?Npr@0^mgx3O+)f?!&;+%kVFf1^ zPI?AG??(BNXH!yAY4X6JK@ES}yHtCcO9nWx+m}aDtqkBw7=q0_{2ZSlCU|_#@Pn+% z3m2KgCF4^r5@u{;oV?i~2GxQpZF203tW*lOTqUMFC#tRa6x~{U4x<ple!&g@4^E<7 zA9;hNP<X<Nhvl9lFwL19r?W*b_jfw^820hU`cBPdu#rmDmwp87Gw4%Er!Ctz_O9E= zigbE?G+kIL2^4o%qQnc?4&FN(+1?KBpV}G+%agID<Km?x|5y{Wy{+2Y>L17QG%(X4 zbJ}$BlSTHI*hU$kRl1!YblpVVA7h)ROj8SZzX->u$voh?=$oK5Wsi9`$KYgB$_I=| z)(w*!MPFdi_zID7mfiH(>su_MU}b$$LE=k`fyy~dodVHNp8ilCJ$#iE$z7&BnYx+O zUh`)VW}ZyFPuka%VinF%A`*f#rr(__wAZUO$CFg%WJ2o?Ml<yXi;<WM7^+nrLjyGF z811bg0^aZ>2wf|#;yIMk3k|6-n#lGKKF_(fBm`f>^+j%Cn$K2mXJH~KVK%eAM0w2$ zMj=lgef^4k-rN#2-=DupK}_GFF??Txqz$Kea{SZ10CB8LG2PNXDIy=WrIaVz?UT07 zYYCOf(A&Avd^S2Uq@v=*tUv}nnB1*d{<2;M{?jn?i2+%chZCtSE}o>|<^Ew1TdcLR zxd%nRNJ^zmp4r=lFWrojz}B&FHBe(N_&IGFex6)E%l~1qIQIv7T{>-SFX-F(-QWd$ z&7=__q|3de5PR~t{w%s_kQpKx@Ng&KVCP~76)DerqIyF)Z<IC8tEhF7)G8FAkW^Af zH|kQMc;33v*uzm)1CdIjQ0eOCVE#$9z;QNxdyVa>w5{XbMtqR#$vwEGfd{B!@$x3` zc+7jrD*p|{OGtLUNA@p}6rH6(Mm3EX_7gw}Lga&?x-UV`6{R7Xq>uYnC9@Yoo3KXo z=1JvjRi?_fj&oP3^dzZsrpNR?HIieSS@Zo2wE8&{UIZ?n-reB!bI+IW0t2UC0_lCD zKzg70F8S~DJ|)+xl!Job>3vz{_C5OaYZ$G|I)g%23j&Woe7>doZJX`s;eP?~l7j^R z5U;HI2M{lb@qa*k<bMG1-@IDle_VQN4gV{}598&PiHD%muex{2lcqr3I}WtonB+s9 zR~kD&-8*wy1Ng_fcZ}G6&9XIyZGfU=`dZ8H$<wDdk3hWXBM{%+Rfa4V(xg8l9(Vvd z#@<EmK<DSD*XW0w`B5CzLV`kJZ(sSXSUE{INyVUQCza_2?&)1B^Vr2E?kRto<0B5g zSQR~kC`)51^|}`lT;})C#`(}nYTh%17Lxr&{#Ee)5+MpcJ8@eY@;ely7i1dvir3Eq zF?V52jU@fqFa`~r72Lsf_T23sJTeqm#Nvxmc2#92R3>PwHDq29oZcM^h2|+mfar)G zGB{f}FWj6j((4s!om7I@czJ^NgQg<9b%VMc?taP~sp(5>5&<~;&5TDVF0Py$ag#>7 zb#7rveXH2;`6CYBFjDd6()>cRBw}M2xakM~);wVxdg;T8wPibh`+m{>56FGaJb=TC zw;Lq}%5PRUFo`}t3d|U!T`(a|n|YwPWLp_(rf4loBrXY1HCKuXly(NUzrFAC6coT0 z#N<NQ?gr7c@+ZjKOVn}vV0)4-<i@>|%z3PLHF!87i80xGjVDUU5$Q{gk`V@4xmIkF zVG>KOTHqad`WuGlXe>E+MFRCRrO<F4jiAb2D(_+bio-r<%P1cUj!Lzv!(@&sMRCFa zDDFnOGgsqj5d4j=<=aewJc|)Fxy%jN8GIsh5gw@|Hb<wb8s0mbwIcEZJ%~2{z*^7R zVfkDgH>noy1VxSMPB+`#w*Z1&2hweZ=oQM*G{%`2D)ZKj??^B4;R(2-kt0ie0$_MG z4a;9Je0TO9ocoPET!Y+AP}y%7{>_EGw-*S_$Y_NUTmUMZop9AlSdgRMm@(C~OH?s9 zP>=GLc7H8SC@H{od{7hr&U-benaz3sJ@ndyYMyU$=n@84DchzjQj;MCK$$q7N)o3> zWP8stpBAZvmb_ZjvR#DMdh3DWZo8X&l<%9Ya>xN*6sQmsznht61N0zD$Q7R^uDBh@ zMM)0|lPv;`zzSA)M=qxm`D`sSyaP`weHu{}>R|BigyS}dSwzP1gxs02C-kcKr&5gu zen9o+Q-WpQ2REh!3XdQR5Ue7hy?fh+d^X(DE_x69Mt~D%7PzNJb_r{RzDdv^n&p)w zVLDJeJoQv?!@cgD^WW&ZHJV$%rHUCeV^Je4x6rNnckd)X&M6io27vSguJhxhLj8Hz zKoP!aAv1sp@V+*wE`UBkxi|%Icsr;=3a2+mM;4Ji%|l}DO*-QxbE6^erUS5&1y+K- zIr~fq^Efu@KQD7!ED|T3)v?^U%fvsm3K>);kNugn`w2ZRea6y|J2=FQVbr#Ze9qK& z=%oJ+u8=8Mp7>g}vU#Aw4z+Hl&=l{JJ5)N~+yI&kM=^xGM8%-!AkDl%K+sxI-qb|K zmStMB?mBw^2qU{g$`=Oguc>gEHIY5RJEm*(@+g{#7<#{EkGLKH;z{IZ)A^v%qA8Qy zUXF+AjUv#)VJH+R7uj@b-<nrt<LnX@h-=cB3WRI+%jsy))rph=NIVXJ#7h!-ONu0k z7kv3BaZZ#Z$X~Z_Ofqbo6ur%aS~$H;BuUm+%8^`!Z=ejPv^*dYug4z#jGb1WAx#j9 zc{)@N2Y#YH(T&<rPc)xVIFqqeBp;N;wtxz<7b{ap%uz5_W-t@N&>a<RUZ!wkNaJnz zKr93Nfl7;FNE&?WoxCT&5FThUTO*uV!$3NwLNYwPKr$96ej+&4Yju+gunz^iD$(0C zs9U7~VE!5a%ximUTVaC-`JTzUyn1OT3FHC=K4YIu(K87Gl{BJpd0r2zSkJ!474N@Z z7&fsgDc;ecDr9#P((x}m9LuEXv3qRP``E~&+OUTSwbuLwAR-t@ABl)|fJRu^eZAR9 zY9FJ}bg(B(c~J|km0|9BKq$^|29O-2qWK;q((SQ5<B>q~*`9I5e)^qcdku3X4e}^* zPpD@1<)X68hy-MwqawDT%S@(lq2gCpL9{a<(bD3dE@}Bm`xY%*{G{$UGAB*gPEPF@ zLYTv7+&ZE8DwqdBN&HO~Be7Y|8fi%ZuKX%BR9&1M#h7WJF5n_#Qu>U^Hxd)fYW5Yr zi39elgo^&+IT%6kL71R<BAGHc!jY0CT(D)fqwlK{KH)AoX`xb~iu}%EWLcRfB|#-J z_A9>LmYRerutr2IIRq*WH0oCxqjH-WGDNlck>{oo8I%im=)f!cVs9CSHvOQO;NtdN zN+G*%gzJyw-T}4reh`02S(0&CNr1r#s+_qsQ|_)oXF8l}%TsyIqt`2HG8h%__BfA+ zqy^0)jNIoBsF*Ug2C2e$R^Oov5pmB7G#wD!X55_v#Rka<szm+|yLV)D*4nAZBHi!$ zPwZYW{y(sL0@CP~r-x80<rTh)Q26mNiRhQiD;2~k(baJs9iy$AAb$98T8V!40S0Or zg4@m#It>sGzrMIHZV;;uw>UX1q7~XvK9i73u1O!T$DIoxNieOagFf5+=7n|d{|S$O z{0)z5I&GdOFUC8X*a;DpBt?8k#C(1b7W&GVJ>F!BdEoff3I|O!+&_VPHSXT+v`vhm zcfqZvlA)M&{{`Jc|3BzHG2(C_d6s~A6N%QA=bxbLdd@G*{fe}zV8J+^?_W^yBg{<R zgZm`!ND{b5N%wegah@jU1hKs4^yKu%@GwES_^ZFnMf~XY5iM?E!~7?>`s6n`0U+na z0tNV6((ZqoL*5E7hlCSJ3ygo`)&HEtYO-Spx6w|zT0XpOXbrz>vccs)!Qo>WNyr;{ z&UTXXQ4UQ0lHZv3Kl=a-=~xk89<kEiM!nhyoH3aCvx}BYCjia`u={j`|HSUO+he;q zM1+4q_uM^WKI7FEEXvnMYtM(+`I-O0A;d=lFtg~RE5slO7o3&o=fsZ;K=zfo<1dt& zg0>{OgF~*3mId<W$k~va9g<s}$E(s3Q_J-6swGC={0cz1HGdg0%z-ITfLQbkCm)cq zfBTC=cmi+;?}!+K=$$tQg*?r*^oAhTQC#ZKx&PgVN8WEs23u(r|Gu!RAjR5Ns)Y>& zbElhSdDA&#D~rngO~vVE!`%O(X8MExV#KuTL`(;%^@OaS(eEGh%2R-wIla=KGmX9f z$~bl<Mr<Cj&d>CxS5zOp(sz=!TwYU9ML_@mXeMaUT^oP&g=x-*$<x@W$Z0i0Zp;hL z6YT7#$tg4oA~-miZVMvC^=`3a9D(S+0)B8dYl7_Ce}Mm9qfX?(BHr}Qh9WgvIb<5$ zG-?JDtxmb|couaV+1uR>7d(($hWtOAl=JAMJjWT;|3dE{ZTihO+1-5pqMvs2PxPLa zVEuGZEM)Uv=>1*c$@3ku1|RO?Gt_fp5AVy+DVkUS`N%h0%*U4CCxDv-Yx!Wt?%#y2 zoIP$S;)_9{{)a;u?UXX|eb$T*$%C$zKf$GP1>9@^Et^Y}|BZdcrT?dhD$Cb~phZz# zfE^nHP7)PE!K1zCDaKuKNc~_O#sH#bn>dEue)k<Z*-Oc{=|Kas0Ib{+a#{Q-9;o2| z%`~W@%e;uh00$rxT;$^%n)mJG?Y@E(J7VIh=i7dR_qZ$VU60^B-X+>f#xL-G0T>8- zyK*IoT;>&VorF8jKcV7hzo24704mOghCLj4U*`cG+a)a0$05y4OsW8Jj~x@P2{BCn zL>Xq+^Bx!G8lm~i-#gIHoh8V*<RwVM%l<cB{rneR-5LoH0Qy~wQrYN&pgnikt>_z+ zOhUMrXREBT03)K$Bs<FdQdBn=Ff43d*wG!I*1dS6jeuDSruk{F&Z8|98Bx*27u>zZ zxop3?VTW)#(7XKuH7DbJWFf?T0o2@ONz~#4!MD3Z`O1H>2;RR~1V~P*V6qbDFBSo2 z%vqSA8n6C6K#vjw9Er3bF{wsOCX=A3PX4#VuyMx<@&Vx5V7CWf#ymokJ6MX)sOWgd zOgBN%;)NT41c;zWcSg;7KN=qzK>ZH_faDheU<?odUEvu7YuU?xYfSa4v8?L7-57<l z2Tu0?n1$Wsae<iY2h$+c_CGwK3oHsa9otx|w>6&0FqW?nI3X9?K2f25UTb)V=x}F- z*MtA0f-quUSfrl`t10T$Rrt6y4~C}w7Ao4RU@&JKUx|gdf6)x?XBcZzg9Z{>oJ-gv zT<m1E=MrE8`2ns$8Vkc|rM&|*NKe3lZKI}vo1<PPW>7+x#X?sXvV<1&L-1t=D$|{( z?*rfMJ7ZW;*)vPvvCJYJLA|gf9Hx_LM!kWRC!wJ<%e<3;VF|{5UL`VGn7h*$Ih8G= zv}iG2I~A<fPp`3CuCfuJxI((o)*DVV5UU0$?qa1{Z&7IoNyQjIHPk<H0N!Y*prh_1 zieE;)N1U18D5W|dPGL1igei-n-eLl?uUISuPbl^amEaa@Zkn&T!M;R$TYqpp{_V~o zN9jjB*$pVwo?|@CGxMjwJL{=Z<B@Ln`3(V04Kyxok^}<8xdk2oyWd2~hy=ApmKWO> z=+vKtDh+1}PA?T)%r5CfXQm#as5RiKU%hjg^!Pf>FURN<z|~uQDop2SPtgeuH7zzb zg`HiBFAKSU8}_YSO<$oAEU0lAK$?%Fhx@95Mq!V&YbU^|Z~Ozbdzqr=oxr5HTZe&& zvSheghf*=smDKPxMRr~giw<@1_1C7SbfW5pKP%b`K?X`qYOu@h?e}U09b5L{NC_Ty z`VzKNX9(2t7R~2{(=-}nk!3+tZn91vs25~u2L>xSUdM6vLB+TDjiPE1-P3IZqZ?o0 z=eB4b)rv4|#DAHW@PL?)oW_xUhqG^%m9w8HD#Wfmcap$>{2MqtfQ?Ws%EN9xkl z>D_;?@J5AepgKh`m_1RLaU!$7Z!?gAx36!6I!G)CGsh%6BmtLIrN;~lae^vX7p6qh zZYTbxMXU4Y8*_eJ7J;V<?lGghZ+H~{{h`0NCP`qH>~5rxoMe@s60UvG!(Xph=1RbT z-H6&t@uAA6u_Q40-Vt7tbPkh|Oh)vghDEw#00FmebL?svCF)+O96?IGCn$L||G3GF zJE7g?%Kp4g30uWv*UW+;1s4x~@8vGV+bXX{<QnoX@!d<PE2PGp-tx3JL9{qhScZE= z#Shn^q%NHj%g>unQf)kEiRVfQ;M33AB-`AjS#T8GaWw-8T8!l)eu672LI{V^yHwDQ zROht=wwGv4twNZoiaS3YOqy$!?~2FD>c6T8!S<p`^+5^^_W$rEOYXSSq{`?g;>EY{ z1?V?dXPF9FS(l%nt56gaZr2q2vBvS@4LfzB)yqbnydz_)<x_Lr)iAzvubLw+94TR2 ztZ`$+qsh(D4b!(>S-jNy-0c)@LU`}jSTgy7?*pu{GtxcY(PEx8g6tU*LDk)Jj_<g& zH@E;>q4Ixh#SnKl7D`0bxOV&}a@{TT(&aQCa|qEqV^qm>W}Tvd1d6BNt?hW=akrA1 zVHx`y3WCEr9g@Hk0?4HJR;ouwcX>vxnWm<hV^Wo8l?7+6$VJIM+U-fG?gjK~Z^@;M zCy!|R{H2hh{eaUL?|=;ODs90nRpN`o&i42fK78RFGcwil4FP_{4)a?DvL}Wqq!~5; zBHYIjWih<&0ug}x7enhV+z}Uq+_cIUE@&^G9QkUVwV}<nT6$P>iWj&(wE=Vflx%nw zkCLFfZ-?~F9=tnZ56Xn5>nZla(V?Ys&U%-BzjdaZ0Aw?{#NiYe(3Z2`rt>Bo&AoY< z)kbg&XU!TI_j&t>*n#AlJDM{8^ex8A;fpGwUpxiWzj=yXr;a2{6T5QOtr$a*(`Qc4 zkJ6NHH1Jb}I0;PKo1ZNR%ndk?4gx&Ii)g)hXb3>Y$mf+M>Xxu<7F(p?z3R83r3ZBi zoo59`3cWVOv>2+3x>D*=V;|Ma?GuKjQ~wMq0#QHIOEFeP?-Y95YY71~1v1j7yqnxE z&r;LZQYFdE?NioSd_n*r@x=-CsOJ|=L9ljAoYOQX4A2yWhX%iBiiWqpXo`n<!VzuL z*A+#|W?r_&ZAplXlbR>lXpLAkUnJk~aiS~Gr{BOxA=NAn42?RbbGn>aEuV`w^Y0wp zB+b?u*;;SJo0xv@NKQNUIQZarpu96nL3zZsvMCeiqCa#t2Xmnqp;!f%^y@RGEn$P9 zuSM1MheFQTjLo6XP*&w*PL~XZoB5EB=Vo22Qm(7uwD|md>GX!#{LB*d>Qw^vh0sW^ z$*hJ?!o#ax@n0#ESB$Rl4^fV;)BR3XuBm}8*%0jI>Zw%?VG{;f*IW6i90gXRyEub* z;PX@4zk?jQr0sbgSPI4Qq&_CC&1#6E6;)73(&&U>EIdT9G<P0GPtv8K%lX|9f+med zn{un$5lpj_<IYOwx2&Y3Z|e8emkAlE{Z;A~R0+6yZp)>*-yk`aU;^ZaVQPK^wL=-1 z9Tcidy_%(OV_RzI=d+sVoK84gUb$q%5;=A^DuTQ3S@uX)31iXR2^MiADATV_Er#e- zEB2YY4hIAc+^i2{UHp80^Ez1-d-TIEN+=sQgaa6%S6`;n!c#mS0V?>%n^FGeD9DM_ zRQs-=Ox+RO!BWVcsBu3{VWP$qL<4o$dFYb{A|(w1wtJoF7^86qGzTILkEd_J$_6AH zEY{31eUg&mK~6e4G)@F6pR|J}ksZ%0I`QQCVIXAT`}`s2DrpC?6SP{1#{Sq1^#*g0 zZ+(mEnWABCA=sQk@c=9@Y`caa(ch>siI*Z6j~LDh1@8eB^(oct7h560nx=Fw8F&8h ze)WOyWJ<k8O-MJgWMU)iK>twl1f7)ldSkHq6ld|tYxfFljMjjJK2@1jLF*U{+JUU9 zzC@i!`DTU|dB+ftBAqQuL#x~p)K$dw-4IrA{zsT08v_B}se=>z(`*j%B#o8^PDVqO ze1UhZF11XPtxZ4RW4~<SlH^eCuV@Oj?n^YJOrPTQ3ZI4xjl^D{h<`KJ90766yq`B& zPf|?WHlq60x5E*>nqey__j4lq!>5v>`pz-mFlRiM_p2pd=<cq$ip~aK7OMI|GNKTV z2g>>4L~Pt%gmN5T?376Z*v>c2W!bghjd1?fc9DV{&Wv1P&YH61Hidh|Jko;wc+`6g zs<udJncev=S(UM?^2I9$haHBrA=k67G{x8JKKgAN5$@Binal2;aeb0{-G`zI%ybPI zqxzU)czSqdZ8dkj%T$iQmA<Numim+2LI@+q`x>4*Mm;oimOq_JoH%xBuGW_zR2rp2 zcq<Xkf$OOjm+amTd&v725A!ozP5+y%fcgK~irEq^;F{56hhJ=k61ozoTMRu;F$NX| zHA2^+mRZ6tUXadb&58F@IOa3mey=_S2g|LH2?gMWTjS*k6;pNV0XN^4N7=yShm)+q z=AONRoki)-4f&zv<%Y_Xo>E&-_czD47v&lan3NJ@pxRE8UG~zB&VmUZ@`;9^K=d*0 zNF%P0oIVAyafAwzmT2^o>QbKg?*Z!S=`L?Y)dad(_7QV3Q?ku4^NNgxKzuxIc1@SP zW32M%_i;k$v@K5co>G&PA8a&&*#sU6>MiQ<o&(_e-c6D2PQgz^x#Gizx+T+1Vq^2c z!HCU^yHAea#x)!>GShg<?--}HgkIg%dsZ+H9d22U6lk>X$GE&m{ltmA=Xlv5WwLv} zgtVV9R;dju-^rQH?paqLlN`iz?52I?0KGka-~F{FXsBMsg`a-jG+xs}J}OYg8O-zc zzO!9O0G}6=3u?Q2mZnuCVO)aWG35u_vvhtpx`X7s`{n8R5z_%G3)bBWio89}ryhW0 zrjfebP(l@^*+>~z0v!)(ENE=Myt&-n-jQNLrxkdUHzd?C&FDQW2z4w`{Kja;j2;`t zCnBF)W5J=XwAG;yXVm-k-aiKx{><AbRklg7??d1W`C}?dvt_C}wP?c<76z4NOb9vQ zqW2W)4*q=KiPQlN(-)E1Bjl>CF`j%}R;Tkeg(8>ohn^SqA><x;AYvU6$J1l0K7aOr zYqCe~U{SxMylup&g&po?_v#)T*K>QgcDcZyvVA;7Qzo+17xvz-?F)v7!J6P!^YQ)N z{e^-C#|e+S8XBh#P0V|BnNQO5NCwD;EBMYx%6$pnM8Ny0Ei6e-du{T@KMe?2!5zt~ zm)oD_S>=U|{uT{<z-g4>zZm3@y;%E}e8c_tRlQ<qF;=<2B*Tbwk8(t?s+5!O5x$oy z@AkZ$NHe_TB<+-3RA75MU|Y}#%xndHBzQYv;8Z>LX@IcOuMu6Tu8#9Mii-G?nfQ3x zNB0TrNxkajsnnUYs5*+2eB|!0Oe+rfL|u%(DivscbR#^-y80Y<OY4MjGyxVg0Pgbx z;_475No0oPL#R`|9I-7sRua<qOz4s=cnA$QQKXCZPzcOJ#_~QUWOoT3{O-f6ev(7- z%Am%?sjqGfTlw6iIz5l7fn7o!-RuMOosz+bSN-$%$HJi@#!nBioS=?^9U^;fCiB`f z>x%WavHTNs<PZm_tjCw!B;<wLPjgr6RUuh<;<OEYgX69V(>u%PWy%G$^KrZKZ{oP! zh6iuisHz8*CqtyJHet2a{2wN=M~7WpKfuh+-l{Unn5N%@f(wVfYJ&IGgJ$I1SwD4E zg-(2~n^(Xl72vJdg6W(^Em=PnI|{CNfdLc*Ce+-K_b1S#{vg4`1q0AQmDt!u89*F{ zGADf}t}}m!T9_cm;E!5})}yCvf=;!inI#_|Prf$GC(^(oFF9@FK2L#lI>1T#Gfu~M zJVbig{cVEYjsVnIwRpZJiF8_;aDGYDOg+-e@ovhb>n|VABr$Cn*c>JpOT#HTWozLo zEY+in9)D$c{MFupD2a@yj+ShZdzxenU^uo1N#rINT9!~jh(Z;yeulBe%GK&pO1h&a zIm;9-0KL)hVSpk@lGt0aMm&E^IFp?tN*qYos3&+iJ_L*hum))&`HPGLxR@n5;W1Qv z{ukcBc#ppV<3;@%FQ2GxADd(tTe8Ov_N84uV-LC{jw*b@dPsx73HMdKj@nLhfQ8Ph zskb>q@=gRlNFN!I!AkK*B87cbB0mlO+DN2AAP-tN^Qq)7<-wLX!-V{N+-*+&o$<P= zgG3>JA*-FKzudX4=*9VlydN9{x`_l(B^Y_>KWZ9w_LLdI8)oW#g)@194uYQH?1?jA ztOpRU8_6u9>KnVb%Jyn?#^9bHVjgFcjJ-uQ`Xa-CNaPKxLI(U(2;9vh$4}o~WU469 zDr4^+!FdH`cA+vC;FFvl`9PDK4{wc`@|{>AkRSZoQX}uDonek>w^{gs&JHiBJGR`( z6}Hn_CdNgEs?|b+q}dVEZcMYuMx~~`QLl8nu)tKjr=vkD)dXip(d(9CVvQ^{0edU6 z;n;aA`-j|YjrNzs9i)n^!*F2opp4pPffW!q<Wq&WC31W4B4V<-jsR7<FOXd3!7M>n zMT8;t8QYqzTyk#WIPEh@ACx)R;g+~Bz2qymFrZIht-~tY-r_AY7KXQwEN1+f^3|e( zD)dMb?mFRhwZepo-5meVTFrLP;c^$dU7yM{#CZmF6?9NZM1c5Mc~ec<YY30@5qLJp zvRk1gz3}8mjkI7X@Wk1FBsq+RNF@x9QiAS+Ze}SaAN(I2htnl?VEMt{OSk!1tGXvo zZ&F&wZH2<44{S*4j1S?#T3{X`=BA}oKtuEn#S>czzJTbF;vfXR%jy^9GwYm`C3P5< zScBSw%|)pc6VglPJhffyCfalhRSH_^LdKu-xWLs+EBV3x@JR_`MSG+;n1R%=*D1tY zvUPYwECvhClJEew%L`GjZuOUFMHMi|5nlk*32=IkY40!eR?|qxpdC6m9O*I_&m?^< zAQ%|4olPu7?791FpmjwA@()3lHeEW81E>Q?`1nVUN4%GRZ97fN*jo#gV>>N^1}je3 zWbE@Xpe&Gms|#oo_}}6J2rc$|8OW)b)RjROBr@ParjJt?T921*K}6N$Ef1h>m?b<u zmCS+xFy2DPnXaI}c0dTZT^eMRvk;Zj)6(k>4CHZ1^8DLOOdn^mmDcc@s6@iI=P?`K zJM1y<+}jLLIOu)#Yms~BG!g%50%`P#%9qEybDSTKq5_8?&eoHb*O#PKF(;DS=tRYT zYn;20R*W=buoOR?=f8fnER}3<`ll~2Yrnn=PCFf3|M4GoAY73WKu8F&-xEUARqrjf zkG4j8^^XS@O;coW-@@AfDh*latH<p5S5XCy29G`9oemZ-Mor{@TLW_E#|cgc9u*{C z>P;1BS{Tu0P>%;)dDgal#_h+-gZIXg7P)rA#{V=Z`<For*!#;am;jdV3@PQ=$oTQt z6Y`JW1Vym(rqd6OlOt#HIQsvdhvq0$JBh<EM}k5@cp(cS*`q`PhT&0H@T~fgb9#z) zJlHxkGRxMJ{s0y^H$waZ(*)=Mio9<h8Ir&sV;t=xzk9%3crA+ZFI#dyeg_mM0Uucw zu#fw|gBbhj7?9p-deBL3!{lg*h;eXQ;Mb-b!(0@cKOIx|+c9eIhhF@LbAc$EIoO7K zy`ZA?P~s};GfCkNW~{mDTSbgmCuaKSzWS&IfIWT`!Qc@|LEij)oRm!~<BapU_MXt6 zTcG-b!J@{M`u$q3;a?(b(d040cG9j2|2c(!1v(I?hfO1d54T%IIWPY7$h&{VC%h%K z%pVRB(P033nPbypV&<f&j-MOm(v|aY+M(e4W48>V&>o8EkZ-0r{;x2vG5S!w^wKlG z>0nC#A)C~FK4$O$$LM@J&9}l)7Q5yxCZH{1{_-ff*hhAD*)04WDcd;f|7-i5-h8HR zK*P&@TK!*b4S$^~^bm1F2hFMz>BVTtl8P5Uw0TyPg4#v<`GE5UeP%ExZpC=3b0qoF z^w6jNMEr|h>*H>mYCWlX!E>rPy>Wn>z9R)1+VDl9Hu-5RoAJgX#a<Sr<}-#hv-U0t zZOW1w*m7DK*dTByxQx3k*)R?wdx`c27iyb3#mmp%X&J<eueQIEO=No1N6-WM2%xIX zifI^4oZW!eB#M^QjI2oi8z<<a@J6bA$<FP<9WRBPAaa+DnLBY(sws&>si240%11I_ z>0OYgwl0v6?;bRjh`pWoI*~joFbY)f{G}uJ+gf<6eD24HU-AeRfK=G{>K7(&|Mj&S zlW5uEv!=&v{^!S!ngs4o>4M3VP$wkS??*BE%4tWMV~AgqA(C0<0$a%DksE=o{*}y6 zrk~4E0l5crr9`0}kp1|@(R}$uj1V3(jat*bmm-2Ec7NUC>e1zS=H~a;Ie^2*;jgo; z?gkr0Ep2%YsUr$Mv+~kC>MXo(ALR{5Q3X+&6Tc@T@L;_-0v`h#^T^UbvHg-2Ok+Jt z0niv^Prpu7jkqBUX=nS)|F<>lSuh(SdfK^S^%ug)nrnZZh+i1fX&6d!N_-Kkhh82N z-=98VFZ$g}GaXLZd*k=c07*mn<(Eq1%Ws7RA#oS9kVitOV98m^TTDQr0r}|h$j$(# ziEu&fSI%IXuvj`zkUj=9Pq=g<Q(_CC^FaUcOQZ4QJ3xxON&FIZ(0sdnOrFa8xADt> z@%Iv=&h>6>Mc@_beN-EXeP<Jd1>nN&&ht*pwaSR6`Iqd$!N1fIx~!wil~J;hcK!z= zlw^cuM9x(Hk`u|{vURNAP*-F-EJRch4iQ&a-z3jI1Kupu2e>HTY;S-`ts#L+FJIoD zXlX_G9RT78=|#n67;;QvCU=-y>Xmi|qw9yK4*{2!W{><zJMhZRBCR>*^DPRi`{T59 zzqM#eaS^M@c+Je<+#ERzS-5Diq+bv%zWqd+;6QO&E-~k9!$F9yC60g!`n_YGLT1wO zL4nJ1xFnmUQkoAsOfy9n=-R1uXIKH2>W*t(8edzjwwYQ$WncTJ<qVERouI+6agYLd zzXh!%D>2731*8&(xQ4*nK@(Kg$~|E}Y+(mKt!OBfQezPbvPC*8-XTp-Y`}9F*uzu# zvOZZ%9u~P?Q9rlPAX5YeB<WrA3*A3Yi<PQzuexZB5+iHA@o*UVF3QXnAy?Hkf2(`Q zm&%}1n3ok`wXevH3|dc3ez^vYwtLfwgA!@Gl7${=))`H_q9VyD>sln@OK!)^>Xwey zP?~)b*}hwDx>a0JNEc0jZ(LUkZ}fac4lHJE50U*G)$nPgT!nd_vUoZ|j@C(`+f%k} z9VflY*h#I}3)HlZb6?D7T(UKl->Qv1F4^`Jw3Z>5)S>`4RvvymBxxOP!|cRm+ZShr z2}2%_++bh*=H8C7(C>Ngi2~(agM5~s8nF&h#?XdPcc2h>e0=M4JgAsbmxU+3FLJ%0 z{5JK5tuX9OoxOz_8LNXm5xFYO9uZt4R;}HQ8fV9;6-sMlqmPsSfVhu57d(m@XT*C- zu<iV9_afc|t_3B}RK{lP4F~?R;oYZQ6;Gsn$<hpz791saHQqoT&%V4jWr?y|<%Ltl zA1V}XK|3$|&JUw(Jru`9caW9WJtpFI732zKcRFI$L+tF<(QQua4vJr5&{9S0`1@$o z-3sA9kK~SLRV@p-q2M0jGwV{oXn&?qmCKR-BUFaDKY<#k#$!@iU@9Ko@J)3)u<Ll! zOQ|B<Ki!9C6wH^*{{54M_#G?TShX(a$6wNlp9+I7B6w97d;zM#kR^h*_#Tz0-cz^x z5`X`mOQ`#@DktIyxyy6vW%niX8rEtry<&2I^p;ih>!{MtC`DDFwL_oE*Hz2vgbFEF zDuO)2Z$7VqXAZ0#V~V)9ol3i$KH3~-8XSLuk5}9=yI~N!dnS^DMhe}hu!|xA(%Pqy zp`(-HG^%>RG{gz>n2&kz9iqvIxGRCi-2D|kX!hz;CYgzmb3rgp|F_PHrpRtdkl-i3 z{N@*$d~TE@3#{0A7l2NIur0v|f(rv7Zp$!&+`zhdT|TW?xZt`(KI#PI?{XZime$Tx zq6IfEV}taw(=1@rg<8^$3S6IAyj=*Y7^`DniY`S31kWqcm{)ev?sXAUzKvz@V+3O1 z3(i72=`EHc!7q4(hzbdwyd$*OtQ=K!;p~b44~Kq66GZ}!SpIj6Yb!k@rdYSHj~dc; zoVGJpDGfbjv+5QUGtxw|3%)f6LC9tx$1?{rhTNZh?hY87kgPd2MO<$*`h>oa>~dc| zvF0eCLhO2@Wt%rHF==7*S+Kmhw9EEV*md6nq^`~?-UKmh%gAW85xO{4LfZGS&{VP6 z%gEc*96>a+X1lzYP_|%a^@haS?~3M7o{js?*;ECWmS2-MBg)68x20s<FU+*LgJ@gD zyXRbo5MS?i)RcwH(JrK4mwIw_LMCREGhD%V6(6dzIb<>VdC>EC91_oOFxzzf`vLG% z@UdpfpQ+j;$Ux2+Om?;?Z!wt22G18EB3wtwtce73`H6Hh9(*ze&0fnzY|<4|I_Z;- zZ*2lUX&!(|ZchC19NCdOzuw$5_bo4Lb&S>I?4_!zE*J^wvlyQ~-c6p3jj`K22i$7& zCMLPKRJpLKypcvoz$5K7#>d)yj&!#@Jf0Q~82T%&co7qX2vV$bvWBq|>>8s6#h>hF z6Dzp)p%q-JBgugy8VEV?UDD@GIv~^?%1a@_rV3u3%8m&&)pnha3sicy;DN`g|6}hL z^(FY)W-XE9mt9Geky2c8-b-I>@;S?*v1|<Iy`szd$)eL%$w^Z6evI>$n%Q-k`k0i| zS^dqECk@%atu`9&TC<Ario!3xIWuPM=k_y|ppJ!ry#`D(^$pSZUL?W3iOCnS4xl<_ zRx}mE7x|8OlXAB|nKV>IVDd0q9&!2teo~TZdJ=R?l<uqFX$xW7Y^oS>Pm3lo{sh|6 zB*xS@S;@WG2i>49!(fi#Yes+9=toZpm>W$i-jh#ikyG~|Q(8=*tuesgO;(NBHAtEu z*&Y?%VoV5KCl=yzC_A(So!Z=-^$j}C#2ZwF^ewaBt!d^Q*uyvxoZm%Ag*RmsZ!vEq zKTuz388#$ZS65XvP8|iyl;zJjJkP4(p}WiQ91)_s{drX$ox^e3uyydm5>Ni!lbXt! z`y0CZa~X@A_8a~*JJ9tiXg6|Gep6^I6hHM{>kJ+DPDf%37i_8@7u(108a-k02z3i( z_jK8VFL=D~f``u>Up{qy8CHRiXdU@P-V|hVk!kz%l5$VVS!rqO;$22R*Or3y{u`d| zSeqlNL$bY;7HW$YFv0-M?ssb>K};{>scqiLd10Y>4Pk*&*627~LNN0OKv7ODl^n3K zm0xn9pi$C`XrLfoV$oM@)*Pp-+cwn~KTFie+VcG~w@L7Z^rRnkrIM3SN1bfabaEbR zp&eIoQcyp%H7PnmPFLAo_pFA|s6DA)<K?H$Ted8Dhj78Ms#eVEYFE?65-|>HOnI@g zAwjx6tYT*x`TdjIyjtUu?)jPQzDz5B!)IX^)Xz0(0+A=buFCI_-74`DB1bvGMUbU> zanXNVz+W7B)rJ<h(VUUA@xwsi9OP+(@H68HV<lrt$|Sex6}J@(i=#0fZIw&TjPC$~ z6~;N$yDHGFVm)@~>Jsx(LuLE=@{&bF`c!q|PUZbvE4&-@4Wg&xq}^%)zFEB&Pse=} z4{n3!q{Luw7ug~5Ibp?8^Tt^~Z@<i0GG1pe=@R{(?)^kQN9ls^0L*6$hd8A=0gJn! zID9^JpUUQtYq&2;1l6XqsU{ach(`12z*z4QUB9fp<(4>MzSZeyu7n(0B;S;*xqbzT zbOzV;gNdNk16pYm`^3i;y>Kg8111;>?&6!?Swfy@ee;M@25PY4LwS1L@#`QmR$ang z;+&hJJl0@^RSwXQEY)t?2rLRjU_r~@CRU6?UP1Mnw;xyX;x|teYTb?s3NwzkL~z15 zpWtoiNgI>V!p9k4ud&-Nb6a5<uvlpfKdGL3d*81ek5{+Ae-gKVfMoUIj9WI8JvG~S zJ9a!hUGk{#RO$wCBc<@ilP1X*S{Ly*nw$C%YND~>T$c|p&v!kFFpHvd+ID$&V6C9e z-;!q!DlBTP2k6JA+{c3U4bWql>#|HhCz{-)lZ(9sS0OUX4PG!){@MzcUC{<-OQ%py zPi{UY#(OWEF!(h#l8x!mEK0uhCi^6sFAarAoMhK&?$0zaQfzPVf#F7>r1*PPiX2&q zyq!b==6tOxg`-3%7KR5rg(!mr(8y0b|0RjESEq1(o^o5O|1%J&EW<n>6bx@STM|vp z_SSdnR0B#)|K|x5J$CRf?ZkfQf&8DrSz-0mzUgb&aubUoA{`?^HM058GtOk!y@=sx zRuo>mw`C7phA}HsB(bybwo4*k#IGy&V-HjCvt)FJB(kWFPhYVofufuEvZhOm=8Jd9 zj!C9YS+=l)jcmnO`OE}AN4{9))Ul@rcEV4E;#}2ki5&xnSqIh#QMmd!>m+H=xMdfu z@ckP>ug1$p`-foTp1AyV`RQrDlD!BQ;~^{QI18;#o9CSpq0`kSvGeyW2U{i*4GNZC zX0W&+Iy9JTOE4YoQ#ZcnFDlldh%}(?p>8nmO@?)wyp&s@etw?3tl6$o|40M(m3@!B z;w^q~OHz~(_D8h(o_2k<hU}x}+=8Vcu{U|!HtnOQNo$t1@LzVhzY7JHgFjg6UrVMj zH0&VYTzz3u@IkCNFbb+){*iBAiUS(xtv2bys8M88I~N>ZxqFErb@}3)ShEW^ayGIB z(ZG*4l!bdsI_n<%Ie*h~l@-MU%JqvHq*cr440pO=`TU9X%Z=-y<%1z-P}|u0YEria zwK1k{l?1e9XWKx#z)qF3k8-XTVM=76T$NDpCv!L_%=53TKZH>N*FTX#-{PE4&Vh1| zwY48UU)T?1;ZejNoU;#vsOMwdLNltnBaIb>!5uz37wPD<TN#CF3%t`zjKZ&CM<k^C zR%<JId=_mLG^6r9Z6B=;CD0rvvBd#3G<N(o8E>5}mEFsnv`<9PZvq_B&0&pA3nbMh z)&sU1eVrYb=onewN_5L2HfO2bzisQjRzrAB@lmEWrm@y*#h4uEJ}YtN%CKirtV7$R zpo^&$CG=l?qf39@zh(6KB8|0A!hrobduBT^q9g_J9lrghZ}fB|G<qh*jEK7G$D`U9 z<+K24@%`J-wO!I>>AEqRZoL#(vWhe?5e&LANALprzq;U?xoXykWp?N=sXkU!Nlm+3 zijTv3CGC}ML~d>Tv};UK#~z1|zU~D6aW;e|o1ObpW@BI1>S6$|LYb0}q(H#|W|BdR z3v(z87z^SQU#vcXp$Kt6O?WNMxlf{4K!`5K0TFJ~M157W*h520Hp}$hd7tDpW#-oz zk<)yy4kPlYo+mLojv#uYpKf*XaI;-y(~%(tZh!HJWpqV?U+4Isj#<6&=i?a>8rhHD zbun8KPyI(EiDI6T<)-<s7-(CTTUlk;okaE;sQ=jqrP$+4WH_`+yAA%AKTdBr&4tUx z`{PSnlpi`<2bKTg4zb^hW7zUsz%BR!<u8uanQ6ir9pvQM&t;(c@3m#4y>b!x@M)h0 z#ETpAA4^N(BKJ|dHs*((*GuEgD?`3i+UiZ7>L2(+PvNA|_etnzGo5BcN+tOz@*Ni9 z+*(QAWII?q6f5XfOF+j=O6o*G!Ih>FwxSDh1Pj9^j;oGLmpi3QoHf-1%C+iBhSKwM zyIRD}PZNhP|G7krkG|y}9}Gku!ur<&KMS;bQJVJ6bMa-a=!^Y+zjD6|3ipqUakqC} zbh=l62@+eu#|@Eql6LfS+VGIOW37(yLv|n#vcK)Jg-zn604KI`ov7Sy^&9>z=Hnit z^?lum_5WO9{rPOhAkMB*WrKM&PFd<#H8buq>s_n&H)-;Mf5csT{G*fd9cEm({uy^Z zLKZJ_09T2Na<pQFRhQKe{23}mzk*hV1L@6#_N*Wq?7suI=+2Fvw~o=tPpVR#(9Z$( z#M3+9YGTm0(t&*;XH&l0^_YUOmn26|Rf1oU#$f11?7-pY?30;#Ol@5Z?f^8O-P-Wr z9dheS;JRV$2RW=e62%7$;BmjbS-NIQMu>E`C%VCpR7b8N?u~r087|~NRRzM~Q+JzU z9!lNWu<yc?WY167M(pDp=_{pitzh8KX_LPxFTTqL@k`E{sp6y&$QUeK#my6xSTHt8 z1_nHjq)QK1CB8sr@{^d7Sa@pJWS9Ljc|QI04x3```3g>{WcVqrAdH@x*DCZN$ae3* zt$>Br#p*uZc*K*}y`M?Zb5pQGhprucdhwlfk)Pw|#pQhnAY-&EHehX~@Zygu=)B<; z@Rnq30$y5t9U4y;?HsGV(ulEEAOGakIJVU&0bxr9lC~r#5a8(Vdfw;F)R%+4RVMb) z4jAOT-Xx_;wnA}8SGrv}B5$@I<=Vh|%3IQEms`l;!h|?)HiJw*$~Ie-sCr?rIyWov zz@sTdw|qf?vCOh(u1N}pT4GeHLaf`^=P8i$GTAt~DQ#)2FJIe?H|$YOQgf?JkL$~C ziy9i(w7r_}_f@yBwx(+bwUsue=MpGx{3OcwcnBxphS8f#1SxG(HDUeCWfS0Z`<1b# z;w)v_?%IyZ4;oV8w$=Y-w=4fBmFU5!pz)Z7$d*0in*Gpr%J<Fv8CKZ&hxdNUVNVM_ zOC1@Gt$zK&8pPT$yefE=`yi|su?%W|((ZL9fXdr|L%wzJR7tyn495<831_eFlkdT+ z!>4=CbztV%t)S1pSNa^()MU=;*xN^LcZWsbhROKheSYacIkM&Y!VUh$JbUB<@eoq^ zF!=5|yT0br?u$#by$rt;$*U104J2pr0=M@<Wc4j*V25q&Z}kZ@^i!U&w{Yi5!Fk=0 zPQ=<qBlKCPZ(mb>Hd;|fw<c4q`RZB;L8Lys<^n|sS3J%5>Je=;x9-hR>4+NMeDk%S zGQ%dc`3JO6b{)JM><u=g7bIJa4b-Qb*5wo|cBQa>!|ZV+BozLC@8_jG6Ua7c!s#Ga zrShcW26?-B-1NcsvcxBvd~v7&ga03SZ~azPw0C_2B1m_4igb6UbayGz-J4A#-QC^Y zC5-|Cf^>IxH&XAybI$Xe=RW8D3*KM7yq0UtIoJN~JsjgRYSw!miu#_%rx=P#S{qf5 zc+}_Pk67QK!vt@yY)K{^sNORs8|wYqz8D{@@?HDIJRpfOr>+EVzXrzY<U541?lD5b zLP_mIH!CrtNI&&9O~YuxwE}pz2p&nAEH^y?U77JdvqGv_o?W0T&zEyk^N$^m^oQB@ z&G#Q0UB0|zMq-@0yQX?z-$25D9N6YxJX_9;ww*smQL?}(kLhzzJ5FxO-~G)CFZu0_ zN6c@RY;ZlK45Z`l^hMj1F+pFLdgprj#fqQpuq#rgPe>`~K?-+UJ%8+HX-Hb|gg+S7 z`_NRDRjDV2Sxl=-?aM*EZ2#U*z4#&L^?4_f|I+!(&i&QV&W<x<*V^+?b@lF+o-IXk z`bkI4c>UUHUQK||_vcXE?|kT#w%?PNRG3u0&-#CrQp}gfbaldg8=WQjf(+b?JVl|$ z<s|WHuZ`C;{7yh_rj@6RGV-~AmFGhBwYi6A<)rC=t05B(zk06RviNJ$&x>#=+)&NX zM!>w75`2tR%Cdb=MTa<E>LJA$MLXmJOf#|ecX<FU8Cz7rz%W`}AviFyy+cC3TX(<o z=h1)3ol~f*6FYyk?d?Ipl83R~&65qInSPzq_v$P7XV)3)rr#BsROu_Xdwt#!dFVkJ z>EhA>V`*G3;wc5T2=(b4{nX0><Jxqr>+eaWLwIOK1p~4<EsLBmqo}AJdra?wj}R_1 zmrvF^OJ@C_M;7;#F%H(;>qT%Vqv}P*^Qpx{eWvJJlzV8g^e0nuJCZqMK_z~yoLd6Z zRU<^~M3qIFv~nwg9;#bV$9bp$xuqzAZ)xx1>bJ4QPY4+&!VSVZ)R(+kT5MjubVSEQ z*0<Jm6v;PuG9R^k_1DxFHu{6YmnA?k^H*F6u`&Hs$xhqL{xohUE*%~t!7__O={9VO zs%m-3*L(@l_9!>R)pbeiAc#pNo8S+Vbw{vQ&YWtHcz>FTXS7|@PP9xXY3MR<4abQ` zk1niTTaD$+Y-Z*%qS)%dQ4{E$fdT_2GlCp!TZoKl^NGLRLZ8ZJ2pX#hs=pF>JrLqG zo?;JSb^PQNyfnA^@}20mOlmbXO-GkTYiD%07N;F(`F>Eg^|tZGtDaK-vaY9S+o^T( z-IVg1)6K6!UZ<&>UrD#NrJDlzK?LQl{nhw%=?g=*NHdJnEtZI#UsK{?v?6y0^w0at zB7UmQp7%3OJUo+(Da=p(?{X55{NHGXYW#oYq-95G#vhOn|Erwz^eQLmpo)zGa#H#8 zxZ#ib%gv*&IywOJiZy-ePpWRbvNFo$wf<3Y@IFL*SQ))xNiAawebD`P`M>bpQ@1~z zpo@QG{<U7=yGftsQkN8}&He@7^{;+m>ij?OUB-W9{)^X0{;k$03{v|w^Pg__Z}8n! z(tp(Ya9&IPms+3C|F_mBuo|fKc~7fH1Od@i4CqOjUO<av>rV;N_LSy;n&r4<$A<3> z@Z3?ETpt&#Q3B4IVsK$;*mFhZHnr4}+T#e5j~aJ*Np`QCfUy6I!YKblrIxgfa9BTn z6>V2>Q~c89#S$CEhcrz*3FV-K%|~3`k)F*jk3-;R^mE+ZkWq|Zcq7&=CZ#q#<>dyM zr6|8Hqo@A_mwidUiBcYyZ~Uy8T1xXih<w$lPH*|<iilXkXCidBygG~Ixd8ADX>8(; zOun3dNg*lzo*rUH{HIFwvCT4Q(Cw~E=FIMe!StAs;rB4{pQ!b)(zX*ak%un5`>wSd zJD!_|bwwL+kW^Rr3elgZn5i$HkR2HBmd;m&N^R~?y7p=^s*WA9n)_ADE^REsiPIF@ z^%z!<^HOvkFu8-=Dx$;M!thq=t|XiP@I~=b0FYMggFk$J$Y7{2#anHMXylUgpp%;z zC&X6>Z)jEbI?m{+;_`{QLnfh64xlK}yP=&+jAMaJ!?m&6EVcLqFp1tsp+;Y|odh9I zFW1TqyQgpT2flN-QZ%_*zJFjS-@xO%eP~rKEtlV!vMydPYdyG-Vb}h2Q`RE|{Tw8O zyS14_6WvNZLXm~Dj4@)Po~r8*L7iA7#StH4fhr}F`T1LWowr?MxE!y7REU_I-2e%* z%yI0rHMr_URAJk$^1)?)XDaSwFLH3sgeTBa(4|H(q-i3l{M4BsTtW1QMXbQuu<~*D z=@8n+o`;ZnE8ffeN1TvSKK~%<D01TCd|SiQGqR5S^qaQZij7iN`RigIOQ`AO@AMlL zd+XOBjh+}8QuIqY!OdFv+NZfYyx)A?L=v<!J@Z>5s4UiW*FYg%7~|c``0mbqpIiH* zW|pG6XG09bUk!8KC%L9?AJNXEH>S_-^||=oV-2lQZ^$cWo@NLUl(8yu$#IEL*!uB> zfO<94*J~wF0O6i@qqW2`T;SC&C;Cd+4gUlG!4i4i#d^fq)R@I&5_1ES`|G#tLsAy8 zOP<G18yvl};wZnR%C`vC=r`u4UhQ&kcTq<NIauQxz(CY}B1dv3_LH%oij@$AA-Q+z zLbn|4i7#N5By03bRr5sX6n&KWo9>4J^3J75!@FN?58}y8ClI{~%CO0hrKd8byaEaL zy7`Z?i9<_MMlLd;UX#hEEca*oC0#Z;l`u{bzX)8CQGW9~+^z9fb4m+crfmMKydAig zc|k<sPH`t;-DE7@YjBp_&&V1HDY-h&cijmu8Hf>8e3yO8blX8&_S}^sL-Bq(|HIts zj;4F)!o?LxKwKX}3hnk%e9G_O!N7*swGk^r1q7C4Y0Trg4qNw9;v$ITI(Yv~RdOc# z3C_Vn3Cr8FeB)~D3UNueo$U93a5k8j3^{j@J-)<7DpoijNUBr%!Nkf1^-1N1ov0rm znSyB_3RPw+iLz8V%cmp4M3}HY)E1TNtI&xA8bX;!7b#PYl_U(Zhe5;hgczsEPc<dS z2qyz+ec6vWHIr}()cv;LpvHJ(Eg6mVbuw92eNia=IM!4~GCxsd^3)ylSI6A16uCk6 zAZUC7Io3w{9)y#yMTaX>{p$!AB-y0HeNVZCBThmp#Ud8xaF)<G3q&|}Y7^GTe_jBi z(PoR08yvUKioSR8DQ@4X2+Ve{qjp;$qqLqZ3}pL(Kd%F_{djPgb*qC@>cbWXX$-2T z8u~b~@7IxHo&-B))s;pu8ga-igHTbVC*2AT+yc0JXVgt)L9RLp!^<b11^i|Hh$_AM z%{EG~G?l($d?j-Tv6#7jXv&|_iPAKC&}33uys+y=DUVZJ%GBty;u%(VDgUKEd4{;m zuD2|-XdDdMrTTWGAx?)ni&lNxCLylxK{2koHX7oCeF`H`)e#$(oD({SSzXlM$fcqT zMG!)e$9t}H#OE)a^mZY{=A2^4Z^+;0)ojKVCTztER<rt3kG|B1ud*lq9mLhr=Vqt& zM~05jzy&)~lGLg!5EQ-05Pf2yYGWqVjF_yhzN~K5WU*ia`e1wBDc*+xAj0U%+|1%e zD5{0=SO~{QuG-4SJoAKRTdUUIqXD3?-PPJVp)nrI(ax_1MCifB@<LHN#5nU;!Re23 zH^d}V%Z}uY6l=*LU6?}T*WWNg)r`C8LaIY7*X1_UH{7<q&3tYhazu}P3xsPTYd(~= zYU`}JUH!V+b7kybt5;|%(kMmo{<*(F!33yK_}{|axVBArEiC*=P<>)d3#H0#$a~3B zLC+F!k8#|>r}XnH2URO_d9KiMuM}JufP(w-RpH}bzA83h0O({@d-`0#|M^7BW`Wpn z_%g8Vms@ayfK>BR(K>Ya9dU9U2D>lJU-&H2U-&GOD3EZjmRU>g6>%@_p_OEdT|i^@ z0zkNUe?hpLf7A4JpUPJD=ZSBB7p;;Yo#rQj6JW-KU!&U%BCpZyV~JNlX(6<?G$G(N zn+~v)>b?RjR>ptvq>=uw3FX1BAHcgLw$hyQjBM)1iJWXa_u~&;=>O$j%Fyqq9DG;6 zW*oKu^-g3~N;TUxDhmH7;|ss}3*&|P3**Jf1rq%ve;;IoFI82#<lmM^dWHLM7N0(4 zrak^vWD#*mg|0G5lUm3kZIIwUu2M=1*pXoOGq-#Hmj^K`ZP(LDr?pw4Tz%AAlv{wn z|BGAY{EJ)dcn2h;yFR>LVlQ(P8>5^Ea`ILI@FV}l$07sxSW0SyqOD96L(Ki4sWgjb z_2c;svr%3Qj{n#fC(+kU|9C2QGnEME8I{rrP=OKuQh|X|YQO`i&CGF{5$a~9oB{Zc zIR3JYZT_;2J<tF|!fXOy?Rs-H!g|^OHy!1>4;c3b0KS1)FVi+)HH&+zdNJaUqBY+& zVDQ*0abt{><5%~Job~^UoDB!i#>0QtVK1}1OYPuaS9k}qiJ9Z;5n6?-lz~4TmW*lu zIJm1=r*%OrjW6$FK*LsSrlk*xuns7rAOG7)YyIc$!tSIBAHM^hD9EGfA7I_rm6?sj z>rFUS{u5$m*_Y0yKXU>1U-r21^%60=eDV5bFZkIMMXw&ZH-8ZUg#UOA5{!PY@LXy? zZ>5ex|L0RZO8#R}+mp5a-oU?>^emQO!VOrQ$%~P)^|2s>&Mz~BZR>{o6IR4dyiUr; z^Bwu4e5IcMbE_5P|8Y6zNJ-H~icfz4n<gs&fW{O2@xJ{PtsAuaBC06;o$pByceiOI zpIzAPFGu(PzI;w9|9G>P&YYtwb*7>J>zVt};Y4wenf0>AvwWG&|Eq#_o+eOXNQEP~ z<$f)$E&b9C;<%SB!~siCgu?t&FP6%+;=~2h*=ooOL!?h!*-IE|u<<ik430mZ=7&&Q z*!`T?u^2^bF5((^vz7n=g+`(V<GNHnNp6GnH;1H0Z`eBa=h`F_)zx3rP1VgAr@@-l zj}@0x#a7K3@HWKCCeNldfbw+0+W1}Qa}c0BMd(s+ja!5;^fHVS?QP9e**3Kb>_3dg z#Jq91nk^2BT8PXdTNKUOcbXwm0$qo$IPQJFr)v`P`RX36uC+;Y3da_>VSRMNn6DD5 ziDrnkyi(kBm899+cHhTlK8HHLmYUDWeT?NOC`$NbYroyKuYU`tn!OOz=XjuFFl`DS zxERlq*mb7>((h3LrEX5#$SvV6C8<uf$R0JBx9JLskuIL4Z0<ce$yyF=*v-SJmapzb zu6lDI5h!|<I1X8`20zG%y?+VSC1Dy<5yz>eC=;w{FmCT<n7%*OT%gbU{>W;7`f%(c zM;kHEI;VEsY`BV-^~XzrVfys`#{65E21Rt`C9S8jd+U$Y2_pZ|k`q3)i+23_Ehc51 z4T4^wBK}x%1|dJY`&vBnc;jIzb@u?Fx4|i$7kcWl49zQ3^2_CiJdGKnrF7uNUezBp zkDdpVvzP6E5`4l&%Q`Z;um*?P-TTW_P&UCux(V)m8^(;bem=s@caTAl9vG8^*Q7ir zCF*T9jV{HlU0q>57-_H09a#d(gCtw;9M82wB%gk+$rTpbN3rL}?}hup<2j{ps`70D z+u6vVNJ%=k3y~ukx4^F$harb~w7HmSKfVZ>Y!qI-KtNMH#;ERwNmO!k^j!LU{(LYa z8a10xt46;S9=P%2>f!MrhxKA==KhCKCo><;BBnvUZ!ciu`c)*XljTPcW}WWPA!!>x zIAE%0*38RxLhR3fq_?EDwWMqnH7tPfc@;-%9k1TjY-A)^cSiLh{1|q-rJp5nGD>py zJ6*^FxU;N(zMhzmFg8r}l}dJQ>3(G25cn(^!LMr|*Mz)11ucK8c}CZ3SUA3q9p~Ii zum-gesK%#{-5z+SQI>f^>qc;H)55z<{w=`GLMihk{7Iqt2mT*?Hdox^=(L=7DBT}3 zj85C$bc!sE0u`yRfm;kCNWhnV+ec(3J;Qm2eXgr~fu8+>l$;}uw(BF5Mv+hVoD>|r zm%CGyO%FHa1Nq9fpPJZ268spk^f^hzJthnhw?$SI+lg8`ehsOY3ugK}s&$q+wDT>H z=@pvx)`TV@^^URZYJ(FLe^k=y3h$Vu9(0Emlzh~3HpyIZ#G90#J*g$8n0=B)`)2ug z;G`MZvz>VDQLb-%vASz`4FBQk*X&)RRhh-%bK~(y(4PA8<d?%Nu|#wV0_?DHukp_> z)_BO1&OKnI6R=HT@f`RaWl)=kAtp7Tzj>(8j0|JL_uU!cklKGnHQEHt>BeBzor1Bv zKyjeCqMkI~s_3<>h=F0r#?=lpEGAbLpj_Jl{k)*Ws6y(k4_D#yXYZnApW3D;=cg4% zV`+gGZXD~u7EetOlGRgYI0LVT0-(RSqP?YrpZDeabK<YK@&)(kZt8=^hv276UZ%>Q zqv=$b5r6?lDEN?K=XY}qri%HB=ip_Kt)3-oe@%JWklfDc7@F=iNJ%EbI)h&FdWWLC z^*5WZO0UVw)PhUC%Isr!Zk8)I+}Gsf_f?w3)m%l@T^iLwdacjSMvh=`o>Ion3l<Iz zf@N-v8jajlr^ZzM+7J!>Im1Tt4|s1HkvMG6q-6IX_)c7GesBCIqQIvIQg~va$j;z` z7}3d(hk}pJGhEVA*)IW(Mq8tpy$N~v<84BB&IX4pH{z1T+aHGwtCKu6bLI3UfBrl* z1u0n?VL7O0*}CGyiNYV7;<#}g>P<vey1e}pf`e*^TG*(xF*ugvtu}5u%D97r9oF)p z)m(P~3!(mg<I%b*#V|v^0B6_Kw*M6ORtd@o(m_Pc!k`+qdG~m97<tQgh7Oi@uzm^7 z$@@3`gW)EQ2bKhtB%|(79Lg=(hk`Lr-28b2C*7jmxTh2R3L;&5W0;aPH7w<bwP5+l zo2Gm(>G0=K$15Ml(Ib$pS>8j%_`6~OyN%nlV4C?J|62Nv9W=^7%mph`fWFz7rp%I} zexIX3*pu(@OGjnaxmmDr{DQVfxtztt<wdL(;R-j9bc8$$OFc*B6AxWG>A|`>MaLe> z65Y1cXtE|zzw2J%abx6k76s^N;`t2~WfE$#cw*CIsrnbt<gpp2fCye_?1MvJ0tl&S zjf=@{`HfA9iw?L2W5+#B=CMvt;y%PGWL7-UrToV%i~RC+3TJMaNO0DG1TCqo;mj4x zko*{5)N)<f!uqY@M8|$h%ivOP5=X3)wiB3q5bC|k!k!7QHb0xAw`7PJfNeDmf6C)Z zGo5{?7R{%FQ=0-e>s8`W^IZvmG?R+%FEm%ZjWnH|TDRs-Q+E{}iv9ho7Xu$F9|;XC z_GYg9QuR9Zj&n_EJk4GbF_3olGZFNjixb7N@tWKWT~MA%RMp!q9>wBaWL$FadwlH9 zoe~8#HX$8~{i*2kO{T$*b(>c$FR+J3k1YSY1_$I>|NpDO(Jbl_LqPmu{dWyccsTu1 zG`Uq*gFvp_cXJMGGhqrM3xGffbx?utWyiYV#%`plrtGKMUFf(uJlf?ZIe2Uqa4%S_ zHL@12>rd08>4II9J^_PI@FI;zhf*k|DJHacad{2{%-(0(X=Vh6m=XTe&x-#^NPUT< zZ)@o)(L^V=@{36*mhM!xNSOn<F;6GaN-|WPYJVx@)NEu|7PiTKPyBh++1BoI+hCWD zq29c%E`J^VX_QAYbCcW+=X^OTyLIhRO}m`+{iD#}11~siU&_krGMq?=MW>=HX_{<r zD_ZvD8u?EwTNkLa?2{Ge6N9_!)-7_WSvTfJ!fk7PmygQg9;{D^s>1Bew~dB=wzA7N zuM*s7$K3Gh>8k_>#U1MA==&<cG3;4Z>ON&kWTF+LD#Gde?2eI*ik$aB(w&S$PL~zw z2yA6QR#SA2v_VPvEO~H0=vRkX?cRMTObAcz2B1jiRo`l%Cc`DACs90Tc;Ea)>xb0` zQ4qO+sIhBSSVtVDr3n31_kCRVKZ`Lfq^;k1NziF*@v;pCY1bR8H)Y6Fu#O&?OyZ$s zykGiGO4J~(J;mVwcaDCVW#6J?q%l5qpw>z}EhoAoLWt%PH2(N=#Q!%V>;AVr3S_|! zGOu4WiT&;!pLI{(e3%DY_E*Z%QSGX!R{n-&9D1w9#uCZ>dsT)Y$$id-o)-lU2YlmO z>wVmPJS4b*>n4;4C~#DUIPXgMf&c}Mf|w-7R`b+6c;(z{^O#Sg!6cu)ZBmFQ;NSxQ z4juGxJFZVU{VE&MqI+oWH+_&uY-#I16p{>1oxbO)>(fesF@W?DetZ)Rb22lwNkFY? zGh^r^1OqVn`?^}n)1IwRI0)9PdaLit9d<y=Kw`DR{~_cS?9w@OVqMZ}tzND}hF=Ro zOfI-(Xp{EaQeY|rk}ia<y^P^(PpXWa#Nl1u3Hm{~gn`pQ)fcA<0SbiIz$#8R_l8Io z>^WW<(<Tmv9a(3ehxti$+^H{s6(lD}m6kx)6K|)P8IYSu>gMRR>cLOlTp3u>w6gPK zLhTB%{zQ#++ntU2f;kUJah<S$DEDEbTMo+5kE*wD0A^>%fXihNmF;topo;npS}^HB zRZgc4;Xyb50b?|@nq0XjPPc3b6Oy~!iC)y7%g&V&7FD{=*yxPhd1*p3dxNCIg6#R> z2B7B3u46)f9WofGW0=k<R&AgsieDI-WFby`F81cT<WMsX*TV^@{+9e;U}|zpm!q<p z*DCZDcJWb#N%^g=*P_^zx;^1JDNdfktEa2gA_0FTu65fOGd|o>pTY9R1Kg$ILE*DO zCmyKi%hTHec)I3A$B%ONc>vi%GX?0ms^6tRt{P+~DYNO172YJLif8f*ij_+{i4c{T zX4J5hYc{#jt<5_KR#3pJ(3=Uv7f31WO`~&p#cK*ehQ-Nke#~(oi?<+zo7!NGvmjGj z{HHYxaCwzaIw(+2n$M*Hor|w@%}TKZ<1}F?`FE*u7$0-6gJb2w|Mpy2s1z8di9^XF zzfZ+)HT3}X5v5snkT2>)22m~7shi0yoN^KdDi%pQhfDj#S)jwQe=ug1C->7Klw@TH zwA5YIx8I<g#6&l@<Q}}@nQRAxeVRN}03aru67cVdLdnCW%BlY2-y6zZm;p%@a1S~Y z!8v<z4{j*}fmO4{)~Bo;ucPMHT)t>aODv~uMmzvV`d(N$Zl4!@uQlfNZ%=LH#Fv(* zgimo0s5k1m=!<1}LL$3YwwLE*X$n;RnTjAKMk_l1IIT_Ma8_BaCBlJ1z|QL0M&^l_ zcm=EQd)IWW#hWgw%D3OM_j|E6h?uuY(>BF5FjEgc0cqKbOSYVr2$r2dqU|%Qtj2X5 z+uQL0Tn<^6WZTG@$|^EOW2QW;5I}#1Stf6PEwX~TquVgNZxe}rEwXy6C84(sXm^3u zDzR^@Laf?(&p)m$9!V!5<A)$UQw)__9g|QBoLujk$?rZi77@gO5ZuD`PHVclPPHPQ zB#TZP^w!ie6`a`WiX0CsaV2|-2*gc#_|;r~8&PRDW|ZnRTC!I*=JY+FV<`d@f5GaF z$iPe~>YRu<{PCYK%j)KWEGY>6aF5g*m>Z>#zg&FQyB_}5SP5>RR_u3)I{Ea~@AIX5 z(%*OEQB``<G&-EYY!Ez36%aRH$A;nFQEf1R8|~?@v^O;O0(x~rV7(8EFwYt?dMUr# zq4^8}InmQyS67m*iUnu8f>NG(g?##CpvLNFV{+$gdr1VmTfiO7#-#Ja1oSF}H`6ds zW5o-+ke^oWr3No$H&8p+%;wUiECnJKxN$oGIR}@f1}J%grilQ$Z78`BPx)KqYmYPW zJ3?iu2sky^Qzyxg7S&wJt5R2_J)<8)McI9!!hq~uAzT>H9Ca`!#RA|7UoXtuF=;GO zNi1VS81b4vMZ^RWi3U)ZueD3)5mS6NJ+7YhCpS{RpG!<`CL!Qy!ho12HBA<fRr^BH zcQuk82N3;o-HVmsOF5AxUlkP?cp$;b1PT8tSHVecWs)qd8k$H|(9$s_-lwKUugC$A zLQEx0Ao3=!#18~c`vt@HGkxL!4khw9->FTI1_5k7AbX*`c?+Z)lOY0M(~Zy+7YdE$ zTu_;1xBqz$3fdQd*fk7(&lXNL{qy@CARzV%`vEyqD&fyS&Xn?d$xfyM342+VE^W*2 z$DhOR<=H&n(B#knk=L{wHy}0}<%K!P_d*W_RLCOGj#zo5|2QCdh4?`MNKaYcAFr6i zuV`R1#;&Zztl!5gRIl0{;^Kd<g~dNM>hj*wywQQ#9gsp<ls*BuTR0_LKy#C3CO`GO z`jTY(kwG)EsDj_{=}6nG1V%|%`ITfTat_F$L=QAYpq0N%G0E5C6)?`w9`%1V`_H2a zArM=YW@bIjxCNUfWdqV3*8f~b>3^P;Q|E;k%gs+$fT*NHvdQ#%R05`&Xvx~y_W8&! zMkcd0oE>8Y9ztJRtb`#YUYp6F`+!iU%Ta#H3Rw4bLB&s(9xJur{;{o<^86wHT8>>C zV;Gh)D~b1@KHZ9<-&vknBf6$sc$3@l(F?V_uO!U>xZ-`});*O&$O;%`2T%0Bp0qpS z!f3amxDLM6Z9PHp|J<Ig#McAj)WNpoa$|SSYxMeLMmgO;dKEo~d1e1nmStpqkuLjQ z@wLSY;w|QDMHvR>Ynr$=+Q_|_{B?87K&Cxq|Ig-rJRZUlbu+Vis^0#9=C%s}%J(lv zqYZcgaBQU*a72;*?TE7dJ?T}Tng4N(e;$w@Zo7lmdE2RY+T-)NmR3?nJ+e~&WhKB; z|2V9>{$u~#pa1(5(nfKg#8<Q@<Q5X=GcA(j^LJJn3X*J0n`VU*cTxTr0ys|E|9Nar zWwH#>gZDF&G!Xu`7todj@xnFF`#*Oj^`9>t$Y$C!-TgzrfBR$^Smpygtyr{?fGZYG z-mkEAh;z#1&X1Y&8EY)?xiqVs5JWGW^BZOS2sVd)dsVq5agbfG?bGc;{#?xbEM4}z zO@aLV(MjWiKYpO+uYhPOld#P4ZliNleoc}}JsFrIQu><(%9-tqe8uri>!$9@>`@Kq zbb}}Pa!eC?Wlt44kLoT8JPi4tu`OV`(Vajnhn<<xeOqalVU|`y5ve&GagxPkoTyxG zpq$G<ipGV#rk-J>k11~)5NC=d{~Swt3^ZZ)!(_M=Pc3_vamp>!SoARO=PMG|ke7G3 zxc~5^ZbSXn;Uiv%Zb#lZ*w(>>ITfVO(t6)V%-+5>zqb2ebCykM$JdALfY|!I&}XuK z)Cs9vMYFt2Us=^rFf)#8!Z9kfsHk}BxZyEja1>GA>;ssILCDEqdl<nQgi?)Tai3+t z`f@8&W@1q`shPnTmnr?0;aIle4L}MbtUl2{r@zS3V@-2c<&b?(5Z?l_J4`aQl4_7| zE-RnDP1?x<wLTzgMv7JLwGVIzhd-*8$2POJShAZfU-R!?HLQCXE3N&N;9kE;(vt0} z|G?<K%v5PT%@BuME#B(0))*Wa87<h_-kwj~PEb`{(BX_9F|8YNI-NLe|MgK-x0tPb zfB1)y4zkwVEX|r#bs_BP23b*X_4q@`#<7uf*$uEovr<f03#viHj1mmZOb%BQLr(yO zumtDQVU4Xf`WV@bYIQ6-){xM88z&oD?OF07BO4fpB3bsg+)t;q9Hgb+AgEE_-<9vz za;y<tapl>G(FxA;#>I)TFOz()M)M((DAt9a+&}RJzH3t)J4@TYJ(nrSJfXfL+Boe! za4uiN-)Q{o(#oX3y9`rax+uqI+)(QlLT>E`kk&tXtO|_bNX<QT!UDNCwyqT%=L{-s z*w^UrIu+9u)Xb>CtjpjR$isXd*3R`4tj84BH?>Q~aJkP2X9T^g;z`6pn}Oo1i#p^$ zL=5eXSF>rj(Fmm#3{bH%Qp0P|m97@Qhjm7_5gdEdM*l6)jc&plgyR`-ht}+k;}&lj zca7`$^$rd&z-iUss+K2>Z+b@P-3o8G&D>q@W^qLAaJdp&yT(d8t;z~I>bEK`wNhy! zO?PmEE;=<AD%FrGJl?9yT-jU<OWktBKjr79$|-X=(XBc;d@KH2wS#odVQW+>m{^>8 z^e9RlkHqMT1*I8G#_1NU?_Yooo2B_|W|o1h%cZT~=ZgNV<S2c9;O8Q!!W@?I=WUEa zh6sO8IWC{~ccI~5B*UW#!9unq{EOh46TU(N@3@PbI)koiowUx&nI9`N0>#4u2oG=I zKLRb9J>@mJ+3nK57HMnsEA-$AMw>_$5VN=rX>c77&Pjt01uu7)Vy4Jv+gsMRke0#9 zW<{n6#^LIzZH?-mrhNicj1I|nNbQh#3*BF84S4NY0TIsVMJWxdQcL+)khZE#AsbwK z@NBVN@{aB7j%`<*osdr3leN34mltn*rqi>DrY4&sb$!yH-0fc#&PVKXXcy^o;9nP< z^>>^Ml~L92n!0aMvLtVn<~(|6+|JlrQKT7OU2qR)lY(7ve1EKkdB$&7%moW+?ys^C z1&{mPBLq6fEtYZkqLUq~%9V<$D8BfE>S1X(Y6HGeDsU|Z6kxZw)|V@ASs6|sRa}!@ zp;eQ2{*paZ8Icaczs}FAtN9i;V$51PFXuk^{X)eZY(kYNU(Hxqz`7rJ-#7Kch&Npy zeud9-v$-L_EmSks;Mk1|FH>$*f$Hl79ohn3!wRyh?R7=lsz1&HTA0k0ehCiM2Vyam zaJ_h=xFY6ZOEsHt{=1J~es_P(7N$fyR2LWgN-|v@<h6Dx8}=e}`213kMPOHXV|@#* zoJo6Vhg-3Fj*5GFaz;TfoaGM$?*1n2ZSic4qc)wT98+g<c#-Mkr^4#N#WMBOWt+La zG7UyH@Z}cJg>!`%NXkfRu%@1qVa7wCAhI>0D&;;#)WLNTeLKS?KgqnG>wmobJF5q@ zHes6|&`St>PEG6xxg5+bJHw{RcV2$^5Y0VW-oD8Ewi%o`BQPB#)0Q~9__?gO6q>2L zTHxt;xVR!P&xuu4lOg@p5a+VDpHK}IcV(knSv$op@C6^Kqrh44<?Bg}Ji`b;sQKgk z%jo)gpV^G3^5G?<(}Q39T+Xn6b0bxMIs$9X&a%?r*d1erRqe=8ZOWU|kk(3l=A7-8 zYi1|I>C^REsj^zR6VIeuzqQqfKE_QaiSY#8z68ID>UE1MTZ?n&l-Tc&hpF*WBhx9B zP1TMq)k(YtY-N02(+79zI5LtBr(T(jvMy!#x`wpg)$HAt{8T4-pp{>HO9$}JbK369 zFK<SZUuFO?PU1CRIV$sp1@&j~e5K7T=~pw7+%{tPFq{w1VyJox@NZE}(&VXH(?6o0 zAISb87xYbQz-aK85UX3gt!2CX!a54!E3$zi`*rD7^L7`(<Jp-sP~;3$KeT>s_~U$D z+93)Vhb!%ieuAVByct5mj%8g7PVl|5U|xZU`Y<AG+XNN9^@a4?n4_Se&0GJ;2d-*T zldj?m{K~@8h#v-EzK$#>DOWR_OwDYD_Vuo_g?ubd@~9J)6g?V+Iws87L^YK0YGVdb zq<g>k&Xv!Xa*!UCA?N<ss}|=s73;Y}K>=Qk*`$mVR|6%)P1hQq3r?5{;R`rzhx2E7 zTM;wa9Pc;8<y0(+^Y82`@8h-NecpV6(UXUOV21{jINd`hbZJz>IMS^r?$NeM)qXb= zM?WNKx88(M$v7>YtXgh4Z7P<kAxdo&*A|mdowVqKr~X@cJNJF6H%BYeahVY6J=LF0 z*JlNm1qABPti|IBAT44V{Y0pdy?e4G=XHI_f>b$?rF#(VaO5PaiEvFNYT3o!|AefK zqA8^<Qpv^UuqrT^yz2RxUgS`bXdX&9<$@(CJ23`vtBrF}=q1ZzjQ)Zo7FcN(coWN^ z%CQf*$%$O8g;0+zF`S!W)kgcHig)Z+Lg>rKNU8epgZ}bz+5INEAC}ss(+lr7y7c}` znA=P5Sv{2G6>6X9kMW%~Mq0jez}Wu%^V|38mm!9wbBSYTy<H2$-F-N@2-xl1<;q6^ zoF8k@XuWs|W>AzzGSqrgsj%Q0II_GV-zTe1GUt9WN<yTRn&5{ICi11=F*q^<@%udU zhrn#?CJZ`*Ail^m>>||A{E&DW#W2n#``CjrWh0&;f8}=$@Y|(1He6$-ZDS#dZQq0C z>_Zs1lRQrcIjNm4c0Q^C$^Hsh4iy%ehGC|+wQnX%P~&M$jPQyn=EJ&?RIbo@X4GV& z=IKmMx@J)3t4+9lk`<H$(T<hB^r2Ul7HJ6RU+@+ogm{LBR7xpejqJK|HtU&-hC7DH zM`#Xuc1F&RqFiy$Psv%1dS+M)d9@o3*zrGq@h}@{W<+CW%ZaF?7o?iC`jxvF=L-2j zT*AHkOnWlyc!<ylVM&py`7PyF!L|6ycM7a)+`l#<9bLEoJUDe2<Q5g3plM*GFX)zp zrQ=0SmGr6PK2_`&RP3{lToco6^EP^@<?B`NIq9482WpA8&~$1|((9am!Vp~&11qXc zoE?vMAG{5o`xCHCvoIv0eE78-1%*qsQgP-Bu8D6v4Xk!UOP$w~o`4ZrK^?>b1yyiM zJzk?uQ%QM6UXC%RVG7leK%Ck1N28AJX>ujsVeE@Y+bW7$<S%W^{fHYL39GmCg#BZY z5JEYRxpsuaTAB7Cm5Otb`5lD(v-X7BzlgHi-!s31ELP6KCW?_7&BXVrb|M(VkN$0$ z)m!38gVA}h*p;m)5YgP3n2)v1GL8J<>RzAd`#T)8)%>M4`wU^Ow7ntwjBZqC<~@67 zDmE3hVKEJX{iMbDK4yFi6=Ou?tZ92@>R+GN_^6sg!WYJCRhvEIwpF0AX~m_WE7hX; z=K@eOrIG90%~|G=;Tn`~52+`)k<Z@#64A&ePFG5A4xatmVkZ7`CUvyQI}u;ITg2Lk z5CG#A+SaLwI|jiWPWH4a45~P?Y<pCFF<0syqA|o4n2pU-X^uji?1||9tgvOAec!vz zRa(pCgsOWMI>nHy0Ky~}oFA2qG(tP0{iWGwrjb<qeDw)Kq&?_@<J?+J<MH*p8%W)^ zmM{~C#4{E}k*)~eOI8yyEk|w+h8)sV-%gzyg@BYgfe(yyiT3b|<!8rsq+So2)x*S1 zlU9dzqF%3rTaN=b6jZ~!$GYOEWHB`*jXy)@24rP4<-6N%$xB>!`Xx#dk0BTRS?;S= zy^1tG2c@@(s6zRVEp`g{zSFCOMi^G*=CzWgDph#If$tM29i%^j`CWE&>yit8E<?iB zhNezS$3Lsj%HgZBUwW^+2+W?20nL!jH_tZr0xFKoXCHPw>bdNivcI~n1p6+c*grru z5l4!tt;#(4hC!GrkA$hv%Fk`4J{?9a!tpDGqH#zjC1Gz*8D&r=Z4WzU#B3L2$o(A5 zYtM*$&<I@=khMsd6jgWhpf9ewK%b<lrFkz>D5qke;3qR5;geXEgReOvRv3{iL${xh zG0dD8cR@a^VA+?|KvguC;gjhtE&#zsV<x`Oep(n`g}>dX_BhQq=~k~XAhdju-Bd*m z7Pg(Gm5kNr3m|0^e%JB@WBMDp#_jUt2!ClH!U+^S!yCo$c<70A4ZS1*ZuU{(0DT&Z zS6g;a<PK4jS3(nBFXf%yFw-l`GW(GB*2idYWb8;C-eCD_#F}nCLCM=s@Y@MWkxRsK z!Mf6X<&eY0M_Wl+vGw}q?BP1YS;3N7Rw$EXnbte|_YDH-a`}D6IN(3jWso$U$7rd= zKB5=Cy9vdaD*XbAV$SE_))*9i#g_<osIY;_D(j%|t4fv9q|!yC1=)cO9BDbrAm!qY zd-Uf_|1MLC=GK~0tzXX+V(PyT6y-KK8Z8lSstV8BvlHqa;a5v({y+&~Id*P|n0D{; zERSlG6lP>u%;gt0v3$NG5PLBENKPfj&|W^FTBuX8$Dfg1Bm=2a8>rV{IZ<Y$!i{Y2 zJqz_xes{sNz|8X=nDvUUv;H?Q>oEiE*i;vRCZkzFQ8PVEOfK?k*xJ1@4VrJbwrm!m zBb0ICOE*+rXe8Zf4R8zE`{aW>!Al-OaoSK2(By3&x3+SZ7lhsu&P{*CbsrH@sD3E+ zfjbQ{o2SC3my9z?+?Ek!%V*m<Fl}EB-@KwEx+{>3mB)hbh~c5F2q!B)&pM})?WYoM zIMp%qB+L}5toWMpn59TJwJ`c#@MsGqei4sj<;13<_MjYc;RVOssi8Y9aNLGOQuC|( zyvf&Jap5Ls2nH;gn_i>#x^^|**N|W)fz9HVuNwZ%`B*OcO_avVj}d3MRZ<&=pEXZ0 zVGd3*5Twd_!nLntV3KoK!bVpS5u}H&jZsfD;yP=P?zu*%K4C&YFkJ#1S)CWv$&Z+d z2!-2=ep$PrU#mRNf1yDoFv&Cy58z~8w)gB$5lF%hr!k`1#2LipMY+A)JW)5NcQ!1h ztrZx5NKQT8<!G}IIz3)&wgc5qzL!?fJIJG2k?5-;*_RUP=wp_2nCr7GO*U%!^tnfn zoq>oi&4Tn2m8TzCy(Z9Q19eC;IH|PlmNO*kg>nH+q*c2tDU{Nszs2xiFd3Q9Q=IDg zwhcj-FK{NQsZeJthLym0)m(Zk4$2e$Vlt^X?y6KQ@~QHwTCMFsy_b8?l#Px-k#dT) z=@?t|S}3`52Hu0xb!MS#&pfKw=&>Tu649P$>sqI+s{Yhb*7H)T(%I8vpZaQoZiWH& zI_e$i>eH--_i`|=QxN4E%|Jey$}Lqq4gOR-)Lbt_zcBHG4{jZSUIRf%F?kX3THLpa z&wRcLh-ZugAPHU8^VT!#8|9dF{QS<)4+NP{zG9>(p`3blvAAX06A}3kk}TbyV}kRW z^xOMfYdd3H+a!lj2t`Aqs0_oi)sdz%5d{gY4p<!9@qU>4WhdMZk{ypAV}Cc<N{LJ= z=;it$372V3EAsw|AWP$ir4P}cKr$G-@S8M0qtLmsLiH3XsMY{9zuNUgWF7_buG)^4 zZL#=7%wVNnw~+`RXZf~OA2#ELQte)s%Kfo0%I`lB&4jbiNSw+!1uxP&+<ir5jBjuC z*loW>4U;7dWU5`Hlf{i4lkwb&yk{eX1~ZF}bn3m#ag_1avb&&+i_c96)`@>3{t+Wj zh<~`G_*>ZIHz}*8$JZhCjhPbDmNJ4#8*_d{E$9{+L8eK<JlL90$P>Tz_q0X<H|9Sr zv&CpM1N4RFhQyTPzgDB%&g5HtoO#3i3m4gs&_rWr=w`XfT}~=S26l{?7ChW>T|C)9 z`#Y~pe$1_tIciTJp?Lr2k&d4%r&bV)!N6=;OV~WeOcRom9_%CH#cmW*KcqcHP%&w? z0ba0KMW_8ciHgcUVRO8B>kIae8e$!v3PfVR)EwpoeZlh#>lwIY?P5uGG}}5Z!-%8D z!PNU9{b6BSsyl?#eVf}?9x*1qFCxSS)4~*WMm{KqsK+ZNKjQ?d&LA1&JNxsXlCNVA zj&&hHEgXti6m63fWVlf#A%?cV%)skY$Q3Gc)!cB(c8L(4`|tpXo0uC?NodGANM6O; zUxf8Z=I1(2EYXU`II^N_W5Adg%{Z)TR}ODCle-vtG2L5GmXRC6mhQ$IIwaN8H*=Jb zQo_V&qmmr5-nFLqOOfj~F?QkjeGYhy<1QcwDUm2gwkN&pwwZ?U3;wRFJfs@~ZJST9 zM0QZj2#!tpQCu*0xLf_2L+4o#JHjI_zs{2u9olhx?S#E2mHQW=m)?S#^P`$!w4ix@ zdF8w#v_r8c+4|UQ@Pm6rhA--t_>65Jxu#60|NPzBhXLiPgC4#W$Tggpe7!zH`nE3> z&+DjRTDpZ{oMhju(;@e%ha|ldp{e_Na0LIfkWF)v3j~lCX$I3@fYj?h;#<vJdfshj zW_L#+1~MJ=EM8D6T`*rT?pirvU@#Em2<m287f+s6W{j0RAs#Rf`w?0QexFq!cR&8N z+ox#yS&S-jiakveTf?LwhhHy2%*q}?i!B2htWpBwJ=<RQkz;^n2w|NA7jlLoIrqC- z4Gc=MaYMmywOp{KpKjhX;64#AWyUD@nwz$*C+Yn#$SSl2e?P0cPBBhII;zww;uKGQ zc;fcSKQl7;GJ4eM<Xh}vF+YzhDY`+I@>u9P@4%tv`w7SDuP&4m-cIhA`UTsZSG`gT zu<}`b5)1QKRQ2TfsbCW@&m(geY&)J~dLop|S(_=_uOE5kJ(kq%$nV_pqYjws3;2zm zYI5j*2b1*O`rSSajfo&nhyY)$qTYA}u@2PDxgBnktcEvRU!9#d#n@4-C;%Tc61}>H zoE;JuXorcc=X_)xWYcVjWMoN=mQy>jXEU5H!>0uEE%HZe{>epQLr&H7mqZRnJfL%> z2mYM-kUD6Pv-R*jC@GHV?O2!xN95Zg1;V8{Lwj9W1{?Gvo9!9U&v+_T2G6pXAb0tj zE5=ce!gt5>;*9FGAK&T*&}s;+m{u$LJfYNQ7RLd@RpxcLj?45gV+PeXIO#HppDjpf z9ZHCtONuWmLCbP|UX$RFWeaTzr9`vyk~ZvxRf<1`)~~)I-+y_z%D8l>`}mG5LHuNF zV8{z}?bB&Inn@fwIPlPRZ|wP)Z13nDr|%nhAjx80Ct5CLD-R>8IP_bes7T5pN*aMR z-3l<r!;g(=OtN+<45h`G&w>Ozgt$9=oWgpqZp~+WS-8`TxM^(7G!ab4Pbw;14(fZj zpK-o`8Um7n$Gs5qWe1gzTa3%FFUal^&A$PtqB;OoWS-5EQ_aEZy>{b4wBk2D44RJ_ zt3KfiFu5a!n~AsSP{%C^mL(G?g(Gm<i-c!{v})Aq)FO`4O3@~Mw!!q+u)44_^3WfE zfMBKqeoX6FIW0(HV$DGx%{9gsf!{ALREAr{fZy3$$D>?ROv)`7<4&CSa%V+qEy@Vz z#o5P6^TrnlwXVjUgwbi$Bt+HBq@->W&S7P=-JUE5H?Vz>R#C&xr{a~|pKHE4CVvY1 z9I#R0zc~RdQD|wj%*#AX-NYd#^%Jr#`km!x46aalIRv5<$;tZ@5eaZenq($Br3L@5 zr=Ni`UaLQY6VAK%4VD*5k((OirYT|7CfOgvWh0WH*YM98{eVzR*_%ocnkUVJ_EvRq zAp`y2i7-_mrAXG=Z@#wrFnXO}x=L>ieJW3@oImQ)vbh@aoqD&%dv>kRR?GBK&fvNc z4YTd`XBYi$7tU!w(8(|Q<Xotkw#&W56b%)&9p+Idq)ec%*OC{BgoFdF`>?w@`$3Q} zxSJ4mIy6T80h-*_eC{F^1F{|RF=$UALZH&NSo4v$ifiT}p^gQNW)E{0u@{wIf~L=L zkmkLYPXon`;K_N^8IF9VZ_N6sOFwU$0690HIIg;H(MI1T?&Xj|UO=>ok3uWcdQ=fc z+KiJK&X#m>uaVNF6K&>jPfHb!w<!B8k8tYG&>Bt<E;lw2hiW5lt(vM;ZPu9s90t^v z9tH~d3@ww*^PQw%ISq6|Q8Wx5g!kxH6S-ac9~w$idqd0mx;cAuJ@6PI3{kUf7qJDe z(&`y~0|Gvd8gkqGvNuW*qsi?r-s0ft{eBF|q4+f(PvK2AvT}X#%qr;GH9jS+HFz&= zc50=D!;Z^?EPRgrH_vHW6n>h5irz7cZ9}MPK7ORDsv+Tz4ef6Hv$VVE6w~;k=(Klh z#AgD^gXH$&Z0e&t0geh&`T@_5%2S?ecs&@)NBBzDm=UZ&Y~4M2G2k+<mU7~8w1Nr9 zhTwxLM^L%Nt&Omz@*=r;l}e`A6`xuzUF6jhZS%;d@bDJPLe<~u1*i2*V$S_0-JtH( zNNa8d5nL8el*gwQIJcq$JLKGu<MKg#P85sQ8Jp_JF=*$Bh5;6C*M+Dr;kVGixlDuY zKlOg3#*#E2`x><rti6kpT|eRXl!Ufuit?Nihu~o}73Y`CtwQ`7G>F*n<&MxTWioTL zY<3*rti;+LDxZQLd5_<h#=q4IAg2~S5&U5jUqs&UImP)|#uh!1-B4+Dmv!FrlaCW0 z!9L?zTiz2<^?H++af+b+Ap0Zz#5zW?i<`;;{X6{tbZ^#cnKIQ!Z>}8sR#p3*4?(kj z2tr~J)8=XJ+xgVUZg1RDq(THO)$&ggt+2_Ka95zcRi|j8ipEf@+TOYm+#T14wS4b6 z{Cc{6tvS`UZGa+$>vri|-mNKx?*@XH^{vjV?$(8+f5Q|_dluFMy&~3a)}0;6e#Qw2 z@;i-UKRbCd;~NY{#uQyUh7^P)J{TXGg*vq~T(gOxe)cy%8MG$FFo5)ic>Y{4E(IY3 z^};=|w+Q<P{W#geWB#e^b-2!T%1qIV+V`+}&SY3iUxZWIoA7%a=n82Tj93(e17Gr7 zep320a>P^CnhKUcclBQqT~Uaw^F6G2fw3rCa9fA&7bYGbyFZllx4h>&Ir4#jU!y$R zjT%I?Mx`u?h3a+84GNo`w9kqYw?yA|)Ycv>QsQO8x%?1tfyWasom-K?R0x&cD<DRW z<%<)LwsrlBj*3UhM%ru}k*zc(_7a}0R1MJ<{Z>5KEk4Yfx)KwUN40?3WQ+bXs&0du zK?+G1(H5h*G(N05JkMI^qF!1vQc_#G!_5l6dT9FBWaXO0A$Ew_H)v1k1Tqt|ceTUa zK{2NtH+5{kRF-u`O<Zp&zgaYYCk!%K%eCcHNRB=ArNkNKrO5s^jVUR)GxF4HW?aaW z@hzfVoQ;KOb3Y?KWdD7jS8G3v_owhqSUOzVZme8va7PK!Evv$XQB46i4}AxDa!}1X zKde1^`io4X5~M&mE+Qr@LQUoHx>T}>bCgdoV(Y3A1J3-g8+cjDysnz;hSL4kA?N$w zbnwWDM*VpZB?`VMa$s;=z;NjzZMZaF!<XDCqsRMcmmAm=B1d~(&RW}5FxnXroC>k3 zEopfh;WLHWFz|WAj68TtG7iFfPWJw}fD;-_Y>mz<(Vbk(;|z`T=*LvBvdEE-5IEq! zs{ps#mP|J@Ow?CY(=BVlduzhi(mnK2=}=pIj#uhw1r5&E&t|{8DGMz0`qw=E{wiz- z{kyPD8-|0{D1oNegauEWWWkxZXG<>K3;gd0&N<{%f&AEsG|J%f%jn2(zi}1>gx>%$ zI!}vT^~osC&C$Lv;+x%5v(5EEK-liHa1DhS(v_|qaiq#l8OL+v_`nGQrw|uYWV6%M zrHbYzvq}ZZ^L&W1oyda<an+x_y!EdSPE<#YU(L6O)Oi^14eoffbr&f9xtQ6=q2bkp z8~kEq9gRI#!`yn<vnQj(^dP6C?Qo9!7&kjS?Iy&$G(%u*;0d4uNAK2~U)Ak~yedH5 z_H0}wqwl%?=qX@*SouSE+0cIdqsv^1M74=M9De@Y#&k_gub!gR`l`-^SrhdOj4{3b zATW>tCE&M?uIi#BW)e~qlAq`VyJnniZebDbIvq9cZmu5d?*jRso6aepK5<?^$yg62 z8pp{^q*6YOd&#!a5zSjs6jJ2(xtTr@S!mvX7(H%^G99Gj@+RIfjHA&;dCGP%PU<33 zU>4gDCjO+^DTkRE7F#wqlAY!#AR#|Y$-(BdkJsvD9?#9?I`%-J3zRA;os|}glgwYT z(<_@op@03An=DnX%QyX;RFsRm72}v@tl7|OE)9_+%y=z;Rjf!<h9uhOL$y0uO1?0- zpyS$j8k#cET{JIMa=ANUR$L=RZum!cnts~orOz_o@K1>(#H@$`Xd%+`-q5yI)n`hv ze^N-ZTSzfg3^@hC(=GbBMg4x-pCjCtdkrbZE?{6GUaq2O{OtTQFm>TBek0iRD8Cz4 z{*?JHwNa6DBPdLsgcq$_mvj}~rgyIX;AWyMd%e}GBlyE%d@^LQa2C4Fw_5yh%#JEc zDZvPG-$_!%V4F7c>|^px$Ya;QBs=Z^bYj^~Y`bQTK85G%X!UJe?URsCyz^Nkh;cXO zpHP>ClU8h`4?HO<rpH6eP@P4q&%P3>J(RzWV`F+=OKM9OBif(^qa<J)Q$Tt3Fo^vf z$Addbu=4*L$Ct&xIL7vwR54fO2q98O@N)_A2jh+S^D_x9H_3Z$ahU2u!NbL7bve%@ zeC}rsRuYX?9JI0z@n3x7NDTY_^%n%I_(+zX&+7Doyiv(7;yfn<F|VGT_ROO|IiqoQ zGoNyN%MyHPhsO8c#;IK+^SBn|Z9YRp7DHN*&i0P}R10VKniGe(6<)zeq=%AX|I#>0 zmVof%gmrF6LV45A3^CfJ&PsR&V{8al!H;k!U^xDGNPj!!hBVMMM?ejf+9oSsZU)&J zv_LIVpLjr@cdHaQ!k$E|)&hn}*BjQLQ{d37z4C1&>L%2LT=jdjHD7js`Vq435wmKT z;%ip%yz}}CEONHSL42~&6wDCtv-@K_`NP_PHc~(JDIBs`b{zP+B|v~&$U+x#&{6t3 zHDU4(eem7Yy9sNehni3b$GQ~abLc=`ws-i{s$)^>f&-tCL4x%L>CK8$lDw6{9V_Q- z3yN|78pi@ZZTx|8oJ-*R2#n*v*Kuq%nW_hjV>*I;;(=T72R?%yn?o%wPq{(v*Kz#C z3>e3b)B%j5a6+l>RMT+Y9RxAl`XA;tF?-TU5mx^>j(dP{jIhPrjOsN<<GxHcOE3J5 zr5)+QM!ADKP4vyT6XZ3-0k&N%r>FE;@apfw>Kf3{6C*Oq*$%|4umOSP+VWd^KfP8h zzh-1Dm=^wuZe2XeGh$%q-rp;|vBR*(*;>wpS$WfqKk)hFO(3e9hwlSvaO?F&V|UvM zh8saa=nH9C8ymsLKuuo~;b-QlJ&OOYytn*{qkE!-k>KvZ0|a+>1}C^n(BN*t-Q7KS z(4fHwcL*MWI}GkHK?i>)&u_gS?uYvq+;2U-*6FHK-P8N*s@<o8DJ5P7=8uG7p5I;l zKx>-m(|Z}D!fya7%qv0hcs}4D&q3iI9$Se79F!E=r#6uuQ{!_Q=W~skI4*pUuOY!= z?w|JVffwe&?`gzxnm8378~$VTdx`My;L%e;^iFie)B4gtAS9y$HkN}W)DXXHUZ}W` z{HfGC0Od|I^^<(D10T&HH)C^phAt{&c%zIUbOYS4KR-E_@9!uu)myDse>5|m5-iJJ zqR(O<U&*T-QYf$kre?bNloM;CQ2C}{{v^H+jPjlu56r10y!t9+Zl5WynQ&DNL~8;D zYBfoEQnlHwD@+$`$d)EsxB8zK7uw|%^N&Z&$F)Yjb{N)*tf3Z6T)_B5#(iK%y`8~S zB&soapy<mw|Cx1?hnKOEqTsS%C7z#s4OR#91Q0Q_dvDr4&Od0rx6N5Y$1f~b6x|*w zJ08yKlI(oMoifHh(oQtmXng`q%);+AUP=&0(k4gL0u=+v3#z_u&4e7ce)Hnd_n0SR zk*85Z%#Skb8N|{qOTO4U8V=3##Gep|C4de*q7)~M9EhS!5%eV-<reutcK$n{C$;2r z@2;DB3zv9e0ldfi*wL8+hhKJk7*0Tvp;N;<lKOx6ocX!h35w6`QP<N@d}ehvL!%T~ zB!J?x-4T0?CEHpx!QoRd9j73cSB{>6*gk!`#=R-NhkZxf3SEPXm(-vW>upO+Lss$A zmO|2!N7*A#rX%O}+w4mz$g2!nc}0qChU*g=X*koOpsKaAZO|(gHCt`P{~exV|KEmZ z%MGJ(C_MZBOGLkDuJOJ1gtLW<km&rmb<VTg!4WzJ)tlcSNv;~y8Thrkk7U675Q1B$ z^RyCf?)LO@yqCLd^-O&cQV-q850lZmNIz`(NIy-}?R#tLoTQkFpCM}#o2cftXYlBe zV#OJ+mIri&Qs{4WBzoLf?j<p-+DplS!8J6Y`pbRFW;lb=NRgY(*AzOLlttyn^ceCa z3153%i!`=c!Bi~}6N=i**6J5tWhu^4*nOU{pEj{G=`e;!e%+Tp1-ehg9kK0RX#@*Z zaAp#h78|PryoS;d`KH7q^8s06!Z91T53?rKR+WTL>^dYbvvRy}ZLoKdn$CL@L0{wY zAtixA1ut$WkB5w>$pMQ9VqJ1?47z-xP&cFDjp3j4qiaORhU`c@C@J}%eEEwB;NDRH zHBk_?29K)g&Q*F{t>IXT9?l#7jI@}P^RDLci|KIPc856>ph?q+V1M)#;BL5>^A<Du z8ZBT3yqAIb(O-bsd0rggNJNaa?388m7%BB>yJ1i9Zy2zAx&Q4prHYJdA|FSIe)T#{ zVzvMSJ(P5Gwv$&rzb?E*NJxhuH1U|AAT6w_7yV@bJ1jxQZ%VpWMQK>gpoZ4}e`)A) zDnXSR4c|uXyYFKfp;DjBL=HD&pw*QrlNS6{4Gc5C1;Z~Gt~SPz_kBI|V(U<ZKH{}D zf`KBmXwY^u)!>~eCRM~mVd~Nzc9av=s1KP?_V&l+G^($6dyi|0i%z&w+MYN@*CZ#T zz=LyXb_?9NNWmwA1vROKPqECRzY_Qw6!E)fob24-843_<LX7ZwNi<n!Z=ma&bp$_M zt$O6MnfL{YsN~-$opFDR*<y3BL;}2P@QmOa3xd^uxuBkL5LpyBm|QT(xxZs{hdD3q zm{{Mi(-$TE!#mH1l2fT=jXfnr&@rpmX0pFX?BL3&St~GX*gp`U;}v|+h7Q3z^O7P> z!~@BqZ-u?Qt_z5m-x5V74*?gvF-W6$4DB<QWNpx)HQ~MYWP*-^4a0t+gMYFtjLq3h zr$<#+b;KJD)#_13%3QoC#Arf!4CKTdsDtxZp^RDLA7kzq!=E>AL-PC|V?H?FZAno% zH-$20l5_g87&tabTxcqqau+Beg~N1=nBSXfAWbzz)O^`=ti<N>KgPW5C3El96}h&U z;soKL-32#|Vp0k_M$yw+OB_*`g2O6x)$&32ov<-;`Jtk!oL!heF!zvNLS&_`n8Qvm ze;?*G@=R1h@lv<h6j>YTVD6VKeBRg+Mjr8{4Y)3hyYr^2_SeDFu78wyxzn~KPRhOO zb02U0Qsl`$%G_@ZFiC8M)qB?|z%pV$GW7Q!Mn65MkvpTgAf4qG32g@Skt~}Qz(;_* zJA?hcMETxa@s4z^?t0VC4)x+Kh-PDa+$I1a)dSEMo{&Lu^#II;r#o2aX4l8-WIP-? zL2k(M4hFP#bX0AoCt~(0z>g0yxNTeoVz(uQ%&Bf9$J8G=yM-*10c%wfsd~H=I-!8w z2h7!!B5-~H7}$lHZiwDJ@i04Z=CJkubLIdv`uYm{58<Y;XQ2%02GN1QbNXRYw11pg z0oSsLSg=sOC?Y=ZvpiKg>nO2rc8VK9PIlyEbDps>g3f5ShM6iD2MK}c=5g-|K`^&z zn8mX4+kSK21b0M)rLRmz!(>@kS03iiWWOz`u7SqF0fKR{^Jr64?gxTS#U`LiPWHLQ zZ-lJTbC@!&WlMG3!<UbCv6~ERKa9J0Z<dDb_CE`H$9E#^L6^Lu><XV|D4bd1>;E1+ zed)2m8q+#_P)`xHLt#7T8#UE?2W|5`c06!T{(W!fbJQi?blCv%);d)Y1l+x{t6~T# zm~LnrF80cS>mF~Y))q_y!f#fkWm9};4#3KJ?-bh2s8zTWm1^Qq%EHO$BexuD_(j+D zDb@<J7%PO%o$yhi=kY3$<4>!F7tMk-+JrzK7ZUP1AebSNwqEgVq)!xn4@#&(o<s^J zDC-U!S0SDH#2;LyL&+kk;acf)8%TV@a%&O)`bPU9=sh#U#4Ob4v^Hx*@sB<DQKT;t zw$?}7Q=Xzav54{BWDRi<o!2H@cNb=&eWmyc1#FQS)vsk2gA6B`?p{60X4@CXQAP$Q z)p+L4YWKYZ6m_Qxw~le{8Mi!TPxAej3RHZSSnbjiA6Ol*nQE@V`Q5WG4<^%gKz%4+ zi$U|-$^VB?4Dx>CR!z+p?~MvMb5YXypG+)A*#hsMObpvN0EYKirG6ugBGrFO&gx)< zg$w3OGGs9I1J=vJOTcztA!aEDa$sN(ugHs{fEXna(UFUfy#Taqoh!HP5YpIFz;}No z02q@?*Qy}RP*n`J0JsbJ0Uq^weGnMeC`JhM6?fl9bdPPES@n~zbSHQi2eh<BzU|m0 zE$YPxbSRpBtrQ&V`Lmv`0g&#^R0t=zf~ODY9z4m0yVJ+rrFZO_+c{s!iDJV*d2+fG z`=36{^Hv3_534K1{7)aojAs=2d*SQtfBG=%5{NGG>qovlz<}T9M;Ms=FepMBDY}r2 z_-rB|<9?71-O*&%U{#}*@bN+keuo^|{1KI!Q3FK7A<aoB)93{x65czT^re8=j>eUt z*Oo6kOFs(>XuyimBw+f@NdJ&BIxNMqrm)8}(KEVl=rF>#Hpa;KgN6A;HK<b<ronQ` z43XQy6&%oaa}l`qa=(<6eIeM(mp0~ZA+$d;!)SX*_fTT+8pFZt8kSVeC5k(p->5La z;qDgMo@psC=_VcHnw4Kqt_yx{Ql%7}LQGs)pC2k9n^T?wE2KX{=3mnUAKZrC1btIo zn}+D5GYSbG<3}xYJl=^}-fA7EPFR0L3%sj3E;;-`^uyg@iqNvsm;8k;iLGpNB&*Lv z|E7xfO51WHnKJibEB<jwfOc}_@85v1IOCZz;&oR-6gz+KgZq>3Sr!1pypz!CPQ)Iw zk*K&*s}Q1o_A2*$%2x?TBQO6yW`c^DUx=2@cQsj?e+qfIpB&Ssr#ABT8G|>GGuRl* zPeaG5755GJT-N7?@DB`-;OgNOI%#xPsX=W;Za*UOSX{^<9c|oBehK!v5AmZ7<Njkn zbbBkYktz>T+l->Ajvf$c{HQsr3lZdJ8+Y^5fHo(<dZmmow6Sjk)M=hHeE1`2e?-!1 zqbk0tGdutk;A(9&jbLi0Q>p&Pi(wp&KiD~1=+cR8yz^`|`9XH%5oRY^#S-M;>EBT- zjLsWL;F#^2=pbVhr_9+(O``p2scoi4It4h4;F)euaC@NC<j`MA{W<cg+arx!n44FW zc1xEDw|sZ3DUz37RoA{?!f1o5j7_(0+$%ftD{JM7lYf4rwO#s<DZH;ldBxWao`aW5 z+TKLt<`@1i>)#q2Hfps3jNEn7CpyX}KIK^Fh|oCXUz!>QdP*&7g+#C{`nmxlzZ$s? z*o3jqNopM;Od0EI-eH4xWAT3B+HEt#Rr(gk+|tmVbf_124B;eoyyo8|k=wuHk*U(| zqUKpLeQmG5^82t7<OP16x46(}s4~yX&J9S;8@zPn%_|uo*TEmKpxr*=F0Z+s4H_?? z68<}x-&C4r*x+Clr|Q$eS~cLF@2Yc<<8(Be9)3wROZM5dAUiXgXvuEC^OzmTB<PeJ zlY!x?%sy*>ux~Ksvc|9I%gUbNzLitMg|}4tmOQbLkDN~&C6A!E`mLlZS*QuK8@}7z zM`CZZ_Xx<-Ogz2x`{13A!SL5T{!EkkGCqlKWpHQ)PTkqEg`!X2cfuKCs>HWMUzz;A zjen<5<pNY^?vDTZF<Lp3KD@8vKs6DeYY9{F)h>NT0PSHIF5q<16g-I1${J3IB!=>8 zVJ8^^u7uuVxeb~J8IO7f^ocxma>h5UPq(M)zrvG(0k|U{zEt*$-=|wYHgP#dv%$#q z$?Z_iO}w5g5ZWOImw-zCRu^Gfpz*%+!Gn;@(B$@ou5a(qbmna^CD*VjDc}o`0F?LN zn(xCIqhM4zQ@l|s!cPBYbyqAhvCcnpf>9wEZR0&OODfyO2qYlc^@vU#-^uJ8=S;^@ zk6`w&-aMNXosgyex)E)lQQ+3kglAs_Z@g!#vuk<l_Ni(|h8HxDbw422W-Jg9A_$%y z)@~HW<kaB~KNC`zW<$&Ez#uT4w|M(1dq=)DI@${ti1BRCyx`a7H9+_^x>@8p5D&r! zS&Q+cdBuSkfuTKQ5+F#R`@Y^Rq0R>}uo2ixm+6kLV%b1v?FtW6*B6vwbM*2a+J4Q1 zp2Qab^NRS)?;5eGq62ggENFZ=-b{6AcdE$7a81xH(-ewYMVWll_|~oKIv^eOr__?h zr3rewh$YjiSe0uiy~eORrd3N^hNJ$7$~mqz(mQN8N_oHvp!UF(ED~Z$Ga&{e^_7sd zM7n*@n86~0r;KB!pzJY67qw<Jf2W*-1!n>iM0F>Tc@o}297z<y4dRaR7?vOQ`GU}u zT4jvII2WP~wp$<en<k!iY)w;^Gy+wF>ge?Q=)j1Ogf>*~ry}Gi{Za@oD67A>YhYu; za^VX4-w*B0wlTlf1}*jX7C;XOK>U5ZDMHf^bYNC+s}9r6YPYPo*%s_8_H$HB<a#g6 z7JLx<O!5;SSPlf}h?CVTeH!W83Vq|-#v!zQ0Dvz0g0gaO2rC~y1PffG;$$j7=PRez zjW;Dsv--yfCNV@#FcJAsBHaeY8~gc-8HIGrW5_NjWpjv7WP&iMVLa2C-8@;w784eL z@;cV$w>{COByTGKW`ZmX32mnz$$W>UIQHlRt$?!_8I=iaLUS9EzONN1l=D!43BbCz ztOjThChzpYZshShL@+OSX;xTR()N`MA_O^&$vjsE9rgnXt5Q(Q9^k-nAd~n2&!Ni? z%_cs*a9s$2%rkJWxL^!0{|*z#rcPQjrxz&@=~<Y0LB{Yd!$#qn0&EQeC^kby)qRCw zZz3~^J8OL=!Ee+?tm8p2K`5^i8K_<R#*yVbZzUXSWdf$5uJ>DNP5Q0_?{+T$MOF#W zXCb!JfxlkPb$}qDbN|M^(I6y=QRSQAx+Oo1*MA2yH;GA|1k<t|EZniiI)r#AD|tKN z%y_<}+DEK)(;1@3B9+kV_P1g|pyyE#O(+DQzeW1*qpTy*Ob-R+?-{>C4U0TVO%H5V z@3e<B{FGVq8L-GS(jd2&syq1!xV1a|t*uY3wLq?~E8AY1d*xU`c`?0;n3-BhU~=`2 z)ywhs;lXm=7vC1EnMWGmgx%GGgV|X9+gJqVfg?PH;+ovz9{tI!<l;V+&nf}5Yk5xZ zCz}neP+P>Eem9=`{EEvwl$3nACMn$KkV7@8r%*<%SXrzw)^OHnl1X@q!#%>tiDfw1 z+o~%1@xoU;d2~^kAB(q18-}hSitMl8IuP!kq$PqWQY>I9*(1k9fgn~ZV5%?V_t72> z62BAfHS!@$`V9x%2%Y?|4L9*bzASnYFS!tzVU#(1FOvFFZ=icCI@hP0AHn?i^hz8T zKjBO?MM(E2-5_mveYvrC<%}0%@XwmVD3_Tyh+~1|kfm5Wy7xXoD9@zBD0uN*0Qf*{ z*8y+p%WgQo#T>k*f#00QIc4V-3JGjKH2cX>5_QwUFiuDxyH_3+o&+~)zmM2WW#87~ zYUvVeXswF;`sQ3}*paJ14*G@e1%@Y^XyR?bi<dgI3Ri?SKV$Pyw(<SEG#`oHe@-Ro zOe7`v(uyj4KtLZ4<g(O{wsUPow|(FNTMi2s8yd8Cxsp_NYz{r9;Cg^-5Px;t57D(4 zO)?TZJDy`T5tHz<&ljYwufxfB#PjlR72Yk4Y_$^*0=GFWhxuy-bqFG>fnGB_btlB* z2o?&{*smPAbps9a6dJFY+;(+@x4sz~yUkf~<_*Ptm<EUe;ebI&Qp=6X!JwEwFDTg& z?8Tf-wB)hB=U><$rbUjn%v`zP0PsB?kaiaOT2$>1%E?iq)qbN8C;M9=ELLk3sO7Gq zhyT+38=V+O>-DxGjZ<UGzQSR~O8Um&>1o<Q>LWG<5}?3ED>>6TgucHdkHdKRGiJ9Y z?wBv801Cxgo+Fg|#%xAud_04>)T``y?s(kT&9XV{<4eDXrF@t46|Kr;!&_qp-XHn7 zXsF|FX)#_Kxxb&G1V1Nc(BCuvggZa%pAHe|b^2*mrJoyhP29R=@%UVHmVwRmz5GU_ z4cq<w0e-77tK@wXpe(#Qs@Z`MlD5p8#Tcy&xM&(yKKCHm&se6#d_1^|k)K>CIebW| z2}Jw$9HX_|;mli$=)Xuk)<78eco_HU<@qBn#m$SzqkCpCL2)2<x-;?8eK;^RWO!Zx zyRrjcoXpnsI}+Ep2Qr?=_nCT3>DZ^>F=6b=BUrjiaj4_(JK;sk$VO-C0!jmu54G&p zK~52ANEi{92s2r$u>L5|W#OXH&4%xc5qtAUu&A{~f(2%GB$nluMhNb|CtzUd-`u3D zU73mzBmTzarv4X`cOv7KG28L~e0}PFDoN^^#1Qf`CQcEyMu@NYXyrh4MJx7(W5tQ| z+jaMj)lZB=iFB26_50Dp#k)Wfkz;$((tXw7r6Ok0CB9D!%&=VrF|L$jV8q*GR4z*0 z_3yw<TQx@|(v%x9PzflB&PpSMLgRoFOwhK_5h0%vs{&#J8@bACneV!X0FSnOKHUrH zTfRL|p%oI(ssvvkLTlmsFCFIsn6}yP3J?MLBqLPX*8hT@*d$tF7|B7Ni02y_U3w3j z=0ygbjnbwooOxq7nYBfBqSUw-{M?Q}sU_|=vHwPW;~H5>QD>9-hB<;FN+Uh{FS3~b zMOFYB*>CZ?EP-tL%a8xYnY-p8+|u75Tt=x|QzUl2zSF!_nPK%Gm=EWs&|s&*==19@ zS;uaZ@doPcO(&a&haj-J60q6RH1WZndd16hXu6WtlH0Dptt0lZ^45}9cCZHv>|{e8 zGCSG|%<&L}mKlwzkq29I-4Hy7SXNq{T}Nix#}J><E(JY{72+D_Us`4h1gc%vW~wtQ z4GO~A?etUk+kl`2F41YFf?w|HiTTYUZ$*|@Wz&3x148~FP@h`h8-*Fo!*)ZMpibk> z-=hA3KcGKHo2uxTm{^BVvRD_C$s|WvDbFE)S}PFlNGANzo^w$~sBItUK?Z+rrz>M* zG;Ysfddd>L&Hm;e5G>9i0M>t5h>QXV8R3-qm>r@fzB8j7czb5shfew82TX#Udps=} z<_3Pb9%Nsom!avbPF1%$6L&<=Z_nhf@S0A5Yi6f*F{gAgMPwzMj#RWEC>F?Dufky( zBn50&Woxam9TNqU4NV!=&uar7z77>*iR#ztDY%6IKRd~Sec;93H{WsFqvbO>5!@d5 zSI>b4dHq)ch?A`7ubrpL7-fyyFqobasJGW)2t-@u>7N(7HD&F&-G7wDjBA<cwADJe z+k8Tt!m)L6J0NS#jYBJC78-DO*DWmD?=W256G6yr9xrp^^knUD{?_%az(4mbTBS3{ z=9AEQy%vX14uGTMk98gX&k9wh<naMe{{X1xrO2Gv-ZtPFMr5{|do6lD-}^y@c4X<+ z)Xpqh%Q9E5*HtuA?>C`KrR=Zo@w>x+kCS*#8qVdITgG4HYy$W;%6_-;$SRhzDj44w z2IaR3S>7i#5izZoMd^?CE3R-q=dNTkcm9+Vs<)2o@*Sr&QXO|wZW5U*BaL@F-fX-R zk*7OpG|jXwv{A=7;v&EZR|+~A?q%~heEOrwbDx00mC&g_Y+^ZA#n+7f`Vt}W5M;sP z4hF<Fme7tM43}&v(^!DhGQ0bV;#U#Pob5sjwJ`WOg)0)hM>OvZla;%zPFoJd>d~ZY zWjVz%ZFNRIEv2Y&db07K+I;Ng3l=EWmN&mDi~K__yUdD)_#vg9sEc2+y=M|BGq>_K zDrgZ$PNb#muts0>y|3jk#XDM4EbnQBhsi25Hg+I(3t=0kzmehRR{dH%Tbiv!c>WN% z4*yz=AUf9E5QF~K@?VAW3qUBbs8suLXur)oxLW~}WS#T7Tj+RP+-wnMDOAqxcYo6c zy6mj%?^`(jP&uK1Wm%68thvDkedd0FdPgVXRX{{+Ii;yVK~v$zDBKQNfAp4M4&JH3 z5j8wy-S0l{S;!d9od4OLn-xjUoa(#b#VWNkfZ27VDA;y_98g7}CQp=B_<Z2B4{qSc z>VAFs_E1#x3{oS_UP4=kqo^cpRj2t{ff9ZnGUAd@Iz=K;b%FIE@tc0Myb)eGUXR9} zIu5etoaCN5G1OdyK%gfVU|qJS7OA`}0_tbTu|3r%=oDo)Bv}~CbEzk}AsQ>Z!7d}u zhBs-#6XR?e3pnCruGU0+4n~rHoGfNG+ZyAjd+gg+=m5U~CURtd@lO_M3Je;~T=~XC zbAN`b=4A`H<wT^5gin4%KPybF$Vkp~?0f1rx9^f9;;Qt8E}?hSf8_6UFfvClUN9UD zMn1ND{|vMgD_cus_AYV&q?lWy2j~#-`5heXrQnSe0>&{7PS_(-IoiZ_W5loOw}RfQ zOIC!)wOjY4nk^cF0-IYa+)GVO=qT*JYfUw2mNhy>%hVAUzTaY&LwKGoEps)${Jhpd zZD?Hw;I9ZYzCsFxC}!lw5|k^jYPru(^Td@fO*Qz?uMDhLBG4O?1YL0XXbZ&6WwIpD zwdI&NNjNROCG41U;T#;mxo#{gX7hRIMPZdZkp#WHk-j8+|33?4b7zY{KkWXdq(4Sj z2*YvF`Z(#CK*|2WRI3u{rm@EC;cE8dI0%g0tjeE@N{ZB%x5E7Fq%kh4a5da^DH?XH zjfIz&RCq6;k96>tl!Uw6$86h>E0#{PzANFu?D6szADl1Tbf>v12fvf%(%i%4$J})o z;U7vvs$l(`QHy3jOMGg+>@@!OsYZ{mjM<|XkM5*CnKI{@GX3=$EmE_eJ(@~D%l`x{ zi#7PB?nHw}`flj~MeU5GftauIOxyN<u*5rjzgR}V1~4c8#rsdc;xHAEg@N+o)GMVI zd71J>bY;;XBBY}?bv13Zo-^vFk_!ra#eNkmPO9GO1H*GQdJuvA73E-*aTW{=WBh-5 zQcXO0{Cx2N#di`${%0j#M!c1hf3?dLGbjz=s}1TueAlpKsN$ZZs^y;BRZ`Upin(Cl zaPGKQaT>r*)km7et;%uZo=eN~>r}lzzgQ`#XR#k8iR9uzKLGnckd`8`-GUEsCk=Lk zYgp_=JbBS1XOhhdD@m@?X$;HF$cKa)Yo67rUPmLFsvjuyj-AJxSsk4{7ULy_@p&OH zO%N0X*zxz<%8kyRBD|=o3#H6`&r5c%EzT&t4Q<|UP9t~-Yy0Z+5*07Ii-%VIa$ik^ z?6sTcAqL)FM~X-bWTq)+W=)&mthap~fvbNlE`h^JAg1ol#rP*CK1r<22VF(dUN6&x zT2Tc7xjRG3&t9~e6_E8)!a>tm(jD4Hb_{>?>v_)WA>W$m8b5dG3k8bX?`bq$N_UoX z5-eTo`aQQ5x**Kvz-UIhEA(ximAP_weq)@TTC(HI+b`)fB64@_fg?^8G@k7-@veg^ zd>N8VFXq`jogHLPz|3*$ClA{tVy%6B>G&pOrETtXthF?ZXog)eO$;1hIf4;U)Q`xT zg7U|@76oYDkb>*8>pKV?{7r`(BxRHUdZqJ^gC=Y8sHCb(<BCQ$X2gnA1l--F{ubD* z<$%d1qAHSxk+ZriX6Ea&_RE?$H708>a$zi^-)Gwl2$T&<o-655OYfiZ<z|E6UV6_* zpY%}odY>&U-73>pLO7`tyc5ps53CafcKkNVw{VI%oEptl3*B!94L!Ibv>wG|4K@zi z$LhxLe6ayiMg*>zXDed3tsM!Z+|F9Jwe`H1Bl4>giT#h%+a8T|xhnK3BnLhNQ5FE6 z!dX=Iiu*5aVPKq<B&7uPPT|Rn6tPBX^WlT_^I?}X`vX+W$Qws~&v(qb{ym)2i&CZ& zFb6JC-O;7GX3mRCe1*=Pz6CxMnfd0;L(bupW3M(nw55c`SbTy5sun?93%J>GycV~r zsFmo*o$|4|XbF?(-M`jF4ls#PXcBQ%l0|1O8-Qs?PU^IRG+q+IfoBr2=9e6-qW#qM zRJMqwq3p>Y(4rO$Tc%@q3FvIUzGL1gJ*oW^_aW3iSuqUNoM`^I@7^+NYemb)EBMF9 z-llm+Y@^1FkYiA^@qacMp*DLfpUW|=Pl+p4(;(RF$pQV%*vv)|3;}Yh$~eV4vu2t# zOsNqpHVFjnKfbWWdCb}(+qSvK!%X5tT15RQAFw?UjmBA->AP{WDAW98DZX6B7v9s2 zI<giw9baSp$(=iD*hVK<(FnRT7Sa0=gqvKi&F*|3Lb>n!Y9@_Q=}OVh&T0(vR~PIS z`PVapp9gd;dWCq)rqr+`{FU!cLyjj#?Svz=5W_cEhN~mCv}_|RH0fz}uS;2m=7qLu z#;a^Iv@=32^RbxhNv4hy?bkCirikknSI07N(9CNjNcGzEERv%iQ5StxuDvf^8-IAj zb1303H7-=jC!1w{5%=Wa$S3>Utx84E)R0pFcES2(-s_>{XJL;K=H6d=A*({tRz1`l zp*6{K+QgM~qCG5ybp1<B`a?oAP(@8212fx|tf4y@={A~x90wWD4liV17?e)fB=jH} zLHU<>Wm-w_Gvg+!$4||c+4W)WKm$aLYm4>1+M>H0p6t4Q^Db{2b<%BbyznY2a=msd zk7uN>gbk9O!|A*B!+x|jO01F>Pn?ib6uE(A6f_tkFMzwinwLq?$2aVyQDg4?)6<<7 z+$Qb!sI4nG^0V3mzLcteF-6XI%+(i#*vZ!p3rAI@cYS88{=!1Y=zoqOP6iiwQ=)CX ziWAdM`jkI$(@^5@k8SdZP9|xS6}7u}VqEFQ3{7XQ?44MIiBNFIm;E_9-ha4JzZ3hY zVh3Q}x@1U=uIw6g;7-zleuC3UzHjsq)eU}Qv{!Fx@E4&5=iI2SjyIX)&R{_mwruZC zVFUYex3CwbMW*{n1@Hy8k6_MGRDZkSXLY^Y`;@`DND@+e^7RduBgf7g?g>>QqH)9P z4FXFyFH=!1=ZHkYHuSe;o7b&wx2NrMBzI^7ynz&cL?>qf(f1fF7i2sMNV{wO+ol?8 zCl#7~t&>6~*Q6fl-M3WONCo7mmZz790d)%_Y82G`h}qhGQm~0Ft-t=Zv`)XlZtjV; F{(n!_>RSK+ diff --git a/help/airGR.rdx b/help/airGR.rdx deleted file mode 100644 index faa5881e53cfa6d45fc7f6690a48a82e958bbb60..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 836 zcmV-K1H1emiwFP!0000027T6BNEBfd2k<kxmaDCK$!j;OhbV${-1P=Ux^3$vFKrQN zgp4}c=<duiJ6cge1wlnofn*Vw50x*y<Vz$J)LThCS-lhyK^KU?o_eu5yF0UI&aSyI zJM%mLneRI@vom@q3jop}9hbE9=w<<arJL*ZxVU0D2&=GsiJUPF;HW2O<1sk`xvU(Z z@B_KB6d?B;x$zM|(Q9(|B*4nc<l!dtH}a`g9CI^yd<-|6$oJ;4havK`5%0<J)9dId z@@xPgtDXFI2Egehe=5OqoF#w#jrl(EuR-juE@2_<8J^Eka#;&N@fEU&#}~XO`+oxD zdC1*60rC}c=s8*^pWO?vY>s?!7kUTz+AXv}zPS}m*IT&r0zF2a8piQ^$ur+EKZy4f z&kY1{fD_jlsuYqVxRD$CF~p0`Mk%7G&FX+=7BXXnj^2prY_AkldUeTAG}SES+Dbi5 zjScN)J<nd(!iEwugM6<pONJbaJHpX8k{BwMG^^neBjVK+BQcb%-lp}-L4H7BMCAjO z?UoFwA!sPR<AyGUwO~qjPM@x8x@`_uqR`Xo_nE~URuofrZQsAhu7S2h)z#_imz3a% zo{o`z#kyjd*suL8@-6px<&e}aD}%C`6s0EqfV*X>)U#w-ZKbY6Y8%jA^ek3P9KPa! zE~$|Lty9t^>%JD*YbmFa$5Pv*$${s8L1OX@NzwfQYp-xnGw|{n^xFXVllqd2exffr z%Qx@=6gHCY;sY!ck{=#Mmy(|xLzj_X)^fj@<o>vTUQPb;nU6o;j9y0%sSrJW1Lckh z)~`^yh2=u!JMKMmY<{6@6PsTMPH~@cqf5va%F*TItEbUx$m6&c){-Y4FoW|4x|s6& zN6<Os$FJCUQ0m~`zQEmZo4e~gzn(+ecz&`Xo=0DD!r!F#+A>)kt*@^%wLGp0&ZJc2 ztm1TYdN`{&YdC8;>sXI`T9NlC@*c&coq3NU?@{DEio8dW_bBonMcyNyr;7JjRmt{s zGkKV*nQEA7nd;)tG(`WQ5#kHG&*|1%eN@sFsW&KFe+aU4c|g`>wT~)&S}3f`k%-(M O9rPc2IW?Ii2><{-`=km0 diff --git a/help/aliases.rds b/help/aliases.rds deleted file mode 100644 index d4695054f9183d8afa18cb8149bc7fc087dd571e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 314 zcmV-A0mc3wiwFP!000002JMnTPlGTNfGeBHP%&eN9lZD-jCkLW;ARF3dhkZxLT8#l zOG-)f&l?LVO&N1P!0Z6@eP8<?58lTWLdZfRd0C@oIhD72G)A_3UIO7^q5^vf6`?D- zX9`SO5br7#U;B`g9S1=eRcLCU^kun-6n9O|N<j)GW<JLtaI538(UnfsniVZ;QTdz* zoyy=Fmf^gAAgO6T(cLo$Smc5PUxGu)^1<8L0q2YxH5?7n*Dz4<wg(@ETcfulTa%5Z z&Nj$^<lkvrXQcaLZkaP7i8yR$A{#N|Sr?~1E+E3>6Du<xnlO1>pR(Rb`_x%STO*+f zy<<=xzj^0Ct3BHShwg{ZO*Ux7?OCJfq453^vN#%BQe1R1O`*V5Gau(cKM(r<8g%sY M3+}Mk6wd_!0Qb&|d;kCd diff --git a/help/paths.rds b/help/paths.rds deleted file mode 100644 index ed7b113c90e5bacda0c830671b0f9252e03fe4d1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 352 zcmV-m0iXUKiwFP!000002Cdc4PJ=KQ0Ptq>q9@<LHvnUXCQCE|B5rd)(1SPfO*&Ik zT2e})Z!g0spu5oaP-qDG<@-l@IY9_b(6m{TX|qMA%{oIz=(xGx_;dRXBxH~L6{wvE z{*Gm30})~Rea+6TD{HoYQUJ3(s0drIEw|EquUsoC@uupK+wq7Glxze@!dd48T2A)h zxlxDR>tVc<r0BFzK@%7xZq2ydnU!9qEw^B0Eh}FTsh4RFTk{-K1EHlg`<G`t9^1X{ zQb~djDWK%^P;V7xKM;b8Vck3pC0m6-C;6Jvg`uFLCsRSC>prCrR1)Ms=w}w!IbmAo zO*2=2MpWTr{6R7w7Z73chC6O$f(z5x(m3guCoh*;ZT%&O`RYlIF{z)OJ6?Jgz^W}z yKtQ2Y`95@L<P?tV0XeL`zUCO!`dyfh*V>&{JSF9_IeBFN_x1%JZ6zs92><|Ov7-L~ diff --git a/html/00Index.html b/html/00Index.html deleted file mode 100644 index b1aa97bd..00000000 --- a/html/00Index.html +++ /dev/null @@ -1,87 +0,0 @@ -<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> -<html><head><title>R: Modelling tools used at Irstea-HBAN (France), including GR4J, -GR5J, GR6J and CemaNeige</title> -<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> -<link rel="stylesheet" type="text/css" href="R.css"> -</head><body> -<h1> Modelling tools used at Irstea-HBAN (France), including GR4J, -GR5J, GR6J and CemaNeige -<img class="toplogo" src="../../../doc/html/logo.jpg" alt="[R logo]"> -</h1> -<hr> -<div align="center"> -<a href="../../../doc/html/packages.html"><img src="../../../doc/html/left.jpg" alt="[Up]" width="30" height="30" border="0"></a> -<a href="../../../doc/html/index.html"><img src="../../../doc/html/up.jpg" alt="[Top]" width="30" height="30" border="0"></a> -</div><h2>Documentation for package ‘airGR’ version 0.7.4</h2> - -<ul><li><a href="../DESCRIPTION">DESCRIPTION file</a>.</li> -</ul> - -<h2>Help Pages</h2> - - -<table width="100%"> -<tr><td width="25%"><a href="airGR.html">airGR</a></td> -<td>Modelling tools used at Irstea-HBAN (France), including GR4J, GR5J, GR6J and CemaNeige</td></tr> -<tr><td width="25%"><a href="BasinInfo.html">BasinInfo</a></td> -<td>Data sample: characteristics of a fictional catchment (L0123001, L0123002 or L0123003)</td></tr> -<tr><td width="25%"><a href="BasinObs.html">BasinObs</a></td> -<td>Data sample: time series of observations of a fictional catchment (L0123001, L0123002 or L0123003)</td></tr> -<tr><td width="25%"><a href="Calibration.html">Calibration</a></td> -<td>Calibration algorithm which minimises an error criterion on the model outputs using the provided functions</td></tr> -<tr><td width="25%"><a href="Calibration_HBAN.html">Calibration_HBAN</a></td> -<td>Calibration algorithm which minimises the error criterion using the Irstea-HBAN procedure</td></tr> -<tr><td width="25%"><a href="Calibration_optim.html">Calibration_optim</a></td> -<td>Calibration algorithm which minimises the error criterion using the stats::optim function</td></tr> -<tr><td width="25%"><a href="CreateCalibOptions.html">CreateCalibOptions</a></td> -<td>Creation of the CalibOptions object required to the Calibration functions</td></tr> -<tr><td width="25%"><a href="CreateInputsCrit.html">CreateInputsCrit</a></td> -<td>Creation of the InputsCrit object required to the ErrorCrit functions</td></tr> -<tr><td width="25%"><a href="CreateInputsModel.html">CreateInputsModel</a></td> -<td>Creation of the InputsModel object required to the RunModel functions</td></tr> -<tr><td width="25%"><a href="CreateRunOptions.html">CreateRunOptions</a></td> -<td>Creation of the RunOptions object required to the RunModel functions</td></tr> -<tr><td width="25%"><a href="DataAltiExtrapolation_HBAN.html">DataAltiExtrapolation_HBAN</a></td> -<td>Altitudinal extrapolation of precipitation and temperature series</td></tr> -<tr><td width="25%"><a href="ErrorCrit.html">ErrorCrit</a></td> -<td>Error criterion using the provided function</td></tr> -<tr><td width="25%"><a href="ErrorCrit_KGE.html">ErrorCrit_KGE</a></td> -<td>Error criterion based on the KGE formula</td></tr> -<tr><td width="25%"><a href="ErrorCrit_KGE2.html">ErrorCrit_KGE2</a></td> -<td>Error criterion based on the KGE' formula</td></tr> -<tr><td width="25%"><a href="ErrorCrit_NSE.html">ErrorCrit_NSE</a></td> -<td>Error criterion based on the NSE formula</td></tr> -<tr><td width="25%"><a href="ErrorCrit_RMSE.html">ErrorCrit_RMSE</a></td> -<td>Error criterion based on the RMSE</td></tr> -<tr><td width="25%"><a href="PEdaily_Oudin.html">PEdaily_Oudin</a></td> -<td>Computation of daily series of potential evapotranspiration with Oudin's formula</td></tr> -<tr><td width="25%"><a href="plot_OutputsModel.html">plot_OutputsModel</a></td> -<td>Default preview of model outputs</td></tr> -<tr><td width="25%"><a href="RunModel.html">RunModel</a></td> -<td>Run with the provided hydrological model function</td></tr> -<tr><td width="25%"><a href="RunModel_CemaNeige.html">RunModel_CemaNeige</a></td> -<td>Run with the CemaNeige snow module</td></tr> -<tr><td width="25%"><a href="RunModel_CemaNeigeGR4J.html">RunModel_CemaNeigeGR4J</a></td> -<td>Run with the CemaNeigeGR4J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_CemaNeigeGR5J.html">RunModel_CemaNeigeGR5J</a></td> -<td>Run with the CemaNeigeGR5J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_CemaNeigeGR6J.html">RunModel_CemaNeigeGR6J</a></td> -<td>Run with the CemaNeigeGR6J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR4J.html">RunModel_GR4J</a></td> -<td>Run with the GR4J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR5J.html">RunModel_GR5J</a></td> -<td>Run with the GR5J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR6J.html">RunModel_GR6J</a></td> -<td>Run with the GR6J hydrological model</td></tr> -<tr><td width="25%"><a href="TransfoParam.html">TransfoParam</a></td> -<td>Transformation of the parameters using the provided function</td></tr> -<tr><td width="25%"><a href="TransfoParam_CemaNeige.html">TransfoParam_CemaNeige</a></td> -<td>Transformation of the parameters from the CemaNeige module</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR4J.html">TransfoParam_GR4J</a></td> -<td>Transformation of the parameters from the GR4J model</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR5J.html">TransfoParam_GR5J</a></td> -<td>Transformation of the parameters from the GR5J model</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR6J.html">TransfoParam_GR6J</a></td> -<td>Transformation of the parameters from the GR6J model</td></tr> -</table> -</body></html> diff --git a/html/R.css b/html/R.css deleted file mode 100644 index 6f058f3d..00000000 --- a/html/R.css +++ /dev/null @@ -1,57 +0,0 @@ -BODY{ background: white; - color: black } - -A:link{ background: white; - color: blue } -A:visited{ background: white; - color: rgb(50%, 0%, 50%) } - -H1{ background: white; - color: rgb(55%, 55%, 55%); - font-family: monospace; - font-size: x-large; - text-align: center } - -H2{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-size: large; - text-align: center } - -H3{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-size: large } - -H4{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-style: italic; - font-size: large } - -H5{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace } - -H6{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-style: italic } - -IMG.toplogo{ vertical-align: middle } - -IMG.arrow{ width: 30px; - height: 30px; - border: 0 } - -span.acronym{font-size: small} -span.env{font-family: monospace} -span.file{font-family: monospace} -span.option{font-family: monospace} -span.pkg{font-weight: bold} -span.samp{font-family: monospace} - -div.vignettes a:hover { - background: rgb(85%, 85%, 85%); -} - diff --git a/man/BasinInfo.Rd b/man/BasinInfo.Rd new file mode 100644 index 00000000..918ae1dc --- /dev/null +++ b/man/BasinInfo.Rd @@ -0,0 +1,21 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\docType{data} +\encoding{UTF-8} +\name{BasinInfo} +\alias{BasinInfo} +\title{Data sample: characteristics of a fictional catchment (L0123001, L0123002 or L0123003)} +\format{List named 'BasinInfo' containing +\itemize{ +\item two strings: catchment's code and station's name +\item one float: catchment's area in km2 +\item one numeric vector: catchment's hypsometric curve (min, quantiles 01 to 99 and max) in metres +}} +\description{ +R-object containing the code, station's name, area and hypsometric curve of the catchment. +} +\examples{ +require(airGR) + data(L0123001) + str(BasinInfo) +} + diff --git a/man/BasinObs.Rd b/man/BasinObs.Rd new file mode 100644 index 00000000..57b3de56 --- /dev/null +++ b/man/BasinObs.Rd @@ -0,0 +1,22 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\docType{data} +\encoding{UTF-8} +\name{BasinObs} +\alias{BasinObs} +\title{Data sample: time series of observations of a fictional catchment (L0123001, L0123002 or L0123003)} +\format{Data frame named 'BasinObs' containing +\itemize{ +\item one POSIXlt vector: time series dates in the POSIXlt format +\item five numeric vectors: time series of catchment average precipitation [mm], catchment average air temperature [degC], catchment average potential evapotranspiration [mm], outlet discharge [l/s], outlet discharge [mm] +}} +\description{ +R-object containing the times series of precipitation, temperature, potential evapotranspiration and discharges. \cr +Times series for L0123001 or L0123002 are at the daily time-step for use with daily models such as GR4J, GR5J, GR6J, CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J. +Times series for L0123003 are at the hourly time-step for use with hourly models such as GR4H. +} +\examples{ +require(airGR) + data(L0123001) + str(BasinObs) +} + diff --git a/man/Calibration.Rd b/man/Calibration.Rd new file mode 100644 index 00000000..2df07d6d --- /dev/null +++ b/man/Calibration.Rd @@ -0,0 +1,94 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{Calibration} +\alias{Calibration} +\title{Calibration algorithm which minimises an error criterion on the model outputs using the provided functions} +\usage{ +Calibration(InputsModel, RunOptions, InputsCrit, CalibOptions, FUN_MOD, + FUN_CRIT, FUN_CALIB = Calibration_HBAN, FUN_TRANSFO = NULL, + quiet = FALSE) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{CalibOptions}{[object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details} + +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{FUN_CALIB}{(optional) [function] calibration algorithm function (e.g. Calibration_HBAN, Calibration_optim), default=Calibration_HBAN} + +\item{FUN_TRANSFO}{(optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] see \code{\link{Calibration_HBAN}} or \code{\link{Calibration_optim}} +} +\description{ +Calibration algorithm which minimises the error criterion using the provided functions. \cr +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration(InputsModel=InputsModel,RunOptions=RunOptions,InputsCrit=InputsCrit, + CalibOptions=CalibOptions,FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE, + FUN_CALIB=Calibration_HBAN) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param,FUN=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{Calibration_HBAN}}, \code{\link{Calibration_optim}}, + \code{\link{RunModel}}, \code{\link{ErrorCrit}}, \code{\link{TransfoParam}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, + \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +} + diff --git a/man/Calibration_HBAN.Rd b/man/Calibration_HBAN.Rd new file mode 100644 index 00000000..de3650a0 --- /dev/null +++ b/man/Calibration_HBAN.Rd @@ -0,0 +1,127 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{Calibration_HBAN} +\alias{Calibration_HBAN} +\title{Calibration algorithm which minimises the error criterion using the Irstea-HBAN procedure} +\usage{ +Calibration_HBAN(InputsModel, RunOptions, InputsCrit, CalibOptions, FUN_MOD, + FUN_CRIT, FUN_TRANSFO = NULL, quiet = FALSE) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{CalibOptions}{[object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details} + +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{FUN_TRANSFO}{(optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$ParamFinalR } \tab [numeric] parameter set obtained at the end of the calibration \cr + \emph{$CritFinal } \tab [numeric] error criterion obtained at the end of the calibration \cr + \emph{$NIter } \tab [numeric] number of iterations during the calibration \cr + \emph{$NRuns } \tab [numeric] number of model runs done during the calibration \cr + \emph{$HistParamR } \tab [numeric] table showing the progression steps in the search for optimal set: parameter values \cr + \emph{$HistCrit } \tab [numeric] table showing the progression steps in the search for optimal set: criterion values \cr + \emph{$MatBoolCrit } \tab [boolean] table giving the requested and actual time steps when the model is calibrated \cr + \emph{$CritName } \tab [character] name of the calibration criterion \cr + \emph{$CritBestValue} \tab [numeric] theoretical best criterion value \cr + } +} +\description{ +Calibration algorithm which minimises the error criterion. \cr +\cr +The algorithm is based on a local search procedure. +First, a screening is performed using either a rough predefined grid or a list of parameter sets +and then a simple steepest descent local search algorithm is performed. +} +\details{ +A screening is first performed either from a rough predefined grid (considering various initial +values for each paramete) or from a list of initial parameter sets. \cr +The best set identified in this screening is then used as a starting point for the steepest +descent local search algorithm. \cr +For this search, the parameters are used in a transformed version, to obtain uniform +variation ranges (and thus a similar pace), while the true ranges might be quite different. \cr +At each iteration, we start from a parameter set of NParam values (NParam being the number of +free parameters of the chosen hydrological model) and we determine the 2*NParam-1 new candidates +by changing one by one the different parameters (+/- pace). \cr +All these candidates are tested and the best one kept to be the starting point for the next +iteration. At the end of each iteration, the pace is either increased or decreased to adapt +the progression speed. A diagonal progress can occasionally be done. \cr +The calibration algorithm stops when the pace becomes too small. \cr + +To optimise the exploration of the parameter space, transformation functions are used to convert +the model parameters. This is done using the TransfoParam functions. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration_HBAN(InputsModel=InputsModel,RunOptions=RunOptions, + InputsCrit=InputsCrit,CalibOptions=CalibOptions, + FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (August 2013) +} +\references{ +Michel, C. (1991), + Hydrologie appliquée aux petits bassins ruraux, Hydrology handout (in French), Cemagref, Antony, France. +} +\seealso{ +\code{\link{Calibration}}, \code{\link{Calibration_optim}}, + \code{\link{RunModel_GR4J}}, \code{\link{TransfoParam_GR4J}}, \code{\link{ErrorCrit_RMSE}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, + \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +} + diff --git a/man/Calibration_optim.Rd b/man/Calibration_optim.Rd new file mode 100644 index 00000000..a32d0063 --- /dev/null +++ b/man/Calibration_optim.Rd @@ -0,0 +1,103 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{Calibration_optim} +\alias{Calibration_optim} +\title{Calibration algorithm which minimises the error criterion using the stats::optim function} +\usage{ +Calibration_optim(InputsModel, RunOptions, InputsCrit, CalibOptions, FUN_MOD, + FUN_CRIT, FUN_TRANSFO = NULL, quiet = FALSE) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{CalibOptions}{[object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details} + +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{FUN_TRANSFO}{(optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$ParamFinalR } \tab [numeric] parameter set obtained at the end of the calibration \cr + \emph{$CritFinal } \tab [numeric] error criterion obtained at the end of the calibration \cr + \emph{$Nruns } \tab [numeric] number of model runs done during the calibration \cr + \emph{$CritName } \tab [character] name of the calibration criterion \cr + \emph{$CritBestValue} \tab [numeric] theoretical best criterion value \cr + } +} +\description{ +Calibration algorithm which minimises the error criterion. \cr +\cr +The algorithm is based on the "optim" function from the "stats" R-package +(using method="L-BFGS-B", i.e. a local optimization quasi-Newton method). +} +\details{ +To optimise the exploration of the parameter space, transformation functions are used to convert +the model parameters. This is done using the TransfoParam functions. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_optim) + +## calibration +OutputsCalib <- Calibration_optim(InputsModel=InputsModel,RunOptions=RunOptions, + InputsCrit=InputsCrit,CalibOptions=CalibOptions, + FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +} +\author{ +Laurent Coron (August 2013) +} +\seealso{ +\code{\link{Calibration}}, \code{\link{Calibration_HBAN}}, + \code{\link{RunModel_GR4J}}, \code{\link{TransfoParam_GR4J}}, \code{\link{ErrorCrit_RMSE}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, + \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +} + diff --git a/man/CreateCalibOptions.Rd b/man/CreateCalibOptions.Rd new file mode 100644 index 00000000..4efc8cb5 --- /dev/null +++ b/man/CreateCalibOptions.Rd @@ -0,0 +1,128 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{CreateCalibOptions} +\alias{CreateCalibOptions} +\title{Creation of the CalibOptions object required to the Calibration functions} +\usage{ +CreateCalibOptions(FUN_MOD, FUN_CALIB = Calibration_HBAN, + FUN_TRANSFO = NULL, RunOptions = NULL, OptimParam = NULL, + FixedParam = NULL, SearchRanges = NULL, StartParam = NULL, + StartParamList = NULL, StartParamDistrib = NULL) +} +\arguments{ +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{FUN_CALIB}{(optional) [function] calibration algorithm function (e.g. Calibration_HBAN, Calibration_optim), default=Calibration_HBAN} + +\item{FUN_TRANSFO}{(optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined} + +\item{RunOptions}{(optional) [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{OptimParam}{(optional) [boolean] vector of booleans indicating which parameters must be optimised (NParam columns, 1 line)} + +\item{FixedParam}{(optional) [numeric] vector giving the values to allocate to non-optimised parameter values (NParam columns, 1 line)} + +\item{SearchRanges}{(optional) [numeric] matrix giving the ranges of real parameters (NParam columns, 2 lines) +\tabular{llllll}{ + \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr + [1,] \tab 0 \tab -1 \tab 0 \tab ... \tab 0.0 \cr + [2,] \tab 3000 \tab +1 \tab 100 \tab ... \tab 3.0 \cr +}} + +\item{StartParam}{(optional) [numeric] vector of parameter values used to start global search calibration procedure (e.g. Calibration_optim) +\tabular{llllll}{ + \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr + \tab 1000 \tab -0.5 \tab 22 \tab ... \tab 1.1 \cr +}} + +\item{StartParamList}{(optional) [numeric] matrix of parameter sets used for grid-screening calibration procedure (values in columns, sets in line) +\tabular{llllll}{ + \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr + [set1] \tab 800 \tab -0.7 \tab 25 \tab ... \tab 1.0 \cr + [set2] \tab 1000 \tab -0.5 \tab 22 \tab ... \tab 1.1 \cr + [...] \tab ... \tab ... \tab ... \tab ... \tab ... \cr + [set n] \tab 200 \tab -0.3 \tab 17 \tab ... \tab 1.0 \cr +}} + +\item{StartParamDistrib}{(optional) [numeric] matrix of parameter values used for grid-screening calibration procedure (values in columns, percentiles in line) \cr +\tabular{llllll}{ + \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr + [value1] \tab 800 \tab -0.7 \tab 25 \tab ... \tab 1.0 \cr + [value2] \tab 1000 \tab NA \tab 50 \tab ... \tab 1.2 \cr + [value3] \tab 1200 \tab NA \tab NA \tab ... \tab 1.6 \cr +}} +} +\value{ +[list] object of class \emph{CalibOptions} containing the data required to evaluate the model outputs; it can include the following: + \tabular{ll}{ + \emph{$OptimParam } \tab [boolean] vector of booleans indicating which parameters must be optimised \cr + \emph{$FixedParam } \tab [numeric] vector giving the values to allocate to non-optimised parameter values \cr + \emph{$SearchRanges } \tab [numeric] matrix giving the ranges of real parameters \cr + \emph{$StartParam } \tab [numeric] vector of parameter values used to start global search calibration procedure \cr + \emph{$StartParamList } \tab [numeric] matrix of parameter sets used for grid-screening calibration procedure \cr + \emph{$StartParamDistrib} \tab [numeric] matrix of parameter values used for grid-screening calibration procedure \cr + } +} +\description{ +Creation of the CalibOptions object required to the Calibration functions. +} +\details{ +Users wanting to use FUN_MOD, FUN_CALIB or FUN_TRANSFO functions that are not included in +the package must create their own CalibOptions object accordingly. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration(InputsModel=InputsModel,RunOptions=RunOptions,InputsCrit=InputsCrit, + CalibOptions=CalibOptions,FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE, + FUN_CALIB=Calibration_HBAN) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param,FUN=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}} +} + diff --git a/man/CreateInputsCrit.Rd b/man/CreateInputsCrit.Rd new file mode 100644 index 00000000..413c4455 --- /dev/null +++ b/man/CreateInputsCrit.Rd @@ -0,0 +1,112 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{CreateInputsCrit} +\alias{CreateInputsCrit} +\title{Creation of the InputsCrit object required to the ErrorCrit functions} +\usage{ +CreateInputsCrit(FUN_CRIT, InputsModel, RunOptions, Qobs, BoolCrit = NULL, + transfo = "", Ind_zeroes = NULL, epsilon = NULL) +} +\arguments{ +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Qobs}{[numeric] series of observed discharges [mm]} + +\item{BoolCrit}{(optional) [boolean] boolean giving the time steps to consider in the computation (all time steps are consider by default)} + +\item{transfo}{(optional) [character] name of the transformation (e.g. "", "sqrt", "log", "inv", "sort")} + +\item{Ind_zeroes}{(optional) [numeric] indices of the time-steps where zeroes are observed} + +\item{epsilon}{(optional) [numeric] epsilon to add to all Qobs and Qsim if \emph{$Ind_zeroes} is not empty} +} +\value{ +[list] object of class \emph{InputsCrit} containing the data required to evaluate the model outputs; it can include the following: + \tabular{ll}{ + \emph{$BoolCrit } \tab [boolean] boolean giving the time steps to consider in the computation \cr + \emph{$Qobs } \tab [numeric] series of observed discharges [mm] \cr + \emph{$transfo } \tab [character] name of the transformation (e.g. "", "sqrt", "log", "inv", "sort") \cr + \emph{$Ind_zeroes} \tab [numeric] indices of the time-steps where zeroes are observed \cr + \emph{$epsilon } \tab [numeric] epsilon to add to all Qobs and Qsim if \emph{$Ind_zeroes} is not empty \cr + } +} +\description{ +Creation of the InputsCrit object required to the ErrorCrit functions. +} +\details{ +Users wanting to use FUN_CRIT functions that are not included in +the package must create their own InputsCrit object accordingly. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param,FUN=RunModel_GR4J) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency on log-transformed flows +transfo <- "log" +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],transfo=transfo) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency above a threshold (q75\%) +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]<quantile(BasinObs$Qmm[Ind_Run],0.75,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency below a threshold (q10\%) on log-trqansformed flows +transfo <- "log" +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]>quantile(BasinObs$Qmm[Ind_Run],0.10,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel,RunOptions=RunOptions, + Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit,transfo=transfo) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\\n",sep="")) + + + + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateCalibOptions}} +} + diff --git a/man/CreateInputsModel.Rd b/man/CreateInputsModel.Rd new file mode 100644 index 00000000..3a2695d8 --- /dev/null +++ b/man/CreateInputsModel.Rd @@ -0,0 +1,89 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{CreateInputsModel} +\alias{CreateInputsModel} +\title{Creation of the InputsModel object required to the RunModel functions} +\usage{ +CreateInputsModel(FUN_MOD, DatesR, Precip, PotEvap = NULL, TempMean = NULL, + TempMin = NULL, TempMax = NULL, ZInputs = NULL, HypsoData = NULL, + NLayers = 5, quiet = FALSE) +} +\arguments{ +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{DatesR}{[POSIXlt] vector of dates required to create the GR model and CemaNeige module inputs} + +\item{Precip}{[numeric] time series of daily total precipitation (catchment average) [mm], required to create the GR model and CemaNeige module inputs} + +\item{PotEvap}{[numeric] time series of daily potential evapotranspiration (catchment average) [mm], required to create the GR model inputs} + +\item{TempMean}{[numeric] time series of daily mean air temperature [degC], required to create the CemaNeige module inputs} + +\item{TempMin}{(optional) [numeric] time series of daily min air temperature [degC], possibly used to create the CemaNeige module inputs} + +\item{TempMax}{(optional) [numeric] time series of daily max air temperature [degC], possibly used to create the CemaNeige module inputs} + +\item{ZInputs}{(optional) [numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m]} + +\item{HypsoData}{(optional) [numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m], required to create the GR model inputs, if not defined a single elevation is used for CemaNeige} + +\item{NLayers}{(optional) [numeric] integer giving the number of elevation layers requested [-], required to create the GR model inputs, default=5} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] object of class \emph{InputsModel} containing the data required to evaluate the model outputs; it can include the following: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] vector of dates \cr + \emph{$Precip } \tab [numeric] time series of daily total precipitation (catchment average) [mm] \cr + \emph{$PotEvap } \tab [numeric] time series of daily potential evapotranspiration (catchment average) [mm], \cr\tab defined if FUN_MOD includes GR4J, GR5J or GR6J \cr \cr + \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr + \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [degC], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr + \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr + } +} +\description{ +Creation of the InputsModel object required to the RunModel functions. +} +\details{ +Users wanting to use FUN_MOD functions that are not included in +the package must create their own InputsModel object accordingly. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}, \code{\link{DataAltiExtrapolation_HBAN}} +} + diff --git a/man/CreateRunOptions.Rd b/man/CreateRunOptions.Rd new file mode 100644 index 00000000..e4dd9216 --- /dev/null +++ b/man/CreateRunOptions.Rd @@ -0,0 +1,121 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{CreateRunOptions} +\alias{CreateRunOptions} +\title{Creation of the RunOptions object required to the RunModel functions} +\usage{ +CreateRunOptions(FUN_MOD, InputsModel, IndPeriod_WarmUp = NULL, IndPeriod_Run, + IniStates = NULL, IniResLevels = NULL, Outputs_Cal = NULL, + Outputs_Sim = "all", RunSnowModule = TRUE, MeanAnSolidPrecip = NULL, + quiet = FALSE) +} +\arguments{ +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{IndPeriod_WarmUp}{(optional) [numeric] index of period to be used for the model warm-up [-]} + +\item{IndPeriod_Run}{[numeric] index of period to be used for the model run [-]} + +\item{IniStates}{(optional) [numeric] vector of initial model states [mm]} + +\item{IniResLevels}{(optional) [numeric] vector of initial filling rates for production and routing stores (2 values between 0 and 1) [-]} + +\item{Outputs_Cal}{(optional) [character] vector giving the outputs needed for the calibration \cr (e.g. c("Qsim")), the least outputs the fastest the calibration} + +\item{Outputs_Sim}{(optional) [character] vector giving the requested outputs \cr (e.g. c("DatesR","Qsim","SnowPack")), default="all"} + +\item{RunSnowModule}{(optional) [boolean] option indicating whether CemaNeige should be activated, default=TRUE} + +\item{MeanAnSolidPrecip}{(optional) [numeric] vector giving the annual mean of average solid precipitation for each layer (computed from InputsModel if not defined) [mm/y]} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] object of class \emph{RunOptions} containing the data required to evaluate the model outputs; it can include the following: + \tabular{ll}{ + \emph{IndPeriod_WarmUp } \tab [numeric] index of period to be used for the model warm-up [-] \cr + \emph{IndPeriod_Run } \tab [numeric] index of period to be used for the model run [-] \cr + \emph{IniStates } \tab [numeric] vector of initial model states [mm] \cr + \emph{IniResLevels } \tab [numeric] vector of initial filling rates for production and routing stores [-] \cr + \emph{Outputs_Cal } \tab [character] character vector giving only the outputs needed for the calibration \cr + \emph{Outputs_Sim } \tab [character] character vector giving the requested outputs \cr + \emph{RunSnowModule } \tab [boolean] option indicating whether CemaNeige should be activated \cr + \emph{MeanAnSolidPrecip} \tab [numeric] vector giving the annual mean of average solid precipitation for each layer [mm/y] \cr + } +} +\description{ +Creation of the RunOptions object required to the RunModel functions. +} +\details{ +Users wanting to use FUN_MOD functions that are not included in +the package must create their own RunOptions object accordingly. + +##### Initialisation options ##### + +The model initialisation options can either be set to a default configuration or be defined by the user. + +This is done via three vectors: \cr \emph{IndPeriod_WarmUp}, \emph{IniStates}, \emph{IniResLevels}. \cr +A default configuration is used for initialisation if these vectors are not defined. + +(1) Default initialisation options: + +\itemize{ +\item \emph{IndPeriod_WarmUp} default setting ensures a one-year warm-up using the time-steps preceding the \emph{IndPeriod_Run}. +The actual length of this warm-up might be shorter depending on data availability (no missing value being allowed on model input series). + +\item \emph{IniStates} and \emph{IniResLevels} are automatically set to initialise all the model states at 0, except for the production and routing stores which are initialised at 50\% of their capacity. This initialisation is made at the very beginning of the model call (i.e. at the beginning of \emph{IndPeriod_WarmUp} or at the beginning of IndPeriod_Run if the warm-up period is disabled). +} + +(2) Customisation of initialisation options: + +\itemize{ +\item \emph{IndPeriod_WarmUp} can be used to specify the indices of the warm-up period (within the time-series prepared in InputsModel). \cr +- remark 1: for most common cases, indices corresponding to one or several years preceding \emph{IndPeriod_Run} are used (e.g. \emph{IndPeriod_WarmUp <- 1000:1365} and \emph{IndPeriod_Run <- 1366:5000)}. \cr +However, it is also possible to perform a long-term initialisation if other indices than the warm-up ones are set in \emph{IndPeriod_WarmUp} (e.g. \emph{IndPeriod_WarmUp <- c( 1:5000 , 1:5000 , 1:5000 ,1000:1365 )}). \cr +- remark 2: it is also possible to completely disable the warm-up period when using \emph{IndPeriod_WarmUp <- 0}. + +\item \emph{IniStates} and \emph{IniResLevels} can be used to specify the initial model states. \cr +- remark 1: if \emph{IniStates} is used, all model states must be provided (e.g. 60 floats [mm] are required for GR4J, GR5J and GR6J; 60+2*NLayers floats [mm] are required for CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J; see fortran source code for details). \cr +- remark 2: in addition to \emph{IniStates}, \emph{IniResLevels} allows to set the filling rate of the production and routing stores for the GR models. For instance for GR4J, GR5J and GR6J: \emph{IniResLevels <- c(0.3,0.5)} should be used to obtain initial fillings of 30\% and 50\% for the production and routing stores, respectively. \emph{IniResLevels} is optional and can only be used if \emph{IniStates} is also defined (the state values corresponding to these two stores in \emph{IniStates} are not used in such case). \cr \cr +} +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}} +} + diff --git a/man/DataAltiExtrapolation_HBAN.Rd b/man/DataAltiExtrapolation_HBAN.Rd new file mode 100644 index 00000000..25a862f9 --- /dev/null +++ b/man/DataAltiExtrapolation_HBAN.Rd @@ -0,0 +1,64 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{DataAltiExtrapolation_HBAN} +\alias{DataAltiExtrapolation_HBAN} +\title{Altitudinal extrapolation of precipitation and temperature series} +\usage{ +DataAltiExtrapolation_HBAN(DatesR, Precip, TempMean, TempMin = NULL, + TempMax = NULL, ZInputs, HypsoData, NLayers, quiet = FALSE) +} +\arguments{ +\item{DatesR}{[POSIXlt] vector of dates} + +\item{Precip}{[numeric] time series of daily total precipitation (catchment average) [mm]} + +\item{TempMean}{[numeric] time series of daily mean air temperature [degC]} + +\item{TempMin}{(optional) [numeric] time series of daily min air temperature [degC]} + +\item{TempMax}{(optional) [numeric] time series of daily max air temperature [degC]} + +\item{ZInputs}{[numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m]} + +\item{HypsoData}{[numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m]} + +\item{NLayers}{[numeric] integer giving the number of elevation layers requested [-]} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +list containing the extrapolated series of precip. and air temp. on each elevation layer + \tabular{ll}{ + \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm] \cr + \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [degC] \cr + \emph{$LayerTempMin } \tab [list] list of time series of daily min air temperature (layer average) [degC] \cr + \emph{$LayerTempMax } \tab [list] list of time series of daily max air temperature (layer average) [degC] \cr + \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-] \cr + \emph{$ZLayers } \tab [numeric] vector of median elevation for each layer \cr + } +} +\description{ +Function which extrapolates the precipitation and air temperature series for different elevation layers (method from Valery, 2010). +} +\details{ +Elevation layers of equal surface are created the 101 elevation quantiles (\emph{HypsoData}) +and the number requested elevation layers (\emph{NLayers}). \cr +Forcing data (precipitation and air temperature) are extrapolated using gradients from Valery (2010). +(e.g. gradP=0.0004 [m-1] for France and gradT=0.434 [degreC/100m] for January, 1st). \cr +This function is used by the \emph{CreateInputsModel} function. \cr +} +\author{ +Laurent Coron, Pierre Brigode (June 2014) +} +\references{ +Turcotte, R., L.-G. Fortin, V. Fortin, J.-P. Fortin and J.-P. Villeneuve (2007), + Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent + in southern Quebec, Canada, Nordic Hydrology, 38(3), 211, doi:10.2166/nh.2007.009. \cr + Valéry, A. (2010), Modélisation précipitations-débit sous influence nivale ? : Elaboration d'un module neige + et évaluation sur 380 bassins versants, PhD thesis (in french), AgroParisTech, Paris, France. \cr + USACE (1956), Snow Hydrology, pp. 437, U.S. Army Coprs of Engineers (USACE) North Pacific Division, Portland, Oregon, USA. +} +\seealso{ +\code{\link{CreateInputsModel}}, \code{\link{RunModel_CemaNeigeGR4J}} +} + diff --git a/man/ErrorCrit.Rd b/man/ErrorCrit.Rd new file mode 100644 index 00000000..18302692 --- /dev/null +++ b/man/ErrorCrit.Rd @@ -0,0 +1,92 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{ErrorCrit} +\alias{ErrorCrit} +\title{Error criterion using the provided function} +\usage{ +ErrorCrit(InputsCrit, OutputsModel, FUN_CRIT, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs, see \code{\link{ErrorCrit_RMSE}} or \code{\link{ErrorCrit_NSE}} for details +} +\description{ +Function which computes an error criterion with the provided function. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param,FUN=RunModel_GR4J) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency on log-transformed flows +transfo <- "log" +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],transfo=transfo) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency above a threshold (q75\%) +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]<quantile(BasinObs$Qmm[Ind_Run],0.75,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency below a threshold (q10\%) on log-trqansformed flows +transfo <- "log" +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]>quantile(BasinObs$Qmm[Ind_Run],0.10,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel,RunOptions=RunOptions, + Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit,transfo=transfo) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\\n",sep="")) + + + + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}} +} + diff --git a/man/ErrorCrit_KGE.Rd b/man/ErrorCrit_KGE.Rd new file mode 100644 index 00000000..5b71c61a --- /dev/null +++ b/man/ErrorCrit_KGE.Rd @@ -0,0 +1,50 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{ErrorCrit_KGE} +\alias{ErrorCrit_KGE} +\title{Error criterion based on the KGE formula} +\usage{ +ErrorCrit_KGE(InputsCrit, OutputsModel, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$CritValue } \tab [numeric] value of the criterion \cr + \emph{$CritName } \tab [character] name of the criterion \cr + \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr + \emph{$SubCritNames } \tab [character] names of the sub-criteria \cr + \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr + \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr + \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr + } +} +\description{ +Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009). +} +\details{ +In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +} +\examples{ +## see example of the ErrorCrit function +} +\author{ +Laurent Coron (June 2014) +} +\references{ +Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), + Decomposition of the mean squared error and NSE performance criteria: Implications + for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr +} +\seealso{ +\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}} +} + diff --git a/man/ErrorCrit_KGE2.Rd b/man/ErrorCrit_KGE2.Rd new file mode 100644 index 00000000..aa6e12ae --- /dev/null +++ b/man/ErrorCrit_KGE2.Rd @@ -0,0 +1,53 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{ErrorCrit_KGE2} +\alias{ErrorCrit_KGE2} +\title{Error criterion based on the KGE' formula} +\usage{ +ErrorCrit_KGE2(InputsCrit, OutputsModel, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$CritValue } \tab [numeric] value of the criterion \cr + \emph{$CritName } \tab [character] name of the criterion \cr + \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr + \emph{$SubCritNames } \tab [character] names of the sub-criteria \cr + \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr + \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr + \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr + } +} +\description{ +Function which computes an error criterion based on the KGE' formula proposed by Kling et al. (2012). +} +\details{ +In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +} +\examples{ +## see example of the ErrorCrit function +} +\author{ +Laurent Coron (June 2014) +} +\references{ +Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), + Decomposition of the mean squared error and NSE performance criteria: Implications + for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr + Kling, H., Fuchs, M. and Paulin, M. (2012), + Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, + Journal of Hydrology, 424-425, 264-277, doi:10.1016/j.jhydrol.2012.01.011. +} +\seealso{ +\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}} +} + diff --git a/man/ErrorCrit_NSE.Rd b/man/ErrorCrit_NSE.Rd new file mode 100644 index 00000000..112f39c3 --- /dev/null +++ b/man/ErrorCrit_NSE.Rd @@ -0,0 +1,48 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{ErrorCrit_NSE} +\alias{ErrorCrit_NSE} +\title{Error criterion based on the NSE formula} +\usage{ +ErrorCrit_NSE(InputsCrit, OutputsModel, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$CritValue } \tab [numeric] value of the criterion \cr + \emph{$CritName } \tab [character] name of the criterion \cr + \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr + \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr + \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr + } +} +\description{ +Function which computes an error criterion based on the NSE formula proposed by Nash & Sutcliffe (1970). +} +\details{ +In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +} +\examples{ +## see example of the ErrorCrit function +} +\author{ +Laurent Coron (June 2014) +} +\references{ +Nash, J.E. and Sutcliffe, J.V. (1970), + River flow forecasting through conceptual models part 1. + A discussion of principles, Journal of Hydrology, 10(3), 282-290, doi:10.1016/0022-1694(70)90255-6. \cr +} +\seealso{ +\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} +} + diff --git a/man/ErrorCrit_RMSE.Rd b/man/ErrorCrit_RMSE.Rd new file mode 100644 index 00000000..be78dafc --- /dev/null +++ b/man/ErrorCrit_RMSE.Rd @@ -0,0 +1,43 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{ErrorCrit_RMSE} +\alias{ErrorCrit_RMSE} +\title{Error criterion based on the RMSE} +\usage{ +ErrorCrit_RMSE(InputsCrit, OutputsModel, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$CritValue } \tab [numeric] value of the criterion \cr + \emph{$CritName } \tab [character] name of the criterion \cr + \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr + \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr + \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr + } +} +\description{ +Function which computes an error criterion based on the root mean square error (RMSE). +} +\details{ +In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +} +\examples{ +## see example of the ErrorCrit function +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} +} + diff --git a/man/PEdaily_Oudin.Rd b/man/PEdaily_Oudin.Rd new file mode 100644 index 00000000..c310f515 --- /dev/null +++ b/man/PEdaily_Oudin.Rd @@ -0,0 +1,36 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{PEdaily_Oudin} +\alias{PEdaily_Oudin} +\title{Computation of daily series of potential evapotranspiration with Oudin's formula} +\usage{ +PEdaily_Oudin(JD, Temp, LatRad) +} +\arguments{ +\item{JD}{[numeric] time series of julian day [-]} + +\item{Temp}{[numeric] time series of daily mean air temperature [degC]} + +\item{LatRad}{[numeric] latitude of measurement for the temperature series [rad]} +} +\value{ +[numeric] time series of daily potential evapotranspiration [mm/d] +} +\description{ +Function which computes daily PE using the formula from Oudin et al. (2005). +} +\examples{ +require(airGR) + data(L0123001) + PotEvap <- PEdaily_Oudin(JD=as.POSIXlt(BasinObs$DatesR)$yday,Temp=BasinObs$T,LatRad=0.8) +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil and C. Loumagne (2005), + Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-Towards a + simple and efficient potential evapotranspiration model for rainfall-runoff modelling, Journal of Hydrology, + 303(1-4), 290-306, doi:10.1016/j.jhydrol.2004.08.026. +} + diff --git a/man/RunModel.Rd b/man/RunModel.Rd new file mode 100644 index 00000000..cd7a4af6 --- /dev/null +++ b/man/RunModel.Rd @@ -0,0 +1,61 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{RunModel} +\alias{RunModel} +\title{Run with the provided hydrological model function} +\usage{ +RunModel(InputsModel, RunOptions, Param, FUN_MOD) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of model parameters} + +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} +} +\value{ +[list] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +} +\description{ +Function which performs a single model run with the provided function. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel_GR4J}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_CemaNeige.Rd b/man/RunModel_CemaNeige.Rd new file mode 100644 index 00000000..8191c8f6 --- /dev/null +++ b/man/RunModel_CemaNeige.Rd @@ -0,0 +1,84 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{RunModel_CemaNeige} +\alias{RunModel_CemaNeige} +\title{Run with the CemaNeige snow module} +\usage{ +RunModel_CemaNeige(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 2 parameters +\tabular{ll}{ +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: CemaNeige states [mm & degC] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single model run for RunModel_CemaNeige. +} +\details{ +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeige,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoCurve[51],HypsoData=BasinInfo$HypsoCurve, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeige,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(0.962,2.249) +OutputsModel <- RunModel_CemaNeige(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel) + +} +\author{ +Laurent Coron (January 2014) +} +\references{ +Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? + Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? + Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +} +\seealso{ +\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_CemaNeigeGR4J.Rd b/man/RunModel_CemaNeigeGR4J.Rd new file mode 100644 index 00000000..6ad6de2b --- /dev/null +++ b/man/RunModel_CemaNeigeGR4J.Rd @@ -0,0 +1,112 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{RunModel_CemaNeigeGR4J} +\alias{RunModel_CemaNeigeGR4J} +\title{Run with the CemaNeigeGR4J hydrological model} +\usage{ +RunModel_CemaNeigeGR4J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 6 parameters +\tabular{ll}{ +GR4J X1 \tab production store capacity [mm] \cr +GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr +GR4J X3 \tab routing store capacity [mm] \cr +GR4J X4 \tab unit hydrograph time constant [d] \cr +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single model run for RunModel_CemaNeigeGR4J. +} +\details{ +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoCurve[51],HypsoData=BasinInfo$HypsoCurve, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR4J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(408.774,2.646,131.264,1.174,0.962,2.249) +OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Perrin, C., C. Michel and V. Andréassian (2003), + Improvement of a parsimonious model for streamflow simulation, + Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? + Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? + Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +} +\seealso{ +\code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_CemaNeigeGR5J.Rd b/man/RunModel_CemaNeigeGR5J.Rd new file mode 100644 index 00000000..3048e77e --- /dev/null +++ b/man/RunModel_CemaNeigeGR5J.Rd @@ -0,0 +1,115 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{RunModel_CemaNeigeGR5J} +\alias{RunModel_CemaNeigeGR5J} +\title{Run with the CemaNeigeGR5J hydrological model} +\usage{ +RunModel_CemaNeigeGR5J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 7 parameters +\tabular{ll}{ +GR5J X1 \tab production store capacity [mm] \cr +GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +GR5J X3 \tab routing store capacity [mm] \cr +GR5J X4 \tab unit hydrograph time constant [d] \cr +GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single model run for RunModel_CemaNeigeGR5J. +} +\details{ +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR5J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoCurve[51],HypsoData=BasinInfo$HypsoCurve, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR5J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(179.139,-0.100,203.815,1.174,2.478,0.977,2.774) +OutputsModel <- RunModel_CemaNeigeGR5J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances + et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr + Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), + A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, + Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? + Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? + Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +} +\seealso{ +\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_CemaNeigeGR6J.Rd b/man/RunModel_CemaNeigeGR6J.Rd new file mode 100644 index 00000000..57dfe775 --- /dev/null +++ b/man/RunModel_CemaNeigeGR6J.Rd @@ -0,0 +1,83 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{RunModel_CemaNeigeGR6J} +\alias{RunModel_CemaNeigeGR6J} +\title{Run with the CemaNeigeGR6J hydrological model} +\usage{ +RunModel_CemaNeigeGR6J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 8 parameters +\tabular{ll}{ +GR6J X1 \tab production store capacity [mm] \cr +GR6J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +GR6J X3 \tab routing store capacity [mm] \cr +GR6J X4 \tab unit hydrograph time constant [d] \cr +GR6J X5 \tab intercatchment exchange coefficient 2 [-] \cr +GR6J X6 \tab coefficient for emptying exponential store [-] \cr +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr + \emph{$Exp } \tab [numeric] series of exponential store level (X(6)) (negative) [mm] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single model run for RunModel_CemaNeigeGR6J. +} +\details{ +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), + A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, + Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? + Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? + Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +} +\seealso{ +\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_GR6J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_GR4J.Rd b/man/RunModel_GR4J.Rd new file mode 100644 index 00000000..db4f1c4a --- /dev/null +++ b/man/RunModel_GR4J.Rd @@ -0,0 +1,92 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{RunModel_GR4J} +\alias{RunModel_GR4J} +\title{Run with the GR4J hydrological model} +\usage{ +RunModel_GR4J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 4 parameters +\tabular{ll}{ +GR4J X1 \tab production store capacity [mm] \cr +GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr +GR4J X3 \tab routing store capacity [mm] \cr +GR4J X4 \tab unit hydrograph time constant [d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single model run for GR4J. +} +\details{ +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Perrin, C., C. Michel and V. Andréassian (2003), + Improvement of a parsimonious model for streamflow simulation, + Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. +} +\seealso{ +\code{\link{RunModel_GR5J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR4J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_GR5J.Rd b/man/RunModel_GR5J.Rd new file mode 100644 index 00000000..4d7a911f --- /dev/null +++ b/man/RunModel_GR5J.Rd @@ -0,0 +1,95 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{RunModel_GR5J} +\alias{RunModel_GR5J} +\title{Run with the GR5J hydrological model} +\usage{ +RunModel_GR5J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 5 parameters +\tabular{ll}{ +GR5J X1 \tab production store capacity [mm] \cr +GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +GR5J X3 \tab routing store capacity [mm] \cr +GR5J X4 \tab unit hydrograph time constant [d] \cr +GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single model run for GR5J. +} +\details{ +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR5J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR5J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(839.661,-0.100,103.153,1.939,-0.428) +OutputsModel <- RunModel_GR5J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances + et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr + Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet, and V. Andréassian (2011), + A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, + Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +} +\seealso{ +\code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR5J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_GR6J.Rd b/man/RunModel_GR6J.Rd new file mode 100644 index 00000000..6d95ee89 --- /dev/null +++ b/man/RunModel_GR6J.Rd @@ -0,0 +1,96 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{RunModel_GR6J} +\alias{RunModel_GR6J} +\title{Run with the GR6J hydrological model} +\usage{ +RunModel_GR6J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 6 parameters +\tabular{ll}{ +GR6J X1 \tab production store capacity [mm] \cr +GR6J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +GR6J X3 \tab routing store capacity [mm] \cr +GR6J X4 \tab unit hydrograph time constant [d] \cr +GR6J X5 \tab intercatchment exchange coefficient 2 [-] \cr +GR6J X6 \tab coefficient for emptying exponential store [-] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr + \emph{$Exp } \tab [numeric] series of exponential store level (X(6)) (negative) [mm] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single model run for GR6J. +} +\details{ +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR6J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR6J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(347.000,-0.500,65.677,1.957,0.324,34.115) +OutputsModel <- RunModel_GR6J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), + A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, + Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +} +\seealso{ +\code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/TransfoParam.Rd b/man/TransfoParam.Rd new file mode 100644 index 00000000..a23d4b9c --- /dev/null +++ b/man/TransfoParam.Rd @@ -0,0 +1,45 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{TransfoParam} +\alias{TransfoParam} +\title{Transformation of the parameters using the provided function} +\usage{ +TransfoParam(ParamIn, Direction, FUN_TRANSFO) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} + +\item{FUN_TRANSFO}{[function] model parameters transformation function (e.g. TransfoParam_GR4J, TransfoParam_CemaNeigeGR4J)} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa) using the provided function. +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the GR4J model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam(ParamIn=Xreal,Direction="RT",FUN_TRANSFO=TransfoParam_GR4J) + +## transformation Transformed->Real for the GR4J model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam(ParamIn=Xtran,Direction="TR",FUN_TRANSFO=TransfoParam_GR4J) +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +} + diff --git a/man/TransfoParam_CemaNeige.Rd b/man/TransfoParam_CemaNeige.Rd new file mode 100644 index 00000000..0a34e224 --- /dev/null +++ b/man/TransfoParam_CemaNeige.Rd @@ -0,0 +1,43 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{TransfoParam_CemaNeige} +\alias{TransfoParam_CemaNeige} +\title{Transformation of the parameters from the CemaNeige module} +\usage{ +TransfoParam_CemaNeige(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the CemaNeige module + Xreal <- matrix( c( 0.19, 1.73, + 0.39, 2.51, + 0.74, 4.06), + ncol=2,byrow=TRUE) + Xtran <- TransfoParam_CemaNeige(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the CemaNeige module + Xtran <- matrix( c( -6.26, +0.55, + -2.13, +0.92, + +4.86, +1.40) + ,ncol=2,byrow=TRUE) + Xreal <- TransfoParam_CemaNeige(ParamIn=Xtran,Direction="TR") +} +\author{ +Laurent Coron (December 2013) +} +\seealso{ +\code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}} +} + diff --git a/man/TransfoParam_GR4J.Rd b/man/TransfoParam_GR4J.Rd new file mode 100644 index 00000000..bafd6e24 --- /dev/null +++ b/man/TransfoParam_GR4J.Rd @@ -0,0 +1,43 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{TransfoParam_GR4J} +\alias{TransfoParam_GR4J} +\title{Transformation of the parameters from the GR4J model} +\usage{ +TransfoParam_GR4J(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the GR4J model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam_GR4J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR4J model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam_GR4J(ParamIn=Xtran,Direction="TR") +} +\author{ +Laurent Coron (December 2013) +} +\seealso{ +\code{\link{TransfoParam}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +} + diff --git a/man/TransfoParam_GR5J.Rd b/man/TransfoParam_GR5J.Rd new file mode 100644 index 00000000..61a273dc --- /dev/null +++ b/man/TransfoParam_GR5J.Rd @@ -0,0 +1,43 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{TransfoParam_GR5J} +\alias{TransfoParam_GR5J} +\title{Transformation of the parameters from the GR5J model} +\usage{ +TransfoParam_GR5J(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the GR5J model + Xreal <- matrix( c( 221.41, -2.65, 27.11, 1.37, -0.76, + 347.23, -0.64, 60.34, 1.76, 0.30, + 854.01, -0.10, 148.41, 2.34, 0.52), + ncol=5,byrow=TRUE) + Xtran <- TransfoParam_GR5J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR5J model + Xtran <- matrix( c( +3.60, -1.70, +3.30, -9.10, -0.70, + +3.90, -0.60, +4.10, -8.70, +0.30, + +4.50, -0.10, +5.00, -8.10, +0.50), + ncol=5,byrow=TRUE) + Xreal <- TransfoParam_GR5J(ParamIn=Xtran,Direction="TR") +} +\author{ +Laurent Coron (December 2013) +} +\seealso{ +\code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +} + diff --git a/man/TransfoParam_GR6J.Rd b/man/TransfoParam_GR6J.Rd new file mode 100644 index 00000000..84faccba --- /dev/null +++ b/man/TransfoParam_GR6J.Rd @@ -0,0 +1,43 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{TransfoParam_GR6J} +\alias{TransfoParam_GR6J} +\title{Transformation of the parameters from the GR6J model} +\usage{ +TransfoParam_GR6J(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the GR6J model + Xreal <- matrix( c( 221.41, -1.18, 27.11, 1.37, -0.18, 20.09, + 347.23, -0.52, 60.34, 1.76, 0.02, 54.60, + 854.06, 0.52, 148.41, 2.34, 0.22, 148.41), + ncol=6,byrow=TRUE) + Xtran <- TransfoParam_GR6J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR6J model + Xtran <- matrix( c( +3.60, -1.00, +3.30, -9.10, -0.90, +3.00, + +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, + +4.50, +0.50, +5.00, -8.10, +1.10, +5.00), + ncol=6,byrow=TRUE) + Xreal <- TransfoParam_GR6J(ParamIn=Xtran,Direction="TR") +} +\author{ +Laurent Coron (December 2013) +} +\seealso{ +\code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_CemaNeige}} +} + diff --git a/man/airGR.Rd b/man/airGR.Rd new file mode 100644 index 00000000..25802ba9 --- /dev/null +++ b/man/airGR.Rd @@ -0,0 +1,53 @@ +\name{airGR} +\alias{airGR} +\docType{package} +\encoding{UTF-8} +\title{Modelling tools used at Irstea-HBAN (France), including GR4J, GR5J, GR6J and CemaNeige} +\description{ +This package brings into R the hydrological modelling tools used at Irstea-HBAN (France), including GR4J, GR5J, GR6J and CemaNeige. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. \cr + +##### Functions and objects ##### + +The airGR package has been designed to fulfil two major requirements: facilitate the use by non-expert users and allow flexibility regarding the addition of external criteria, models or calibration algorithms. The names of the functions and their arguments were chosen to this end. + +The package is mostly based on three families of functions: \cr +- the functions belonging to the \code{\link{RunModel}} family require three arguments: \emph{InputsModel}, \emph{RunOptions} and \emph{Param}; please refer to help pages \code{\link{CreateInputsModel}} and \code{\link{CreateRunOptions}} for further details and examples; \cr +- the functions belonging to the \code{\link{ErrorCrit}} family require two arguments: \emph{InputsCrit} and \emph{OutputsModel}; please refer to help pages \code{\link{CreateInputsCrit}} and \code{\link{RunModel}} for further details and examples; \cr +- the functions belonging to the \code{\link{Calibration}} family require four arguments: \emph{InputsModel}, \emph{RunOptions}, \emph{InputsCrit} and \emph{CalibOptions}; please refer to help pages \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}} and \code{\link{CreateCalibOptions}} for further details and examples. + +In order to limit the risk of misuse and increase the flexibility of these main functions, we imposed the structure of their arguments and defined their class. Most users will not need to worry about these imposed structures since functions are provided to prepare these arguments for them: \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. However, advanced users wishing to supplement the package with their own models will need to comply with these imposed structures and refer to the package source codes to get all the specification requirements. \cr + +##### Models ##### + +Three hydrological models and one snow melt and accumulation module are implemented in airGR. The snow module can also be used alone and each hydrological model can either be used alone or together with the snow module. \cr +These models can be called within airGR using the following functions: \cr +- \code{\link{RunModel_GR4J}}: the four-parameter lumped conceptual model (Perrin et al., 2003) \cr +- \code{\link{RunModel_GR5J}}: the five-parameter lumped conceptual model (Le Moine, 2008) \cr +- \code{\link{RunModel_GR6J}}: the six-parameter lumped conceptual model (Pushpalatha, 2013) \cr +- \code{\link{RunModel_CemaNeige}}: the two-parameter degree-day snow melt and accumulation module (Valéry et al., 2014) \cr +- \code{\link{RunModel_CemaNeigeGR4J}}: combined use of GR4J and CemaNeige \cr +- \code{\link{RunModel_CemaNeigeGR5J}}: combined use of GR5J and CemaNeige \cr +- \code{\link{RunModel_CemaNeigeGR6J}}: combined use of GR6J and CemaNeige + +\emph{References:} \cr +Perrin, C., C. Michel and V. Andréassian (2003), Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. \cr +Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modèles pluie-débit ?, PhD thesis (in French), UPMC, Paris, France. \cr +Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +Valéry, A., V. Andréassian and C. Perrin (2014), "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. \cr +} + +\details{ +\tabular{ll}{ +Package: \tab airGR\cr +Type: \tab Package\cr +Version: \tab 0.7.4\cr +Date: \tab 2014-11-01\cr +License: \tab GPL-2\cr +} +} +\author{ +Author: Laurent CORON \cr +Maintainer: Laurent CORON <laurent.coron@irstea.fr>, Olivier DELAIGUE <olivier.delaigue@irstea.fr> +} + +\keyword{package, hydrology, modelling} diff --git a/man/plot_OutputsModel.Rd b/man/plot_OutputsModel.Rd new file mode 100644 index 00000000..fa219705 --- /dev/null +++ b/man/plot_OutputsModel.Rd @@ -0,0 +1,37 @@ +% Generated by roxygen2 (4.0.1): do not edit by hand +\encoding{UTF-8} +\name{plot_OutputsModel} +\alias{plot_OutputsModel} +\title{Default preview of model outputs} +\usage{ +plot_OutputsModel(OutputsModel, Qobs = NULL, IndPeriod_Plot = NULL, + BasinArea = NULL, quiet = FALSE) +} +\arguments{ +\item{OutputsModel}{[object of class \emph{OutputsModel}] list of model outputs (which must at least include DatesR, Precip and Qsim) [POSIXlt, mm, mm]} + +\item{Qobs}{(optional) [numeric] time series of observed flow (for the same time-steps than simulated) [mm]} + +\item{IndPeriod_Plot}{(optional) [numeric] indices of the time-steps to be plotted (among the OutputsModel series)} + +\item{BasinArea}{(optional) [numeric] basin area [km2], used to plot flow axes in m3/s} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +screen plot window +} +\description{ +Function which creates a screen plot giving an overview of the model outputs +} +\details{ +Dashboard of results including various graphs (depending on the model): +(1) time series of total precipitation and simulated flows (and observed flows if provided) +(2) interannual median monthly simulated flow (and observed flows if provided) +(3) correlation plot between simulated and observed flows (if observed flows provided) +(4) cumulative frequency plot for simulated flows (and observed flows if provided) +} +\author{ +Laurent Coron (June 2014) +} + diff --git a/libs/i386/airGR.dll b/src-i386/airGR.dll similarity index 98% rename from libs/i386/airGR.dll rename to src-i386/airGR.dll index 961f06dad7a1894bc10c11438a71ee02359a969e..088dfd4622dcf6e4806433dd2f736867c047c589 100644 GIT binary patch delta 31 lcmZqJ!`QHgaY6_4?rB{UyM398w`{zn<qP6%X7~Ha4*=jE4f6m1 delta 31 lcmZqJ!`QHgaY6@k>EDux-M&nF8aLk3@&)lWv-|zz2LR%44j%vj diff --git a/src-i386/frun_CEMANEIGE.f b/src-i386/frun_CEMANEIGE.f new file mode 100644 index 00000000..fddc6a5f --- /dev/null +++ b/src-i386/frun_CEMANEIGE.f @@ -0,0 +1,128 @@ + + + SUBROUTINE frun_CEMANEIGE( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsFracSolidPrecip, ! [double] input series of fraction of solid precipitation [0-1] + & InputsTemp , ! [double] input series of air mean temperature [degC] + & MeanAnSolidPrecip , ! [double] value of annual mean solid precip [mm/y] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising = 2 + & StateStart , ! [double] state variables used when the model run starts + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_cemaneige + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, intent(in) :: MeanAnSolidPrecip + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsFracSolidPrecip + doubleprecision, dimension(LInputs) :: InputsTemp + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + doubleprecision CTG,Kf + doubleprecision G,eTG,PliqAndMelt + doubleprecision Tmelt,Gthreshold,MinSpeed + doubleprecision Pliq,Psol,Gratio,PotMelt,Melt + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation des constantes + Tmelt=0 + Gthreshold=0.9*MeanAnSolidPrecip + MinSpeed=0.1 + + !initilisation of model states using StateStart + G=StateStart(1) + eTG=StateStart(2) + PliqAndMelt=0 + + !setting parameter values + CTG=Param(1) + Kf=Param(2) + + !initialisation of model outputs +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + + !SolidPrecip and LiquidPrecip + Pliq=(1-InputsFracSolidPrecip(k))*InputsPrecip(k) + Psol=InputsFracSolidPrecip(k)*InputsPrecip(k) + + !Snow pack volume before melt + G=G+Psol + + !Snow pack thermal state before melt + eTG=CTG*eTG + (1-CTG)*InputsTemp(k) + IF(eTG.GT.0) eTG=0 + + !Potential melt + IF(eTG.EQ.0.AND.InputsTemp(k).GT.Tmelt) THEN + PotMelt=Kf*(InputsTemp(k)-Tmelt) + IF(PotMelt.GT.G) PotMelt=G + ELSE + PotMelt=0 + ENDIF + + !Gratio + IF(G.LT.Gthreshold) THEN + Gratio=G/Gthreshold + ELSE + Gratio=1 + ENDIF + + !Actual melt + Melt=((1-MinSpeed)*Gratio+MinSpeed)*PotMelt + + !Update of snow pack volume + G=G-Melt + + !Water volume to pass to the hydrological model + PliqAndMelt=Pliq+Melt + + !Storage of outputs + DO I=1,NOutputs + IF(IndOutputs(I).EQ.1) Outputs(k,I)=Pliq + IF(IndOutputs(I).EQ.2) Outputs(k,I)=Psol + IF(IndOutputs(I).EQ.3) Outputs(k,I)=G + IF(IndOutputs(I).EQ.4) Outputs(k,I)=eTG + IF(IndOutputs(I).EQ.5) Outputs(k,I)=Gratio + IF(IndOutputs(I).EQ.6) Outputs(k,I)=PotMelt + IF(IndOutputs(I).EQ.7) Outputs(k,I)=Melt + IF(IndOutputs(I).EQ.8) Outputs(k,I)=PliqAndMelt + ENDDO + + ENDDO + + StateEnd(1)=G + StateEnd(2)=eTG + + RETURN + + ENDSUBROUTINE + diff --git a/src-i386/frun_CEMANEIGE.o b/src-i386/frun_CEMANEIGE.o new file mode 100644 index 0000000000000000000000000000000000000000..773e3315ef336b3afad3316ed3670e26e39cec94 GIT binary patch literal 1095 zcmZ`&%}*0S6rb$}t_IvaV1kK<nv8lOja*2K8fsWXOfe+lH&Rf#NJK)QB_511Sy$3* zYPjji|G{Xy;GvX{WJ{rum^ec_J*d%c7CCr88YA`17O|kbW@p~}{odES<^=^0;&R=M zP_?6Z1b-xaKjP@+W7vhzYfw*t4;Oy<P)CoyuQ$@`AiEy{bUfj|H9ESxN11uV{YJJY ztOE*f*8CG6K!L!eE0-^7EA@tg1Juh2qYL*K5q#B<8xqC?d`DlB+LHQGZ0g6mSP;ub z5O?JEvO}1;S+mHhSQi%ASrIOu^z^&{@j={23zMKBreHB%Kg+XfNx`jPId8=}ajnq+ z?sYM+Z5K76^f{vwD-alD3R!2$@;WV$kHn;@yqTM(saz0hC=?i6N6dVZuF?dZ&)O_2 zjqis-j7UbibK5RP=qmHz>^JGjVSval<`tnnF^N~^cS>K&t<o7X^)L#BWhgu-khmw= zuw*yJBS(=|bV-k&^Nx#dNq+$f%`n*(X(s*#4E_+IaN>KUm1b;jd<@YAqxzXv6ryu< z0XQaeHfk}l`CEpDO#4V|E&lcxkKaL5v-~EKWkj16PIlp1N&mW0D%oCYLVlRaFgwVu ziP}v4jqcFRX}ZW{x=1tDNU2m(C$yp`+D+4dr2*>(j4f01?}WzuyaAY?FT0X`U!KhP z7s$_u(?75Uny@|tGQr=^qpeA>B>g3v(EBT`=#AFU6qHCoiJyRK#VSDN0htHHa*#cM zn1Gmod~gs^(&s<{EMv`rGQmYv)h0d%kaRk|(zK9HpXNpleEZ<5LZ7xYdrR}H1A}3( zxNMXV>KD|J=uoJ+rTxr>mbTUwzgp(X`-hN#e8>fV|4ymgMoznhyReVj*P?P0fdrqO nSrDq+LLU8JpNb9SeYu6&e-a%4B;-8hcKBZJP<Ws}974YVkPeC8 literal 0 HcmV?d00001 diff --git a/src-i386/frun_GR4J.f b/src-i386/frun_GR4J.f new file mode 100644 index 00000000..953e7647 --- /dev/null +++ b/src-i386/frun_GR4J.f @@ -0,0 +1,225 @@ + + + SUBROUTINE frun_GR4J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr4j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR4J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR4J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR4J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=4) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3))**3.5 + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + + ENDSUBROUTINE + + diff --git a/src-i386/frun_GR4J.o b/src-i386/frun_GR4J.o new file mode 100644 index 0000000000000000000000000000000000000000..05b65ec95e67158a51d4b9da0364609149cd0174 GIT binary patch literal 2505 zcmZ`*U1$_n6uy%m9Wm*SHb~m0bSW1biVYjdL!^~%VPj)S+t5ZUZR$jcaa*h|F|iSX z#_lG%Y_|BYv@gMjJ_)hVLTC+yvTI^B8z1~BWo~xvngk!Ru?_w}jkLJ^&Yfh85(nm< zZ_fG7x#!$_=FT)|MU1X)ow0Qa6=_u+`?@+5c7~r;F*XF)zuI{&hw!q-ma5i09eW(r zGe<x3C9C!xKKx9=qM?U)?N0`*gspXP&Lw}u^Y8d%=f@}h8i6Wyj$0%m+$NFWQzVA? zRR~$fB$EZQiFd^Y_#e<@a<LIU3*h-?6k~SUx+@d>ETAaHz(i7{Z_Y_^WQ`n9>e~g< zlH2sSLy87?i%3SxxOFeu#9OU5XyvlwvY8vWeH56*V2}ZBKpo&d`<M>8n6;+`(Sm9u zvezLapxwZOpn9_@<#rb-C-^Bu!n`7#ne&_+EM&}1Dc7!SPVUsjJjKfWNF>W{<y|6a z-CMB`&&j=Te!2#vU&d7hmz~tC2?R7m8l#Vr!|i`&H82Ko8&6l@cPl_O)-=)VZ939L zMFXlLF`vmzUXwx;>y&yk*F|v&ko`Wh9?A;tMis@z5@A+Vu58Yl4L?sNOd*ol8Co(s zZOzEtI$+ScfXxnCrDYBUh&olI?YeR?!p{JEevK$ORMHlW@By-(QzFyMLx98yck|Ht z<E60x5B;q5COscE@KAiGKb+FeYcR);Fc}%G2Mi}QYuql7pDu(i=vyv#&f2kAsE1zz zi@ddDcwwVFL%n!>wG--c{JSYUy0L~f;)&vs;|lRAY5UF?1sGS!Iztp!5S>;oh2E{; zE9{x9)6sm}YOxd{wN5E3WsQpYn>jrBaQi)duVOYaA*Qmo!~`~{hk|aP?GfXdYmc|b zzK8gj#Ay%eV4rG3YLG^?|10m5(>yd)b{b=&J&u0ZAp7W5#j}CrsoT9yN}fLIWHBnH zkjiO-^CFEm`W9ejZt^<1`;wT*+@8E4Gswq)X$mH^)hjaMyeg)Sw?&!;f_6!>97&p9 z;Gi@sAwtshp$4;-2ER1x;nsr)c0^4l%|?VZcS*BFn!yuebgq21+x&b~+Hz8);gnEx zEZDe6=Waa8=fO`nsit!u<nwtXeimN2#DBnIF)MUqGw;f6hwgUi>E+js>ZCfsHmyOU z3~)b*1m8tshzCim?H!M%JlogC2l#oMGSQpS243^v8phh;KQYt&!FU6&$7AJi1@<!5 z%`5K@{-nhh`zdf?K{k&rprOJGTRZRIlx#%Q_y}hZqS%WF@c{h0xsKFH8NOH^E#lDw zyh!b9yvebW0*8g8i*Q3HcMf;dUrr%^0cO$&C-p50oe!jiI#fC9d#~e!@p-<@z>Y() zw)*dA2Y)MuGH?dBkZaRA4U}5EPjCv5re94EkEqbHXb$>%=#ip9qG&Fj;5rcME{CfD zyQ&L*j<$qW1$0FU@G_8ekc*-feD>1Ad>#(XV8%B0{&TDbS=Hb*t&R2bRwz?5h1x6} zHpR<Q)yY`NNvxiXT+vaoe6bMvEq6L|;fvav2T)e;cI<i#1*s!J21c>ozq{*wVvKfH z^^n?j#v0$jGWZ$m!EKQIt*x!??W<R=Y-Owk&tCtX{L!%{#@JfitJo<QeGgQMyNr#w z=w)oV!`lbsSo>U*a;+0CvVopcQD$7-f~)i5d~xEv?xKHP^a9Qx$F~K@;q|$?epmN{ ztMlV)>hN|0dDOh^Ky<2?vE#0_s_lyd`=F!iQJ%5=T3dVPLG#^@YTm1AbJS|Y8=x+Y zd07FnUg@G)k{~J$TmA<_4u#qv{$c2A@c3H(_kv=<d2Cxk%l}+Z-pZV1e=U@0p;o!% z?n<*`&%xl)km)E;1v5j3zIM%27c+yM)r$le7B!on)Vu_X`PHFTbANlymnJjSdO7%i D{jCl+ literal 0 HcmV?d00001 diff --git a/src-i386/frun_GR5J.f b/src-i386/frun_GR5J.f new file mode 100644 index 00000000..4b7b7351 --- /dev/null +++ b/src-i386/frun_GR5J.f @@ -0,0 +1,226 @@ + + + SUBROUTINE frun_GR5J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr5j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES1) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + !Param(5) : intercatchment exchange constant (X5 - CES2) [-] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR5J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR5J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR5J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=5) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3)-Param(5)) + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + + ENDSUBROUTINE + + diff --git a/src-i386/frun_GR5J.o b/src-i386/frun_GR5J.o new file mode 100644 index 0000000000000000000000000000000000000000..10e47297174b2af019c51aaa402f720fa8c9e1e1 GIT binary patch literal 2433 zcmZ`*U2GIp6u#3R7(#Ie+>l0V+=m-%3^pw(Nr@6yvtThr8ZC%gnPS>yH3%E%Vu=Kb zyDe;%H9R!>((p`zCYm%#lSX&jqIBB_z@N-z=k_l?bc;6pB(fxi^*eXkX(45jx#yd6 zzH{z5_uRQN4O$7Kt5#=htwJSQReM`UyTZ=Uxq`7iz`ZM-=k*Xi*4R?jy1#wDqk7`# zXVs~ykB%OFB4OUpNxUPE2IR2S&d<5vk9hvw@9uf$^xp$eCBESni5Ry@^zca%ef%1P z+{Pr6MY4%^BzpPp&}4Io0X_rZ`C<s;_>^@=_V9~<q7(xYDUq3&mEzbc*{jsIilimC z>q&<c5AYU|ihH?rH{Qfst(R!!#z$l`H*i-|V3vSE2DkxrfLGfmb<o9(Jtc@1QX`Rl z4jBRM1|9;{H=b5*caU-qKZ{71S7frYo--$l8MD*MwPQRd_vm7dV&%Ril4ZB@4w16% zE?bD_%w{-0UIWtia#g`qCpBvn0S%GCSWU^{ZhT@jFotj&k5|y>R)A`(DWciib)<`m zdR0YYE}Oe~T?$dEQ|irJ7o}xD_D*I!kQLmGDoTw7!i=h1*_<`&f0|5~LZrs0Y02!2 zH7)n)fFWxT%??>>ybcAZ97tsBZRKKsUjX*}7*n#ZEEtdRUb23pM7EiS0f`em!NcoL ztw{uU_<OA@<=NH1!^u7VXj;3h!JItCWNfG&Fq+b=5xYpfpN|geTdqcC?8FSz{V#w; z-dZY}-ykp0UOctZ33WC3)g&I>SbZDtMDfURnRu1dz6(YX#uaj#A=1_zyUl0s)aCX% z)EY+Thpj;|H<9yn`w&8miOKOPtam5EqM_?)&BaLe`r?|~ccHJ~s@sqD+^<@?{Ng+N z0gK#-@B!|(N6_N+vYXyM>H;#O4eXo9VXXFa)8-UIViKvGCpafEcuD^P%+B7tfwX@W zquE<Gf0J1xV!$*B6L!k;GUn`l6D8`>G!U*sn&sI3rVltI%}R){G^@p^H0x;aOS2ws zorqw^)O6BpL|AjLG+U$@Iz3EB#RvP$4~L{JEioc82-l+=2<HBHSSWzs<D{C&y;Ud_ zkoZM-<<kEFi}|du!J2tT?ih5*A7Ew4pK07(lTs(r##Ly1FZYw^;d@E+@eqmCT_f?d zXUFPfFTadaBR&yt;I;R!W321{6A|uRN;dF%JXZEsppA(Wyz<_q@3iFn{s;`_W%E!T z8zh?F8o7;AuMts`1DrvK(hABX0RIzQN8Y52UMY{4@c2PqqMDj)a;&7l%kSu7+|bG0 z2X_=-P9arQ(uk(?E&0fOX`v2P&bqD}I5Da{UuHqZAy-%PPrRMKl0X?aQ(MTjX{`oI z9o`Q(1xRyFO^}SK(6VF}`g-V*qCui$Hrc~<Ak<wBR|9rc7yKM;8LbNFiWJ~pkaUns z;uU=6{)0jR4$WXDHg)}bvKCp@;<c+woa3!frl*Uw88~cAdeb$jMA;dvo{Wv@C|N#J z4E>hdkzDkO_VPiL)wKgHPoN<6ip#(d*83NCy-yEQXVnHePZwj2uVESdjCJBRNd6QI z24B54HntUCM*r=?@!=*AR^wj5&bsJppf$L?Y}iH5q1_Iz4al)}yD05iM_ptCJ*A>d zySluq^Wm&;;=Sl1`Up6>_kbK<)73>>oq?~Q!>a=Fs5xE-qSM&Rb}d?iA0KRkj;@CV z#tvw~BauVq8*guZvnuGQ)rg(0E{*wE5i(rvqFK&^s5ortp9eV<YoFuagZ?)bucdz- zC=r}R+X7np$AR*e=Pdc#piGN3zToakvwi=e(DAV8C{P76!-qd}%~TgNLy?+!0u1w- ZO^<4xg~j~zaI1OX$mUN>W~%ja@c-#D^Bw>I literal 0 HcmV?d00001 diff --git a/src-i386/frun_GR6J.f b/src-i386/frun_GR6J.f new file mode 100644 index 00000000..9d7f9373 --- /dev/null +++ b/src-i386/frun_GR6J.f @@ -0,0 +1,249 @@ + + + SUBROUTINE frun_GR6J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr6j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES1) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + !Param(5) : intercatchment exchange constant (X5 - CES2) [-] + !Param(6) : time constant of exponential store (X6 - EXP) [d] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR6J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR6J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR6J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=6) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,C,EN,ER,PN,PR,PS,WS,tanHyp,AR + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD,QR1 + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + DATA C/0.4/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3)-Param(5)) + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+(1-C)*X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Update of exponential store + X(6)=X(6)+C*X(8)+EXCH + AR=X(6)/Param(6) + IF(AR.GT.33.)AR=33. + IF(AR.LT.-33.)AR=-33. + + IF(AR.GT.7.)THEN + QR1=X(6)+Param(6)/EXP(AR) + GOTO 3 + ENDIF + + IF(AR.LT.-7.)THEN + QR1=Param(6)*EXP(AR) + GOTO 3 + ENDIF + + QR1=Param(6)*LOG(EXP(AR)+1.) + 3 CONTINUE + + X(6)=X(6)-QR1 + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD+QR1 + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QR1 ! QR1 ! outflow from exponential store (QR1) [mm/d] + MISC(14)=X(6) ! Exp ! exponential store level (X(6)) (negative) [mm] + MISC(15)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(16)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + ENDSUBROUTINE + + diff --git a/src-i386/frun_GR6J.o b/src-i386/frun_GR6J.o new file mode 100644 index 0000000000000000000000000000000000000000..96714b9073b4f265df1c3b32067ea7b28ce84516 GIT binary patch literal 2977 zcmZ`*du&rx7(d-sxCpZa7qckQg`D92z@-C%Lr|+JIL!!+j7M~E!9b~oM*|zwWWhnZ zVN<KbEXJ4xH8IfyLNHkb6ivJFYPTgojJb#1Q-)}=Zb-%>FoL1}zH_(B#^WaEoZtC< zkMn)sd9*c-B1WI*3C5mMsK`-Kzad<&u+^QN$XGj|saf+G7|NJ`ZN>U^_3JF^vAvgh zk`?c7-~L#I5kV8_Z5!`!6=czoHAn5e%<Emga>cUUSGqyP5AuE*qWlUCt$c`vcHW0U zE@G0&0@=!&FpIbGzcKXY;>Y<gfNRew^w~?sH7Fbf6izqwNs+lYAjOVJvQ5#01=5g< zwS=V<^YI#yjFoWXdaRcFjTcMENm|x%H=37XVQ~ngkGnzpxYyjJL0$BlmjtN=RZq%g zmNFcgH9QE_vTRD3T|?BZ{403Ex+2p%;M)5#_Q*`Zw2e1`&*tO`O<aYOaPBba8Rqv& zAd<%QN2cT2J6K41<1;}LC0ylk#tP8rf={=|p!ZUUXr9OB1Yr=({a_v*I}hY!T!Kp2 zT&y8t<khC~5?6b37tTo`oTU_f9oK|&I*_@98F%D#ZhIBZvQdS8mA{f%Wj;oyRaN*B zmCei`>{=c)2QaSDK!vj%s8}rz8^zpG1u6#;8FNvoIL;3NyN*QF*gho?i}HgcJ*bA> zIvxTfok$}OP5Zbw?&G1K9L-7B(i$F0tnfxsj-w8U1N&sOvl=LpbQo!~K)yR1>Con% zY3MiO{h*J%03|YZBqPH!<^Hpnemv3gbSCj-AEu+O674fFWAI0YkMLJcySU$7fPR8p z<Q6I8nz^COT%yUvRie{K86D#4#hf%;Exm9cIz=BgppEY%r%n%gBb_}Vx{Q>3`r%D5 zucLHU_0=i8zx`wP0lPb0T{<TEvs8MInZ_cuJS3mPtPE$cxC$$oi_6u%q~xM<(Sd8` z1c_U=kb0bId12>9X$Yqm^NYD1Q*bz)8gMo}xLi1Wq?PW?N#SZ)hE$}9<C0eKp|g&s z2cut|J}g96&O_^?dC_o+MK>&Z1`GE|k-cMdsFTskKY?etrd+ldv_#UXn5*Sinx#Y^ zs`V|wt0Ik8<t8AVRp^~IPEyzx&dUp^jvK-u2yv#Lmr?7s>evNM>Tb-NNTin{j-b>j zq_EV>MUT`yu+^(Tgrx2zTn%m79y6-emAYSaNqv>n*FvCT)#=U9p&#CTg5JFM*66D{ zLA5G7k<QJym(QaptybWfoHw7(BaNfb%}xFfSd2tybbxLm`j@*faaIGu5uPXO-uF;p z6)ppfyRUk`NYjzpIZu@un{FQfq~TYu-1x$$QTUAL5}8~Kktr)^y3uH3s2Zg2&-RRL zQ5SO1p&7fCI8JwkEw4<f7k<_x^=^A<XyvPDXy-v1CO4;JDc4(*6G#(pW9(wAhR?ly z4t>?JKjGoVfkX|j#<cv{bex`eBQL*k;IL!#e)&3vWnJemE?8vvm4+ewiumC*ahx*@ z!dU|k2_NhmxrT}n897-RE8?+Dyh!DfsI{a-;0?97D0gdQ?uR*cqm*3!49uiElGNr8 zH{6y6@=)naYd(*M*W>!E7jpb!R8{^PtLF>jNCQ7mYss{Bssk!ji5--@kC;!@0*R<{ zEsF-gSA$20ZW@XP60KYVLf)k?bwjT5f}O=qp{hV#DfxH_lr$(8#c-p47|!QmPzTNU z?B-j$<|3-Oc($tIpYrt}Q-2jY`e86DQIe`m#;5E>^<=bLL(1}*Lh$p48gh}7js=^L zR`XjpgK;FJUP$TdM7>Yh_1=Agc2=F^ee~^Fx$W&6f&MpsT)nfg_U=u*5dPOu7B6E> zXl@#R4+H|Qo$c;^1w4J8Idd+**3;enDq}@&pmi|T=S556pNV%U|IrCjT8TCpZ32ti z=xd;2v=VmOMl*3lEWIs2mh^KQWo+pmHu?wXN#$kG<{Sm1TqTg@Z-I?o!pm)OOKr3n z$nvt?<{~!toy{Gw(Qh{Dv5~ORWg8XaQn*xn)p&NTb;Cdw7X@-F=^>k2J7H9B7tmBC z{Q_v3Lf_cZioge(Hh`n=UY@ayj=;8tE&7}9%zL{cV9}~a0P1tFGFE^ZJ?f)q`VfKA zVPpSwl0l)PYa(Ma#u<+N$BEKHXPj6~#{SzxK_0C$=AR}-TIi^K$dO*ZZcFf^kZuW( z1=B-YcivZ1%!Y920cO+IjSn!vhRP8q5Gbo)!|d_QvykYUx31SWZkzX^&U95%3;z$g C#=33* literal 0 HcmV?d00001 diff --git a/src-i386/utils.f b/src-i386/utils.f new file mode 100644 index 00000000..2028bc71 --- /dev/null +++ b/src-i386/utils.f @@ -0,0 +1,272 @@ + + +C********************************************************************** + SUBROUTINE HU1(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU1 using successives differences on the S curve SS1 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+1) to XV(3*NPX+NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS1 + INTEGER I + + DO I=1,NH + XV(3*NPX+I)=SS1(I,C,D)-SS1(I-1,C,D) + ENDDO + ENDSUBROUTINE + + +C********************************************************************** + SUBROUTINE HU2(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU2 using successives differences on the S curve SS2 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS2 + INTEGER I + + DO I =1,2*NH + XV(3*NPX+NH+I)=SS2(I,C,D)-SS2(I-1,C,D) + ENDDO + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU4(XV,ALPHA,BETA) +C Computation of ordinates of MOHYSE unit hydrograph +C Inputs: +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH),U(3*NH) + DOUBLEPRECISION ALPHA,BETA,SU + INTEGER K + + SU=0. +c IF(ALPHA.LT.1.)THEN +c WRITE(*,*)' Pb ALPHA' +c STOP +c ENDIF + IF(ALPHA.EQ.1.)THEN + U(1)=1. + SU=1. + DO 1 K=2,3*NH + U(K)=0. + 1 CONTINUE + ELSE + DO 11 K=1,3*NH + U(K)=FLOAT(K)*(ALPHA-1.)*EXP(-FLOAT(K)/BETA) + SU=SU+U(K) + 11 CONTINUE + ENDIF + +c IF(SU.LT.0.0000000001)THEN +c WRITE(*,*)' Pb HU4',ALPHA, BETA +c STOP +c ENDIF + DO 2 K=1,3*NH + XV(3*NPX+K)=U(K)/SU + 2 CONTINUE + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU(XV,C) +C Computation of ordinates of GRP unit hydrograph +C Inputs: +C C: time constant +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C + DOUBLEPRECISION SH + INTEGER I + DO 10 I=1,2*NH + XV(3*NPX+NH+I)=SH(I,C)-SH(I-1,C) + 10 CONTINUE + RETURN + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION SH(I,C) +C Values of the S curve (cumulative HU curve) of GRP unit hydrograph HU +C Inputs: +C C: time constant +C I: time-step +C Outputs: +C SH: Values of the S curve for I +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION C + DOUBLEPRECISION SH,FI + INTEGER I + + FI=I + IF(FI.LE.0.)THEN + SH=0. + RETURN + ENDIF + IF(FI.GE.C)THEN + SH=1. + RETURN + ENDIF + SH=FI**2.5/(FI**2.5+(C-FI)**2.5) + RETURN + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS1(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU1 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS1: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS1 + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS1=0. + RETURN + ENDIF + IF(FI.LT.C) THEN + SS1=(FI/C)**D + RETURN + ENDIF + SS1=1. + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS2(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU2 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS2: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS2 + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS2=0. + RETURN + ENDIF + IF(FI.LE.C) THEN + SS2=0.5*(FI/C)**D + RETURN + ENDIF + IF(FI.LT.2.*C) THEN + SS2=1.-0.5*(2.-FI/C)**D + RETURN + ENDIF + SS2=1. + ENDFUNCTION + + + +C********************************************************************** + SUBROUTINE DEL(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER I,K + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+3*NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE DEL2(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER K,I + + IF(C.GT.FLOAT(NH)) C=FLOAT(NH) + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION tanHyp(Val) +C Computation of hyperbolic tangent +C********************************************************************** + Implicit None + DOUBLEPRECISION Val,ValExp,tanHyp + + ValExp=EXP(Val) + tanHyp=(ValExp - 1./ValExp)/(ValExp + 1./ValExp) + RETURN + ENDFUNCTION + diff --git a/src-i386/utils.o b/src-i386/utils.o new file mode 100644 index 0000000000000000000000000000000000000000..b94abd7298615d02807e93345ac96310a811dc8c GIT binary patch literal 2548 zcmaJ@UuauZ7(eOKHfW?_>$F0_BFEXetaM`!m8~wapnC`!T&5k1%{tdV!>FZ6Y?VH2 z-id?|2%--{ABr!&`cURZho)<Av`>4yXX(k@gOIGDI1p_aF8;oA?!8IcZ5M9NcfRxe z`F-E{os%1Kxfwn0c^G>^Np4qPa&#uCWc`zCV{8H9P`jSLh@ppt&-GmxNsegM6MqA& zKi_vgk$9qkwQz~-rkVqGVl8OpwEYn;U{phyAP*Or*eF&KBhthyBAHmh>?6@i1<45a zh!xq%Wt8_ri1Hp0<-Rh75kc;Q!XtycA8$|Tp6ph3YL&EWOQi?v&!+#$-guQ9q%aDh z<?QFoo}1DXWu?1H>qgZN1pS!^AIPwDkarjH5;iFkC!|RltREq*WWcyv<jtkK_ooj? zE0BL#wh*Gy7LX_u=5yE&W)%FCmIm9vJm@7vO=jjng@TNm@NCEO_D(F*d+HdRdI5Go zvSvVpA(vg)*PJQ)8_iFPjSt>GwdjIqRF7riJe-;35kwhUk7bklSUSr6DBdsIi<Rl5 zPMA(=oz<q7rMdo$9Um~QRpl|MJxUchCr=`YvFtJ)?(MkpHS$sDY@$ZdY5S#^`c~v^ zZykH;=k<bAt#B%Gr~r)JL<g}_`M6fAS@mtRhFhIH<UyoSUaOUHc;%#N6po!8j(uqL z|1`RBs7S3q8*T-8FLfpx=l)ER4`ne2Ku_Au)3e-71(X;6tJO${OkGOp=jETEL$dH% zoOj7N^Do56o@i0E_kvNqsjGI<9MWB`_O~#Wxx#}q+~5HWI1y!$7pukl^3Iph)UXtY zA4dM6?01~Z#fIjK^ci{2>$g+?60NgI9=@gk*ZCg&ebam(=WeO)=Uv9;U}{~OmkSgG zbuVM{TBK>df-)KTD=GlYNkS2|$P_?2%^%bp!j6T|$AGyd{s5cx5rwTjqFC{*h4?^e zMMg@SD4JSsJRB@7rEXS+X{Qv?t@B9zw%8X1`zF!$WMz%8=zQWSS3<zP5&}rR<4R~i zLsx>w>X*P~sS4BubRPU{C-!w1-y`YcvaM2Oc!@_(&!|_aGjs`2AH)ipD-`?7Hv9J{ zk5Usg^FxH9!x%$b93)?P^b8wXdDjuwujlAI8ilB0t9{;#suxV_#Qo(1XJ&a@$1g$N zw%{ED&)nAzP)%{}E_QMZZ5c05dwJ2#OBIJdk(-+a(PBLHHz<_X_mP}iCB9$?6YPT5 zxj#-BRZm00Rv%@sh&qjKZilcVd-lwJW9c=G!OA8!6i`*4wDBA#JhJ<a>|Qkrp0msL z`4+P4`Wr~PI7pexVgo(?wSK=FRl2Wxa0Ob|EJ`9v6wxh~%zI+Bv{c$!&e;!RmyY8f zF#rpU4CDNpFG1LYw~Zae?_Ru}?2IGbb)-KbX}d>`)P{a(4=*IWy4#T^oz=H+ytLhn zBmJ<;_9#Jm9x*%FVf-WNDDObh9&tyScUJR`uH;BRw%We89m$990UhrXNIFN#(e;g8 zjE^EOJ&$UPjk{9Gi}6I?m{zIZSYje(PhG5swV<Z$Pb`r*Oh!4p%7#I6h%`O0wlotd zrO7pFl-E2u;@BJ^FCY5hXjFC|s<bp0M&qOkqsF?10_E$P<jAKJUrff%p;B$r_?<)r z>~ejBHTpWLKaJl=fCQWRnk_Yc9|7d!Z5qCf02?;+b=3UCCO@05YtU5|8=aYK){yW2 DVY?*7 literal 0 HcmV?d00001 diff --git a/src-x64/airGR.dll b/src-x64/airGR.dll new file mode 100644 index 0000000000000000000000000000000000000000..fe805fb6e20cf3d273f4e86c7775897d6194b511 GIT binary patch literal 28672 zcmeHw4}4U`wf}6g8#W>FE<$WnqKj_of)W${Nz}*&61l01L<o{dAPLEaL_?C7+~tpt zN^rB_?XsFGwbb&f{H$90w3YszPXndxhCl)WHsHTR{>A@y4QRv)AzJo*&)j=An}BWK z@ArQ1z4qhk-E(H<%$YN1&YUwdcQ(wqr<p}F#*BDEA;ww&>EqzvfBCBs#g|;Y;}Z5# z?7?v@2Is+X`IS`-*1G!IW%Z@Yt!1S(HMNp;smogLuCZ3tShMHOw=S<OccmsI#Mv~~ zc{z-guOG>FKK_Gzy|q4;dd<kFsLPlWIn{XL80#AiXd#N0I{M~#lqxqRO$-VCG4RZB z4>H~_#;j^KuS=+ggwtBiHpYrkl?CvOz@vW}8A~Gt>7PEvZq@ON!5+r!7s=n*%2*@u z|AtSh<XR=6tmS+7BH5_#G$;|D5|&qzT3#xZB5yP0m*Amp=i!O?I9OgFwO%F6Gohdk zPYj-U5kx>i=SZzn>3AO-kx6Y9;EDJ+Sehesl}h&k>7p4A(G^7y0p)Z{8yYA#FBV^0 z3A^yq$VvjKE|nkG`8Lo{KT3wua(-1R9Uqeb%FTF|UO*Q}oi&f!4;Q@?<;3sa;dG8b zs#MM86RD^N57Cj0MSL72U%jikwoDuAJ`@sNO#~58$TxFn&fi~ZzUVn=-OgZ{%5P>f zCdzH1+^W2c=_z`Th_dM<3=QBEKnt0#6f1U+39z()=-F*u)K<YislwGwyz^Q43l`qZ znR*Y4@_wh>?*6_n@$p9(OAmMtKTzTM#E>446TQgTLHzne;Wvp-f_wTA(HjtbnSb~V zW54GujTNqTu<Z(33%xDMT|_z6P2zY1ZpCL>3e?jdB{ao?di&MjrJTK8lah<Jq<C>w zQJZJLzy){rx<sEbB@J|<uhN_zAbt~5sO1niN*Q9t9>*&NDIGH00vU4BKj<A<(TrT7 z$xbb(f;i<KUh(9QRY6XqhkT~Dk?`~zgr@63=rip_5*+h=rr+xYWI^7LJC2&&V0w`% z`%KMuavoAbuH3hS>`RopL!BPevWFQ{g^uWlaCIXnnCMTe`aOY!c>o=z0<a=&DbeVA zufJLJC1fB=`QRGP8{;YEB5xw)byA+(E_yySiy2?694-1{sOO(iMyL~6D^5WIr4=q& z>@b~qoZ92)`x@F|3Tl|zkB^b!%8iio4<t=cIUfo^)MtN(`u>C;11L+uw!`!ss!&&h zpMpXiwJa0_JCUUE)~v@)*7HaCb*H>XPAr<kn0tlKl;_7_oq@#3%7-w}Tv<s6)j8$4 zsf@|(p0A>%ao!_RvfS5UN<oznJ`l{l2!_z6+b1f??@%QVD(MNiUCI7)DC7;aP=|%= zzTV&J^vXY@CI74thId7_POnTuWp4ns{R7We2DdjX$yF*-RjhH5i4VRGg@T2UD9qz9 za)^h}bVp=%?-Y%73Rnx?8`UzE<CDZB895c<`9|%>DeJF;3YVy)nkAi6eh5x-d+-Bj zc90&^9b<dVM(QYxcEBJdKu2P*Nz=caZ%Y$pr)|1Z&bHZ=Ibf``Oh7pDAu0M$;3EpE zau=#JFA(Jq$%TlXOb3N5$$|0y#Uf}w(f=zN{KO}EXFoz_HX8UA6u`fP5?521yi4>R zmIPFYK~=J$#bW3^4#VR`{1>-1hd)^hv+mAXpm~{fC!a%;!uTmRVf-4KC0iJuZL{Lr zX-mU*zRiK}B3mB5%WWn2uC~?T`z2c=Y6014YX)*!uuM&bT)y$!kwQl|*{rZ(r*Dfb z4NwHM5G>mx`d+d*2=xY>Kt)0YvDJI(be3SbmcC}0(Yw<*f+bEodx+q@=F>vqWZ~i4 zK}(#c16BwNLpkY3PG<`i)35G9I#+n$Yf7cOh?MBRbq~o=kt5hUE9M9f?4hFMEhx(J zT>+j&hn)U3W`pJrPR|l7H*}%x!q$o`!M^wOOu;hdozp_mK`I&BjpjeW^J;})f1Rif zpB4%}#IvhHNbL|dOoTjw&q-3{3N=TO`6oi&M8h>-uDHA+Td@BL?Jqe)%-<pgZ{Vxo zb+CM$3eS0upsn{nQZVqq!aMxNtJC-8`i<?qlQj9VJOgmi&!a=Yq6O~@z)lOJtor;C zJ*@`O(4Vnix;)!A=3x*S-1{jLL}p&#{y5juX2{MsCU^x{xae!L<w0Izg2!PN>==GK zAAUO@emft2J0E^KAAUO@emft2yFUDOb@;_~yUB>iNn{meEzVk!Ron)?_TW;QXU!1E z=)MUVEO-|(nn^pmp{5hU`d4B9q>*FL?Hi|s#jgXt6WmS{$@^=3_jaMO$sGsfj7kfR zMs1{H+_7Mm6f~;I5j<%LehGS%ngwq!aYc>k!FPc*53%+h2r7)1Yz{JaGV5$^)=qBL zn{16JM&=f7)<B-NZB=t#ux(S3muvwQ*=g$p;`BYO8nnD$l;0wI9p{ug=Ew&{-wUde zk;N!~tPS><dQ^C@9o5JPk7C-GgaV#e(gjmU?INj*Y|~f7po7`A=^(&#@WW%!3_H1y z3?KHHB`nzslldGL)Tcaf1r4Mn^DUHWq=kLFBGCoN!aBgVD4^sMC1#k5z6%3rqTFVO z9e11-mh^#fJ8CtUF);1IhMib4P}QTTTF`~Y`XKzm0L`c#RBSK@pU`^oK58Z8l4vmR z-D;acYOC4-VM8StacT5!WKIOFMrJ>YE<li?KIN6mk&9V+ht}U5>LbKd+vPpoL?o*G zs^}<2JF5KD#gC9^fVY5nBn<ES+qsDG^szW{5kl$H`G?a&aXUIpYBD{0H`nTGXkr8u zu^0KRWTCGq**BsD*g<MTnT8Z~^#Rbg&`ye4>_pD&Bzz^-BAd&SEfl_WTDV~^M!4WT zh+A~pbM8{=$pJ1HVQ;J*vCZJ!C(Ld2C<f6#W)CgM(*yc^2D_#hb$;^xWk)+mo6*xn zPXMcqPWN%h`mlltY}nU=;KDrTz6$~$nd8MdbB=v{#ux5_lugk+phcag=q?~SUot<- zWcpfbAqA2_B>ZfFI<#jX`4X5);p28bq@y0QU=gBRoys*~nQNwc_f5xlAq`x?m-O{H zS#`UxzJRxFF_jXtY++#^+5eZ+Mh~Qz%=L{y`3TB~XMn$?wv@Jskpu8=NI{^-NMfo9 zzg*N0;$74b?4a;GH5NcFtZLNc74aZW?!%4-!Qvgz6r;$(Eq>I3>Er?__(0r(FF@{g z;L8Q$$MnJ+T#PX-_#<Hptn}@&)A#Z;d>6M8I!B~$cOGhezkpDd>oeMr$|<2#PNgX4 zAns8x%drS{@;C6W@Hg<U2&3??2%~o0-`I73W7qwSUH3QewE=V(#Hzo6ukAs4(AT!n zocuhvjeMRk3a%pP#}WrZSc)*a(Y@orOk`9Hu3v`5{{n0?(*w@3*j)LwT=`AWzs1&L zgi#>WcA{vGyjzq{kT>f=isE-4<$Cuy1#z!a-iIhni=C3~_d%>L#OG<A*HKR1cC5is z0o|r-Uwo7($47Hp%j|*b-6uugPFsMOQWYnvh`D_Ah@G*+DL2{DQ0DaOaHq|Ic_Ml` zl0<nx`FPY|8Pc4EGVf9>Nc}(VL%UA7KbJ2?&d+!x;FLGoL}G@;m)I<Z^F`UL+x{mx zzG*q$Gug6aD-s^w&n3rDiAYyscY|(sfx(^rDF;!+=J=fk14&#WT#b>>{xkZJPkmTp zOLM}s)LyBLk}m8{|3;gGx+-^z=oz6fn6C++PTA-shcd#ia>uz)DBBm4;|)A8NyMVD zMD%U6DMV)Ihr4J^4~S(>FHKtmN)AjXwa9T!!|AMyfcpbz$dIuHz3`SHK#D%<KtS}3 zi5BHCF+<e9Za0nnpeZ42(;{(5yd<YW@iL9#rGv*yikj#-zR_iTZ?QFk2*}fV)O^9V zRn2)xkD3^0<WR6o!_Z?_dttDoWg(`iWjcJrV6Y_bP0oS`%Sm_f8N1{J&2%kT+O=Sb zNTvl#!lnu!<+E8>@<+G?HCE1p-zH0;d0{dADG%HbVR%Kj{togg{p3}Y@gO8IzE1=l zG{a7imw^YlAX085Zx|UQ_YwKKn2QLKn>6Wpkd)9KHL;twrN>CSu;I4I7^%uuz-3cK zf`D3(d=&OgqN_oYD5-OW6h-?KHx;TfQ(%M?3-^VE2I=tdNEG(YzZM?fp3C)kk?@#e zM+py)q#5NhB%#TKU!%fB;^ULZR;BrW36PD@C$;k56(0plG+Li)fo1j6K-@PS7{+JG zIqKV&7>6Oz5w^6}ip;fGloXtW(c0-N^|ckFsq)mvaCm`qL^Pyj)8xU`$r5cPvg5l$ zRQ)`X5JQcGWSX?RgCG>zX{}e-POVTBE`n@&C`_T&v{2Ye@sBoAC|*D@8$l3Z>-%Q< zUYx`y4lo2ibZakVh9e-4l?a3TQ1$yF6(I`ZJBNos^N=t&=YlYpMqv<c1YwYZA$KEo z?nV#;X>^gPyAi~|t!j?$Mi2u7$UzJww>0RuXt#k`9ehQNd<c29!1VRhKSaDcivxT; z7KY>9(vklV@y_=@DBdwl3W|3n6z?dyHQ5?rYd|*Y(QT7vmI!>?)S{=gHQM+W_?{5N zFWGw3qMf!rAQbpYz<Dt6jUU`4)}a9NObvWCzDxX2cu)^~IBBq$WW3VABwO+^P3#_; zZsoQDE$|h9K;0!0HnjqzeEvoTzQTAl@X;K#nC>8M7Y}@CARHR_J|-6sxJckD!6Fgt z3VPt>_%4kHz96PzMBqCKkrMXjLL>yfJwpOtfw19HVlgN^$@U^>IT`2&1K&?z=p?!t z_^1~Vfo}~J{-wb8Dg0u@zVL4ge5oX~V82M<yI~wk1_NI*lGIBRDqJM+oe@#YRTvrg zK0#J^XNV0ZbcUS5H~+%^?Z0P77>;O&d>DX56!2)*#rJsoAvoU#qW=pm7`A~S5$}(% zRyE@7(<0vIcs~-3c-VJYrhY~_wB4reBd4H`EQPl9Sk)9`2a4UH8e(@T|B5#h5sH7B zk|3rnJGR_Kd%>@m7Jn(<15+3{#?CVJal%#JMTf``Krw1G@kcfAU($vX57R182^;>2 zW+Lj>lTesw!g_jbfgBT4IU>+lo~I2cw|Vrg15D^F@M9W6JI&4mD=r~LnPP|sg8Lpc zUi>b_+e*%B)N)$j7W9Egi?=R{w{*}#@m474CTuw^?nW(61KR}-WOe}wM_X(^X$lmR z`mx_c1g^xFtB$Iu0T{@fRl~QSB@}z%((JlRv+FJm8_})YT_FgoE)79Apyuc<4I9xO zHAi)62*TtmBZ4sL(ScVeE9OHQrww9{!Z|m-i?FA8#l{s06e>hEy4(W{WWb=-C0G>~ zv<J87+t`BO`(N>GY{5stpAv>)>BU=)NY*q&D*Kfal)I?`nrF%ub$JwS3YI|QhNgm< zV6WVuiozu%QBVfjU^2>ttFv*+I`n*;_DFw!`{RzNi>wzWVWaVnus`nqZ`~i$tJyqS zBUovTkcMcVO;)@xa9Ws<4x4Om$b(7UjK`EUi#w9D4Y!HE#pJ=qNcP@dAqqA7mG^NV z%Q5nk0p#O&t*Bi&pq|qr=pxJo$ioHb1j$O%7p-CG?7$12yhV7y(?~2Kj$K%Im?ZES zz7Qtt6;cm1;4Eqa1hT|IpuG)a!JM4mA*4E2rjlsS&ZL^V?QPANe65%{7PB&sS{4dT zkLqQ7K2SO8lY2Eaq69)}^w)5DOTto~i*r9v+^JD;-n>5cp<J#2Ns<yN*Ge4ZTTEk7 zgFJxBG<XolywsP$_gCuMaFHKF;2k&4*5$YHR=fkR)8K*d3bGF?V!6n61K-;#8*%KR z=27|vh~B5HLY{wC6uE62u}}zj=@<o65${Dr&sSsIJ4nU+r5t%QdL<uzKd8M={hQmb zh9eo?egX1^x8FC|zWuMZzwTr~6s=5OveCO=dhtfbuY7%KRgsOhG!@xoa{z&6r|xn9 zA{bqYbtlE9w}c-&0)+`)8Q-G6nw;?{SeEF|!Lj=$&KmFQJ5WlhQBRxu(gWa?Z34$7 z6px#tRmGuHJ;!@jKy2VrVSlDdg%G1kg%G1kg%CqhA!<-RxQ_MxnJNetaAtmKfdn?$ z9iWvz177qNjNuH-`n;#zAdCqK_k{RN!3i-LOyK|~$ijfK@G5S)IKCM*11Df+&-qN) z`&oB;FcU*h7c9c#shX1`Y)*f~S(I)|+=4{;G+C1}8k<ONLdf7&6orgoqj+M-DDsI) zR^&hr_49l(HOn1K_pM=#ndb~G7CiS&s$kyB_kTrvYM%V$pT?7CjuESBM2BPJV8 z|68eN&O`le6_~G<gd|V_Mqxg;u3Q4%7^4Y$v;B?<{=Dnwl;MEza4udhP;C+SMfB<W zo7<>b5uG4jAi`D%<5uwUbCi)<j6bByk3?KnOD2kUpgJ{csse&x+1L9r&OgcjAk(0{ zK9-jz+`&ujoiG@<1itD5Tmt7~-=(^o@VjV2$e-ec`F`B7Xm#V2LN%Wk{UMPKL!}kl zalFZtwFufE*h&O<5P>gY3vf=O+>8vTAM=_{VXgd(6$xcNuj8bgHs!m#5>5$l73Ut} zl86k>8yR;|2CWNlNd^+8Ey5L^?oi@KIKk%Ed9=(5?$4;d%4|AY#f^r`0~hp&%JEV@ z2`_7<(fZvEJC>Q+{T^kJFnH$!{+HkNv3oMVxE}X9q__^#$AqBMc<(D+O7{z9gt;tQ z($*~cle>Qk!TeJX6Ug{N>Jfd>bUz>pS5Q1{ct>>HeJZkw61)UATXtyiB0Ugs836hh z<-J4v9i<}&h|4!!gnkS7{x#oLKsOso==>W8JfvyEwIol%qqx@R^ou1~EmxAYK*3Bo zehrFn2yIu65{6Pyeh2PRc@s&c3t!Fr`qSY2jJTVy864)|P7|FMlgoFHh6ABYec1^c zWxj+R_u|6GKH=ege2h&$M>73XSl^;A4=Q=RevH%Su;ln0W~X5n(!ztILGIZD{~t)o zIOy)8i#v@N8fY?C-YqmeNZiU!IsMhkS#Ilx(N6i47(MZJFsGL~9axOwqugepTLt;H z_^g&Rq(ws~8DSns%%abfMAW{C3pO(LJ)hHV4!sHPLen&`#=*Yi={LIbJf?G1c$cTu z*DP2goS+hB6X8lNsNfaCP$dMP7>DT?_HUkkhxEJ?^8;M7S{x)4<g28cCwX%W!BFBK zd~`p?y&;sC0u19e?-pEh*`<u;D`1lM8RQ4=gNf69BI4IXFEG%F2!?ovMpMf-u@1zc zH^agy@sI|cgUk-0$qAkiUTB&HBpbURVnXsv*Ew=Fp*Nd{b*e4>RPbKZfq08<Miu!T zr2!X=pwr!zs>Ttr5=u~Xr!U)XR_>-kf5Kd3<jP$;Xe^YO$ZO{JYqIiHuV0ewOId^Z zIo=PXk)q$#14GIxTHMxQT8dmKn<>9bKx>;tztMqb&s8L@r>9T39pj8CR}4Rh30MHo zVY&@<=p&BbP1C~)PjVfyL@Y?g!)5f3cwh^@M+y%ILFCK47L{;=&64d)9t$+bdqik@ zg{o(KA$V%Zq4+aj><EQ?cNj(gf}>e2Mk+L%^BJP?-mJ|m=Nwf|P)y4BqW*|4VfQlC z>ZhV+`jPZAPG8C?1a@4$I}Xr$rS5MKH&Hw3mZ^`Sg5Zy#hT!I+P5+Fv&jMF<O!SFn z-ToGA%?iE2t#k|Y0e$C#%;}$VRP-%q5q)#EX8Vjup|^XV%l0J}V#4Qm54%&KlDmL& z|CsF?nS<HrO+iE1zF9`R#}d3rNciTP;mri^QsV1ri|74b$;UYJm3AzecA~%h&KWe| z8;!c=EaByVXc&MJJpC4@FHS00InL8>7MeOqHU5PD>97Ui<xa69hjN%Q7kfodzZJ6= zDOjNUo!s$<oYApPc@8G#g3hcKGm&iunI=O0qx|J*w(yD}>ui8E;sVw+x$E|lAi3i^ z=NRykGe@f$MO7E0YHu4aY9*n-Sn63>0;$};Qd{6=G>yo%WcxT%#u}xAb7FgjGo%4l z;z1dt;m;OcHe{U%G)hlV`^Xq1?|lZHl3t}L<;_M(Fb!W~baIP}tD*2F8mU>(&@3~& zosv6%Qh&lz$W}6eN4oQ7icc6;R|?f3Zzm-qZeW}#!w+8x7b(h#Ih2H(c%KKji1m{i zuTbGJ9Kd+`L%1J#11=3-irKLaIn8ocXiU4O*Wf+_5gs8qJ#>RGxEtFx@+Vlr`=>4h zW$y@XFLIlImH`*pJh#5Z+^2hA@|gz8$w5gmU%<UPFwZ_hnv~kxL>&p=k9CN?<j-u7 zvSrd!Cno;ndSF<`SwV;?)h2yMJo~yRCm$mUbwx&(S+TywuD}{f%vuk#_LUQQ2~c^D z20KEDsYnx5n%u6@O)kggpap%w2M#9vWN!M`x#@q(9k&~|S#vXvif22e%bjvc2{k60 zs)n{Hwj5Y&JzVhynfPQ))ZRn-{G|JNT&H!S{2EjiUrty5-tmHyFZnDIIasdw7f^f( zCGMwe3Q(;=)6c1+{+u4_HRb_#e3+zN>H8=ur=dvU;aT*XTFOW+C?}NoL(bUrGcYE? zsmVY(Obzf`u|^i?Ff9j0%0@TpfnuC}6y4>V0MKR?-5W}rM{N8FHzFgH=t2T<r3pcw znDG0FS;$lRuOJQxg|cZP+Tj}w*|ZDN1Zhjg?UJwme1^;);+F#}XJ+~V>hJq4iI9F+ zUHt7LE?8{gx}(sPj1pXW<m($LmJ@^yLqmMoM)s14x2}k>d%$4j%FIW3;vFP19|I~q zt1pbO$WzyInPyHxo><uMBoShsHwsP95^6%3`v3$PiIkENDaa1wkRV1tsgV<qAi;Wc zEb~Xy*0M}o)eX4)s7^%60JgT_e(*r3RTr9Qm%@oSiyM&&uV2!S1iyfj45u@biTCrF zU;xKD5u|$W)&8hDdl+ruzBoe6d#KD;X$`SFFx&Y}VYNe*oGSPSkf<UqR5R%Eoo=7u z`DRt_8i5YTZ9Y?91@-+1)?*&rU{|k+>-6v$L0HC*CX-#Yfslq$Sr1L-$^ou@Ea}|s zxXZc=g-$uJoq{!d!ep46)1PvZBDswF>TlA$5&3NH_@lqE0!<I~-bCYziV2`>H=d8p zmTd#Rym)y5i-zCw8_(0_2gF`1zT^c)(X%IB^n|QZGTl~Aj3JQ&?tq9GJb}v*yba20 z-eE=aSTjK8bO;nmT!`4AmS2T(d7$^bA^S&dJ?tBWWvMSpZe8~-sI2SG&6+hEaR*xl z#!Y#}Y|RkU(SKpX$COXTD6Lfu@kU)=m{vb=aoL2XG%{{1@I1SxFIpmodbmCF8BxeL z$NG%e_8rh+MhH!p@aYhcwyQItlRGK3zGmNNW*QN6D<Pz6ACVNCKiR(&6gFUfsJ1U1 z<#sQ4OHoO;{mgKa`#}dy3QaRntlIsMW>w?g%#C00CaXO71UPq@F7_{U9_Mw_3k~6s zekN!^MJ^w=_nn%(zXtkX28zP-0aGqMGR^lL>LifSp7#vzu+a1|YVvt-A1nb2RD1AE z<Ww}P^n897f}T?ccc4hyFRA5R{)}+>6DZfBs(#-d_VYt-KQFFDFMY``Ab~j|O~#7s z)<(*j`fn&{_Kl<;W9$jN1!KHK^q#`+LHI?nAVuLt7MfOAYniqa7k|QS#DxdY;>Fw` z!uR`qrYMx9ACc(*1H4A^y{mdxe@7DZyPZ!we<FzipS(xPl&6bw9j%)c7+feZh6`$n zrY8IeZ;%nn6Tjpj#}Z1s3B?gSe+wmtdY|C?b*s<h1)aPf?F!ue;CC$gd89u<=Inp* z02umAPZL9g^DBIojCb54d++d#%6LZ_k8LKFo#^g9_orz6ZeC?KstmGgLMMpDT^3Q! zvncnCLBgMK1E+ifl)Z0YZ-=s0ELUzrZtqd<AF#fmUGwbvMB0Lv=nkK6!Lu>+rdP{p zec`U~nF7Etjoet0B)kE<!}KrsrcWrb=lkHetD@OwdV<qS*KtlArVU7vYH3)op75FO zSIZw)K8Ne-eFVH7LQW|0Q{wQda)fdp)2yYrIXzIZE@RF;(g<4KWP?rFUAKycL+di= zhkWi&sCaeK$S7eG9f9)lER^HS220ee7<}c9!ID~<mLt5fFAIk}-}7h3Cf(tWZ*=;d zd+m@%jL(wy=4N!RG)Ifr`Mz2|5?frmGh?s&gY>``ZQ75E=p^+uW#wq<N56UHGDtlM zL#!;uD1-e%u`F>3(pWrPNx;x4ypk6qydsXlhTjbkOzUt~^#+kI5@uW7UQ3aWp> zy4o&gd?j6{uC;M^Mmy`v&=7R~o_fMUF+;Z(5`+#|v^+-Z0V{3!{R#hj2Lw8RsRn`2 zP{I$9#!gTi|0<_f?{{BdFSNe(C%C9?GwP-vM(xpJnduR#?N4+92(RQv#mG1<!3ajQ zmriwx^g4NBS;8V-$CO0CuovB@0dS1*?vo}#{{c@B>d$AS1Q}bvU3Q#DoSAu@6>}Oh zUl6ej7CpP5j$Lm4OB-rY`^8syzs}d={)B(qj<$PXDkLwo{tVKhfUSonX4v1U>u)}M z=;i}d?U$$q<;Lo>wT=2u^`ZOmuPQrGOf#^@S71B)dTa01VLF;Gy8lW)#dSWB7#47b z(tK#GkofqgUIyUX8Pg2A_lBgK=?;qgxl*EWo*){|x)XY@C4Rim9b<e8jo2BE@Xd}# z%U61jto_(m8!sBZ6lI0fPKyTBzSHrOslluY)xW@RY$}CmqAs+^b*9J5^nLz9gK|5} z6s1BF<`@%RwlogRkxY#P%iVdx%Xx;zf%%kbaL+_4s&U|MO095DK`Od&U>2py+}}mY z*f=ncQuXd6q=4j0qZ<b#=@QQ;X^jK1D`F~|<?h~x`HD8QnhS)r?70%O=`Du{bpGj2 z*gk=#yKq0sWz$g<21S%<Gycf?Lyps$@5&Q1nFXZSVI<XGF0KpmlqZ&n6FJ69SAHyx z$JuQxD<~XVy_tKVh`ixx*i#Z68Qb`E=3{`!F?X-A8HHD}ZN|m}@fEVs)_sGm`|Iv% z8&*lX%~-~EW53nC@7NW+QO9tz8t-q-RI~fTpPuMB)|JBGn&_oWCVnN%q~v2ooH@>k z@dDM1Gu~bJp`SiJ$7nJq4W4(-7uTKKMuUWx7i2#4@?t9>Z)G~ZabFfmG&lX2ifXOO zySf9B0-&|28^&Xe!W`hzbe8k5Y~;0Zwu~$NsjmsXtKgc~y+;CPl9v{mtdudJ;$u{t z*O!3v{s>L9_5}(0CU`TWA<Gas&g_n&ThR}pJ?J1LG+hw|5*%Ss3hoGUk?ch_htde& z0Wmtz8OQxGLKD3mpaT8%Uw=qR#91sA!xKGa*Mf8h8>e<=ld1~*21LXw2rD=PRbE9E zN<&!|$u_-r+_A3S<OqHDT96Ts$9$}-q8TIDMe3l}GF;zyEwdHuall5yu&7Ns7^xp` z4`jZe!=&rc5YIi6_p1blVw%vWuKQ-8F_=<V>M@Wy*noLJy#9b%y)W^2rs+K8ujyGz zy||9Y!sqBZ7Jl$ENH2IdQy(xQaMQd!eLOlxkmlY|6daqS2dD>pHAmHjCjvrtr)FOm zVxegaB=X{oi)Cs$q{Z3XFvW19N0Av>iPBUh233MyB$_WKhp5R>!sXyHXez&$C?uzJ zMcDY!t`zUZ3tszKq3N<=LLKWOvAn+^LmO_jk}Z;l`!cn2`QN3^9p+l3^+iN)yrW>* zDpe|{dI?k)u%+&Phl;&FLNTQbNCh84g8V=AKXSf+0K<V%;Fh%HtHIHu8S?tY1Q)y= zP!uszD?>@9Jt=6>cN+vmp6P9*=%Bp>3DpCTJFTk_^6{z(-YX9}%saBiR>B*VV>D_` zbfnr=M=CzPj|h|lDCAj1wgPaIYy}ten5c!OXGkW@!U!W%YT+};z%~r1-J&k71s%y4 z4H@Ag`hqpc7(Abk923Di8{?^Je7B9p<t7^6uHY@GqOGR~#|O;Lz@MQgxE^F$x#qZ< z-p1s<K=QD9B>Fu}VjbE57yOnnb+6!SM-7gxKL~7CJKh$IRPZV;o@#o(K*q%ym^yGR z8N)+-WbJ2zYk{D#ChjqTBwWf{MT-w+fgKH|nfm(RWa_Kx)?guci-}i;s1|@Q%Ck@` zn(YgwgWI5JAej0XHP>`GZ*C#>iE6ujf|m|Op}P>qVrY$0F5t(=?>!)Rcal+efs^{% z8t$~FV~D4B4`|ZB$p*KBI($A=$M1xKk{k<BQe5OwQ42CZh8b&)jZU$(5JeZtG%Ln0 zbI|dGn@Exk^m}_P-!u_9kVP$T6*l-$*8NG>zHbiNt%HHPyY<M#19)fEy{l{A@%OrS zcfEgn-*M#aMPAo|<E`C&-OBOSW8K|<KGu!@VBwIyfO<*y9cc2PGYHpp{4lHul52JV zr=rKKzO_<R`VrJ|D1~ri9qbwq(Tq@a3|`oP`4bl)yY=16U|mOA&s`19n7y7>BadT> z8D|VUf|2rqYcNiO^MN=IwxxWD=}6p(k=hoR_m4x+iKceZoE{p{fbt@DtjOeyuLa}g zV_n@!@N!_<{NR#5IfN^?!Fwb=MO>k78Vf6NR;5<%0aFqo_&N-<nd;NbQx<7FP_vS1 z8c|b~5QchOt*^yD5^W5)4BA$31M#8{_8Yq!hnbSROAX1G%MLPbI$PxG#W=W^s52bG znXG76nv680rnH&TspQ7EGvw|~IRe2V92y3^Hvx--SY01jpPg)^?YcVN)IVMS{c9CB zCf=a_!Jjm>*{W-5nEr2sPV}V-Hznd6$+0h_Tswp#Sr0hgP8=^bqQ^iT!7(_O#x(K+ z>EWj_6YUVw9-in1_uUw!eVAme|9ls2Lm-grG{Ew0BB;ggeKZp^%^KWOFz|Nh5qzlL z{ZZ02kX_5s^@HImXmkIn_pGkJB3qg=7di&RG;KD7D{<mTX`5*YhELy&M|OQ_FM8zg zjAN!x(4`|2x<5S8(;fI({Y_o(AtbzeH2Da!PxLf?kRx3R8PCxHNk<kY4n{Mh4Oad6 z(46}_Xig8!qn3#?ywl4$){h#`o1_`tfp2yt+WP-!5Q^chg48pV<uB<jf@DPdpAIe1 zd#UXo3;2Z^{xdO*1H8PwPsZJy)Q<a8-8Xm!VAKsTTI`pEjVFP4KEk176%dLo!4h7i z+M^dSj((fzIgh3Gi$KzkfX(?8qsZXr;)U#Qp(pTP*ylYXpZy&OnD9^`08Ih9?$z!% z(_v^Ky$RV}%C8_k-Z$UipBWNf?4UPj566KR%n~mJGtgtjP(b%`UR5uw&>fw^g!9Qn zQ=~!s2u7HI+fQ`ItuWy<${-Sl!iJM*h`62PxpXBs_0Y=2B<y=CUF(XgWTjQPx+x$f zQuckw=3>*0D$*0lO9k^#Ab5|0-=WW>OV!-MGt%ippP|)u_otpeLn9Qbz0iogPnyWp zi>pPJsn?;ZluXz}-sr-<UO}^0%IqJ@d)m%#x$)oNkfHKDcr$IH=}(Dx`UAqo4}s8C zBI@Qya0-rruFszM9jQF{QxsM-EAv(LnVttz)&8}+0_yltPaZ;%-n-uQB*6p739bg0 zW{BP%yb{=;d<g|AJzeE)4PHf5gCF!4pTYUleF_#HIGXYS$kd7R9<cww#2IAGu~5ow z_u*K!Ih67iZfg)cuE9&Rd_Db|mjAd0_4FAny<UTtY4u*#(jN_j&uVF%uMU@J`9I@O z?Kch<Qa-Ix<$7QkJg=qo^1HQkg$Ab$gL-+5mcQb!z=yT+k1Eyn^?Ewrb}fI2Mi-;O zXSMuKHF$<Yy+7o?alEr<E@mu_cP5B3oUrKIWNQQkchzaQS!4x9v4&pO5``nwi8t5q z#Lc3dAfs;Z1CY~xBm92K;mL?uQHrYwCAfYxxV{j5|73RhO0A-=DoOOMwkY#q#)v>p zP>HyYlq-LZw?9sqUh&G+bU|zlF09jg9DcIspjkpMj`ete7e9W}EmXN|Of$|!Lp^A6 z*%jE|{zyHq^(UXhTeRK{nth|xjMAXQP2PbvlP{;VdVIvwt0|p7Se`}cY^2FRLn+fV zJ+9zT|9de?8$X##7`p@A!4cWw;L>iYfol9ycaQdW-p~{J==o~u+wcD@4Gh<-W6Dsy zZyPoaj%U>JlC3I4e7eZzUs^&l)NJd(r@M;lo;i6+OY4^%^hyV{y9IjsTlinAf$FNI z%gXMZm_8}Byt<kde{V(cJlC?S2FX=FtGcwI!PRh4ar$U90|ySABzQoBTYvJC?b;|$ zaA?&u$mx+4MQObrdm>C9Px+Cb#>fO?|51J{T>rs^_22uVLYev8;+1RizxvayD&PNm zeyE=|dGh<zPxQB2?Qf&Q!TB~i0vxijYMPDJ(t7`UH2pBGT&2c$V;JMe6o;OkQ&qEU z<;0cKrqCbJl&Y4ytQDnI)$V%N&2gM0tGvA4)zDx~sk2s=Hdt$FtyRlQm$@c3xXPre z+8SoH-d$BMxl60>a=YqR^UAJrYej9nHKp9TbhYGau$D^J(l8gj-Eh6U`dSIR^qMQH zq)KZU{)neFZB@!D2L20b?yIR?S!1nhaJkECt^DsMmQvgFhd`y;vf66v3RistWu%m+ zs#5>udP}P$YeUuju1I=aF8%LS>gnaIfvsR=te#0Mm6hX9IacdM9M;vYj7ax~)I|SU z73$-n>%ULW*XY7k8^ah!XdDA@ohP!?{GL|5T=S<IAI4m(>Uhy-83X5MrmlDJgt#HV zA-<|>m+2^ASgvq=wNRH+mrs{BT(wch4&Ji1;%8ewn(@*9nlX89-Ux@9-!nsP|04|! z%E9xmS|3p9a38ULnR~gbMzWUIE-%I3Y<1Pw!&dCsbLV8`-Z_4-xB+(Qt}d;wl2%*o z^K)mTjDO~0tShQ(S6b^!YnHk6>T~bTnRmN$?!xgbue4sODy_Cw*TQIPD=^N>YN{%# z@V8>iTvmIYbME~4oKt?S^o>;cVJgP*EAi)LT@CJP$%;QcE7jIo8<v+=R|DgJc-B>i zLUac<Z(nd{wl0Nkv%Gg)?&9U8QYDi1@i$vj8tAXprZm`7mfc`YSvKBkwb#3(6{Xdg zNWg#>Vex(x&q+LA<B9(;6dH@?HQ>4)|8AfKV~&UZrfVMHM*JZTGw^1>kMPzz2{`@j z-5I#PU<d91+>9p;_*TGY@!Sf08{m_;WRp$#fX`r0)I|A!2e4D!4ZIU@GY$-o5)I(a z6voEV#W}$J*E2Q+cqib=iP#PT?*m+&3Yma60$zC|>H)U`7T|dfcnRPecwPYB1DKx% zev}XR^K_H}-v)U3B+M@0R=^rO=11{oaRL8~CmuMP%-AG67T^xRPw*rG?*lYWK|SCW zz!`Y#L<9IsJZZqU0sbqVTY(1vcjIvY?*x1UPd4x#z^tiQb_34?eDWs93VbWz(>F6# z349yihj`Wi?*q)c1v(^pz-m0r!0P~~BZ_ST?f|?c6ZHuP?7EGymw@*GQiR$GoIJ-l zc&P)x*-XZk<LLrk2lyEtg=hdb&Vqh`Hv?Xm4cf=hH^4=B%)m<kx8aEgPH;{R^Z}f% zeLRF`EbwN)03I7~f|GA&>;~ZUyV_-VrU0)4+==H_q5-^fHgp0!5Abpk;|kmgcrBh1 zq6b`oryO`A;Ceijz?%WTlMB5NJ>ZeKuo>VzfY;B1Ou*9s%jQE@!0P}n&1Y;2aJB&d zFNEHJrxh|*i)Sa%0ItEa8+apN(LIdqrF_7L@pJ+INBbB|QOq>SkY<RBVR4gU(o7}B zy6C*9fWd5H=9$K{=#r>9LmsXS84b+%AfP!q#T;#(q~=ALjM4Zp*u1OQy#830tC*Ri zYXrM_Zw#B#Vq&S!8JT@^G`r@ZC^mMLfqkcvvC)P^7N0h<B(5$t&m4&9H1<UG85SqA z#r+8^Ux{aTbd6*)_r|e|mROedoS9v>c?28xPz<|rm5E(eX=I}eV_95UY>ByUL|#n5 z*csIWnMTKf@AZZY_}-Ju?&*(bcPS&8*cHcS?2Tp9aD{&2b0fev27FE6YXskD@V(-1 z=UbM{%K8O%k8%mSt1E$td*j)RmXU1Qb8&3q=2&KX$PB(Cz&8ebt$#b;L^Df#$jF3M z(JZbK<MJrRh4ha3X@KDw5=O8D$ZCEtVq7kkH_ZZBY>?$z$Z`#28OKIfTG>d$9Zauj zh>v0M;5DK?IxVWiP{;XG8+v<W7xN<8*YjhdS<K9+G((9d6V;)I@|SA)f|&`1(afAS zq9mrylxGY?bwYM;LUh9aiA^(?jHrtVgl&rYHk>EfVts@y#+kfv(Q$_<hu70(8*a0a zG7Puh;c4CO^?vF77-3{1CTThuPBT0mDfc(=*ZC5pwypt88o`oQ#W71|EHfJ}V}>;3 z#ThZ?G0b!rI;VC{Yr205WtYaXOJS#c?4Qy{P~%7C#Cy2TBIYTI|Kdmg+xv&Nsk}yk znjSmS)p)kyp;$?=lj1zZbc){;t113c+@*L+ah75~#d(V96u+$~qu5RH^(gqfhv#EF zXYoY+hOq=ZNqCa+T!ZI2JlEryif0C%Ts(8|%)_$~4@nrsqM4DISPUD1KL;O+e;!~Y zi)RV!5+*PUE3K-ZJ&*5Z%U#uziW$C(Sp{}a#bvJLr8TaqWiBnftbWS9VRY&sIt^&0 zJDt8zztTO0zKR+C>4IXlii%MU6{89bm3SIZsi6Utq|%zo)pf-r@Bi%2t${)Ln%fZv zTM^^&=$}6!Z{sdKH5A_3rl#{XSgpZE4L+{H7c{t2gPj_DPlI1;Fn+hn&#pm-2J<v{ zuLc`6xJiS**5ED;_GnPi;MW?A+oSUTt_G)TQ16wfrSH~YxdvBhaJ>ebHMm8CPiyek z8f?*EK!dMp@C^+f)!+vj{8WSe8jOO@=@YNP%QR@!pjwJGl%}_D^{;B=zgquqvuszj zOLEP^E*Lx5>iOE4%UPC#9cTUUY<9pf+a=9%*Vki1ier^BoZGO27v|-bvqKTN`IYsq z(sE=nAqw@Kr43RJZOXAmru3ZJa(A^$EUhW8c4c8*OL@dxI~c+>cgmT+8b^A|^KpKZ z)o^=NwTm$Jb1KQND!Xr1EzXwUlcREL(38??oV^SeJ~!IwDqV3wHk%vmtSv2fRxPbB ztzV5bbxSlqXv)JWKy5wTZJCQRch$4=(etEgNOilrh96DkmoBY#u@L3XDy@@nq&2G+ zYQw*R5@ST3v$pm=cb!fQh1Rb|w4f60Kx;wG%BmV@Ws7mXOIlD<$u&@(v#QKhN2gEd zCB}gL(m21`<*H+^81r5A%d2WiC6}&x_IqP~bpupzcWJfT#r7M&kqHYLwMJ2wPQ&nm zM9<;f#Xg1=7vluAw#K!pN@DYos;XUDT!FsQKUY#*+~AVj4Uj-RWx&3c6_+k=SXRu* zSvxDn*+We&W8)3QRTu<_zMM51it%rd+{dOx6>EHtM-{tkc;2(orAuq;CH7J@43Gay zB?qG`>gua%qzd*%bVa?(#n{^fasG57x?&|v6glxmIvlBmOk<48UCYbrpwmf4I)f?2 zvDxj$2C2T<RfDKYSWVgTI#y*|p|eF$$2|N0{M?Z<@6H_OWc4^2&5c2O|Jl#-h81P? z5?>;qg>OF>)qq8Pzcai{e?Mdy_MT`s-M8t#4-I7XsN<Zi!LizVy|m7YkN@9CufCP? zZ`ME_q5_CF{|mlKaHa=f*=pUIwsrbe)~TkG)D$*)YMN~|Z?$Yq+6vNdKY!;M_;)^W BH*f#| literal 0 HcmV?d00001 diff --git a/src-x64/frun_CEMANEIGE.f b/src-x64/frun_CEMANEIGE.f new file mode 100644 index 00000000..fddc6a5f --- /dev/null +++ b/src-x64/frun_CEMANEIGE.f @@ -0,0 +1,128 @@ + + + SUBROUTINE frun_CEMANEIGE( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsFracSolidPrecip, ! [double] input series of fraction of solid precipitation [0-1] + & InputsTemp , ! [double] input series of air mean temperature [degC] + & MeanAnSolidPrecip , ! [double] value of annual mean solid precip [mm/y] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising = 2 + & StateStart , ! [double] state variables used when the model run starts + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_cemaneige + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, intent(in) :: MeanAnSolidPrecip + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsFracSolidPrecip + doubleprecision, dimension(LInputs) :: InputsTemp + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + doubleprecision CTG,Kf + doubleprecision G,eTG,PliqAndMelt + doubleprecision Tmelt,Gthreshold,MinSpeed + doubleprecision Pliq,Psol,Gratio,PotMelt,Melt + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation des constantes + Tmelt=0 + Gthreshold=0.9*MeanAnSolidPrecip + MinSpeed=0.1 + + !initilisation of model states using StateStart + G=StateStart(1) + eTG=StateStart(2) + PliqAndMelt=0 + + !setting parameter values + CTG=Param(1) + Kf=Param(2) + + !initialisation of model outputs +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + + !SolidPrecip and LiquidPrecip + Pliq=(1-InputsFracSolidPrecip(k))*InputsPrecip(k) + Psol=InputsFracSolidPrecip(k)*InputsPrecip(k) + + !Snow pack volume before melt + G=G+Psol + + !Snow pack thermal state before melt + eTG=CTG*eTG + (1-CTG)*InputsTemp(k) + IF(eTG.GT.0) eTG=0 + + !Potential melt + IF(eTG.EQ.0.AND.InputsTemp(k).GT.Tmelt) THEN + PotMelt=Kf*(InputsTemp(k)-Tmelt) + IF(PotMelt.GT.G) PotMelt=G + ELSE + PotMelt=0 + ENDIF + + !Gratio + IF(G.LT.Gthreshold) THEN + Gratio=G/Gthreshold + ELSE + Gratio=1 + ENDIF + + !Actual melt + Melt=((1-MinSpeed)*Gratio+MinSpeed)*PotMelt + + !Update of snow pack volume + G=G-Melt + + !Water volume to pass to the hydrological model + PliqAndMelt=Pliq+Melt + + !Storage of outputs + DO I=1,NOutputs + IF(IndOutputs(I).EQ.1) Outputs(k,I)=Pliq + IF(IndOutputs(I).EQ.2) Outputs(k,I)=Psol + IF(IndOutputs(I).EQ.3) Outputs(k,I)=G + IF(IndOutputs(I).EQ.4) Outputs(k,I)=eTG + IF(IndOutputs(I).EQ.5) Outputs(k,I)=Gratio + IF(IndOutputs(I).EQ.6) Outputs(k,I)=PotMelt + IF(IndOutputs(I).EQ.7) Outputs(k,I)=Melt + IF(IndOutputs(I).EQ.8) Outputs(k,I)=PliqAndMelt + ENDDO + + ENDDO + + StateEnd(1)=G + StateEnd(2)=eTG + + RETURN + + ENDSUBROUTINE + diff --git a/src-x64/frun_CEMANEIGE.o b/src-x64/frun_CEMANEIGE.o new file mode 100644 index 0000000000000000000000000000000000000000..d2426e2b3bd71b5949199d4609cd89180005f7df GIT binary patch literal 1498 zcmZ`(U2GIp6uz@FEz?RkL#Po9(2b7CG||bTHG&~whVH^_T+GT(TS9-KI|#w1fiCF- zX-e8f%%-FdK1jj?PliO}6Aw1=p%p3!HG)M_!A3AKx)x(IDOwxC`klLN-8FENd(L;y z`R=)A?wNZ!PL&HDA8SGw5^2KjPW5z4To5xMAv8sZHgI^b3X5c$-O=9NE-g<Nj!2H! z`;Q%aI-}s}V_r{bKnJc_wREQ=B97fv%3BUfEs{FDkRNZ6yrZSOFxwY6fN~%|$8B)y z-97H^Jq`7{yps<uz(F;&Ce@rUjVRSb%`jxbj6m)-9mpm#3E5$`K^`%?ATOGI*ah%~ zIRp@p@wyJ3tr><CiR_1F7#Enxo--rR9<;&wz?hf4XgUltBMCr{A$g;jKLVGG7g^Nl z-Up*WjEqX}@0+X->jCY3jm~TXmm_b4_NgHs+i*9Cl2OJd`f=)g#H*LMsNUe_F=>sF zb;I95y<_ZJw;DD#`#fSc-AoLg&=sogV_Hy0#><m9d+(_4l65uMN=DV4fSSHx&)Oew z{O_38e6l8(^<6-XzhHjplYNEWe+BtaHo;lNsq;q|XBm8tgF7D{U*ku~n#K7oe{t~J z9N-p2;{-xZu=AhHU7YnZD2?;I4Q~x<)f>K!4{Bdczq*j0+dm(ofloO5{&|%$pK{K$ zGECJ2oWAh-M-@+*+jPBqO*C6|1|%hYosA&r(vki(-hWAnZknPD<@0$jJ76Y}F9*SN zbh1!>OP1e~<+o({Em?j`mfw=)w`BRP#qwK)@_Q#Q^G~#|rM1~@a+}>2xAhX@TDko= z%pXERTKWwbMD86JhWK_a<C=b=Q`a8n^L!&yxZ7I+HBUg_$qmCwna?1nC$YIKU5U$C z8Og1}Zmi4G6$rLErxljV<kHAJ1Rq|VGSeItJ2vL-0}UxV*NdHV6(atdE}Y3_;?1k& zqW1GLVPDXM^^q!GI2{sedld29yF#o|o)ya@&$Lx`RV4M1@*CQ{&<x-4pXdqyjhQXL zBje)_SdTC0^JmWvZ>fi21*RsxT|!e!Xl@As$iAXV$&XYO{DLYavi(CxQb0T&=Y=?^ z_(#*7t#z>-?%T2W_L%J#e2b4;5n&NRLH|FBI~%)Ig}-BQSAkvJ)%YXTC&el1Xxwd{ z$SLY(@_Q7ga6pkP?qvLKRfT(5Y0I;Vx)}FrRS83ujw&qWjT}h5*WQ^rbTHK_{sn*x BT&4g3 literal 0 HcmV?d00001 diff --git a/src-x64/frun_GR4J.f b/src-x64/frun_GR4J.f new file mode 100644 index 00000000..953e7647 --- /dev/null +++ b/src-x64/frun_GR4J.f @@ -0,0 +1,225 @@ + + + SUBROUTINE frun_GR4J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr4j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR4J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR4J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR4J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=4) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3))**3.5 + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + + ENDSUBROUTINE + + diff --git a/src-x64/frun_GR4J.o b/src-x64/frun_GR4J.o new file mode 100644 index 0000000000000000000000000000000000000000..f461567fb2f2cf8ab191e90baa9c7b633a3bf4ab GIT binary patch literal 2975 zcmZuzZERCj7(RFHx^8ry7SLe)8p(}blr){789&fgTRoLKXq2%ocIyyU=NB$)Q%q37 zZR*WkkwoJM(ZnB^nCK6F@MBA+-s#*%7&sHrX$UrI$T0jU^=la1eBN_=yH0nKp8K5l z`+d)Q-`?FXdl)TW4P#eJ<YvL1j(t56+gqrLF}K3l?_T?S4IXtY(H`8rvu9_S+;T9? z5?1h$?(XGy<+KANw{NMzBm_1VeLAvX777QumddRGa}aXV)wUF6B<1!ll}mtr^ndme z;mD3iQ)GKn^Nxqa!HYQv@pV0Fn6KNfCZc>@RBgwut6kXNP!E6&@UD8;21nKRZSb*r z%m&9*%LXIrG=Od%Rl_KrFir~N+d_={*XqVZqj5@@AFBy4h$Oe`)l7^B&+?bXp$2N| zY=QeLf$7jTlZo=+Od-kxDYfAlPk{%bY6ArB^@^-6(H)dphHI0B2ydG#@YJOOZ^_R} z1Khva4^R|s$xB6&vtU-6fZ3E~OGdcAgMrgx!NqP>EAZq*fw$#hcpO^Y-V6_p^H)Y( z@CDVgP)*LjSsuYRTiCQ56uZ3_j@W^xeuh>p1(AtxZOrz`gQIo={FP1^T9Sqgv?!+i zg%l7-s+dNU`?nPHMM)^p7TfP)rgr>x=wQQ-9Y3Xb9*1tP43C15xqlb`l!9Z-AC7-w zqv_8IJUxztsZ5pBUBIW|q6&qW1Rl-A`JU6VUW87O52wzxb&wxgg^fH;!@~V*uwAVY zg<^^FmTwDu{Uk0m`4cio75Xl(q)et{V1&MTvFeyIaDs0e?VD9ZcJ-HDDA!y3rhYtS zx%xe_b?p42t}s>8)gbyTuh=x*dk(Q4nniCZCx&i;Lf_?^Az)HFE^iqD_IvWwjJ)M@ zMA`4kNk4&p*9?GTm)g(2fwmX@R6uHo+7JZj@FyZ~L#wpBsmUu1yzZ}H%q|Nwws}eK zi3ZA_E-v{8ZI`I4$N9@i>Dyl!CSy_FoTvW(gUsd-`36~UT*`SAe+<9hr7vmwe;4pN zMNFFCqi^OQ{5d&7AGFMqGYeF7Rbaz2K16?mbjX{3fJ_=JzwG!xQ-d)3RY5_ay?=vv zZx~w#njfzh-oaMfY4R&VO?9+)XtX~S!k!)_*eGc4O+f4UBtaH8-6~G8b~?p6g%M-I z#M^7c{9L1Xqse)r$$6v6d80Y=Mswzk=FA(-nKzm<Z!~+}h=XG}6yV{ubZaCPX^pgf zLGR?H3&-Xc7T_ME;zITcATA??w;So5yRaFAOeW~`SEPB#L`-6=)?50n>bP+_Zk!R> zch#I5O<}&F(!^~v#)R=BO|u+M!aT0#i8^pX=VDSfPKdw07KX024?lsheiI+j4C*3E zV)zg!!bI9cHhmSs@VR8KZO)<ey%&W!qFQ8>RCK6__z+aE++p45S3}_GS?4*ThVh<= zzKJ!$_*?dd!^2scki>ZQtvoE~#$0@uOwHf@nxz|qsvu(~d>j@fx-h&>@BbPz?~D!n z88v#;6hCwlio(QI37k9Y7bxu+7}%QKc#4cRW_3lOh}-#1xcTTm$YDF>uwM=7Xe~P{ z+bPvT)3bwWm{K*q7s!kt8s-Y&1|lO%`81+x-Rzdj3ky-x6C1EzxZRGz98_mXOqs*D z7_GO&E`5MrTSb_IQw>xWqefQ>kxf?bFQ|~RX+N?U*tM{L$SDC!n5$jFSnXL-{)1z5 z_lvC*Nq=z|OKH7<wa(SD?Xy0%Wo8AtXR?NE8meZY554S`x2xFNS3T^yeU<E*PB#lE z*Rz^Xb-TB#D&eu*(-k>PrByX-m2#Wn3$19c>8eh6Ezh(&S3$SJD&-#@rZJxD@!b(7 zqFlFzi=g<--))~O=xj|*U6kh|?+h2|KBAYe1J2<+0FIxVO_tC(pn#;EFVVbcLYuY= z$kuqRggz*7Crju?Ogvkz0cfSPcV7u@Epa<a=q}7kTcZ`o)-X%7;Sz14gszmhXHX;h zqj9refmTa|jZq0*pgIWG&sIp9uSD~g5b4?6VCJzWJ8+^kzrfg|N@j2Gp7i|>ZhRn^ zvB`2L%d`|$$10Hfa_cG(=?<mLk}pb9a4B@R^c}gl%D*O29>^^698~@#i83rNQ}z`} zk-C(mqh5NJe?iJ>DQm!^@5aRyEc<#Sj!Q`_GK;8Z=bp~zy3)lHs=>ORezr`CD4o6a djsQ3|<@Wzjt_A0*r+23x-MjJeG?P`g;lDY`%iaJ0 literal 0 HcmV?d00001 diff --git a/src-x64/frun_GR5J.f b/src-x64/frun_GR5J.f new file mode 100644 index 00000000..4b7b7351 --- /dev/null +++ b/src-x64/frun_GR5J.f @@ -0,0 +1,226 @@ + + + SUBROUTINE frun_GR5J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr5j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES1) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + !Param(5) : intercatchment exchange constant (X5 - CES2) [-] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR5J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR5J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR5J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=5) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3)-Param(5)) + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + + ENDSUBROUTINE + + diff --git a/src-x64/frun_GR5J.o b/src-x64/frun_GR5J.o new file mode 100644 index 0000000000000000000000000000000000000000..18fcfc164c9aa320df5a92c59cb4ef1b9dc854a6 GIT binary patch literal 2875 zcmaJ@Yiv_h96xt0TQ`QM<zeQ7Fp?X&_-Hy1GCl}xY{RMENma%=Eb9;`LtYEp5EBq^ zn|O0qB!Vx(2Tk}uln;C$VM|au8GD3*HBp>|z<k6Evk$e1YzCRX|G8_|nZ=XzoZtDs z|NnFDzh~py`HaS?LdNDuWM}TiO?w(8wx$$B><VKi9oBv}mQog~b#GkXxIRa2D(GdQ zg!|QohN*bDv;!o!XR^UC1pX|@m14}xJYIMGWVsTE=!k6_a-cyONx5B<<-DM89M1tz z4#em6t?^a*R##T7d08ABPJ+xAHmV-JaIfn1^M!sjgjrW>F|StZF`rNmKnUQZdc*>! z)lV#NRy|{Z^J)S>H&3b_R8AO|gmE<;;LiEF(Nkeu7UpTy3r5<<o#jM-RE-6=`#OK? zOQ?Ymxt`|EX}~P)=QTHDe(oLsaz#{acYd0?{Hg|lXB{H0OSFXYigB$s&1=3%^T;1* zUY!~ueM`a*YfiETvQ&gzPt3=)5eSb+K?-9Z3G^To?IuDCCm@xA)o!RXIAYx0%@4KN zWK7`!D5fA;)koq#A*Ke$tz+Z@(f<O48RVT@bV*;_-D$<m4=pDX6VXq^W`%?RtKm6f z#gD9=&yVMcQXskNyOc$4%syV-DMQHy4Xwy;X&!EH$iOHJlF*VtDlmrA8~nmT$*<Bp z+Knu!Fw^KV0bhZO0>s@5+!+h<9ap43LYJiz%RRCzg+lu*Oyn{N6DvzF&C!S=OX%m- zSJV8-UeqQ0Gf0ti^XN>h)%`LwLf`E#IHR=o@l~D8LyCyczUY8<S%S|yfR#$sk{_bm zf;5qn-{z%C+R8<9!XcI=n{I${cnAVYU;6?mG><+80h6xs)P|+Slx6X2SZuKkN<Xd^ z+W<huE{@n~!*7)nRT!az*jjGYsb-XNy92);X!0;!N1b^TU}S$Oi2G6X@LgP5jVAY% z-Lpt}i3hf^uS(Gsxg*a6aW0-Hf6f1v`Y6Q)|2L`92>=Sc2b=0{^3qGS#TmL5?=D8r zbEP+4bq(Zbr!ZU8a+$EJvK%Vm+n8MY95k;hfvsLbm8F!Hgqt)XZ1=!klNT`B2eeNR zu_;7zAWX9(Xxde90=2ZOs1rtj2@~I?5pZ&i+K49Gh$h>JCfkT6+lZEFBU+}7Xqh&m zW!i{lwGnZ!i_Y?un&>)T#JA2@a{(Ul-QPNQZ)^;H!#8g21mg2rAjO!kYEnlFqb-&t z^bLhU<4Vx@Uc^tRgLWLUc}z`$Rbg}q<0dtvLF|NiR!tGLwNK}wS2y~^-EW0~xI4DO z^lkAu^^<y{ggOp`BFw#Nh{$Gfo-m4S^6oq{h*CEV3ls5^QBu*NB7*G{ApTCgy3wL~ zz|-TI^}OoEwHM7jCBpbyeqI?K_R@qT2IC*5U_m!Vf*oY){)%@Ky3wWzGG@ZZ5s{?} z!;!hmzX!~vf!4qLMxz?xhc7`<n0~cZU|&}@MrjYgzzgxGFO$)VxUMJ^aV?+6f~Nl; z<bYGtjlHTz$5pbjvYb*aG(Fy?dMQ=oM}f=;;%3|<Tux+UDOba<mJXStV`F|ZKhT<Z zbCDH=*`^MWm@<N|zq2eMHt4PN87jhT>o2FW7)830_AN^^{fY`H%l0CR)(vB0h@28g z2y?bg7_;*ymH%KDo&ChM@kK8j!BE!DWot)@*^5KdnHVTyD|!pr(sl=X>Qn(+@KHXS z|IRe_$R0a;u+GL@%EPS4Q&{V$F9_u)?8&@AbeUO2Y?ktbQtX*tTU1{dawPJT_Q5<l z71oQJMI(uI7=OfGxufav3>;rmD~QTio)=T1zkgWnkAK`TPG<)|m*Y5Qj-Q=f%%W>R zE=i+HVR3D^bQUcPWYJo(=y;ZUE{kTMXIXL!fM!a2OS5QsmRp%cThQ$+jrV{ojZd@a zhb;Gf{CCrzf}MQ^L@y?*FxW7g#1_KQvgwjmjM<_&vxxL8t~<76+a~O2+#h3Xvl83Y zv?IFmr6td~V-{J?<K<@xD`k1ebE@$Gh;%+uX3}eq6l@Be8+o1>xi3AG0x}c449b1w zp$t>Y<h<}GQkxRasAt#Q*PX0~QUV^m=_ZCd=VeD6o8p~dj-$r)JL=x3kB;w94OYMN k^&Bap)HRi51i-N<i~d7-2%POZH%2$_TJl<y$*NoMUreC6zyJUM literal 0 HcmV?d00001 diff --git a/src-x64/frun_GR6J.f b/src-x64/frun_GR6J.f new file mode 100644 index 00000000..9d7f9373 --- /dev/null +++ b/src-x64/frun_GR6J.f @@ -0,0 +1,249 @@ + + + SUBROUTINE frun_GR6J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr6j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES1) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + !Param(5) : intercatchment exchange constant (X5 - CES2) [-] + !Param(6) : time constant of exponential store (X6 - EXP) [d] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR6J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR6J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR6J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=6) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,C,EN,ER,PN,PR,PS,WS,tanHyp,AR + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD,QR1 + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + DATA C/0.4/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3)-Param(5)) + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+(1-C)*X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Update of exponential store + X(6)=X(6)+C*X(8)+EXCH + AR=X(6)/Param(6) + IF(AR.GT.33.)AR=33. + IF(AR.LT.-33.)AR=-33. + + IF(AR.GT.7.)THEN + QR1=X(6)+Param(6)/EXP(AR) + GOTO 3 + ENDIF + + IF(AR.LT.-7.)THEN + QR1=Param(6)*EXP(AR) + GOTO 3 + ENDIF + + QR1=Param(6)*LOG(EXP(AR)+1.) + 3 CONTINUE + + X(6)=X(6)-QR1 + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD+QR1 + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QR1 ! QR1 ! outflow from exponential store (QR1) [mm/d] + MISC(14)=X(6) ! Exp ! exponential store level (X(6)) (negative) [mm] + MISC(15)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(16)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + ENDSUBROUTINE + + diff --git a/src-x64/frun_GR6J.o b/src-x64/frun_GR6J.o new file mode 100644 index 0000000000000000000000000000000000000000..3f0b624ef8234df41045bbc4ba748a543a9dd211 GIT binary patch literal 3415 zcmaJ@ZERE589q05f)i4XO(@H>R?Uyo?b3FZQwj>wD(uY>*X>Q`tw5aB#AZoMwifV6 z0+|#>Xp*w48&jmAwRHSIDnDAaKl-CTg2Yy*Kt9Ar-APm+O`Rv!ksvg=W*TX`kv;D@ z@x`WeNAkJPdESrnew=%JyI-kcG)^pM>{}AKnZLhhuwP;|1w4$oHO54pS~ua*#G*-m z_xAqniu%Sm$f8;Q&-?nmQDI3iOnQTr4r7o#Ra<EpWPzYRU8&aym2v2GBL^Ckk<{B$ zsW%M%<k$Q~gQ2aVEuqa@+P6M$9K6YpC|}brl6=jONQe2FQ9*V9<Kl<{N5u&Rj*Isc zI4QCUyeo1Fyf5+!oE8ND(>^JZ@N8J;4eOI)EBCH3t?4%FqG7))(hw9w+}lFD5UEz~ z|BS!<CzyeVe^%t)YA-Fqyz_c0%>8*FU$=<uttoO}Sj3?4Bae|WC0a+-NO66p$U8qO z^7!XP-cgtX$CO4G-kPu?S{g!cIu+vj0+bh|B89P^6s8f1ejTC3vd}8P>l94-JSpy< z;)jxM8B;6|!vZwhXGwh?G4*-okJ1*1{w53_py+9fb8;{4pHy-4Lo3O}-RSSerb0r1 z9oRXp;z!orXP5FsDUe*pZOWoN<`D0gl%Y65!z%vIB9HZXWMC8qY3R8K6&S-CjQmld z+y_OTm_n9Rm}(s)@Fi@q3~|o@Po^S#*Cn|hp^I`8wLP*7z+j>Q6K$D;i%pG~9&8~- zmN3jaJ}L4iW>A;d4N&po$QLW|?6@dHBXs$|viG#HS^ne6kvYxCtUBj`bu((<9j%Gd zF+qMvChQ7Q30*D5NY-O)$PIi7!QnY5XtNXFgUQGj--Uvm1N=W83(Dh%@HpzqLl-uq zt}6f~zgOV*_qvNDUKcgsg%;Fd0lyi_={yX6=dF_Bb}y>*CAxK>2}TD{?$}2-t@>>` zva@>|$a-B6zOimE(Al^Jr|Y7`P+2K`FtLJc5dfN-z<Kkn#ct?G=ZE(zJSkIaP}n$* zyf>j^dK5kpaR++mT^A#)e8)eA+dgRc8puD);J@<>j&pSqTKv$jWI?=-_F@G#&tK6M zQ%!w<$20Kw4i!kAd1N;YCwN0+*Wt8Jr&KTOT|uc<2gwIgJ%`N`e>3b+(JOuVcG7zu zD?rJ&-$QdxBb@w&&=!;~c9qaho#t%;xZM&2iAMPL8^jGn0o!7L2`YbU64O90rk*s3 zJrUb22(%3vRx2}XTn$#Mm+N$;>GDd`OIMm+y3+L0m8O@jG`)1C>7^@8FI{Q6y3&k; zXX&ndp);{96c23+sXC^S_1@<ZjVTbeZ?m8b;-X3R4#fk+3>qotfuIJ2vUZ+DmQ(Y` z?<_7#>)8CYuK>e5_K*2L5JFoAW#R9-rWPsp`yNvp(0lf^t(N+Rt>&MG`;uHnNTH~( z<{yTPKN4mv)L!wA5W`<abJpytjaZi=)@37eT;y?Y8TL_;gQ(3qYgm7!dpwVoVZSd5 z#E#9H+?X+~S>yJ{hGmN6sTUFbE#n=!hSS7EPaOth*h3;pv|V3iSoJRX<~^N9We08= z_GytNr(|Nn#E4A51j8LPtx*wx%*>RYr$x{M-I3`=!}?MtS(0HbT}U#Ld945srnL|` zMXv5_d^KxY<H8_kHugATIJ{wbN;kocR(pNx*uTS8zlih0=V55rVUaYj?rmPAw6DOy zbD5_ulGC<~sc95(l0U*CcKE-@VKe10BmyR01(lWBlxm@ynQ;-MRIRH9G9!qC{2#(C zL?cW2w8A(`&n_%3hV7cxvFvZ2R8iRDVvf|b1zehw%~_+%9HUE2GwksTEmRh(&eV#b z4cUReqe9w-A!ISuwYZ4LDS@nEuW}jIs+x-OA3RIFzk9+%i8Dtqw62F)*8*ohn_Izt za^(SL%+#}u6U*89x9ZsUU$152w;uML!DVc9Zw>QlO{^|ZoAjiYMQgI|TvZ--bVD6$ z&>q+71Iv?j>Ds6#Ta$C=tEek%x%wPqUOb;b+(B?Jx9@r8R%-5tZ*AK*wE3%l{ebis zdn_m)N(Hd6QLU?jcxEqLxGC3f96PndvtjV15m>wS8u2HN9lNUJ!@-~w4hOUH$sST` z_E7ds5F9@@yX2s2Kt9QR?r`-uw2Ipfq%1NHdef0+9kd#M9ZD|%v{L%p=%7uGw9`Q^ z;=f2)?03-HK+1N)L4S6npE}5mw^rHGcZWj4L0cVUR+pqbK=hC9W^X&(l*8qKR!M2W z;Vz?Z4@&L^&}xY=F(@z>{FD${%jk2}#p)f->mc%~r2f<|Uh2V$#+^mRc4(<R1G^HN ze!Bh{e@fAECeJi9*2Jn%-}{XfAn9C5or<q~GH_{h-kK^5%fIl^0_aqT<)ZxS9;Lp& zPT7||Me5S%U%7IWf7Q!sX^l`oxMjm%_C-$;mo{7`Rj_~iuHIj#6H7d*!P2|;m1z;v sGnl@Id1?2KdzjvV=8_Xg$f|eX$$OY@L$Y&scVfq$^}kFo*%<}@2g{2;fdBvi literal 0 HcmV?d00001 diff --git a/src-x64/utils.f b/src-x64/utils.f new file mode 100644 index 00000000..2028bc71 --- /dev/null +++ b/src-x64/utils.f @@ -0,0 +1,272 @@ + + +C********************************************************************** + SUBROUTINE HU1(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU1 using successives differences on the S curve SS1 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+1) to XV(3*NPX+NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS1 + INTEGER I + + DO I=1,NH + XV(3*NPX+I)=SS1(I,C,D)-SS1(I-1,C,D) + ENDDO + ENDSUBROUTINE + + +C********************************************************************** + SUBROUTINE HU2(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU2 using successives differences on the S curve SS2 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS2 + INTEGER I + + DO I =1,2*NH + XV(3*NPX+NH+I)=SS2(I,C,D)-SS2(I-1,C,D) + ENDDO + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU4(XV,ALPHA,BETA) +C Computation of ordinates of MOHYSE unit hydrograph +C Inputs: +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH),U(3*NH) + DOUBLEPRECISION ALPHA,BETA,SU + INTEGER K + + SU=0. +c IF(ALPHA.LT.1.)THEN +c WRITE(*,*)' Pb ALPHA' +c STOP +c ENDIF + IF(ALPHA.EQ.1.)THEN + U(1)=1. + SU=1. + DO 1 K=2,3*NH + U(K)=0. + 1 CONTINUE + ELSE + DO 11 K=1,3*NH + U(K)=FLOAT(K)*(ALPHA-1.)*EXP(-FLOAT(K)/BETA) + SU=SU+U(K) + 11 CONTINUE + ENDIF + +c IF(SU.LT.0.0000000001)THEN +c WRITE(*,*)' Pb HU4',ALPHA, BETA +c STOP +c ENDIF + DO 2 K=1,3*NH + XV(3*NPX+K)=U(K)/SU + 2 CONTINUE + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU(XV,C) +C Computation of ordinates of GRP unit hydrograph +C Inputs: +C C: time constant +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C + DOUBLEPRECISION SH + INTEGER I + DO 10 I=1,2*NH + XV(3*NPX+NH+I)=SH(I,C)-SH(I-1,C) + 10 CONTINUE + RETURN + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION SH(I,C) +C Values of the S curve (cumulative HU curve) of GRP unit hydrograph HU +C Inputs: +C C: time constant +C I: time-step +C Outputs: +C SH: Values of the S curve for I +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION C + DOUBLEPRECISION SH,FI + INTEGER I + + FI=I + IF(FI.LE.0.)THEN + SH=0. + RETURN + ENDIF + IF(FI.GE.C)THEN + SH=1. + RETURN + ENDIF + SH=FI**2.5/(FI**2.5+(C-FI)**2.5) + RETURN + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS1(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU1 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS1: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS1 + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS1=0. + RETURN + ENDIF + IF(FI.LT.C) THEN + SS1=(FI/C)**D + RETURN + ENDIF + SS1=1. + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS2(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU2 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS2: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS2 + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS2=0. + RETURN + ENDIF + IF(FI.LE.C) THEN + SS2=0.5*(FI/C)**D + RETURN + ENDIF + IF(FI.LT.2.*C) THEN + SS2=1.-0.5*(2.-FI/C)**D + RETURN + ENDIF + SS2=1. + ENDFUNCTION + + + +C********************************************************************** + SUBROUTINE DEL(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER I,K + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+3*NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE DEL2(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER K,I + + IF(C.GT.FLOAT(NH)) C=FLOAT(NH) + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION tanHyp(Val) +C Computation of hyperbolic tangent +C********************************************************************** + Implicit None + DOUBLEPRECISION Val,ValExp,tanHyp + + ValExp=EXP(Val) + tanHyp=(ValExp - 1./ValExp)/(ValExp + 1./ValExp) + RETURN + ENDFUNCTION + diff --git a/src-x64/utils.o b/src-x64/utils.o new file mode 100644 index 0000000000000000000000000000000000000000..2dbfd225923ddd4e69856081f1f330011498a709 GIT binary patch literal 2944 zcmbVOZ)jUp6u&P?x2(3@bZybOv1R&%*FT0->QJ%UYt7&eD+HXjbv12W8#5`hED4P; zq%&0(ZLr9cee|RF)giKpr0qyML|pe_f+9}wL#72o1UKer{GEIAZj-Jec;V&#-tYXm z=bn4c%N>7b8>8{j4#sv%<Y9rtL@FV%`U%%D<}nyMzg@kzV)C=_XkdISF;=Cw6|`A6 z7kDKe-%3`^&5&NI*5Mo!j;ipqs?CCSV5(Lx1?dgwz2;SFdofA9Q?+_F_`%8^lqTtg z?dL^$EzH{zrk}T+HiIGF7BcN9AIOz>dsmbP^6_wq`<}vsL@);CR{Ws2q+EEQY2~AW zpZvNYrG%m(Zsou)m-ujA(xqNLm@9>NBp2<4j9avtC0Dbsnn+&`A6w%4X2=D?vG~9> zir_utPu{-51FLZp!5|=CJ(gdI?}78x5+7W}+tulS6B^uDOY<cjS-^TeuUeT8)lp)k zjPDCEMsnD%kd+S-1X-i+Yb5;=ACek?Qe(rO4_uLP<tUOzs^gm8;Y6~egSbf!XfN2_ zEMfM-z>Ab}K`9S*{U9>mh|G8Wnf!9dv`}X3NTw(<cQV6fr^xo3R$;DOE-Q}SI}v)Z zkOG%|#)Z&}8JLxL(}f?yFc#@0L!|$1NnWHB2NAS578!YYDH@Fi{_pye>-Vld2yXNG z#f|l?|6Kpf+MtUu-gd!ca{kivVMguEntlc5%%B42Od9~1eVnp~BJ%AN8LF|sb^h-A zp!nMv{EF<P=|>_^St5JbE3)UL>*%~#COf1i=M_(0O%}Uy@D-|q$4DOfvu>3*NPBKz z3(23kRf)=SqOzQ*EGH^UMJ3K$rhUj9JNZ?C97X|tMaM}2*ZC=c%pbtR*HH|Ap{&=_ zd4so<`AcQlDZQ#{hwh+3269g6-bR3jM0(kqUhhG@-%93h_TcDooEzt<%E{K{^sUHT zcWOyikjRv%nhMQ#%Vk+YAY>J}Kx{h2pK4A~HY!z-jU77uDf3rf;+^Qg_C=K7idddC zD2X&=npGkTPB&!x+S7|2;=DM1O*R{E3N6si`d4o+MbWRm#vm*)yU@=I(-HW_8MUv3 zvUYnm-0|G;94wEd3kF$>^lygKzO*25UAcQh_!zQeq14BlJPTN>VbzHrFZI1&^gw*^ zptN_sYXet)|D5l`4%X06KBIC5zD6jagRQG57<>|j>BECLf{%~2C_fAHHN$B2vevU6 z##3%qA9Jy~4~(FJKM+qJW0WMLaXV{_xtaGZPtZN;nli%w!X5Cj1D}}e(en>8^Xx-x zcWOUtj``Vr#<R?^G#a+C2Kd^3${lo#8dK6gtx;KzLZ{}SF^{JM3N4s}m}7YM0F%+L zc>KUc%;PBNZsIY2=EjKv=P<W<7@GtRVty0PY2X>mjrd!b0j4ze;h6<iqj*ToH!3r; zD*|Vlae$h;ZRfoM;C?(Fb_Bn>BpTHy52U2uYwj1#-PNcbyHU0~ft1Bwjlvpzik&Ly zIQFT~hd>X)lZQpHN5#!*bV(yOcC4hkfRx34&5h^?;EGWtx#7`4^gq)qxdzSoG@^4- z(g!q0=cT;(wbay{rBSDr1~o@#s%)Ro(x)|NYZTH_I(cQ$uMvv164g=74Qe#3rK6e~ z*C?i?R7cA5ltu|H4Ma~&PT-BkdYQ3Tjb!4)WIPa6l>CjyM)aG({LF<+ZyxdZV^V1z z0;$8|@h-_w{VOJxR19^2!ze521&8UDR@4y=qgJQBP|Wzmr1Fg8)r@pBqnX6m$=DlH zBeGMJPW4@rHsCg>gXo62F{<yG2mm@8G6z-PF%i<%I#u^egan;A$6U|VcS{5U9lBl8 jjdEiIs_vC^J#`yYPqky}_30`Cr^6;vbkfcshGO^!%XvXL literal 0 HcmV?d00001 diff --git a/src/frun_CEMANEIGE.f b/src/frun_CEMANEIGE.f new file mode 100644 index 00000000..fddc6a5f --- /dev/null +++ b/src/frun_CEMANEIGE.f @@ -0,0 +1,128 @@ + + + SUBROUTINE frun_CEMANEIGE( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsFracSolidPrecip, ! [double] input series of fraction of solid precipitation [0-1] + & InputsTemp , ! [double] input series of air mean temperature [degC] + & MeanAnSolidPrecip , ! [double] value of annual mean solid precip [mm/y] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising = 2 + & StateStart , ! [double] state variables used when the model run starts + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_cemaneige + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, intent(in) :: MeanAnSolidPrecip + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsFracSolidPrecip + doubleprecision, dimension(LInputs) :: InputsTemp + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + doubleprecision CTG,Kf + doubleprecision G,eTG,PliqAndMelt + doubleprecision Tmelt,Gthreshold,MinSpeed + doubleprecision Pliq,Psol,Gratio,PotMelt,Melt + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation des constantes + Tmelt=0 + Gthreshold=0.9*MeanAnSolidPrecip + MinSpeed=0.1 + + !initilisation of model states using StateStart + G=StateStart(1) + eTG=StateStart(2) + PliqAndMelt=0 + + !setting parameter values + CTG=Param(1) + Kf=Param(2) + + !initialisation of model outputs +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + + !SolidPrecip and LiquidPrecip + Pliq=(1-InputsFracSolidPrecip(k))*InputsPrecip(k) + Psol=InputsFracSolidPrecip(k)*InputsPrecip(k) + + !Snow pack volume before melt + G=G+Psol + + !Snow pack thermal state before melt + eTG=CTG*eTG + (1-CTG)*InputsTemp(k) + IF(eTG.GT.0) eTG=0 + + !Potential melt + IF(eTG.EQ.0.AND.InputsTemp(k).GT.Tmelt) THEN + PotMelt=Kf*(InputsTemp(k)-Tmelt) + IF(PotMelt.GT.G) PotMelt=G + ELSE + PotMelt=0 + ENDIF + + !Gratio + IF(G.LT.Gthreshold) THEN + Gratio=G/Gthreshold + ELSE + Gratio=1 + ENDIF + + !Actual melt + Melt=((1-MinSpeed)*Gratio+MinSpeed)*PotMelt + + !Update of snow pack volume + G=G-Melt + + !Water volume to pass to the hydrological model + PliqAndMelt=Pliq+Melt + + !Storage of outputs + DO I=1,NOutputs + IF(IndOutputs(I).EQ.1) Outputs(k,I)=Pliq + IF(IndOutputs(I).EQ.2) Outputs(k,I)=Psol + IF(IndOutputs(I).EQ.3) Outputs(k,I)=G + IF(IndOutputs(I).EQ.4) Outputs(k,I)=eTG + IF(IndOutputs(I).EQ.5) Outputs(k,I)=Gratio + IF(IndOutputs(I).EQ.6) Outputs(k,I)=PotMelt + IF(IndOutputs(I).EQ.7) Outputs(k,I)=Melt + IF(IndOutputs(I).EQ.8) Outputs(k,I)=PliqAndMelt + ENDDO + + ENDDO + + StateEnd(1)=G + StateEnd(2)=eTG + + RETURN + + ENDSUBROUTINE + diff --git a/src/frun_GR4J.f b/src/frun_GR4J.f new file mode 100644 index 00000000..953e7647 --- /dev/null +++ b/src/frun_GR4J.f @@ -0,0 +1,225 @@ + + + SUBROUTINE frun_GR4J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr4j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR4J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR4J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR4J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=4) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3))**3.5 + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + + ENDSUBROUTINE + + diff --git a/src/frun_GR5J.f b/src/frun_GR5J.f new file mode 100644 index 00000000..4b7b7351 --- /dev/null +++ b/src/frun_GR5J.f @@ -0,0 +1,226 @@ + + + SUBROUTINE frun_GR5J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr5j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES1) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + !Param(5) : intercatchment exchange constant (X5 - CES2) [-] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR5J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR5J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR5J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=5) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3)-Param(5)) + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + + ENDSUBROUTINE + + diff --git a/src/frun_GR6J.f b/src/frun_GR6J.f new file mode 100644 index 00000000..9d7f9373 --- /dev/null +++ b/src/frun_GR6J.f @@ -0,0 +1,249 @@ + + + SUBROUTINE frun_GR6J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr6j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES1) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + !Param(5) : intercatchment exchange constant (X5 - CES2) [-] + !Param(6) : time constant of exponential store (X6 - EXP) [d] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR6J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR6J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR6J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=6) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,C,EN,ER,PN,PR,PS,WS,tanHyp,AR + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD,QR1 + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + DATA C/0.4/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3)-Param(5)) + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+(1-C)*X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Update of exponential store + X(6)=X(6)+C*X(8)+EXCH + AR=X(6)/Param(6) + IF(AR.GT.33.)AR=33. + IF(AR.LT.-33.)AR=-33. + + IF(AR.GT.7.)THEN + QR1=X(6)+Param(6)/EXP(AR) + GOTO 3 + ENDIF + + IF(AR.LT.-7.)THEN + QR1=Param(6)*EXP(AR) + GOTO 3 + ENDIF + + QR1=Param(6)*LOG(EXP(AR)+1.) + 3 CONTINUE + + X(6)=X(6)-QR1 + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD+QR1 + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QR1 ! QR1 ! outflow from exponential store (QR1) [mm/d] + MISC(14)=X(6) ! Exp ! exponential store level (X(6)) (negative) [mm] + MISC(15)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(16)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + ENDSUBROUTINE + + diff --git a/src/utils.f b/src/utils.f new file mode 100644 index 00000000..2028bc71 --- /dev/null +++ b/src/utils.f @@ -0,0 +1,272 @@ + + +C********************************************************************** + SUBROUTINE HU1(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU1 using successives differences on the S curve SS1 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+1) to XV(3*NPX+NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS1 + INTEGER I + + DO I=1,NH + XV(3*NPX+I)=SS1(I,C,D)-SS1(I-1,C,D) + ENDDO + ENDSUBROUTINE + + +C********************************************************************** + SUBROUTINE HU2(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU2 using successives differences on the S curve SS2 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS2 + INTEGER I + + DO I =1,2*NH + XV(3*NPX+NH+I)=SS2(I,C,D)-SS2(I-1,C,D) + ENDDO + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU4(XV,ALPHA,BETA) +C Computation of ordinates of MOHYSE unit hydrograph +C Inputs: +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH),U(3*NH) + DOUBLEPRECISION ALPHA,BETA,SU + INTEGER K + + SU=0. +c IF(ALPHA.LT.1.)THEN +c WRITE(*,*)' Pb ALPHA' +c STOP +c ENDIF + IF(ALPHA.EQ.1.)THEN + U(1)=1. + SU=1. + DO 1 K=2,3*NH + U(K)=0. + 1 CONTINUE + ELSE + DO 11 K=1,3*NH + U(K)=FLOAT(K)*(ALPHA-1.)*EXP(-FLOAT(K)/BETA) + SU=SU+U(K) + 11 CONTINUE + ENDIF + +c IF(SU.LT.0.0000000001)THEN +c WRITE(*,*)' Pb HU4',ALPHA, BETA +c STOP +c ENDIF + DO 2 K=1,3*NH + XV(3*NPX+K)=U(K)/SU + 2 CONTINUE + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU(XV,C) +C Computation of ordinates of GRP unit hydrograph +C Inputs: +C C: time constant +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C + DOUBLEPRECISION SH + INTEGER I + DO 10 I=1,2*NH + XV(3*NPX+NH+I)=SH(I,C)-SH(I-1,C) + 10 CONTINUE + RETURN + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION SH(I,C) +C Values of the S curve (cumulative HU curve) of GRP unit hydrograph HU +C Inputs: +C C: time constant +C I: time-step +C Outputs: +C SH: Values of the S curve for I +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION C + DOUBLEPRECISION SH,FI + INTEGER I + + FI=I + IF(FI.LE.0.)THEN + SH=0. + RETURN + ENDIF + IF(FI.GE.C)THEN + SH=1. + RETURN + ENDIF + SH=FI**2.5/(FI**2.5+(C-FI)**2.5) + RETURN + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS1(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU1 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS1: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS1 + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS1=0. + RETURN + ENDIF + IF(FI.LT.C) THEN + SS1=(FI/C)**D + RETURN + ENDIF + SS1=1. + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS2(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU2 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS2: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS2 + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS2=0. + RETURN + ENDIF + IF(FI.LE.C) THEN + SS2=0.5*(FI/C)**D + RETURN + ENDIF + IF(FI.LT.2.*C) THEN + SS2=1.-0.5*(2.-FI/C)**D + RETURN + ENDIF + SS2=1. + ENDFUNCTION + + + +C********************************************************************** + SUBROUTINE DEL(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER I,K + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+3*NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE DEL2(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER K,I + + IF(C.GT.FLOAT(NH)) C=FLOAT(NH) + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION tanHyp(Val) +C Computation of hyperbolic tangent +C********************************************************************** + Implicit None + DOUBLEPRECISION Val,ValExp,tanHyp + + ValExp=EXP(Val) + tanHyp=(ValExp - 1./ValExp)/(ValExp + 1./ValExp) + RETURN + ENDFUNCTION + diff --git a/tests/example_Calibration.R b/tests/example_Calibration.R new file mode 100644 index 00000000..d95410ed --- /dev/null +++ b/tests/example_Calibration.R @@ -0,0 +1,47 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration(InputsModel=InputsModel,RunOptions=RunOptions,InputsCrit=InputsCrit, + CalibOptions=CalibOptions,FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE, + FUN_CALIB=Calibration_HBAN) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param,FUN=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + + diff --git a/tests/example_Calibration_HBAN.R b/tests/example_Calibration_HBAN.R new file mode 100644 index 00000000..75b7832f --- /dev/null +++ b/tests/example_Calibration_HBAN.R @@ -0,0 +1,46 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration_HBAN(InputsModel=InputsModel,RunOptions=RunOptions, + InputsCrit=InputsCrit,CalibOptions=CalibOptions, + FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_Calibration_optim.R b/tests/example_Calibration_optim.R new file mode 100644 index 00000000..f08ec410 --- /dev/null +++ b/tests/example_Calibration_optim.R @@ -0,0 +1,45 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_optim) + +## calibration +OutputsCalib <- Calibration_optim(InputsModel=InputsModel,RunOptions=RunOptions, + InputsCrit=InputsCrit,CalibOptions=CalibOptions, + FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) diff --git a/tests/example_ErrorCrit.R b/tests/example_ErrorCrit.R new file mode 100644 index 00000000..db241e83 --- /dev/null +++ b/tests/example_ErrorCrit.R @@ -0,0 +1,60 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param,FUN=RunModel_GR4J) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency on log-transformed flows +transfo <- "log" +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],transfo=transfo) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency above a threshold (q75%) +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]<quantile(BasinObs$Qmm[Ind_Run],0.75,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency below a threshold (q10%) on log-trqansformed flows +transfo <- "log" +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]>quantile(BasinObs$Qmm[Ind_Run],0.10,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel,RunOptions=RunOptions, + Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit,transfo=transfo) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\n",sep="")) + + + + diff --git a/tests/example_RunModel.R b/tests/example_RunModel.R new file mode 100644 index 00000000..b240b8cf --- /dev/null +++ b/tests/example_RunModel.R @@ -0,0 +1,29 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_CemaNeige.R b/tests/example_RunModel_CemaNeige.R new file mode 100644 index 00000000..e2218fbd --- /dev/null +++ b/tests/example_RunModel_CemaNeige.R @@ -0,0 +1,25 @@ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeige,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoCurve[51],HypsoData=BasinInfo$HypsoCurve, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeige,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(0.962,2.249) +OutputsModel <- RunModel_CemaNeige(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel) + diff --git a/tests/example_RunModel_CemaNeigeGR4J.R b/tests/example_RunModel_CemaNeigeGR4J.R new file mode 100644 index 00000000..fcbc2488 --- /dev/null +++ b/tests/example_RunModel_CemaNeigeGR4J.R @@ -0,0 +1,31 @@ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoCurve[51],HypsoData=BasinInfo$HypsoCurve, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR4J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(408.774,2.646,131.264,1.174,0.962,2.249) +OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_CemaNeigeGR5J.R b/tests/example_RunModel_CemaNeigeGR5J.R new file mode 100644 index 00000000..9e449527 --- /dev/null +++ b/tests/example_RunModel_CemaNeigeGR5J.R @@ -0,0 +1,31 @@ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR5J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoCurve[51],HypsoData=BasinInfo$HypsoCurve, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR5J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(179.139,-0.100,203.815,1.174,2.478,0.977,2.774) +OutputsModel <- RunModel_CemaNeigeGR5J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_CemaNeigeGR6J.R b/tests/example_RunModel_CemaNeigeGR6J.R new file mode 100644 index 00000000..d381ff51 --- /dev/null +++ b/tests/example_RunModel_CemaNeigeGR6J.R @@ -0,0 +1,31 @@ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR6J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoCurve[51],HypsoData=BasinInfo$HypsoCurve, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR6J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(116.482,0.500,72.733,1.224,0.278,30.333,0.977,2.776) +OutputsModel <- RunModel_CemaNeigeGR6J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR4J.R b/tests/example_RunModel_GR4J.R new file mode 100644 index 00000000..fe8acc49 --- /dev/null +++ b/tests/example_RunModel_GR4J.R @@ -0,0 +1,28 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR5J.R b/tests/example_RunModel_GR5J.R new file mode 100644 index 00000000..62e535fe --- /dev/null +++ b/tests/example_RunModel_GR5J.R @@ -0,0 +1,28 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR5J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR5J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(839.661,-0.100,103.153,1.939,-0.428) +OutputsModel <- RunModel_GR5J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR6J.R b/tests/example_RunModel_GR6J.R new file mode 100644 index 00000000..2bdc4e0d --- /dev/null +++ b/tests/example_RunModel_GR6J.R @@ -0,0 +1,28 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR6J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR6J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(347.000,-0.500,65.677,1.957,0.324,34.115) +OutputsModel <- RunModel_GR6J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_TransfoParam.R b/tests/example_TransfoParam.R new file mode 100644 index 00000000..0c5c5037 --- /dev/null +++ b/tests/example_TransfoParam.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR4J model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam(ParamIn=Xreal,Direction="RT",FUN_TRANSFO=TransfoParam_GR4J) + +## transformation Transformed->Real for the GR4J model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam(ParamIn=Xtran,Direction="TR",FUN_TRANSFO=TransfoParam_GR4J) diff --git a/tests/example_TransfoParam_CemaNeige.R b/tests/example_TransfoParam_CemaNeige.R new file mode 100644 index 00000000..85efecfc --- /dev/null +++ b/tests/example_TransfoParam_CemaNeige.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the CemaNeige module + Xreal <- matrix( c( 0.19, 1.73, + 0.39, 2.51, + 0.74, 4.06), + ncol=2,byrow=TRUE) + Xtran <- TransfoParam_CemaNeige(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the CemaNeige module + Xtran <- matrix( c( -6.26, +0.55, + -2.13, +0.92, + +4.86, +1.40) + ,ncol=2,byrow=TRUE) + Xreal <- TransfoParam_CemaNeige(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR4J.R b/tests/example_TransfoParam_GR4J.R new file mode 100644 index 00000000..61019033 --- /dev/null +++ b/tests/example_TransfoParam_GR4J.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR4J model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam_GR4J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR4J model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam_GR4J(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR5J.R b/tests/example_TransfoParam_GR5J.R new file mode 100644 index 00000000..b2361f3a --- /dev/null +++ b/tests/example_TransfoParam_GR5J.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR5J model + Xreal <- matrix( c( 221.41, -2.65, 27.11, 1.37, -0.76, + 347.23, -0.64, 60.34, 1.76, 0.30, + 854.01, -0.10, 148.41, 2.34, 0.52), + ncol=5,byrow=TRUE) + Xtran <- TransfoParam_GR5J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR5J model + Xtran <- matrix( c( +3.60, -1.70, +3.30, -9.10, -0.70, + +3.90, -0.60, +4.10, -8.70, +0.30, + +4.50, -0.10, +5.00, -8.10, +0.50), + ncol=5,byrow=TRUE) + Xreal <- TransfoParam_GR5J(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR6J.R b/tests/example_TransfoParam_GR6J.R new file mode 100644 index 00000000..1bd48fa4 --- /dev/null +++ b/tests/example_TransfoParam_GR6J.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR6J model + Xreal <- matrix( c( 221.41, -1.18, 27.11, 1.37, -0.18, 20.09, + 347.23, -0.52, 60.34, 1.76, 0.02, 54.60, + 854.06, 0.52, 148.41, 2.34, 0.22, 148.41), + ncol=6,byrow=TRUE) + Xtran <- TransfoParam_GR6J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR6J model + Xtran <- matrix( c( +3.60, -1.00, +3.30, -9.10, -0.90, +3.00, + +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, + +4.50, +0.50, +5.00, -8.10, +1.10, +5.00), + ncol=6,byrow=TRUE) + Xreal <- TransfoParam_GR6J(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_plot_OutputsModel.R b/tests/example_plot_OutputsModel.R new file mode 100644 index 00000000..f2df3057 --- /dev/null +++ b/tests/example_plot_OutputsModel.R @@ -0,0 +1,54 @@ +#### example 1 without snow module + +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + + +#### example 2 with snow module + +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + HypsoData=BasinInfo$HypsoCurve,NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR4J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(408.774,2.646,131.264,1.174,0.962,2.249) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_CemaNeigeGR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + + -- GitLab