From 89b022cadf8fe3c72117921ceb9a0f9b7ac549e3 Mon Sep 17 00:00:00 2001
From: Delaigue Olivier <olivier.delaigue@irstea.fr>
Date: Wed, 11 Nov 2020 14:02:51 +0100
Subject: [PATCH] v1.6.3.43 style: format RunModel_CemaNeigeGR4H indent code
 add spaces remove semicolons Refs #14

---
 DESCRIPTION                |   4 +-
 NEWS.md                    |   2 +-
 R/RunModel_CemaNeigeGR4H.R | 382 +++++++++++++++++++++----------------
 3 files changed, 216 insertions(+), 172 deletions(-)

diff --git a/DESCRIPTION b/DESCRIPTION
index d2c09b8b..23917dbb 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
 Package: airGR
 Type: Package
 Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
-Version: 1.6.3.42
-Date: 2020-11-09
+Version: 1.6.3.43
+Date: 2020-11-11
 Authors@R: c(
   person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
   person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@inrae.fr"),
diff --git a/NEWS.md b/NEWS.md
index c25fb352..a2571581 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -4,7 +4,7 @@
 
 
 
-### 1.6.3.42 Release Notes (2020-11-09)
+### 1.6.3.43 Release Notes (2020-11-11)
 
 #### New features
 
diff --git a/R/RunModel_CemaNeigeGR4H.R b/R/RunModel_CemaNeigeGR4H.R
index 7aecbaf1..dfb198cc 100644
--- a/R/RunModel_CemaNeigeGR4H.R
+++ b/R/RunModel_CemaNeigeGR4H.R
@@ -1,5 +1,5 @@
-RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){
-
+RunModel_CemaNeigeGR4H <- function(InputsModel, RunOptions, Param) {
+  
   
   ## Initialization of variables
   IsHyst <- inherits(RunOptions, "hysteresis")
@@ -7,177 +7,221 @@ RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){
   NParamCN <- NParam - 4L
   NStates <- 4L
   FortranOutputs <- .FortranOutputs(GR = "GR4H", isCN = TRUE)
-
+  
+  
+  ## Arguments_check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }
+  if (!inherits(InputsModel, "hourly")) {
+    stop("'InputsModel' must be of class 'hourly'")
+  }
+  if (!inherits(InputsModel, "GR")) {
+    stop("'InputsModel' must be of class 'GR'")
+  }
+  if (!inherits(InputsModel, "CemaNeige")) {
+    stop("'InputsModel' must be of class 'CemaNeige'")
+  }
+  if (!inherits(RunOptions, "RunOptions")) {
+    stop("'RunOptions' must be of class 'RunOptions'")
+  }
+  if (!inherits(RunOptions, "GR")) {
+    stop("'RunOptions' must be of class 'GR'")
+  }
+  if (!inherits(RunOptions, "CemaNeige")) {
+    stop("'RunOptions' must be of class 'CemaNeige'")
+  }
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
+  }
+  Param <- as.double(Param)
+  
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold   <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [hour]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }      
+  
+  ## Input_data_preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, as.integer(0))) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries   <- as.integer(length(IndPeriod1))
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries
+  ParamCemaNeige <- Param[(length(Param)-1 - 2 * as.integer(IsHyst)):length(Param)]
+  NParamMod      <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
+  ParamMod       <- Param[1:NParamMod]
+  NLayers        <- length(InputsModel$LayerPrecip)
+  NStatesMod     <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  
+  ## SNOW_MODULE________________________________________________________________________________
+  if (inherits(RunOptions, "CemaNeige")) {
+    if ("all" %in% RunOptions$Outputs_Sim) {
+      IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN))
+    } else {
+      IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim)
+    }
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- "CemaNeigeLayers"
     
-    ##Arguments_check
-      if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(!inherits(InputsModel,"hourly"     )){ stop("'InputsModel' must be of class 'hourly'     ") }  
-      if(!inherits(InputsModel,"GR"         )){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(!inherits(InputsModel,"CemaNeige"  )){ stop("'InputsModel' must be of class 'CemaNeige'  ") }  
-      if(!inherits(RunOptions,"RunOptions"  )){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(!inherits(RunOptions,"GR"          )){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!inherits(RunOptions,"CemaNeige"   )){ stop("'RunOptions' must be of class 'CemaNeige'   ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-
-      Param_X1X3_threshold <- 1e-2
-      Param_X4_threshold   <- 0.5
-      if (Param[1L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[1L] <- Param_X1X3_threshold
-      }
-      if (Param[3L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[3L] <- Param_X1X3_threshold
-      }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [hour]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }      
+    
+    ## Call_DLL_CemaNeige_________________________
+    for (iLayer in 1:NLayers) {
       
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries   <- as.integer(length(IndPeriod1))
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
-      NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
-      ParamMod       <- Param[1:NParamMod];
-      NLayers        <- length(InputsModel$LayerPrecip);
-      NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-
+      if (!IsHyst) {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
+      } else {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
+      }
+      RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR",
+                          ## inputs
+                          LInputs = LInputSeries,                                                         ### length of input and output series
+                          InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
+                          InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
+                          InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
+                          MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
+                          NParam = as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
+                          Param = as.double(ParamCemaNeige),                                              ### parameter set
+                          NStates = as.integer(NStates),                                                  ### number of state variables used for model initialisation = 4
+                          StateStart = StateStartCemaNeige,                                               ### state variables used when the model run starts
+                          IsHyst = as.integer(IsHyst),                                                    ### use of hysteresis
+                          NOutputs = as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
+                          IndOutputs = IndOutputsCemaNeige,                                               ### indices of output series
+                          ## outputs                                                               
+                          Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm]
+                          StateEnd = rep(as.double(-999.999), as.integer(NStates))                                        ### state variables at the end of the model run
+      )
+      RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+      RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
       
-    ##SNOW_MODULE________________________________________________________________________________##
-    if(inherits(RunOptions,"CemaNeige")){
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
-      } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
-
-
-    ##Call_DLL_CemaNeige_________________________
-      for(iLayer in 1:NLayers){
-        if (!IsHyst) {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
-        } else {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
-        }
-        RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR",
-                        ##inputs
-                            LInputs=LInputSeries,                                                         ### length of input and output series
-                            InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
-                            InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
-                            InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
-                            MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
-                            NParam=as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
-                            Param=as.double(ParamCemaNeige),                                              ### parameter set
-                            NStates=as.integer(NStates),                                                  ### number of state variables used for model initialisation = 4
-                            StateStart=StateStartCemaNeige,                                               ### state variables used when the model run starts
-                            IsHyst = as.integer(IsHyst),                                                  ### use of hysteresis
-                            NOutputs=as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
-                            IndOutputs=IndOutputsCemaNeige,                                               ### indices of output series
-                        ##outputs                                                               
-                            Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
-                            StateEnd=rep(as.double(-999.999),as.integer(NStates))                                   ### state variables at the end of the model run
-                         )
-        RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-        RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-
-        ##Data_storage
-        CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
-        IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
-        if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
-        rm(RESULTS); 
-      } ###ENDFOR_iLayer
-      names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
-    } ###ENDIF_RunSnowModule
-    if(!inherits(RunOptions,"CemaNeige")){
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
-      CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]; }
-
-
-
-    ##MODEL______________________________________________________________________________________##
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); 
-      } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim);  }
-
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3];  ### routing store level (mm)
+      ## Data_storage
+      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]
+      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
+      if (iLayer == 1) {
+        CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr4h",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                          ### length of input and output series
-                     InputsPrecip=CatchMeltAndPliq,                 ### input series of total precipitation [mm/h]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/h]
-                     NParam=NParamMod,                              ### number of model parameter
-                     Param=ParamMod,                                ### parameter set
-                     NStates=NStatesMod,                            ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputsMod)),    ### number of output series
-                     IndOutputs=IndOutputsMod,                      ### indices of output series
-                 ##outputs                                        
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),NStatesMod)                                      ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        idNStates <- seq_len(NStates*NLayers) %% NStates
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
-                                            GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
-                                            eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
-                                            GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
-                                            GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
-                                            verbose = FALSE)
+      if (iLayer > 1) {
+        CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-      
-      if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(!ExportDatesR & !ExportStateEnd){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
-      ##DatesR_and_OutputsModel_only
-      if( ExportDatesR & !ExportStateEnd){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers);      }
-      ##OutputsModel_and_SateEnd_only
-      if(!ExportDatesR & ExportStateEnd){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if( ExportDatesR & ExportStateEnd){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-   
-      class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige");
-      if(IsHyst) {
-        class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+      if (ExportStateEnd) {
+        CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd)
       }
-      return(OutputsModel);
-
+      rm(RESULTS)
+    } ### ENDFOR_iLayer
+    names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
+  } ### ENDIF_RunSnowModule
+  if (!inherits(RunOptions, "CemaNeige")) {
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- NULL
+    CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  
+  
+  ## MODEL
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputsMod <- as.integer(1:length(FortranOutputs$GR))
+  } else {
+    IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Use_of_IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm)
+  }
+  
+  ## Call_fortan
+  RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR",
+                      ## inputs
+                      LInputs = LInputSeries,                          ### length of input and output series
+                      InputsPrecip = CatchMeltAndPliq,                 ### input series of total precipitation [mm/h]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/h]
+                      NParam = NParamMod,                              ### number of model parameter
+                      Param = ParamMod,                                ### parameter set
+                      NStates = NStatesMod,                            ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputsMod)),    ### number of output series
+                      IndOutputs = IndOutputsMod,                      ### indices of output series
+                      ## outputs                                        
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), NStatesMod)                                           ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    idNStates <- seq_len(NStates*NLayers) %% NStates
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst,
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
+                                        UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
+                                        GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
+                                        eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
+                                        GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
+                                        GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
+                                        verbose = FALSE)
+  }
+  
+  if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
+    RESULTS$Outputs[, which(FortranOutputs$GR[IndOutputsMod] ==  "Precip")] <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  ## Output_data_preparation
+  ## OutputsModel_only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## DatesR_and_OutputsModel_only
+  if ( ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## OutputsModel_and_SateEnd_only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  ## DatesR_and_OutputsModel_and_SateEnd
+  if ( ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS)
+  class(OutputsModel) <- c("OutputsModel", "hourly", "GR", "CemaNeige")
+  if (IsHyst) {
+    class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+  }
+  return(OutputsModel)
+  
 }
-- 
GitLab