Creation of the \emph{IniStates} object possibly required by the \code{\link{CreateRunOptions}} function.
}
\details{
20 numeric values are required for UH1 and 40 numeric values are required for UH2 if GR4J, GR5J or GR6J are used (respectively 20*24 and 40*24 for the hourly models GR4H and GR5H). Please note that depending on the X4 parameter value that will be provided when running the model, not all the values may be used (only the first int(X4)+1 values are used for UH1 and the first 2*int(X4)+1 for UH2). \cr
\code{GCemaNeigeLayers} and \code{eTGCemaNeigeLayers} require each numeric values as many as given in \code{\link{CreateInputsModel}} with the \code{NLayers} argument. \code{eTGCemaNeigeLayers} values can be negative.\cr
\title{Creation of the InputsCrit object required to the ErrorCrit functions}
\description{
Creation of the \code{InputsCrit} object required to the \code{ErrorCrit_*} functions. This function is used to define whether the user wants to calculate a single criterion, multiple criteria in the same time, or a composite criterion, which averages several criteria.
@@ -65,11 +70,6 @@ To calculate composite or multiple criteria, it is necessary to use the \code{Er
}
\description{
Creation of the \code{InputsCrit} object required to the \code{ErrorCrit_*} functions. This function is used to define whether the user wants to calculate a single criterion, multiple criteria in the same time, or a composite criterion, which averages several criteria.
}
\details{
Users wanting to use \code{FUN_CRIT} functions that are not included in the package must create their own InputsCrit object accordingly. \cr \cr
\title{Computation of the maximum capacity of the GR5H interception store}
\description{
Function which calculates the maximal capacity of the GR5H interception store. This function compares the interception evapotranspiration from the GR5H interception store for different maximal capacity values with the interception evapotranspiration classically used in the daily GR models (e.g. GR4J). Among all the \code{TestedValues}, the value that gives the closest interception evapotranspiration flux over the whole period is kept.
}
\usage{
Imax(InputsModel, IndPeriod_Run,
TestedValues = seq(from = 0.1, to = 3, by = 0.1))
...
...
@@ -28,11 +33,6 @@ Optimal Imax value [mm].
}
\description{
Function which calculates the maximal capacity of the GR5H interception store. This function compares the interception evapotranspiration from the GR5H interception store for different maximal capacity values with the interception evapotranspiration classically used in the daily GR models (e.g. GR4J). Among all the \code{TestedValues}, the value that gives the closest interception evapotranspiration flux over the whole period is kept.
\title{Generalist parameter sets for the GR4J model}
\description{
These parameter sets can be used as an alternative for the grid-screening calibration procedure (i.e. first step in \code{\link{Calibration_Michel}}).
Please note that the given GR4J X4u variable does not correspond to the actual GR4J X4 parameter. As explained in Andréassian et al. (2014; section 2.1), the given GR4J X4u value has to be adjusted (rescaled) using catchment area (S) [km2] as follows: {X4 = X4u / 5.995 * S^0.3} (please note that the formula is erroneous in the publication). Please, see the example below. \cr
As shown in Andréassian et al. (2014; figure 4), only using these parameters sets as the tested values for calibration is more efficient than a classical calibration when the amount of data is low (6 months or less).
}
\format{Data frame of parameters containing four numeric vectors
\itemize{
\item {GR4J X1} {production store capacity [mm]}
...
...
@@ -18,13 +25,6 @@
}}
\description{
These parameter sets can be used as an alternative for the grid-screening calibration procedure (i.e. first step in \code{\link{Calibration_Michel}}).
Please note that the given GR4J X4u variable does not correspond to the actual GR4J X4 parameter. As explained in Andréassian et al. (2014; section 2.1), the given GR4J X4u value has to be adjusted (rescaled) using catchment area (S) [km2] as follows: {X4 = X4u / 5.995 * S^0.3} (please note that the formula is erroneous in the publication). Please, see the example below. \cr
As shown in Andréassian et al. (2014; figure 4), only using these parameters sets as the tested values for calibration is more efficient than a classical calibration when the amount of data is low (6 months or less).