diff --git a/.Rbuildignore b/.Rbuildignore
index 88a083344290395ebb1b3f767616fcb2bdc82cf4..7c1c5baa8f03668a04b8d352020ed07372de4599 100644
--- a/.Rbuildignore
+++ b/.Rbuildignore
@@ -7,3 +7,4 @@
 ^\.regressionignore$
 ^\.gitlab-ci\.yml$
 ^\.vscode$
+^Rplots\.pdf$
diff --git a/DESCRIPTION b/DESCRIPTION
index bb56081c41492df3752ffdbfd7ff6cf2a51a4e27..3664b2bae3712d7fb61502e5862c3714231ea657 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,7 +1,7 @@
 Package: airGR
 Type: Package
 Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
-Version: 1.6.8.20
+Version: 1.6.8.21
 Date: 2020-12-01
 Authors@R: c(
   person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
@@ -20,7 +20,7 @@ Authors@R: c(
   person("Raji", "Pushpalatha", role = c("ctb")),
   person("Audrey", "Valéry", role = c("ctb"))
   )
-Depends: R (>= 3.0.1)
+Depends: R (>= 3.1.0)
 Suggests: knitr, rmarkdown, coda, DEoptim, dplyr, FME, ggmcmc, hydroPSO, Rmalschains, testthat, imputeTS
 Description: Hydrological modelling tools developed at INRAE-Antony (HYCAR Research Unit, France). The package includes several conceptual rainfall-runoff models (GR4H, GR5H, GR4J, GR5J, GR6J, GR2M, GR1A), a snow accumulation and melt model (CemaNeige) and the associated functions for their calibration and evaluation. Use help(airGR) for package description and references.
 License: GPL-2
diff --git a/R/SeriesAggreg.InputsModel.R b/R/SeriesAggreg.InputsModel.R
index 53cbcc1f72e559df1ccb6676b863eaa375552e95..68c095ee2a10df44b13ecb1c99325fa71667bfb7 100644
--- a/R/SeriesAggreg.InputsModel.R
+++ b/R/SeriesAggreg.InputsModel.R
@@ -1,12 +1,6 @@
-SeriesAggreg.InputsModel <- function(TabSeries, ...) {
-  if (!inherits(TabSeries, "InputsModel")) {
-    stop("to be used with 'InputsModel' object")
-  }
-  res <-
-    SeriesAggreg.list(TabSeries,
-                      except = c("ZLayers", "LengthHydro", "BasinAreas"),
-                      ...)
-
+SeriesAggreg.InputsModel <- function(x, ...) {
+  res <- SeriesAggreg.list(x,
+                           except = c("ZLayers", "LengthHydro", "BasinAreas"),
+                           ...)
   return(res)
-
 }
diff --git a/R/SeriesAggreg.OutputsModel.R b/R/SeriesAggreg.OutputsModel.R
index d370fcc7fbff4432cb1a8c3434454da8d58e0ce3..dae7256ddde8723a24f3e8b4c2a38f629e38b243 100644
--- a/R/SeriesAggreg.OutputsModel.R
+++ b/R/SeriesAggreg.OutputsModel.R
@@ -1,11 +1,4 @@
-SeriesAggreg.OutputsModel <- function(TabSeries, ...) {
-
-  if (!inherits(TabSeries, "OutputsModel")) {
-    stop("to be used with 'OutputsModel' object")
-  }
-
-  res <- SeriesAggreg.list(TabSeries, except = "StateEnd", ...)
-
+SeriesAggreg.OutputsModel <- function(x, ...) {
+  res <- SeriesAggreg.list(x, except = "StateEnd", ...)
   return(res)
-
-}
\ No newline at end of file
+}
diff --git a/R/SeriesAggreg.R b/R/SeriesAggreg.R
index b4fd59fd619e8b17da1f4c9de8d8e6a9d86dbc92..737ce62eb7840cc38b59fad260c1d07bf150fc45 100644
--- a/R/SeriesAggreg.R
+++ b/R/SeriesAggreg.R
@@ -1,3 +1,3 @@
-SeriesAggreg <- function(TabSeries, Format, ...) {
+SeriesAggreg <- function(x, Format, ...) {
   UseMethod("SeriesAggreg")
 }
diff --git a/R/SeriesAggreg.data.frame.R b/R/SeriesAggreg.data.frame.R
index 1b4c102035a213f18dc24f8c4b19d71fd4869192..ad37d16b08bb85b049ec5c1d96811dd09934ff0d 100644
--- a/R/SeriesAggreg.data.frame.R
+++ b/R/SeriesAggreg.data.frame.R
@@ -1,6 +1,6 @@
-SeriesAggreg.data.frame <- function(TabSeries,
+SeriesAggreg.data.frame <- function(x,
                                     Format,
-                                    ConvertFun = getAggregConvertFun(names(TabSeries)[-1]),
+                                    ConvertFun = getAggregConvertFun(names(x)[-1]),
                                     TimeFormat = NULL,
                                     NewTimeFormat = NULL,
                                     YearFirstMonth = 1,
@@ -20,27 +20,27 @@ SeriesAggreg.data.frame <- function(TabSeries,
     stop("argument 'Format' is missing")
   }
 
-  ## check TabSeries
-  if (!is.data.frame(TabSeries)) {
-    stop("'TabSeries' must be a data.frame containing the dates and data to be aggregated")
+  ## check x
+  if (!is.data.frame(x)) {
+    stop("'x' must be a data.frame containing the dates and data to be aggregated")
   }
-  if (ncol(TabSeries) < 2) {
-    stop("'TabSeries' must contain at least two columns (including the column of dates)")
+  if (ncol(x) < 2) {
+    stop("'x' must contain at least two columns (including the column of dates)")
   }
-  ## check TabSeries date column
-  if (!inherits(TabSeries[[1L]], "POSIXt")) {
-    stop("'TabSeries' first column must be a vector of class 'POSIXlt' or 'POSIXct'")
+  ## check x date column
+  if (!inherits(x[[1L]], "POSIXt")) {
+    stop("'x' first column must be a vector of class 'POSIXlt' or 'POSIXct'")
   }
-  if (inherits(TabSeries[[1L]], "POSIXlt")) {
-    TabSeries[[1L]] <- as.POSIXct(TabSeries[[1L]])
+  if (inherits(x[[1L]], "POSIXlt")) {
+    x[[1L]] <- as.POSIXct(x[[1L]])
   }
-  ## check TabSeries other columns (boolean converted to numeric)
+  ## check x other columns (boolean converted to numeric)
   apply(
-    TabSeries[, -1L, drop = FALSE],
+    x[, -1L, drop = FALSE],
     MARGIN = 2,
     FUN = function(iCol) {
       if (!is.numeric(iCol)) {
-        stop("'TabSeries' columns (other than the first one) must be of numeric class")
+        stop("'x' columns (other than the first one) must be of numeric class")
       }
     }
   )
@@ -57,10 +57,10 @@ SeriesAggreg.data.frame <- function(TabSeries,
   if (anyNA(ConvertFun)) {
     stop("'ConvertFun' should be a one of 'sum' or 'mean'")
   }
-  if (length(ConvertFun) != (ncol(TabSeries) - 1)) {
+  if (length(ConvertFun) != (ncol(x) - 1)) {
     stop(sprintf(
-      "'ConvertFun' must be of length %i (ncol(TabSeries)-1)",
-      ncol(TabSeries) - 1
+      "'ConvertFun' must be of length %i (ncol(x)-1)",
+      ncol(x) - 1
     ))
   }
   ## check YearFirstMonth
@@ -89,8 +89,7 @@ SeriesAggreg.data.frame <- function(TabSeries,
     stop(msgTimeLag)
   }
 
-
-  TabSeries0 <- TabSeries
+  TabSeries0 <- x
   colnames(TabSeries0)[1L] <- "DatesR"
   TabSeries0$DatesR <- TabSeries0$DatesR + TimeLag
 
@@ -105,7 +104,7 @@ SeriesAggreg.data.frame <- function(TabSeries,
                 1)
     by <-
       ifelse(grepl("hours", format(diff(
-        TabSeries$DatesR[1:2]
+        x$DatesR[1:2]
       ))), yes = "hours", no = "days")
     fakeTs <-
       data.frame(DatesR = seq(
@@ -126,9 +125,9 @@ SeriesAggreg.data.frame <- function(TabSeries,
     TabSeries2$Selec <- !duplicated(TabSeries2$Selec2)
     if (all(TabSeries2$Selec)) {
       warning(
-        "the requested time 'Format' is the same as the one in 'TabSeries'. No time-step conversion was performed"
+        "the requested time 'Format' is the same as the one in 'x'. No time-step conversion was performed"
       )
-      return(TabSeries)
+      return(x)
     }
     if (Format == "%Y") {
       yfm <- sprintf("%02.f", YearFirstMonth)
@@ -148,16 +147,16 @@ SeriesAggreg.data.frame <- function(TabSeries,
     }
     TabSeries2$Fac2 <- TabSeries2$Selec2
     TabSeries2$Selec <- !duplicated(TabSeries2$Selec2)
-    ConvertFun <- rep("mean", ncol(TabSeries) - 1)
+    ConvertFun <- rep("mean", ncol(x) - 1)
   }
-  #browser()
-  listTsAggreg <- lapply(names(listConvertFun), function(x) {
-    if (any(ConvertFun == x)) {
+
+  listTsAggreg <- lapply(names(listConvertFun), function(y) {
+    if (any(ConvertFun == y)) {
       colTsAggreg <-
-        c("Fac2", colnames(TabSeries)[-1L][ConvertFun == x])
+        c("Fac2", colnames(x)[-1L][ConvertFun == y])
       aggregate(. ~ Fac2,
                 data = TabSeries2[, colTsAggreg],
-                FUN = listConvertFun[[x]],
+                FUN = listConvertFun[[y]],
                 na.action = na.pass)
     } else {
       NULL
diff --git a/R/SeriesAggreg.list.R b/R/SeriesAggreg.list.R
index 806736634f1206c95a14370eb3ed034eb8ad7f71..5152f4d245b67b3911c1f28046cc34cd0418813d 100644
--- a/R/SeriesAggreg.list.R
+++ b/R/SeriesAggreg.list.R
@@ -1,4 +1,4 @@
-SeriesAggreg.list <- function(TabSeries,
+SeriesAggreg.list <- function(x,
                               Format,
                               ConvertFun,
                               NewTimeFormat = NULL,
@@ -6,10 +6,6 @@ SeriesAggreg.list <- function(TabSeries,
                               except = NULL,
                               recursive = TRUE,
                               ...) {
-  if (!is.list(TabSeries)) {
-    stop("to be used with a list")
-  }
-
   if (missing(Format)) {
     Format <- getSeriesAggregFormat(NewTimeFormat)
   } else if (!is.null(NewTimeFormat)) {
@@ -18,31 +14,31 @@ SeriesAggreg.list <- function(TabSeries,
   }
 
   # Determination of DatesR
-  if (!is.null(TabSeries$DatesR)) {
-    if (!inherits(TabSeries$DatesR, "POSIXt")) {
-      stop("'TabSeries$DatesR' should be of class 'POSIXt'")
+  if (!is.null(x$DatesR)) {
+    if (!inherits(x$DatesR, "POSIXt")) {
+      stop("'x$DatesR' should be of class 'POSIXt'")
     }
-    DatesR <- TabSeries$DatesR
+    DatesR <- x$DatesR
   } else {
     # Auto-detection of POSIXt item in Tabseries
     itemPOSIXt <-
-      which(sapply(TabSeries, function(x) {
+      which(sapply(x, function(x) {
         inherits(x, "POSIXt")
       }, simplify = TRUE))[1]
     if (is.na(itemPOSIXt)) {
-      stop("At least one item of argument 'TabSeries' should be of class 'POSIXt'")
+      stop("At least one item of argument 'x' should be of class 'POSIXt'")
     }
     warning(
-      "Item 'DatesR' not found in 'TabSeries' argument: the item ",
-      names(TabSeries)[itemPOSIXt],
+      "Item 'DatesR' not found in 'x' argument: the item ",
+      names(x)[itemPOSIXt],
       " has been automatically chosen"
     )
-    DatesR <- TabSeries[[names(TabSeries)[itemPOSIXt]]]
+    DatesR <- x[[names(x)[itemPOSIXt]]]
   }
 
   # Selection of numeric items for aggregation
-  numericCols <- names(which(sapply(TabSeries, inherits, "numeric")))
-  arrayCols <- names(which(sapply(TabSeries, inherits, "array")))
+  numericCols <- names(which(sapply(x, inherits, "numeric")))
+  arrayCols <- names(which(sapply(x, inherits, "array")))
   numericCols <- setdiff(numericCols, arrayCols)
   if (!is.null(except)) {
     if (!inherits(except, "character")) {
@@ -51,14 +47,14 @@ SeriesAggreg.list <- function(TabSeries,
     numericCols <- setdiff(numericCols, except)
   }
 
-  cols <- TabSeries[numericCols]
+  cols <- x[numericCols]
   lengthCols <- sapply(cols, length, simplify = TRUE)
   if (any(lengthCols != length(DatesR))) {
     sErr <- paste0(names(lengthCols)[lengthCols != length(DatesR)],
                    " (", lengthCols[lengthCols != length(DatesR)], ")",
                    collapse = ", ")
     warning(
-      "The length of the following `numeric` items in 'TabSeries' ",
+      "The length of the following `numeric` items in 'x' ",
       "is different than the length of 'DatesR (",
       length(DatesR),
       ")': they will be ignored in the aggregation: ",
@@ -97,10 +93,10 @@ SeriesAggreg.list <- function(TabSeries,
 
     # Exploration of embedded lists and data.frames
     if (is.null(recursive) || recursive) {
-      listCols <- TabSeries[sapply(TabSeries, inherits, "list")]
-      dfCols <- TabSeries[sapply(TabSeries, inherits, "data.frame")]
+      listCols <- x[sapply(x, inherits, "list")]
+      dfCols <- x[sapply(x, inherits, "data.frame")]
       dfCols <-
-        c(dfCols, TabSeries[sapply(TabSeries, inherits, "matrix")])
+        c(dfCols, x[sapply(x, inherits, "matrix")])
       listCols <- listCols[setdiff(names(listCols), names(dfCols))]
       if (length(listCols) > 0) {
         # Check for predefined ConvertFun for all sub-elements
@@ -153,13 +149,13 @@ SeriesAggreg.list <- function(TabSeries,
     }
 
     # Store elements that are not aggregated
-    res <- c(res, TabSeries[setdiff(names(TabSeries), names(res))])
+    res <- c(res, x[setdiff(names(x), names(res))])
 
     class(res) <-
       gsub(
         "hourly|daily|monthly|yearly",
         getSeriesAggregClass(Format),
-        class(TabSeries)
+        class(x)
       )
 
     return(res)
diff --git a/R/UtilsSeriesAggreg.R b/R/UtilsSeriesAggreg.R
index de72c97487b10ba15adfb74aaf36e0e08c15a64f..247ce7df9e18b8c87d83b7290e25759ef4ed9ef9 100644
--- a/R/UtilsSeriesAggreg.R
+++ b/R/UtilsSeriesAggreg.R
@@ -47,7 +47,7 @@ getSeriesAggregClass <- function(Format) {
                Outputs = c("Prod","Rout","Exp","SnowPack","ThermalState",
                        "Gratio","Temp","Gthreshold","Glocalmax","LayerTempMean", "T")),
     data.frame(ConvertFun = "sum",
-               Outputs = c("zzz","PotEvap","Precip","Pn","Ps","AE","Perc","PR","Q9",
+               Outputs = c("PotEvap","Precip","Pn","Ps","AE","Perc","PR","Q9",
                        "Q1","Exch","AExch1","AExch2","AExch","QR","QRExp",
                        "QD","Qsim","Pliq","Psol","PotMelt","Melt","PliqAndMelt",
                        "LayerPrecip","LayerFracSolidPrecip", "Qmm", "Qls", "E", "P", "Qupstream"))
diff --git a/man/RunModel_GR1A.Rd b/man/RunModel_GR1A.Rd
index 9f52a6bc619e50bcfdae045156056ea5c89d2df7..4ebaba76d856114bb8fdbd211a391173c0139a2d 100644
--- a/man/RunModel_GR1A.Rd
+++ b/man/RunModel_GR1A.Rd
@@ -64,7 +64,7 @@ TabSeries       <- TabSeries[TabSeries$DatesR < "2012-09-01",]
 TimeFormat      <- "\%Y"
 YearFirstMonth  <- 09
 ConvertFun      <- c("sum", "sum", "sum")
-BasinObs    <- SeriesAggreg(TabSeries = TabSeries, Format = TimeFormat,
+BasinObs    <- SeriesAggreg(TabSeries, Format = TimeFormat,
                                 YearFirstMonth = YearFirstMonth, ConvertFun = ConvertFun)
 
 ## preparation of the InputsModel object
diff --git a/man/SeriesAggreg.Rd b/man/SeriesAggreg.Rd
index ff8f33da4fe35d00a6d1b4305e705981c4aa0184..77105ac82c0b9f4ff343b453798a379a5e776066 100644
--- a/man/SeriesAggreg.Rd
+++ b/man/SeriesAggreg.Rd
@@ -31,16 +31,16 @@ Warning: on the aggregated outputs, the dates correspond to the beginning of the
 
 
 \usage{
-\method{SeriesAggreg}{data.frame}(TabSeries,
+\method{SeriesAggreg}{data.frame}(x,
                                   Format,
-                                  ConvertFun = getAggregConvertFun(names(TabSeries)[-1]),
+                                  ConvertFun = getAggregConvertFun(names(x)[-1]),
                                   TimeFormat = NULL,
                                   NewTimeFormat = NULL,
                                   YearFirstMonth = 1,
                                   TimeLag = 0,
                                   \dots)
 
-\method{SeriesAggreg}{list}(TabSeries,
+\method{SeriesAggreg}{list}(x,
                             Format,
                             ConvertFun,
                             NewTimeFormat = NULL,
@@ -49,20 +49,20 @@ Warning: on the aggregated outputs, the dates correspond to the beginning of the
                             recursive = TRUE,
                             \dots)
 
-\method{SeriesAggreg}{InputsModel}(TabSeries, \dots)
+\method{SeriesAggreg}{InputsModel}(x, \dots)
 
-\method{SeriesAggreg}{OutputsModel}(TabSeries, \dots)
+\method{SeriesAggreg}{OutputsModel}(x, \dots)
 }
 
 
 \arguments{
-\item{TabSeries}{[InputsModel], [OutputsModel], [list] or [data.frame] containing the vector of dates (POSIXt) and the time series of numeric values}
+\item{x}{[InputsModel], [OutputsModel], [list] or [data.frame] containing the vector of dates (POSIXt) and the time series of numeric values}
 
 \item{Format}{[character] output time step format (i.e. yearly times series: \code{"\%Y"}, monthly time series: \code{"\%Y\%m"}, daily time series: \code{"\%Y\%m\%d"}, monthly regimes \code{"\%m"}, daily regimes \code{"\%d"})}
 
 \item{TimeFormat}{(deprecated) [character] input time step format (i.e. \code{"hourly"}, \code{"daily"}, \code{"monthly"} or \code{"yearly"})}
 
-\item{NewTimeFormat}{(deprecated) [character] output time step format (i.e. \code{"hourly"}, \code{"daily"}, \code{"monthly"} or \code{"yearly"}). Use the \code{TabSeries} argument instead}
+\item{NewTimeFormat}{(deprecated) [character] output time step format (i.e. \code{"hourly"}, \code{"daily"}, \code{"monthly"} or \code{"yearly"}). Use the \code{x} argument instead}
 
 \item{ConvertFun}{[character] names of aggregation functions (e.g. for P[mm], T[degC], Q[mm]: \code{ConvertFun = c("sum", "mean", "sum"})) (Default: use the name of the column (See details) or "mean" for regime calculation)}
 
@@ -95,13 +95,13 @@ data(L0123002)
 TabSeries <- BasinObs[, c("DatesR", "P", "E", "T", "Qmm")]
 
 ## monthly time series
-NewTabSeries <- SeriesAggreg(TabSeries = TabSeries,
+NewTabSeries <- SeriesAggreg(TabSeries,
                               Format = "\%Y\%m",
                               ConvertFun = c("sum", "sum", "mean", "sum"))
 str(NewTabSeries)
 
 ## monthly regimes
-NewTabSeries <- SeriesAggreg(TabSeries = TabSeries,
+NewTabSeries <- SeriesAggreg(TabSeries,
                               Format = "\%m",
                               ConvertFun = c("sum", "sum", "mean", "sum"))
 str(NewTabSeries)
diff --git a/tests/testthat/test-SeriesAggreg.R b/tests/testthat/test-SeriesAggreg.R
index 9e197d80b98e4e5986ae56094a0f62bbba3b1523..b59f920d0c88cebad30c3fce5f8eb95742e6761f 100644
--- a/tests/testthat/test-SeriesAggreg.R
+++ b/tests/testthat/test-SeriesAggreg.R
@@ -5,55 +5,51 @@ data(L0123002)
 
 test_that("No warning with InputsModel Cemaneige'", {
   ## preparation of the InputsModel object
-  InputsModel <-
-    CreateInputsModel(
-      FUN_MOD = RunModel_CemaNeige,
-      DatesR = BasinObs$DatesR,
-      Precip = BasinObs$P,
-      TempMean = BasinObs$T,
-      ZInputs = BasinInfo$HypsoData[51],
-      HypsoData = BasinInfo$HypsoData,
-      NLayers = 5
-    )
+  InputsModel <- CreateInputsModel(
+    FUN_MOD = RunModel_CemaNeige,
+    DatesR = BasinObs$DatesR,
+    Precip = BasinObs$P,
+    TempMean = BasinObs$T,
+    ZInputs = BasinInfo$HypsoData[51],
+    HypsoData = BasinInfo$HypsoData,
+    NLayers = 5
+  )
   # Expect no warning: https://stackoverflow.com/a/33638939/5300212
   expect_warning(SeriesAggreg(InputsModel, "%m"),
                  regexp = NA)
 })
 
 test_that("Warning: deprecated 'TimeFormat' argument", {
-  InputsModel <-
-    CreateInputsModel(
-      FUN_MOD = RunModel_GR4J,
-      DatesR = BasinObs$DatesR,
-      Precip = BasinObs$P,
-      PotEvap = BasinObs$E
-    )
+  InputsModel <- CreateInputsModel(
+    FUN_MOD = RunModel_GR4J,
+    DatesR = BasinObs$DatesR,
+    Precip = BasinObs$P,
+    PotEvap = BasinObs$E
+  )
   expect_warning(SeriesAggreg(InputsModel, Format = "%Y%m", TimeFormat = "daily"),
                  regexp = "deprecated 'TimeFormat' argument")
 })
 
 test_that("Warning: deprecated 'NewTimeFormat' argument: please use 'Format' instead",
           {
-            InputsModel <-
-              CreateInputsModel(
-                FUN_MOD = RunModel_GR4J,
-                DatesR = BasinObs$DatesR,
-                Precip = BasinObs$P,
-                PotEvap = BasinObs$E
-              )
+            InputsModel <- CreateInputsModel(
+              FUN_MOD = RunModel_GR4J,
+              DatesR = BasinObs$DatesR,
+              Precip = BasinObs$P,
+              PotEvap = BasinObs$E
+            )
             expect_warning(SeriesAggreg(InputsModel, NewTimeFormat = "monthly"),
                            regexp = "deprecated 'NewTimeFormat' argument: please use 'Format' instead")
           })
 
 test_that("Warning: deprecated 'NewTimeFormat' argument: 'Format' argument is used instead",
           {
-            InputsModel <-
-              CreateInputsModel(
-                FUN_MOD = RunModel_GR4J,
-                DatesR = BasinObs$DatesR,
-                Precip = BasinObs$P,
-                PotEvap = BasinObs$E
-              )
+            InputsModel <- CreateInputsModel(
+              FUN_MOD = RunModel_GR4J,
+              DatesR = BasinObs$DatesR,
+              Precip = BasinObs$P,
+              PotEvap = BasinObs$E
+            )
             expect_warning(SeriesAggreg(InputsModel, Format = "%Y%m", NewTimeFormat = "monthly"),
                            regexp = "deprecated 'NewTimeFormat' argument: 'Format' argument is used instead")
           })
@@ -85,13 +81,12 @@ test_that("No DatesR should warning", {
 })
 
 test_that("Check SeriesAggreg.list 'DatesR' argument", {
-  InputsModel <-
-    CreateInputsModel(
-      FUN_MOD = RunModel_GR4J,
-      DatesR = BasinObs$DatesR,
-      Precip = BasinObs$P,
-      PotEvap = BasinObs$E
-    )
+  InputsModel <- CreateInputsModel(
+    FUN_MOD = RunModel_GR4J,
+    DatesR = BasinObs$DatesR,
+    Precip = BasinObs$P,
+    PotEvap = BasinObs$E
+  )
   DatesR <- InputsModel$DatesR
   # No InputsModel$DatesR
   InputsModel$DatesR <- NULL
@@ -186,7 +181,8 @@ test_that("Check data.frame handling in SeriesAggreg.list", {
                  regexp = NA)
   I2 <- SeriesAggreg(InputsModelDown1, "%Y%m")
   expect_equal(length(I2$DatesR), nrow(I2$Qupstream))
-  InputsModelDown1$Qupstream <- InputsModelDown1$Qupstream[-1, , drop=FALSE] # https://stackoverflow.com/a/7352287/5300212
+  InputsModelDown1$Qupstream <-
+    InputsModelDown1$Qupstream[-1, , drop = FALSE] # https://stackoverflow.com/a/7352287/5300212
   expect_warning(SeriesAggreg(InputsModelDown1, "%Y%m"),
-               regexp = "it will be ignored in the aggregation")
+                 regexp = "it will be ignored in the aggregation")
 })