diff --git a/vignettes/V02.1_param_optim.Rmd b/vignettes/V02.1_param_optim.Rmd index 6091f4ee58cfc3a34ada75c404f21ad7ffdd5e9c..dfa0538b6708726cef0c0bbb9b0921172a876b55 100644 --- a/vignettes/V02.1_param_optim.Rmd +++ b/vignettes/V02.1_param_optim.Rmd @@ -170,7 +170,6 @@ optDE <- DEoptim::DEoptim(fn = OptimGR4J, # repos = NULL, type = "source", dependencies = TRUE) ``` - ```{r hydroPSO2, warning=FALSE, results='hide', message=FALSE, eval=FALSE} optPSO <- hydroPSO::hydroPSO(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, @@ -180,7 +179,7 @@ optPSO <- hydroPSO::hydroPSO(fn = OptimGR4J, ## MA-LS-Chains -```{r, warning=FALSE, results='hide', eval=FALSE} +```{r optMALS, warning=FALSE, results='hide', eval=FALSE} optMALS <- Rmalschains::malschains(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, maxEvals = 2000) @@ -192,7 +191,7 @@ optMALS <- Rmalschains::malschains(fn = OptimGR4J, As it can be seen in the table below, the four additional optimization strategies tested lead to very close optima. -```{r resGLOB, warning=FALSE, echo=FALSE, eval=FALSE} +```{r resGLOB1, warning=FALSE, echo=FALSE, eval=FALSE} resGLOB <- data.frame(Algo = c("airGR", "PORT", "DE", "PSO", "MA-LS"), round(rbind( OutputsCalib$ParamFinalR, @@ -202,7 +201,7 @@ resGLOB <- data.frame(Algo = c("airGR", "PORT", "DE", "PSO", "MA-LS"), airGR::TransfoParam_GR4J(ParamIn = optMALS$sol , Direction = "TR")), digits = 3)) ``` -```{r, warning=FALSE, echo=FALSE} +```{r resGLOB2, warning=FALSE, echo=FALSE} resGLOB ```