From d09859b792f6e8575dbfeb75505fb360e29e7151 Mon Sep 17 00:00:00 2001
From: unknown <olivier.delaigue@ANPI1430.antony.irstea.priv>
Date: Wed, 5 Apr 2017 16:46:13 +0200
Subject: [PATCH] v1.0.6.10 doc updated for Latex versions of ErrorCrit_KGE and
 ErrorCrit_KGE2 functions #4538

---
 DESCRIPTION           | 2 +-
 man/ErrorCrit_KGE.Rd  | 6 +++---
 man/ErrorCrit_KGE2.Rd | 6 +++---
 3 files changed, 7 insertions(+), 7 deletions(-)

diff --git a/DESCRIPTION b/DESCRIPTION
index fef240b2..cc149699 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,7 +1,7 @@
 Package: airGR
 Type: Package
 Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
-Version: 1.0.6.9
+Version: 1.0.6.10
 Date: 2017-04-05
 Authors@R: c(
   person("Laurent", "Coron", role = c("aut", "trl")),
diff --git a/man/ErrorCrit_KGE.Rd b/man/ErrorCrit_KGE.Rd
index 6ce1678b..28efcc81 100644
--- a/man/ErrorCrit_KGE.Rd
+++ b/man/ErrorCrit_KGE.Rd
@@ -41,9 +41,9 @@ the use of the function for model calibration: the product CritValue*Multiplier
 The KGE formula is
 \deqn{KGE = 1 - \sqrt(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}{KGE = 1 - sqrt((r - 1)² + (\alpha - 1)² + (\beta - 1)²)}
 with the following sub-criteria:
-\deqn{r = the linear correlation coefficient between Q_s and Q_o}{r = the linear correlation coefficient between Q[s] and Q[o]}
-\deqn{\alpha = \frac{\sigma_s}{\sigma_o}}{\alpha = \sigma[s] / \sigma[o]}
-\deqn{\beta = \frac{\mu_s}{\mu_o}}{\beta = \mu[s] / \mu[o]}
+\deqn{r = \mathrm{the\: linear\: correlation\: coefficient\: between\:} Q_{sim}\: \mathrm{and\:} Q_{obs}}{r = the linear correlation coefficient between Q[sim] and Q[obs]}
+\deqn{\alpha = \frac{\sigma_{sim}}{\sigma_{obs}}}{\alpha = \sigma[sim] / \sigma[obs]}
+\deqn{\beta = \frac{\mu_{sim}}{\mu_{obs}}}{\beta = \mu[sim] / \mu[obs]}
 }
 
 \examples{
diff --git a/man/ErrorCrit_KGE2.Rd b/man/ErrorCrit_KGE2.Rd
index 82c344cc..0fa1cd12 100644
--- a/man/ErrorCrit_KGE2.Rd
+++ b/man/ErrorCrit_KGE2.Rd
@@ -41,9 +41,9 @@ the use of the function for model calibration: the product CritValue*Multiplier
 The KGE' formula is
 \deqn{KGE' = 1 - \sqrt{(r - 1)^2 + (\gamma - 1)^2 + (\beta - 1)^2}}{KGE' = 1 - sqrt((r - 1)² + (\gamma - 1)² + (\beta - 1)²)}
 with the following sub-criteria:
-\deqn{r = the linear correlation coefficient between Q_s and Q_o}{r = is the linear correlation coefficient between Q[s] and Q[o]}
-\deqn{\alpha = \frac{CV_s}{CV_o}}{\alpha = CV[s] / CV[o]}
-\deqn{\beta = \frac{\mu_s}{\mu_o}}{\beta = \mu[s] / \mu[o]}
+\deqn{r = \mathrm{the\: linear\ correlation\: coefficient\: between\:} Q_{sim}\: \mathrm{and\:} Q_{obs}}{r = is the linear correlation coefficient between Q[sim] and Q[obs]}
+\deqn{\gamma = \frac{CV_{sim}}{CV_{obs}}}{\gamma = CV[sim] / CV[obs]}
+\deqn{\beta = \frac{\mu_{sim}}{\mu_{obs}}}{\beta = \mu[sim] / \mu[obs]}
 }
 
 \examples{
-- 
GitLab