diff --git a/DESCRIPTION b/DESCRIPTION index d2c09b8ba612cbc11ee595a1e200a0f7ad59173f..bae6fed2f86d812bcff869984b75b4eb1dc62164 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,8 +1,8 @@ Package: airGR Type: Package Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling -Version: 1.6.3.42 -Date: 2020-11-09 +Version: 1.6.3.65 +Date: 2020-11-17 Authors@R: c( person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")), person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@inrae.fr"), diff --git a/NEWS.md b/NEWS.md index c25fb352eff9cd956add529b9c2e2ceb9d115d22..29cfe222b7368dc08d361050d11a9742a795c113 100644 --- a/NEWS.md +++ b/NEWS.md @@ -4,7 +4,7 @@ -### 1.6.3.42 Release Notes (2020-11-09) +### 1.6.3.65 Release Notes (2020-11-17) #### New features diff --git a/R/RunModel_CemaNeige.R b/R/RunModel_CemaNeige.R index e1dbbf659969732b8fbeca38246e7db2d8aa8bf2..a9f35e0e189465dd24e23bb0b4904216e98b6766 100644 --- a/R/RunModel_CemaNeige.R +++ b/R/RunModel_CemaNeige.R @@ -8,7 +8,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) { FortranOutputsCemaNeige <- .FortranOutputs(GR = NULL, isCN = TRUE)$CN - ## Arguments_check + ## Arguments check if (!inherits(InputsModel, "InputsModel")) { stop("'InputsModel' must be of class 'InputsModel'") } @@ -39,7 +39,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) { time_mult <- 24 } - ## Input_data_preparation + ## Input data preparation if (identical(RunOptions$IndPeriod_WarmUp, as.integer(0))) { RunOptions$IndPeriod_WarmUp <- NULL } @@ -52,7 +52,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) { - ## SNOW_MODULE________________________________________________________________________________ + ## CemaNeige________________________________________________________________________________ ParamCemaNeige <- Param NLayers <- length(InputsModel$LayerPrecip) @@ -71,7 +71,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) { NameCemaNeigeLayers <- "CemaNeigeLayers" - ## Call_DLL_CemaNeige_________________________ + ## Call CemaNeige Fortran_________________________ for (iLayer in 1:NLayers) { if (!IsHyst) { @@ -105,7 +105,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) { - ## Data_storage + ## Data storage CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige] if (ExportStateEnd) { @@ -113,7 +113,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) { } rm(RESULTS) - } ### ENDFOR_iLayer + } ### ENDFOR iLayer names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) @@ -129,7 +129,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) { verbose = FALSE) } - ## Output_data_preparation + ## Output data preparation if (!ExportDatesR & !ExportStateEnd) { OutputsModel <- list(CemaNeigeLayers) names(OutputsModel) <- NameCemaNeigeLayers diff --git a/R/RunModel_CemaNeigeGR4H.R b/R/RunModel_CemaNeigeGR4H.R index 7aecbaf11c5f7e0e7b701069f7f618ca5119a4a1..fe29e9096e863e14283b54635006c341d13ab9dd 100644 --- a/R/RunModel_CemaNeigeGR4H.R +++ b/R/RunModel_CemaNeigeGR4H.R @@ -1,5 +1,5 @@ -RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){ - +RunModel_CemaNeigeGR4H <- function(InputsModel, RunOptions, Param) { + ## Initialization of variables IsHyst <- inherits(RunOptions, "hysteresis") @@ -7,177 +7,221 @@ RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){ NParamCN <- NParam - 4L NStates <- 4L FortranOutputs <- .FortranOutputs(GR = "GR4H", isCN = TRUE) - + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "hourly")) { + stop("'InputsModel' must be of class 'hourly'") + } + if (!inherits(InputsModel, "GR")) { + stop("'InputsModel' must be of class 'GR'") + } + if (!inherits(InputsModel, "CemaNeige")) { + stop("'InputsModel' must be of class 'CemaNeige'") + } + if (!inherits(RunOptions, "RunOptions")) { + stop("'RunOptions' must be of class 'RunOptions'") + } + if (!inherits(RunOptions, "GR")) { + stop("'RunOptions' must be of class 'GR'") + } + if (!inherits(RunOptions, "CemaNeige")) { + stop("'RunOptions' must be of class 'CemaNeige'") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length", NParam, "and contain no NA")) + } + Param <- as.double(Param) + + + Param_X1X3_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[1L] <- Param_X1X3_threshold + } + if (Param[3L] < Param_X1X3_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[3L] <- Param_X1X3_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [hour]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries + ParamCemaNeige <- Param[(length(Param)-1 - 2 * as.integer(IsHyst)):length(Param)] + NParamMod <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst))) + ParamMod <- Param[1:NParamMod] + NLayers <- length(InputsModel$LayerPrecip) + NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers) + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + + ## CemaNeige________________________________________________________________________________ + if (inherits(RunOptions, "CemaNeige")) { + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)) + } else { + IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim) + } + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- "CemaNeigeLayers" - ##Arguments_check - if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") } - if(!inherits(InputsModel,"hourly" )){ stop("'InputsModel' must be of class 'hourly' ") } - if(!inherits(InputsModel,"GR" )){ stop("'InputsModel' must be of class 'GR' ") } - if(!inherits(InputsModel,"CemaNeige" )){ stop("'InputsModel' must be of class 'CemaNeige' ") } - if(!inherits(RunOptions,"RunOptions" )){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(!inherits(RunOptions,"GR" )){ stop("'RunOptions' must be of class 'GR' ") } - if(!inherits(RunOptions,"CemaNeige" )){ stop("'RunOptions' must be of class 'CemaNeige' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[1L] <- Param_X1X3_threshold - } - if (Param[3L] < Param_X1X3_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[3L] <- Param_X1X3_threshold - } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [hour]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } + + ## Call CemaNeige Fortran_________________________ + for (iLayer in 1:NLayers) { - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)]; - NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst))); - ParamMod <- Param[1:NParamMod]; - NLayers <- length(InputsModel$LayerPrecip); - NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers); - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - + if (!IsHyst) { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)] + } else { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] + } + RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h] + InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4 + Param = as.double(ParamCemaNeige), ### parameter set + NStates = as.integer(NStates), ### number of state variables used for model initialisation = 4 + StateStart = StateStartCemaNeige, ### state variables used when the model run starts + IsHyst = as.integer(IsHyst), ### use of hysteresis + NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs = IndOutputsCemaNeige, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd = rep(as.double(-999.999), as.integer(NStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA - ##SNOW_MODULE________________________________________________________________________________## - if(inherits(RunOptions,"CemaNeige")){ - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); - } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); } - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; - - - ##Call_DLL_CemaNeige_________________________ - for(iLayer in 1:NLayers){ - if (!IsHyst) { - StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)] - } else { - StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] - } - RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h] - InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] - InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] - MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] - NParam=as.integer(NParamCN), ### number of model parameters = 2 or 4 - Param=as.double(ParamCemaNeige), ### parameter set - NStates=as.integer(NStates), ### number of state variables used for model initialisation = 4 - StateStart=StateStartCemaNeige, ### state variables used when the model run starts - IsHyst = as.integer(IsHyst), ### use of hysteresis - NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series - IndOutputs=IndOutputsCemaNeige, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] - StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - - ##Data_storage - CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]; - IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); - if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } - rm(RESULTS); - } ###ENDFOR_iLayer - names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) - } ###ENDIF_RunSnowModule - if(!inherits(RunOptions,"CemaNeige")){ - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; - CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } - - - - ##MODEL______________________________________________________________________________________## - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); - } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); } - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + ## Data storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige] + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt") + if (iLayer == 1) { + CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr4h",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/h] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] - NParam=NParamMod, ### number of model parameter - Param=ParamMod, ### parameter set - NStates=NStatesMod, ### number of state variables used for model initialising - StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputsMod)), ### number of output series - IndOutputs=IndOutputsMod, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] - StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - idNStates <- seq_len(NStates*NLayers) %% NStates - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, - UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], - GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], - eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], - GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], - GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], - verbose = FALSE) + if (iLayer > 1) { + CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers } - - if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } - - ##Output_data_preparation - ##OutputsModel_only - if(!ExportDatesR & !ExportStateEnd){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##DatesR_and_OutputsModel_only - if( ExportDatesR & !ExportStateEnd){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##OutputsModel_and_SateEnd_only - if(!ExportDatesR & ExportStateEnd){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if( ExportDatesR & ExportStateEnd){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - - ##End - rm(RESULTS); - - class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige"); - if(IsHyst) { - class(OutputsModel) <- c(class(OutputsModel), "hysteresis") + if (ExportStateEnd) { + CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd) } - return(OutputsModel); - + rm(RESULTS) + } ### ENDFOR iLayer + names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) + } ### ENDIF RunSnowModule + if (!inherits(RunOptions, "CemaNeige")) { + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- NULL + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1] + } + + + + ## GR model + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)) + } else { + IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim) + } + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = CatchMeltAndPliq, ### input series of total precipitation [mm/h] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] + NParam = NParamMod, ### number of model parameter + Param = ParamMod, ### parameter set + NStates = NStatesMod, ### number of state variables used for model initialising + StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs = IndOutputsMod, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm] + StateEnd = rep(as.double(-999.999), NStatesMod) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + idNStates <- seq_len(NStates*NLayers) %% NStates + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], + GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], + eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], + GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], + GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], + verbose = FALSE) + } + + if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) { + RESULTS$Outputs[, which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1] + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## DatesR and OutputsModel only + if ( ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + ## DatesR and OutputsModel and SateEnd + if ( ExportDatesR & ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "hourly", "GR", "CemaNeige") + if (IsHyst) { + class(OutputsModel) <- c(class(OutputsModel), "hysteresis") + } + return(OutputsModel) + } diff --git a/R/RunModel_CemaNeigeGR4J.R b/R/RunModel_CemaNeigeGR4J.R index f3a7f8226511264f189df5346a32e29b8a8528d7..9156165856ae34a26358c231d9466c8174823bee 100644 --- a/R/RunModel_CemaNeigeGR4J.R +++ b/R/RunModel_CemaNeigeGR4J.R @@ -1,5 +1,5 @@ -RunModel_CemaNeigeGR4J <- function(InputsModel,RunOptions,Param){ - +RunModel_CemaNeigeGR4J <- function(InputsModel, RunOptions, Param) { + ## Initialization of variables IsHyst <- inherits(RunOptions, "hysteresis") @@ -7,177 +7,219 @@ RunModel_CemaNeigeGR4J <- function(InputsModel,RunOptions,Param){ NParamCN <- NParam - 4L NStates <- 4L FortranOutputs <- .FortranOutputs(GR = "GR4J", isCN = TRUE) - + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "daily")) { + stop("'InputsModel' must be of class 'daily'") + } + if (!inherits(InputsModel, "GR")) { + stop("'InputsModel' must be of class 'GR'") + } + if (!inherits(InputsModel, "CemaNeige")) { + stop("'InputsModel' must be of class 'CemaNeige'") + } + if (!inherits(RunOptions, "RunOptions")) { + stop("'RunOptions' must be of class 'RunOptions'") + } + if (!inherits(RunOptions, "GR")) { + stop("'RunOptions' must be of class 'GR'") + } + if (!inherits(RunOptions, "CemaNeige")) { + stop("'RunOptions' must be of class 'CemaNeige'") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length", NParam, "and contain no NA")) + } + Param <- as.double(Param) + + Param_X1X3_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[1L] <- Param_X1X3_threshold + } + if (Param[3L] < Param_X1X3_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[3L] <- Param_X1X3_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries + ParamCemaNeige <- Param[(length(Param)- 1 - 2 * as.integer(IsHyst)):length(Param)] + NParamMod <- as.integer(length(Param) - (2 + 2*as.integer(IsHyst))) + ParamMod <- Param[1:NParamMod] + NLayers <- length(InputsModel$LayerPrecip) + NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers) + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + + ## CemaNeige________________________________________________________________________________ + if (inherits(RunOptions, "CemaNeige")) { + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)) + } else { + IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim) + } + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- "CemaNeigeLayers" - ##Arguments_check - if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") } - if(!inherits(InputsModel,"daily" )){ stop("'InputsModel' must be of class 'daily' ") } - if(!inherits(InputsModel,"GR" )){ stop("'InputsModel' must be of class 'GR' ") } - if(!inherits(InputsModel,"CemaNeige" )){ stop("'InputsModel' must be of class 'CemaNeige' ") } - if(!inherits(RunOptions,"RunOptions" )){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(!inherits(RunOptions,"GR" )){ stop("'RunOptions' must be of class 'GR' ") } - if(!inherits(RunOptions,"CemaNeige" )){ stop("'RunOptions' must be of class 'CemaNeige' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[1L] <- Param_X1X3_threshold - } - if (Param[3L] < Param_X1X3_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[3L] <- Param_X1X3_threshold + + ## Call CemaNeige Fortran_________________________ + for(iLayer in 1:NLayers) { + if (!IsHyst) { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)] + } else { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } + RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4 + Param = as.double(ParamCemaNeige), ### parameter set + NStates = as.integer(NStates), ### number of state variables used for model initialising = 4 + StateStart = StateStartCemaNeige, ### state variables used when the model run starts + IsHyst = as.integer(IsHyst), ### use of hysteresis + NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs = IndOutputsCemaNeige, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd = rep(as.double(-999.999), as.integer(NStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)]; - NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst))); - ParamMod <- Param[1:NParamMod]; - NLayers <- length(InputsModel$LayerPrecip); - NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers); - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - - ##SNOW_MODULE________________________________________________________________________________## - if(inherits(RunOptions,"CemaNeige")){ - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); - } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); } - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; - - - ##Call_DLL_CemaNeige_________________________ - for(iLayer in 1:NLayers){ - if (!IsHyst) { - StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)] - } else { - StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] - } - RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] - InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] - InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] - MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] - NParam=as.integer(NParamCN), ### number of model parameters = 2 or 4 - Param=as.double(ParamCemaNeige), ### parameter set - NStates=as.integer(NStates), ### number of state variables used for model initialising = 4 - StateStart=StateStartCemaNeige, ### state variables used when the model run starts - IsHyst = as.integer(IsHyst), ### use of hysteresis - NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series - IndOutputs=IndOutputsCemaNeige, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] - StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - - ##Data_storage - CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]; - IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); - if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } - rm(RESULTS); - } ###ENDFOR_iLayer - names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) - } ###ENDIF_RunSnowModule - if(!inherits(RunOptions,"CemaNeige")){ - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; - CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } - - - - ##MODEL______________________________________________________________________________________## - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); - } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); } - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + ## Data storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige] + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt") + if (iLayer == 1) { + CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr4j",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] - NParam=NParamMod, ### number of model parameter - Param=ParamMod, ### parameter set - NStates=NStatesMod, ### number of state variables used for model initialising - StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputsMod)), ### number of output series - IndOutputs=IndOutputsMod, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] - StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - idNStates <- seq_len(NStates*NLayers) %% NStates - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IsHyst = IsHyst, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, - UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], - GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], - eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], - GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], - GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], - verbose = FALSE) + if (iLayer >1) { + CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers } - - if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } - - ##Output_data_preparation - ##OutputsModel_only - if(!ExportDatesR & !ExportStateEnd){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##DatesR_and_OutputsModel_only - if( ExportDatesR & !ExportStateEnd){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##OutputsModel_and_SateEnd_only - if(!ExportDatesR & ExportStateEnd){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if( ExportDatesR & ExportStateEnd){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - - ##End - rm(RESULTS); - - class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); - if(IsHyst) { - class(OutputsModel) <- c(class(OutputsModel), "hysteresis") + if (ExportStateEnd) { + CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd) } - return(OutputsModel); - + rm(RESULTS) + } ### ENDFOR iLayer + names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) + } ### ENDIF RunSnowModule + if (!inherits(RunOptions, "CemaNeige")) { + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- NULL + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1] + } + + + + ## GR model______________________________________________________________________________________ + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)) + } else { + IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim) + } + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr4j", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam = NParamMod, ### number of model parameter + Param = ParamMod, ### parameter set + NStates = NStatesMod, ### number of state variables used for model initialising + StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs = IndOutputsMod, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm] + StateEnd = rep(as.double(-999.999), NStatesMod) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + idNStates <- seq_len(NStates*NLayers) %% NStates + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IsHyst = IsHyst, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], + GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], + eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], + GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], + GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], + verbose = FALSE) + } + + if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) { + RESULTS$Outputs[, which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1] + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## DatesR and OutputsModel only + if ( ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + ## DatesR and OutputsModel and Sate + if ( ExportDatesR & ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "daily", "GR", "CemaNeige") + if (IsHyst) { + class(OutputsModel) <- c(class(OutputsModel), "hysteresis") + } + return(OutputsModel) + } diff --git a/R/RunModel_CemaNeigeGR5H.R b/R/RunModel_CemaNeigeGR5H.R index c8639d71338d8bd5ef4d204959258c2098160236..6cfcc4180c93eb3fa361830d55b0f382df949b57 100644 --- a/R/RunModel_CemaNeigeGR5H.R +++ b/R/RunModel_CemaNeigeGR5H.R @@ -1,28 +1,50 @@ -RunModel_CemaNeigeGR5H <- function(InputsModel,RunOptions,Param){ +RunModel_CemaNeigeGR5H <- function(InputsModel, RunOptions, Param) { + + ## Initialization of variables IsHyst <- inherits(RunOptions, "hysteresis") NParam <- ifelse(test = IsHyst, yes = 9L, no = 7L) NParamCN <- NParam - 5L NStates <- 4L FortranOutputs <- .FortranOutputs(GR = "GR5H", isCN = TRUE) IsIntStore <- inherits(RunOptions, "interception") - if(IsIntStore) { + if (IsIntStore) { Imax <- RunOptions$Imax } else { Imax <- -99 } - ##Arguments_check - if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") } - if(!inherits(InputsModel,"hourly" )){ stop("'InputsModel' must be of class 'hourly' ") } - if(!inherits(InputsModel,"GR" )){ stop("'InputsModel' must be of class 'GR' ") } - if(!inherits(InputsModel,"CemaNeige" )){ stop("'InputsModel' must be of class 'CemaNeige' ") } - if(!inherits(RunOptions,"RunOptions" )){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(!inherits(RunOptions,"GR" )){ stop("'RunOptions' must be of class 'GR' ") } - if(!inherits(RunOptions,"CemaNeige" )){ stop("'RunOptions' must be of class 'CemaNeige' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "hourly")) { + stop("'InputsModel' must be of class 'hourly'") + } + if (!inherits(InputsModel, "GR")) { + stop("'InputsModel' must be of class 'GR'") + } + if (!inherits(InputsModel, "CemaNeige")) { + stop("'InputsModel' must be of class 'CemaNeige'") + } + if (!inherits(RunOptions, "RunOptions")) { + stop("'RunOptions' must be of class 'RunOptions'") + } + if (!inherits(RunOptions, "GR")) { + stop("'RunOptions' must be of class 'GR'") + } + if (!inherits(RunOptions, "CemaNeige")) { + stop("'RunOptions' must be of class 'CemaNeige'") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length", NParam, "and contain no NA")) + } + Param <- as.double(Param) + Param_X1X3_threshold <- 1e-2 Param_X4_threshold <- 0.5 @@ -39,108 +61,132 @@ RunModel_CemaNeigeGR5H <- function(InputsModel,RunOptions,Param){ Param[4L] <- Param_X4_threshold } - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs)); - } else { IndOutputsMod <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } - - ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)]; - NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst))); - ParamMod <- Param[1:NParamMod]; - NLayers <- length(InputsModel$LayerPrecip); - NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers); - - ##Output_data_preparation - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - ##SNOW_MODULE________________________________________________________________________________## - if(inherits(RunOptions,"CemaNeige")){ - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); - } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); } - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsMod <- as.integer(1:length(FortranOutputs)) + } else { + IndOutputsMod <- which(FortranOutputs %in% RunOptions$Outputs_Sim) + } + + ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)] + NParamMod <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst))) + ParamMod <- Param[1:NParamMod] + NLayers <- length(InputsModel$LayerPrecip) + NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers) + + + ## Output data preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + ## CemaNeige________________________________________________________________________________ + if (inherits(RunOptions, "CemaNeige")) { + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)) + } else { + IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim) + } + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- "CemaNeigeLayers" - ##Call_DLL_CemaNeige_________________________ - for(iLayer in 1:NLayers){ + ## Call CemaNeige Fortran_________________________ + for(iLayer in 1:NLayers) { if (!IsHyst) { StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)] } else { StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] } RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h] - InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] - InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] - MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] - NParam=as.integer(NParamCN), ### number of model parameters = 2 or 4 - Param=as.double(ParamCemaNeige), ### parameter set - NStates=as.integer(NStates), ### number of state variables used for model initialisation = 4 - StateStart=StateStartCemaNeige, ### state variables used when the model run starts - IsHyst = as.integer(IsHyst), ### use of hysteresis - NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series - IndOutputs=IndOutputsCemaNeige, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] - StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h] + InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4 + Param = as.double(ParamCemaNeige), ### parameter set + NStates = as.integer(NStates), ### number of state variables used for model initialisation = 4 + StateStart = StateStartCemaNeige, ### state variables used when the model run starts + IsHyst = as.integer(IsHyst), ### use of hysteresis + NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs = IndOutputsCemaNeige, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd = rep(as.double(-999.999), as.integer(NStates)) ### state variables at the end of the model run ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA - ##Data_storage - CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]; - IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); - if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } - rm(RESULTS); - } ###ENDFOR_iLayer + ## Data storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige] + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt") + if (iLayer == 1) { + CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers + } + if (iLayer > 1) { + CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers + } + if (ExportStateEnd) { + CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd) + } + rm(RESULTS) + } ### ENDFOR iLayer names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) - } ###ENDIF_RunSnowModule - if(!inherits(RunOptions,"CemaNeige")){ - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; - CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } + } ### ENDIF RunSnowModule + if (!inherits(RunOptions, "CemaNeige")) { + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- NULL + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1] + } - ##MODEL______________________________________________________________________________________## - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); - } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); } + ## GR model______________________________________________________________________________________ + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)) + } else { + IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim) + } - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) - if(IsIntStore) { - RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax; ### interception store level (mm) + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * Param[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * Param[3] ### routing store level (mm) + if (IsIntStore) { + RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax ### interception store level (mm) } } - ##Call_fortan + ## Call GR model Fortan RESULTS <- .Fortran("frun_gr5h",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] - NParam=as.integer(length(Param)), ### number of model parameter - Param=Param, ### parameter set - NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising - StateStart=RunOptions$IniStates, ### state variables used when the model run starts - Imax=Imax, ### maximal capacity of interception store - NOutputs=as.integer(length(IndOutputsMod)), ### number of output series - IndOutputs=IndOutputsMod, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm or mm/h] - StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] + NParam = as.integer(length(Param)), ### number of model parameter + Param = Param, ### parameter set + NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart = RunOptions$IniStates, ### state variables used when the model run starts + Imax = Imax, ### maximal capacity of interception store + NOutputs = as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs = IndOutputsMod, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm or mm/h] + StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA if (ExportStateEnd) { RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location idNStates <- seq_len(NStates*NLayers) %% NStates @@ -154,45 +200,51 @@ RunModel_CemaNeigeGR5H <- function(InputsModel,RunOptions,Param){ GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], verbose = FALSE) } - - if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } - - ##Output_data_preparation - ##OutputsModel_only - ##OutputsModel_only - if(!ExportDatesR & !ExportStateEnd){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##DatesR_and_OutputsModel_only - if( ExportDatesR & !ExportStateEnd){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##OutputsModel_and_SateEnd_only - if(!ExportDatesR & ExportStateEnd){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if( ExportDatesR & ExportStateEnd){ + + if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) { + RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1] + } + + ## Output data preparation + ## OutputsModel only + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## DatesR and OutputsModel only + if ( ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + ## DatesR and OutputsModel and SateEnd + if ( ExportDatesR & ExportStateEnd) { OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige"); - if(IsHyst) { + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "hourly", "GR", "CemaNeige") + if (IsHyst) { class(OutputsModel) <- c(class(OutputsModel), "hysteresis") } - if(IsIntStore) { + if (IsIntStore) { class(OutputsModel) <- c(class(OutputsModel), "interception") } - return(OutputsModel); + return(OutputsModel) } diff --git a/R/RunModel_CemaNeigeGR5J.R b/R/RunModel_CemaNeigeGR5J.R index 2d41be506a20dd5cebe5ef3e0ca5006aa5ada343..3e3344d5e3b589bb310d15e075a528e86a2b91b2 100644 --- a/R/RunModel_CemaNeigeGR5J.R +++ b/R/RunModel_CemaNeigeGR5J.R @@ -1,180 +1,226 @@ -RunModel_CemaNeigeGR5J <- function(InputsModel,RunOptions,Param){ - +RunModel_CemaNeigeGR5J <- function(InputsModel, RunOptions, Param) { + + ## Initialization of variables IsHyst <- inherits(RunOptions, "hysteresis") NParam <- ifelse(test = IsHyst, yes = 9L, no = 7L) NParamCN <- NParam - 5L NStates <- 4L FortranOutputs <- .FortranOutputs(GR = "GR5J", isCN = TRUE) - - ##Arguments_check - if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } - if(inherits(InputsModel,"daily" )==FALSE){ stop("'InputsModel' must be of class 'daily' ") } - if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } - if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("'InputsModel' must be of class 'CemaNeige' ") } - if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } - if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("'RunOptions' must be of class 'CemaNeige' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[1L] <- Param_X1X3_threshold - } - if (Param[3L] < Param_X1X3_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[3L] <- Param_X1X3_threshold + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "daily")) { + stop("'InputsModel' must be of class 'daily'") + } + if (!inherits(InputsModel, "GR")) { + stop("'InputsModel' must be of class 'GR'") + } + if (!inherits(InputsModel, "CemaNeige")) { + stop("'InputsModel' must be of class 'CemaNeige'") + } + if (!inherits(RunOptions, "RunOptions")) { + stop("'RunOptions' must be of class 'RunOptions'") + } + if (!inherits(RunOptions, "GR")) { + stop("'RunOptions' must be of class 'GR'") + } + if (!inherits(RunOptions, "CemaNeige")) { + stop("'RunOptions' must be of class 'CemaNeige'") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length", NParam, "and contain no NA")) + } + Param <- as.double(Param) + + + Param_X1X3_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[1L] <- Param_X1X3_threshold + } + if (Param[3L] < Param_X1X3_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[3L] <- Param_X1X3_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries + ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)] + NParamMod <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst))) + ParamMod <- Param[1:NParamMod] + NLayers <- length(InputsModel$LayerPrecip) + NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers) + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + + ## CemaNeige________________________________________________________________________________ + if (inherits(RunOptions, "CemaNeige")) { + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)) + } else { + IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim) + } + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- "CemaNeigeLayers" + + + ## Call CemaNeige Fortran_________________________ + for(iLayer in 1:NLayers) { + if (!IsHyst) { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)] + } else { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } - - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)]; - NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst))); - ParamMod <- Param[1:NParamMod]; - NLayers <- length(InputsModel$LayerPrecip); - NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers); - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - - ##SNOW_MODULE________________________________________________________________________________## - if(inherits(RunOptions,"CemaNeige")==TRUE){ - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); - } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); } - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; - + RESULTS <- .Fortran("frun_cemaneige", PACKAGE="airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4 + Param = as.double(ParamCemaNeige), ### parameter set + NStates = as.integer(NStates), ### number of state variables used for model initialising = 4 + StateStart = StateStartCemaNeige, ### state variables used when the model run starts + IsHyst = as.integer(IsHyst), ### use of hysteresis + NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs = IndOutputsCemaNeige, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd = rep(as.double(-999.999), as.integer(NStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA - ##Call_DLL_CemaNeige_________________________ - for(iLayer in 1:NLayers){ - if (!IsHyst) { - StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)] - } else { - StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] + ## Data storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige] + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt") + if (iLayer == 1) { + CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers } - RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] - InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] - InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] - MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] - NParam=as.integer(NParamCN), ### number of model parameters = 2 or 4 - Param=as.double(ParamCemaNeige), ### parameter set - NStates=as.integer(NStates), ### number of state variables used for model initialising = 4 - StateStart=StateStartCemaNeige, ### state variables used when the model run starts - IsHyst = as.integer(IsHyst), ### use of hysteresis - NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series - IndOutputs=IndOutputsCemaNeige, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] - StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - - ##Data_storage - CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]; - IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); - if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } - rm(RESULTS); - } ###ENDFOR_iLayer - names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) - } ###ENDIF_RunSnowModule - if(inherits(RunOptions,"CemaNeige")==FALSE){ - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; - CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } - - - - ##MODEL______________________________________________________________________________________## - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); - } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); } - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + if (iLayer > 1) { + CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr5j",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] - NParam=NParamMod, ### number of model parameter - Param=ParamMod, ### parameter set - NStates=NStatesMod, ### number of state variables used for model initialising - StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputsMod)), ### number of output series - IndOutputs=IndOutputsMod, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] - StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - idNStates <- seq_len(NStates*NLayers) %% NStates - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR5J, InputsModel = InputsModel, IsHyst = IsHyst, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, - UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)], - GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], - eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], - GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], - GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], - verbose = FALSE) + CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd) } - - if(inherits(RunOptions,"CemaNeige")==TRUE & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } - - ##Output_data_preparation - ##OutputsModel_only - if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##DatesR_and_OutputsModel_only - if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##OutputsModel_and_SateEnd_only - if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); - if(IsHyst) { - class(OutputsModel) <- c(class(OutputsModel), "hysteresis") - } - return(OutputsModel); - + rm(RESULTS) + } ### ENDFOR iLayer + names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) + } ### ENDIF RunSnowModule + if (!inherits(RunOptions, "CemaNeige")) { + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- NULL + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1] + } + + + + ## GR model______________________________________________________________________________________ + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)) + } else { + IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim) + } + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr5j", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam = NParamMod, ### number of model parameter + Param = ParamMod, ### parameter set + NStates = NStatesMod, ### number of state variables used for model initialising + StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs = IndOutputsMod, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm] + StateEnd = rep(as.double(-999.999), NStatesMod) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + idNStates <- seq_len(NStates*NLayers) %% NStates + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR5J, InputsModel = InputsModel, IsHyst = IsHyst, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)], + GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], + eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], + GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], + GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], + verbose = FALSE) + } + + if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) { + RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1] + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## DatesR and OutputsModel only + if (ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + ## DatesR and OutputsModel and SateEnd + if (ExportDatesR & ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "daily", "GR", "CemaNeige") + if (IsHyst) { + class(OutputsModel) <- c(class(OutputsModel), "hysteresis") + } + return(OutputsModel) + } diff --git a/R/RunModel_CemaNeigeGR6J.R b/R/RunModel_CemaNeigeGR6J.R index 54b4497f6f6a989952eb6978d37f9bc1e46af026..d82a0241ec42abb8a607d291d60f588885f8defb 100644 --- a/R/RunModel_CemaNeigeGR6J.R +++ b/R/RunModel_CemaNeigeGR6J.R @@ -1,186 +1,232 @@ -RunModel_CemaNeigeGR6J <- function(InputsModel,RunOptions,Param){ - +RunModel_CemaNeigeGR6J <- function(InputsModel, RunOptions, Param) { + + ## Initialization of variables IsHyst <- inherits(RunOptions, "hysteresis") NParam <- ifelse(test = IsHyst, yes = 10L, no = 8L) NParamCN <- NParam - 6L NStates <- 4L FortranOutputs <- .FortranOutputs(GR = "GR6J", isCN = TRUE) - - ##Arguments_check - if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } - if(inherits(InputsModel,"daily" )==FALSE){ stop("'InputsModel' must be of class 'daily' ") } - if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } - if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("'InputsModel' must be of class 'CemaNeige' ") } - if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } - if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("'RunOptions' must be of class 'CemaNeige' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3X6_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3X6_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) - Param[1L] <- Param_X1X3X6_threshold - } - if (Param[3L] < Param_X1X3X6_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) - Param[3L] <- Param_X1X3X6_threshold + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "daily")) { + stop("'InputsModel' must be of class 'daily'") + } + if (!inherits(InputsModel, "GR")) { + stop("'InputsModel' must be of class 'GR'") + } + if (!inherits(InputsModel, "CemaNeige")) { + stop("'InputsModel' must be of class 'CemaNeige'") + } + if (!inherits(RunOptions, "RunOptions")) { + stop("'RunOptions' must be of class 'RunOptions'") + } + if (!inherits(RunOptions, "GR")) { + stop("'RunOptions' must be of class 'GR'") + } + if (!inherits(RunOptions, "CemaNeige")) { + stop("'RunOptions' must be of class 'CemaNeige'") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length", NParam, "and contain no NA")) + } + Param <- as.double(Param) + + + Param_X1X3X6_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3X6_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) + Param[1L] <- Param_X1X3X6_threshold + } + if (Param[3L] < Param_X1X3X6_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) + Param[3L] <- Param_X1X3X6_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + if (Param[6L] < Param_X1X3X6_threshold) { + warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) + Param[6L] <- Param_X1X3X6_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries + ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)] + NParamMod <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst))) + ParamMod <- Param[1:NParamMod] + NLayers <- length(InputsModel$LayerPrecip) + NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers) + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + + ## CemaNeige________________________________________________________________________________ + if (inherits(RunOptions, "CemaNeige")) { + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)) + } else { + IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim) + } + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- "CemaNeigeLayers" + + + ## Call CemaNeige Fortran_________________________ + for(iLayer in 1:NLayers) { + if (!IsHyst) { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)] + } else { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } - if (Param[6L] < Param_X1X3X6_threshold) { - warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) - Param[6L] <- Param_X1X3X6_threshold - } - - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)]; - NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst))); - ParamMod <- Param[1:NParamMod]; - NLayers <- length(InputsModel$LayerPrecip); - NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers); - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - - ##SNOW_MODULE________________________________________________________________________________## - if(inherits(RunOptions,"CemaNeige")==TRUE){ - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); - } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); } - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; - + RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4 + Param = as.double(ParamCemaNeige), ### parameter set + NStates = as.integer(NStates), ### number of state variables used for model initialising = 4 + StateStart = StateStartCemaNeige, ### state variables used when the model run starts + IsHyst = as.integer(IsHyst), ### use of hysteresis + NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs = IndOutputsCemaNeige, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol = length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd = rep(as.double(-999.999), as.integer(NStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA - ##Call_DLL_CemaNeige_________________________ - for(iLayer in 1:NLayers){ - if (!IsHyst) { - StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)] - } else { - StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] - } - RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] - InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] - InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] - MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] - NParam=as.integer(NParamCN), ### number of model parameters = 2 or 4 - Param=as.double(ParamCemaNeige), ### parameter set - NStates=as.integer(NStates), ### number of state variables used for model initialising = 4 - StateStart=StateStartCemaNeige, ### state variables used when the model run starts - IsHyst = as.integer(IsHyst), ### use of hysteresis - NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series - IndOutputs=IndOutputsCemaNeige, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] - StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - - ##Data_storage - CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]; - IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); - if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } - if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } - rm(RESULTS); - } ###ENDFOR_iLayer - names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) - } ###ENDIF_RunSnowModule - if(inherits(RunOptions,"CemaNeige")==FALSE){ - CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; - CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } - - - - ##MODEL______________________________________________________________________________________## - if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); - } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); } - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm) - RunOptions$IniStates[3] <- RunOptions$IniResLevels[3] ### exponential store level (mm) + ## Data storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige] + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt") + if (iLayer == 1) { + CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr6j",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] - NParam=NParamMod, ### number of model parameter - Param=ParamMod, ### parameter set - NStates=NStatesMod, ### number of state variables used for model initialising - StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputsMod)), ### number of output series - IndOutputs=IndOutputsMod, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] - StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - idNStates <- seq_len(NStates*NLayers) %% NStates - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR6J, InputsModel = InputsModel, IsHyst = IsHyst, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L], - UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], - GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], - eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], - GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], - GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], - verbose = FALSE) + if (iLayer >1 ) { + CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers } - - if(inherits(RunOptions,"CemaNeige")==TRUE & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } - - ##Output_data_preparation - ##OutputsModel_only - if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##DatesR_and_OutputsModel_only - if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } - ##OutputsModel_and_SateEnd_only - if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(CemaNeigeLayers), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } - - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); - if(IsHyst) { - class(OutputsModel) <- c(class(OutputsModel), "hysteresis") + if (ExportStateEnd) { + CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd) } - return(OutputsModel); - + rm(RESULTS) + } ### ENDFOR iLayer + names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) + } ### ENDIF RunSnowModule + if (!inherits(RunOptions, "CemaNeige")) { + CemaNeigeLayers <- list() + CemaNeigeStateEnd <- NULL + NameCemaNeigeLayers <- NULL + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1] + } + + + + ## GR model______________________________________________________________________________________ + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)) + } else { + IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim) + } + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm) + RunOptions$IniStates[3] <- RunOptions$IniResLevels[3] ### exponential store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr6j", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam = NParamMod, ### number of model parameter + Param = ParamMod, ### parameter set + NStates = NStatesMod, ### number of state variables used for model initialising + StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs = IndOutputsMod, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol = length(IndOutputsMod)), ### output series [mm] + StateEnd = rep(as.double(-999.999), NStatesMod) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ## remove negative values except for the ExpStore location + idNStates <- seq_len(NStates*NLayers) %% NStates + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR6J, InputsModel = InputsModel, IsHyst = IsHyst, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L], + UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], + GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], + eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], + GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], + GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], + verbose = FALSE) + } + + if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) { + RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1] + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR== FALSE & !ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## DatesR and OutputsModel only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + ## DatesR and OutputsModel and SateEnd + if (ExportDatesR & ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "daily", "GR", "CemaNeige") + if (IsHyst) { + class(OutputsModel) <- c(class(OutputsModel), "hysteresis") + } + return(OutputsModel) + } diff --git a/R/RunModel_GR1A.R b/R/RunModel_GR1A.R index 432a1eaa9e22c1a51ef9c97faffd7e82298c6730..58bca283713067eb4ebc0547671b0fc61303b790 100644 --- a/R/RunModel_GR1A.R +++ b/R/RunModel_GR1A.R @@ -1,10 +1,12 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) { + + ## Initialization of variables NParam <- 1 FortranOutputs <- .FortranOutputs(GR = "GR1A")$GR - ## Arguments_check + ## Arguments check if (!inherits(InputsModel, "InputsModel")) { stop("'InputsModel' must be of class 'InputsModel'") } @@ -48,8 +50,8 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) { ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim - ## Call_fortan - RESULTS <- .Fortran("frun_gr1a", PACKAGE = "airGR", + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr1a", PACKAGE = "airGR", ## inputs LInputs = LInputSeries, ### length of input and output series InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/y] @@ -61,11 +63,11 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) { NOutputs = as.integer(length(IndOutputs)), ### number of output series IndOutputs = IndOutputs, ### indices of output series ## outputs - Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol=length(IndOutputs)), ### output series [mm] StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run ) - RESULTS$Outputs[ round(RESULTS$Outputs , 3) == (-999.999)] <- NA - RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == (-999.999)] <- NA + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA ## Output data preparation @@ -76,20 +78,20 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) { } ## DatesR and OutputsModel only if (ExportDatesR & !ExportStateEnd) { - OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])) names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs]) } ## OutputsModel and SateEnd only if (!ExportDatesR & ExportStateEnd) { - OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), list(RESULTS$StateEnd)) names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd") } ## DatesR and OutputsModel and SateEnd if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) { - OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), list(RESULTS$StateEnd)) names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd") } diff --git a/R/RunModel_GR2M.R b/R/RunModel_GR2M.R index 59c3e9d414e0692c91384e676e3f0671c1cce20b..385c5f1a798de5ea4ac460fd3fb0d516c7c6430b 100644 --- a/R/RunModel_GR2M.R +++ b/R/RunModel_GR2M.R @@ -1,98 +1,124 @@ -RunModel_GR2M <- function(InputsModel,RunOptions,Param){ - - NParam <- 2; - FortranOutputs <- .FortranOutputs(GR = "GR2M")$GR - - ##Arguments_check - if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } - if(inherits(InputsModel,"monthly" )==FALSE){ stop("'InputsModel' must be of class 'monthly' ") } - if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } - if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X2_threshold <- 1e-2 - if (Param[1L] < Param_X1X2_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold)) - Param[1L] <- Param_X1X2_threshold - } - if (Param[2L] < Param_X1X2_threshold) { - warning(sprintf("Param[2] (X2: routing store capacity [mm]) < %.2f\n X2 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold)) - Param[2L] <- Param_X1X2_threshold - } - - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); - } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } - - ##Output_data_preparation - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[2]; ### routing store level (mm) - } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr2M",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/month] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/month] - NParam=as.integer(length(Param)), ### number of model parameter - Param=Param, ### parameter set - NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising - StateStart=RunOptions$IniStates, ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputs)), ### number of output series - IndOutputs=IndOutputs, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] - StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs [round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR2M, InputsModel = InputsModel, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, - UH1 = NULL, UH2 = NULL, - GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, - verbose = FALSE) - } - - - ##Output_data_preparation - ##OutputsModel_only - if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ - OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(OutputsModel) <- FortranOutputs[IndOutputs]; } - ##DatesR_and_OutputsModel_only - if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } - ##OutputsModel_and_SateEnd_only - if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } - - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","monthly","GR"); - return(OutputsModel); - +RunModel_GR2M <- function(InputsModel, RunOptions, Param) { + + + ## Initialization of variables + NParam <- 2 + FortranOutputs <- .FortranOutputs(GR = "GR2M")$GR + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "monthly" )) { + stop("'InputsModel' must be of class 'monthly' ") + } + if (!inherits(InputsModel, "GR" )) { + stop("'InputsModel' must be of class 'GR' ") + } + if (!inherits(RunOptions, "RunOptions" )) { + stop("'RunOptions' must be of class 'RunOptions' ") + } + if (!inherits(RunOptions, "GR" )) { + stop("'RunOptions' must be of class 'GR' ") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = "")) + } + Param <- as.double(Param) + + Param_X1X2_threshold <- 1e-2 + if (Param[1L] < Param_X1X2_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold)) + Param[1L] <- Param_X1X2_threshold + } + if (Param[2L] < Param_X1X2_threshold) { + warning(sprintf("Param[2] (X2: routing store capacity [mm]) < %.2f\n X2 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold)) + Param[2L] <- Param_X1X2_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputs <- as.integer(1:length(FortranOutputs)) + } else { + IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim) + } + + ## Output data preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[2] ### routing store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr2M", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/month] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/month] + NParam = as.integer(length(Param)), ### number of model parameter + Param = Param, ### parameter set + NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart = RunOptions$IniStates, ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputs)), ### number of output series + IndOutputs = IndOutputs, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm] + StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs [round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR2M, InputsModel = InputsModel, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + UH1 = NULL, UH2 = NULL, + GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, + verbose = FALSE) + } + + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(OutputsModel) <- FortranOutputs[IndOutputs] + } + ## DatesR and OutputsModel only + if (ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs]) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd") + } + ## DatesR and OutputsModel and SateEnd + if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "monthly", "GR") + return(OutputsModel) + } diff --git a/R/RunModel_GR4H.R b/R/RunModel_GR4H.R index 71ecde1d427433921c2ef3c5ce42d0fca660303c..47c26ff968cce41eb982f897604c7d4b843d0162 100644 --- a/R/RunModel_GR4H.R +++ b/R/RunModel_GR4H.R @@ -1,103 +1,129 @@ -RunModel_GR4H <- function(InputsModel,RunOptions,Param){ - - NParam <- 4; - FortranOutputs <- .FortranOutputs(GR = "GR4H")$GR - - ##Arguments_check - if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } - if(inherits(InputsModel,"hourly" )==FALSE){ stop("'InputsModel' must be of class 'hourly' ") } - if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } - if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[1L] <- Param_X1X3_threshold - } - if (Param[3L] < Param_X1X3_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[3L] <- Param_X1X3_threshold - } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } - - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); - } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } - - ##Output_data_preparation - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) - } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr4h",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] - NParam=as.integer(length(Param)), ### number of model parameter - Param=Param, ### parameter set - NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising - StateStart=RunOptions$IniStates, ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputs)), ### number of output series - IndOutputs=IndOutputs, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] - StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4H, InputsModel = InputsModel, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, - UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], - GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, - verbose = FALSE) - } - - ##Output_data_preparation - ##OutputsModel_only - if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ - OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(OutputsModel) <- FortranOutputs[IndOutputs]; } - ##DatesR_and_OutputsModel_only - if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } - ##OutputsModel_and_SateEnd_only - if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } - - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","hourly","GR"); - return(OutputsModel); - +RunModel_GR4H <- function(InputsModel, RunOptions, Param) { + + + ## Initialization of variables + NParam <- 4 + FortranOutputs <- .FortranOutputs(GR = "GR4H")$GR + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "hourly" )) { + stop("'InputsModel' must be of class 'hourly' ") + } + if (!inherits(InputsModel, "GR" )) { + stop("'InputsModel' must be of class 'GR' ") + } + if (!inherits(RunOptions, "RunOptions" )) { + stop("'RunOptions' must be of class 'RunOptions' ") + } + if (!inherits(RunOptions, "GR" )) { + stop("'RunOptions' must be of class 'GR' ") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = "")) + } + Param <- as.double(Param) + + Param_X1X3_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[1L] <- Param_X1X3_threshold + } + if (Param[3L] < Param_X1X3_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[3L] <- Param_X1X3_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputs <- as.integer(1:length(FortranOutputs)) + } else { + IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim) + } + + ## Output data preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] + NParam = as.integer(length(Param)), ### number of model parameter + Param = Param, ### parameter set + NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart = RunOptions$IniStates, ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputs)), ### number of output series + IndOutputs = IndOutputs, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm] + StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4H, InputsModel = InputsModel, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], + GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, + verbose = FALSE) + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(OutputsModel) <- FortranOutputs[IndOutputs] + } + ## DatesR and OutputsModel only + if (ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs]) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd") + } + ## DatesR and OutputsModel and SateEnd + if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "hourly", "GR") + return(OutputsModel) + } diff --git a/R/RunModel_GR4J.R b/R/RunModel_GR4J.R index 8d383a18a17e16f0ee3aac77e952ebc96727b47f..fc647035051dc0f05fb741f0f43ae1f1945ded08 100644 --- a/R/RunModel_GR4J.R +++ b/R/RunModel_GR4J.R @@ -1,102 +1,128 @@ -RunModel_GR4J <- function(InputsModel,RunOptions,Param){ - - NParam <- 4; - FortranOutputs <- .FortranOutputs(GR = "GR4J")$GR - - ##Arguments_check - if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } - if(inherits(InputsModel,"daily" )==FALSE){ stop("'InputsModel' must be of class 'daily' ") } - if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } - if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[1L] <- Param_X1X3_threshold - } - if (Param[3L] < Param_X1X3_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[3L] <- Param_X1X3_threshold - } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } - - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); - } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } - ##Input_data_preparation - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) - } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr4j",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] - NParam=as.integer(length(Param)), ### number of model parameter - Param=Param, ### parameter set - NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising - StateStart=RunOptions$IniStates, ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputs)), ### number of output series - IndOutputs=IndOutputs, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] - StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, - UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], - GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, - verbose = FALSE) - } - - ##Output_data_preparation - ##OutputsModel_only - if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ - OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(OutputsModel) <- FortranOutputs[IndOutputs]; } - ##DatesR_and_OutputsModel_only - if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } - ##OutputsModel_and_StateEnd_only - if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } - ##DatesR_and_OutputsModel_and_StateEnd - if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } - - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","daily","GR"); - return(OutputsModel); - +RunModel_GR4J <- function(InputsModel, RunOptions, Param) { + + + ## Initialization of variables + NParam <- 4 + FortranOutputs <- .FortranOutputs(GR = "GR4J")$GR + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "daily" )) { + stop("'InputsModel' must be of class 'daily' ") + } + if (!inherits(InputsModel, "GR" )) { + stop("'InputsModel' must be of class 'GR' ") + } + if (!inherits(RunOptions, "RunOptions" )) { + stop("'RunOptions' must be of class 'RunOptions' ") + } + if (!inherits(RunOptions, "GR" )) { + stop("'RunOptions' must be of class 'GR' ") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = "")) + } + Param <- as.double(Param) + + Param_X1X3_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[1L] <- Param_X1X3_threshold + } + if (Param[3L] < Param_X1X3_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[3L] <- Param_X1X3_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputs <- as.integer(1:length(FortranOutputs)) + } else { + IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim) + } + ## Input data preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr4j", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam = as.integer(length(Param)), ### number of model parameter + Param = Param, ### parameter set + NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart = RunOptions$IniStates, ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputs)), ### number of output series + IndOutputs = IndOutputs, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm] + StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], + GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, + verbose = FALSE) + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(OutputsModel) <- FortranOutputs[IndOutputs] + } + ## DatesR and OutputsModel only + if (ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs]) + } + ## OutputsModel and StateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd") + } + ## DatesR and OutputsModel and StateEnd + if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "daily", "GR") + return(OutputsModel) + } diff --git a/R/RunModel_GR5H.R b/R/RunModel_GR5H.R index a36613d6aad5038fe134199a4a36fe85df3e382f..590a103291d3ea8e99f26681cd3eb1774ef05edb 100644 --- a/R/RunModel_GR5H.R +++ b/R/RunModel_GR5H.R @@ -1,117 +1,142 @@ -RunModel_GR5H <- function(InputsModel,RunOptions,Param){ - - NParam <- 5; - FortranOutputs <- .FortranOutputs(GR = "GR5H")$GR - IsIntStore <- inherits(RunOptions, "interception") - if(IsIntStore) { - Imax <- RunOptions$Imax - } else { - Imax <- -99 +RunModel_GR5H <- function(InputsModel, RunOptions, Param) { + + + ## Initialization of variables + NParam <- 5 + FortranOutputs <- .FortranOutputs(GR = "GR5H")$GR + IsIntStore <- inherits(RunOptions, "interception") + if (IsIntStore) { + Imax <- RunOptions$Imax + } else { + Imax <- -99 + } + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "hourly" )) { + stop("'InputsModel' must be of class 'hourly' ") + } + if (!inherits(InputsModel, "GR" )) { + stop("'InputsModel' must be of class 'GR' ") + } + if (!inherits(RunOptions, "RunOptions" )) { + stop("'RunOptions' must be of class 'RunOptions' ") + } + if (!inherits(RunOptions, "GR" )) { + stop("'RunOptions' must be of class 'GR' ") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = "")) + } + Param <- as.double(Param) + + Param_X1X3_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[1L] <- Param_X1X3_threshold + } + if (Param[3L] < Param_X1X3_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[3L] <- Param_X1X3_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + if ("all" %in% RunOptions$Outputs_Sim) { IndOutputs <- as.integer(1:length(FortranOutputs)) + } else { + IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim) + } + + ## Output data preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm) + if (IsIntStore) { + RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax ### interception store level (mm) } - - ##Arguments_check - if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } - if(inherits(InputsModel,"hourly" )==FALSE){ stop("'InputsModel' must be of class 'hourly' ") } - if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } - if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[1L] <- Param_X1X3_threshold - } - if (Param[3L] < Param_X1X3_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[3L] <- Param_X1X3_threshold - } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } - - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); - } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } - - ##Output_data_preparation - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) - if(IsIntStore) { - RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax; ### interception store level (mm) - } - } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr5h",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] - NParam=as.integer(length(Param)), ### number of model parameter - Param=Param, ### parameter set - NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising - StateStart=RunOptions$IniStates, ### state variables used when the model run starts - Imax=Imax, ### maximal capacity of interception store - NOutputs=as.integer(length(IndOutputs)), ### number of output series - IndOutputs=IndOutputs, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm or mm/h] - StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5H, InputsModel = InputsModel, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, - IntStore = RESULTS$StateEnd[4L], - UH1 = NULL, UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], - GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, - verbose = FALSE) - } - - ##Output_data_preparation - ##OutputsModel_only - if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ - OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(OutputsModel) <- FortranOutputs[IndOutputs]; } - ##DatesR_and_OutputsModel_only - if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } - ##OutputsModel_and_StateEnd_only - if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } - ##DatesR_and_OutputsModel_and_StateEnd - if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } - - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","hourly","GR"); - if(IsIntStore) { - class(OutputsModel) <- c(class(OutputsModel), "interception") - } - return(OutputsModel); - + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr5h", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] + NParam = as.integer(length(Param)), ### number of model parameter + Param = Param, ### parameter set + NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart = RunOptions$IniStates, ### state variables used when the model run starts + Imax = Imax, ### maximal capacity of interception store + NOutputs = as.integer(length(IndOutputs)), ### number of output series + IndOutputs = IndOutputs, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm or mm/h] + StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5H, InputsModel = InputsModel, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + IntStore = RESULTS$StateEnd[4L], + UH1 = NULL, UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], + GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, + verbose = FALSE) + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(OutputsModel) <- FortranOutputs[IndOutputs] + } + ## DatesR and OutputsModel only + if (ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs]) + } + ## OutputsModel and StateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd") + } + ## DatesR and OutputsModel and StateEnd + if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "hourly", "GR") + if (IsIntStore) { + class(OutputsModel) <- c(class(OutputsModel), "interception") + } + return(OutputsModel) + } diff --git a/R/RunModel_GR5J.R b/R/RunModel_GR5J.R index 56e750ae73aef1affd9762460837d445f3dc1b5a..33210729deffa802b0e51732e0659e27ee7802be 100644 --- a/R/RunModel_GR5J.R +++ b/R/RunModel_GR5J.R @@ -1,103 +1,129 @@ -RunModel_GR5J <- function(InputsModel,RunOptions,Param){ - - NParam <- 5; - FortranOutputs <- .FortranOutputs(GR = "GR5J")$GR - - ##Arguments_check - if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } - if(inherits(InputsModel,"daily" )==FALSE){ stop("'InputsModel' must be of class 'daily' ") } - if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } - if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[1L] <- Param_X1X3_threshold - } - if (Param[3L] < Param_X1X3_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) - Param[3L] <- Param_X1X3_threshold - } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } - - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); - } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } - - ##Output_data_preparation - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) - } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr5j",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] - NParam=as.integer(length(Param)), ### number of model parameter - Param=Param, ### parameter set - NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising - StateStart=RunOptions$IniStates, ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputs)), ### number of output series - IndOutputs=IndOutputs, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] - StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5J, InputsModel = InputsModel, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, - UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)], - GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, - verbose = FALSE) - } - - ##Output_data_preparation - ##OutputsModel_only - if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ - OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(OutputsModel) <- FortranOutputs[IndOutputs]; } - ##DatesR_and_OutputsModel_only - if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } - ##OutputsModel_and_SateEnd_only - if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } - - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","daily","GR"); - return(OutputsModel); - +RunModel_GR5J <- function(InputsModel, RunOptions, Param) { + + + ## Initialization of variables + NParam <- 5 + FortranOutputs <- .FortranOutputs(GR = "GR5J")$GR + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "daily" )) { + stop("'InputsModel' must be of class 'daily' ") + } + if (!inherits(InputsModel, "GR" )) { + stop("'InputsModel' must be of class 'GR' ") + } + if (!inherits(RunOptions, "RunOptions" )) { + stop("'RunOptions' must be of class 'RunOptions' ") + } + if (!inherits(RunOptions, "GR" )) { + stop("'RunOptions' must be of class 'GR' ") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = "")) + } + Param <- as.double(Param) + + Param_X1X3_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[1L] <- Param_X1X3_threshold + } + if (Param[3L] < Param_X1X3_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[3L] <- Param_X1X3_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputs <- as.integer(1:length(FortranOutputs)) + } else { + IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim) + } + + ## Output data preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr5j", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam = as.integer(length(Param)), ### number of model parameter + Param = Param, ### parameter set + NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart = RunOptions$IniStates, ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputs)), ### number of output series + IndOutputs = IndOutputs, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm] + StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5J, InputsModel = InputsModel, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)], + GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, + verbose = FALSE) + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(OutputsModel) <- FortranOutputs[IndOutputs] + } + ## DatesR and OutputsModel only + if (ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs]) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd") + } + ## DatesR and OutputsModel and SateEnd + if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "daily", "GR") + return(OutputsModel) + } diff --git a/R/RunModel_GR6J.R b/R/RunModel_GR6J.R index 15bd28423f7efa46e2962b9aa47dea9fddce0813..c971056fbd21f4fd423a0b98abe0065d62c5090b 100644 --- a/R/RunModel_GR6J.R +++ b/R/RunModel_GR6J.R @@ -1,109 +1,134 @@ -RunModel_GR6J <- function(InputsModel,RunOptions,Param){ - - NParam <- 6; - FortranOutputs <- .FortranOutputs(GR = "GR6J")$GR - - ##Arguments_check - if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } - if(inherits(InputsModel,"daily" )==FALSE){ stop("'InputsModel' must be of class 'daily' ") } - if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } - if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } - if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } - if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } - if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } - Param <- as.double(Param); - - Param_X1X3X6_threshold <- 1e-2 - Param_X4_threshold <- 0.5 - if (Param[1L] < Param_X1X3X6_threshold) { - warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) - Param[1L] <- Param_X1X3X6_threshold - } - if (Param[3L] < Param_X1X3X6_threshold) { - warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) - Param[3L] <- Param_X1X3X6_threshold - } - if (Param[4L] < Param_X4_threshold) { - warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) - Param[4L] <- Param_X4_threshold - } - if (Param[6L] < Param_X1X3X6_threshold) { - warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) - Param[6L] <- Param_X1X3X6_threshold - } - - ##Input_data_preparation - if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } - IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); - LInputSeries <- as.integer(length(IndPeriod1)) - if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); - } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } - - ##Output_data_preparation - IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; - ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; - ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; - - ##Use_of_IniResLevels - if(!is.null(RunOptions$IniResLevels)){ - RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) - RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) - RunOptions$IniStates[3] <- RunOptions$IniResLevels[3] ### exponential store level (mm) - } - - ##Call_fortan - RESULTS <- .Fortran("frun_gr6j",PACKAGE="airGR", - ##inputs - LInputs=LInputSeries, ### length of input and output series - InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] - InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] - NParam=as.integer(length(Param)), ### number of model parameter - Param=Param, ### parameter set - NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising - StateStart=RunOptions$IniStates, ### state variables used when the model run starts - NOutputs=as.integer(length(IndOutputs)), ### number of output series - IndOutputs=IndOutputs, ### indices of output series - ##outputs - Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] - StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run - ) - RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; - RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; - if (ExportStateEnd) { - RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location - RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR6J, InputsModel = InputsModel, - ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L], - UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], - GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, - verbose = FALSE) - } - - ##Output_data_preparation - ##OutputsModel_only - if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ - OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); - names(OutputsModel) <- FortranOutputs[IndOutputs]; } - ##DatesR_and_OutputsModel_only - if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } - ##OutputsModel_and_SateEnd_only - if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ - OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } - ##DatesR_and_OutputsModel_and_SateEnd - if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ - OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), - lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), - list(RESULTS$StateEnd) ); - names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } - - ##End - rm(RESULTS); - class(OutputsModel) <- c("OutputsModel","daily","GR"); - return(OutputsModel); - +RunModel_GR6J <- function(InputsModel, RunOptions, Param) { + + + ## Initialization of variables + NParam <- 6 + FortranOutputs <- .FortranOutputs(GR = "GR6J")$GR + + + ## Arguments check + if (!inherits(InputsModel, "InputsModel")) { + stop("'InputsModel' must be of class 'InputsModel'") + } + if (!inherits(InputsModel, "daily" )) { + stop("'InputsModel' must be of class 'daily' ") + } + if (!inherits(InputsModel, "GR" )) { + stop("'InputsModel' must be of class 'GR' ") + } + if (!inherits(RunOptions, "RunOptions" )) { + stop("'RunOptions' must be of class 'RunOptions' ") + } + if (!inherits(RunOptions, "GR" )) { + stop("'RunOptions' must be of class 'GR' ") + } + if (!is.vector(Param) | !is.numeric(Param)) { + stop("'Param' must be a numeric vector") + } + if (sum(!is.na(Param)) != NParam) { + stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = "")) + } + Param <- as.double(Param) + + Param_X1X3X6_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3X6_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) + Param[1L] <- Param_X1X3X6_threshold + } + if (Param[3L] < Param_X1X3X6_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) + Param[3L] <- Param_X1X3X6_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + if (Param[6L] < Param_X1X3X6_threshold) { + warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold)) + Param[6L] <- Param_X1X3X6_threshold + } + + ## Input data preparation + if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { + RunOptions$IndPeriod_WarmUp <- NULL + } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) + LInputSeries <- as.integer(length(IndPeriod1)) + if ("all" %in% RunOptions$Outputs_Sim) { + IndOutputs <- as.integer(1:length(FortranOutputs)) + } else { + IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim) + } + + ## Output data preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim + + ## Use of IniResLevels + if (!is.null(RunOptions$IniResLevels)) { + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm) + RunOptions$IniStates[3] <- RunOptions$IniResLevels[3] ### exponential store level (mm) + } + + ## Call GR model Fortan + RESULTS <- .Fortran("frun_gr6j", PACKAGE = "airGR", + ## inputs + LInputs = LInputSeries, ### length of input and output series + InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam = as.integer(length(Param)), ### number of model parameter + Param = Param, ### parameter set + NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart = RunOptions$IniStates, ### state variables used when the model run starts + NOutputs = as.integer(length(IndOutputs)), ### number of output series + IndOutputs = IndOutputs, ### indices of output series + ## outputs + Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm] + StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA + RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR6J, InputsModel = InputsModel, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L], + UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], + GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, + verbose = FALSE) + } + + ## Output data preparation + ## OutputsModel only + if (!ExportDatesR & !ExportStateEnd) { + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) + names(OutputsModel) <- FortranOutputs[IndOutputs] + } + ## DatesR and OutputsModel only + if (ExportDatesR & !ExportStateEnd) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs]) + } + ## OutputsModel and SateEnd only + if (!ExportDatesR & ExportStateEnd) { + OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd") + } + ## DatesR and OutputsModel and SateEnd + if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) { + OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), + list(RESULTS$StateEnd)) + names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd") + } + + ## End + rm(RESULTS) + class(OutputsModel) <- c("OutputsModel", "daily", "GR") + return(OutputsModel) + } - \ No newline at end of file