diff --git a/DESCRIPTION b/DESCRIPTION
index d2c09b8ba612cbc11ee595a1e200a0f7ad59173f..bae6fed2f86d812bcff869984b75b4eb1dc62164 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
 Package: airGR
 Type: Package
 Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
-Version: 1.6.3.42
-Date: 2020-11-09
+Version: 1.6.3.65
+Date: 2020-11-17
 Authors@R: c(
   person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
   person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@inrae.fr"),
diff --git a/NEWS.md b/NEWS.md
index c25fb352eff9cd956add529b9c2e2ceb9d115d22..29cfe222b7368dc08d361050d11a9742a795c113 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -4,7 +4,7 @@
 
 
 
-### 1.6.3.42 Release Notes (2020-11-09)
+### 1.6.3.65 Release Notes (2020-11-17)
 
 #### New features
 
diff --git a/R/RunModel_CemaNeige.R b/R/RunModel_CemaNeige.R
index e1dbbf659969732b8fbeca38246e7db2d8aa8bf2..a9f35e0e189465dd24e23bb0b4904216e98b6766 100644
--- a/R/RunModel_CemaNeige.R
+++ b/R/RunModel_CemaNeige.R
@@ -8,7 +8,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
   FortranOutputsCemaNeige <- .FortranOutputs(GR = NULL, isCN = TRUE)$CN
   
   
-  ## Arguments_check
+  ## Arguments check
   if (!inherits(InputsModel, "InputsModel")) {
     stop("'InputsModel' must be of class 'InputsModel'")
   }
@@ -39,7 +39,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
     time_mult <- 24
   }
 
-  ## Input_data_preparation
+  ## Input data preparation
   if (identical(RunOptions$IndPeriod_WarmUp, as.integer(0))) {
     RunOptions$IndPeriod_WarmUp <- NULL
   }
@@ -52,7 +52,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
   
   
   
-  ## SNOW_MODULE________________________________________________________________________________
+  ## CemaNeige________________________________________________________________________________
   ParamCemaNeige <- Param
   NLayers        <- length(InputsModel$LayerPrecip)
   
@@ -71,7 +71,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
   NameCemaNeigeLayers <- "CemaNeigeLayers"
   
   
-  ## Call_DLL_CemaNeige_________________________
+  ## Call CemaNeige Fortran_________________________
   for (iLayer in 1:NLayers) {
     
     if (!IsHyst) {
@@ -105,7 +105,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
     
     
     
-    ## Data_storage
+    ## Data storage
     CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
     names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]
     if (ExportStateEnd) {
@@ -113,7 +113,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
     }
     rm(RESULTS)
     
-  } ### ENDFOR_iLayer
+  } ### ENDFOR iLayer
   
   names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
   
@@ -129,7 +129,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
                                          verbose = FALSE)
   }
   
-  ## Output_data_preparation
+  ## Output data preparation
   if (!ExportDatesR & !ExportStateEnd) {
     OutputsModel <- list(CemaNeigeLayers)
     names(OutputsModel) <- NameCemaNeigeLayers
diff --git a/R/RunModel_CemaNeigeGR4H.R b/R/RunModel_CemaNeigeGR4H.R
index 7aecbaf11c5f7e0e7b701069f7f618ca5119a4a1..fe29e9096e863e14283b54635006c341d13ab9dd 100644
--- a/R/RunModel_CemaNeigeGR4H.R
+++ b/R/RunModel_CemaNeigeGR4H.R
@@ -1,5 +1,5 @@
-RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){
-
+RunModel_CemaNeigeGR4H <- function(InputsModel, RunOptions, Param) {
+  
   
   ## Initialization of variables
   IsHyst <- inherits(RunOptions, "hysteresis")
@@ -7,177 +7,221 @@ RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){
   NParamCN <- NParam - 4L
   NStates <- 4L
   FortranOutputs <- .FortranOutputs(GR = "GR4H", isCN = TRUE)
-
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }
+  if (!inherits(InputsModel, "hourly")) {
+    stop("'InputsModel' must be of class 'hourly'")
+  }
+  if (!inherits(InputsModel, "GR")) {
+    stop("'InputsModel' must be of class 'GR'")
+  }
+  if (!inherits(InputsModel, "CemaNeige")) {
+    stop("'InputsModel' must be of class 'CemaNeige'")
+  }
+  if (!inherits(RunOptions, "RunOptions")) {
+    stop("'RunOptions' must be of class 'RunOptions'")
+  }
+  if (!inherits(RunOptions, "GR")) {
+    stop("'RunOptions' must be of class 'GR'")
+  }
+  if (!inherits(RunOptions, "CemaNeige")) {
+    stop("'RunOptions' must be of class 'CemaNeige'")
+  }
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
+  }
+  Param <- as.double(Param)
+  
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold   <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [hour]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }      
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries   <- as.integer(length(IndPeriod1))
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries
+  ParamCemaNeige <- Param[(length(Param)-1 - 2 * as.integer(IsHyst)):length(Param)]
+  NParamMod      <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
+  ParamMod       <- Param[1:NParamMod]
+  NLayers        <- length(InputsModel$LayerPrecip)
+  NStatesMod     <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  
+  ## CemaNeige________________________________________________________________________________
+  if (inherits(RunOptions, "CemaNeige")) {
+    if ("all" %in% RunOptions$Outputs_Sim) {
+      IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN))
+    } else {
+      IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim)
+    }
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- "CemaNeigeLayers"
     
-    ##Arguments_check
-      if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(!inherits(InputsModel,"hourly"     )){ stop("'InputsModel' must be of class 'hourly'     ") }  
-      if(!inherits(InputsModel,"GR"         )){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(!inherits(InputsModel,"CemaNeige"  )){ stop("'InputsModel' must be of class 'CemaNeige'  ") }  
-      if(!inherits(RunOptions,"RunOptions"  )){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(!inherits(RunOptions,"GR"          )){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!inherits(RunOptions,"CemaNeige"   )){ stop("'RunOptions' must be of class 'CemaNeige'   ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-
-      Param_X1X3_threshold <- 1e-2
-      Param_X4_threshold   <- 0.5
-      if (Param[1L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[1L] <- Param_X1X3_threshold
-      }
-      if (Param[3L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[3L] <- Param_X1X3_threshold
-      }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [hour]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }      
+    
+    ## Call CemaNeige Fortran_________________________
+    for (iLayer in 1:NLayers) {
       
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries   <- as.integer(length(IndPeriod1))
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
-      NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
-      ParamMod       <- Param[1:NParamMod];
-      NLayers        <- length(InputsModel$LayerPrecip);
-      NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-
+      if (!IsHyst) {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
+      } else {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
+      }
+      RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR",
+                          ## inputs
+                          LInputs = LInputSeries,                                                         ### length of input and output series
+                          InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
+                          InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
+                          InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
+                          MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
+                          NParam = as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
+                          Param = as.double(ParamCemaNeige),                                              ### parameter set
+                          NStates = as.integer(NStates),                                                  ### number of state variables used for model initialisation = 4
+                          StateStart = StateStartCemaNeige,                                               ### state variables used when the model run starts
+                          IsHyst = as.integer(IsHyst),                                                    ### use of hysteresis
+                          NOutputs = as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
+                          IndOutputs = IndOutputsCemaNeige,                                               ### indices of output series
+                          ## outputs                                                               
+                          Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm]
+                          StateEnd = rep(as.double(-999.999), as.integer(NStates))                                        ### state variables at the end of the model run
+      )
+      RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+      RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
       
-    ##SNOW_MODULE________________________________________________________________________________##
-    if(inherits(RunOptions,"CemaNeige")){
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
-      } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
-
-
-    ##Call_DLL_CemaNeige_________________________
-      for(iLayer in 1:NLayers){
-        if (!IsHyst) {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
-        } else {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
-        }
-        RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR",
-                        ##inputs
-                            LInputs=LInputSeries,                                                         ### length of input and output series
-                            InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
-                            InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
-                            InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
-                            MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
-                            NParam=as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
-                            Param=as.double(ParamCemaNeige),                                              ### parameter set
-                            NStates=as.integer(NStates),                                                  ### number of state variables used for model initialisation = 4
-                            StateStart=StateStartCemaNeige,                                               ### state variables used when the model run starts
-                            IsHyst = as.integer(IsHyst),                                                  ### use of hysteresis
-                            NOutputs=as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
-                            IndOutputs=IndOutputsCemaNeige,                                               ### indices of output series
-                        ##outputs                                                               
-                            Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
-                            StateEnd=rep(as.double(-999.999),as.integer(NStates))                                   ### state variables at the end of the model run
-                         )
-        RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-        RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-
-        ##Data_storage
-        CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
-        IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
-        if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
-        rm(RESULTS); 
-      } ###ENDFOR_iLayer
-      names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
-    } ###ENDIF_RunSnowModule
-    if(!inherits(RunOptions,"CemaNeige")){
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
-      CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]; }
-
-
-
-    ##MODEL______________________________________________________________________________________##
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); 
-      } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim);  }
-
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3];  ### routing store level (mm)
+      ## Data storage
+      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]
+      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
+      if (iLayer == 1) {
+        CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr4h",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                          ### length of input and output series
-                     InputsPrecip=CatchMeltAndPliq,                 ### input series of total precipitation [mm/h]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/h]
-                     NParam=NParamMod,                              ### number of model parameter
-                     Param=ParamMod,                                ### parameter set
-                     NStates=NStatesMod,                            ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputsMod)),    ### number of output series
-                     IndOutputs=IndOutputsMod,                      ### indices of output series
-                 ##outputs                                        
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),NStatesMod)                                      ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        idNStates <- seq_len(NStates*NLayers) %% NStates
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
-                                            GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
-                                            eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
-                                            GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
-                                            GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
-                                            verbose = FALSE)
+      if (iLayer > 1) {
+        CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-      
-      if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(!ExportDatesR & !ExportStateEnd){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
-      ##DatesR_and_OutputsModel_only
-      if( ExportDatesR & !ExportStateEnd){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers);      }
-      ##OutputsModel_and_SateEnd_only
-      if(!ExportDatesR & ExportStateEnd){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if( ExportDatesR & ExportStateEnd){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-   
-      class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige");
-      if(IsHyst) {
-        class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+      if (ExportStateEnd) {
+        CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd)
       }
-      return(OutputsModel);
-
+      rm(RESULTS)
+    } ### ENDFOR iLayer
+    names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
+  } ### ENDIF RunSnowModule
+  if (!inherits(RunOptions, "CemaNeige")) {
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- NULL
+    CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  
+  
+  ## GR model
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputsMod <- as.integer(1:length(FortranOutputs$GR))
+  } else {
+    IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR",
+                      ## inputs
+                      LInputs = LInputSeries,                          ### length of input and output series
+                      InputsPrecip = CatchMeltAndPliq,                 ### input series of total precipitation [mm/h]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/h]
+                      NParam = NParamMod,                              ### number of model parameter
+                      Param = ParamMod,                                ### parameter set
+                      NStates = NStatesMod,                            ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputsMod)),    ### number of output series
+                      IndOutputs = IndOutputsMod,                      ### indices of output series
+                      ## outputs                                        
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), NStatesMod)                                           ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    idNStates <- seq_len(NStates*NLayers) %% NStates
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst,
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
+                                        UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
+                                        GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
+                                        eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
+                                        GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
+                                        GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
+                                        verbose = FALSE)
+  }
+  
+  if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
+    RESULTS$Outputs[, which(FortranOutputs$GR[IndOutputsMod] ==  "Precip")] <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## DatesR and OutputsModel only
+  if ( ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  ## DatesR and OutputsModel and SateEnd
+  if ( ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS)
+  class(OutputsModel) <- c("OutputsModel", "hourly", "GR", "CemaNeige")
+  if (IsHyst) {
+    class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+  }
+  return(OutputsModel)
+  
 }
diff --git a/R/RunModel_CemaNeigeGR4J.R b/R/RunModel_CemaNeigeGR4J.R
index f3a7f8226511264f189df5346a32e29b8a8528d7..9156165856ae34a26358c231d9466c8174823bee 100644
--- a/R/RunModel_CemaNeigeGR4J.R
+++ b/R/RunModel_CemaNeigeGR4J.R
@@ -1,5 +1,5 @@
-RunModel_CemaNeigeGR4J <- function(InputsModel,RunOptions,Param){
-
+RunModel_CemaNeigeGR4J <- function(InputsModel, RunOptions, Param) {
+  
   
   ## Initialization of variables
   IsHyst <- inherits(RunOptions, "hysteresis")
@@ -7,177 +7,219 @@ RunModel_CemaNeigeGR4J <- function(InputsModel,RunOptions,Param){
   NParamCN <- NParam - 4L
   NStates <- 4L
   FortranOutputs <- .FortranOutputs(GR = "GR4J", isCN = TRUE)
-
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }
+  if (!inherits(InputsModel, "daily")) {
+    stop("'InputsModel' must be of class 'daily'")
+  }
+  if (!inherits(InputsModel, "GR")) {
+    stop("'InputsModel' must be of class 'GR'")
+  }
+  if (!inherits(InputsModel, "CemaNeige")) {
+    stop("'InputsModel' must be of class 'CemaNeige'")
+  }
+  if (!inherits(RunOptions, "RunOptions")) {
+    stop("'RunOptions' must be of class 'RunOptions'")
+  }
+  if (!inherits(RunOptions, "GR")) {
+    stop("'RunOptions' must be of class 'GR'")
+  }
+  if (!inherits(RunOptions, "CemaNeige")) {
+    stop("'RunOptions' must be of class 'CemaNeige'")
+  }
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
+  }
+  Param <- as.double(Param)
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold   <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }      
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries   <- as.integer(length(IndPeriod1))
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries
+  ParamCemaNeige <- Param[(length(Param)- 1 - 2 * as.integer(IsHyst)):length(Param)]
+  NParamMod      <- as.integer(length(Param) - (2 + 2*as.integer(IsHyst)))
+  ParamMod       <- Param[1:NParamMod]
+  NLayers        <- length(InputsModel$LayerPrecip)
+  NStatesMod     <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  
+  ## CemaNeige________________________________________________________________________________
+  if (inherits(RunOptions, "CemaNeige")) {
+    if ("all" %in% RunOptions$Outputs_Sim) {
+      IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)) 
+    } else {
+      IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim)
+    }
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- "CemaNeigeLayers"
     
-    ##Arguments_check
-      if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(!inherits(InputsModel,"daily"      )){ stop("'InputsModel' must be of class 'daily'      ") }  
-      if(!inherits(InputsModel,"GR"         )){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(!inherits(InputsModel,"CemaNeige"  )){ stop("'InputsModel' must be of class 'CemaNeige'  ") }  
-      if(!inherits(RunOptions,"RunOptions"  )){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(!inherits(RunOptions,"GR"          )){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!inherits(RunOptions,"CemaNeige"   )){ stop("'RunOptions' must be of class 'CemaNeige'   ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-
-      Param_X1X3_threshold <- 1e-2
-      Param_X4_threshold   <- 0.5
-      if (Param[1L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[1L] <- Param_X1X3_threshold
-      }
-      if (Param[3L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[3L] <- Param_X1X3_threshold
+    
+    ## Call CemaNeige Fortran_________________________
+    for(iLayer in 1:NLayers) {
+      if (!IsHyst) {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)]
+      } else {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
       }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }      
+      RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR", 
+                          ## inputs
+                          LInputs = LInputSeries,                                                         ### length of input and output series
+                          InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/d]
+                          InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
+                          InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
+                          MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
+                          NParam = as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
+                          Param = as.double(ParamCemaNeige),                                              ### parameter set
+                          NStates = as.integer(NStates),                                                  ### number of state variables used for model initialising = 4
+                          StateStart = StateStartCemaNeige,                                               ### state variables used when the model run starts
+                          IsHyst = as.integer(IsHyst),                                                    ### use of hysteresis
+                          NOutputs = as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
+                          IndOutputs = IndOutputsCemaNeige,                                               ### indices of output series
+                          ## outputs                                                               
+                          Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm]
+                          StateEnd = rep(as.double(-999.999), as.integer(NStates))                                        ### state variables at the end of the model run
+      )
+      RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+      RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
       
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries   <- as.integer(length(IndPeriod1))
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
-      NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
-      ParamMod       <- Param[1:NParamMod];
-      NLayers        <- length(InputsModel$LayerPrecip);
-      NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-
-      
-    ##SNOW_MODULE________________________________________________________________________________##
-    if(inherits(RunOptions,"CemaNeige")){
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
-      } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
-
-
-    ##Call_DLL_CemaNeige_________________________
-      for(iLayer in 1:NLayers){
-        if (!IsHyst) {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)]
-        } else {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
-        }
-        RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR",
-                        ##inputs
-                            LInputs=LInputSeries,                                                         ### length of input and output series
-                            InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/d]
-                            InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
-                            InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
-                            MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
-                            NParam=as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
-                            Param=as.double(ParamCemaNeige),                                              ### parameter set
-                            NStates=as.integer(NStates),                                                  ### number of state variables used for model initialising = 4
-                            StateStart=StateStartCemaNeige,                                               ### state variables used when the model run starts
-                            IsHyst = as.integer(IsHyst),                                                  ### use of hysteresis
-                            NOutputs=as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
-                            IndOutputs=IndOutputsCemaNeige,                                               ### indices of output series
-                        ##outputs                                                               
-                            Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
-                            StateEnd=rep(as.double(-999.999),as.integer(NStates))                                   ### state variables at the end of the model run
-                         )
-        RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-        RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-
-        ##Data_storage
-        CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
-        IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
-        if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
-        rm(RESULTS); 
-      } ###ENDFOR_iLayer
-      names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
-    } ###ENDIF_RunSnowModule
-    if(!inherits(RunOptions,"CemaNeige")){
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
-      CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]; }
-
-
-
-    ##MODEL______________________________________________________________________________________##
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); 
-      } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim);  }
-
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3];  ### routing store level (mm)
+      ## Data storage
+      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]
+      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
+      if (iLayer == 1) {
+        CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr4j",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                          ### length of input and output series
-                     InputsPrecip=CatchMeltAndPliq,                 ### input series of total precipitation [mm/d]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/d]
-                     NParam=NParamMod,                              ### number of model parameter
-                     Param=ParamMod,                                ### parameter set
-                     NStates=NStatesMod,                            ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputsMod)),    ### number of output series
-                     IndOutputs=IndOutputsMod,                      ### indices of output series
-                 ##outputs                                        
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),NStatesMod)                                      ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        idNStates <- seq_len(NStates*NLayers) %% NStates
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IsHyst = IsHyst,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
-                                            GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
-                                            eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
-                                            GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
-                                            GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
-                                            verbose = FALSE)
+      if (iLayer >1) {
+        CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-      
-      if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(!ExportDatesR & !ExportStateEnd){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
-      ##DatesR_and_OutputsModel_only
-      if( ExportDatesR & !ExportStateEnd){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers);      }
-      ##OutputsModel_and_SateEnd_only
-      if(!ExportDatesR & ExportStateEnd){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if( ExportDatesR & ExportStateEnd){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-   
-      class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige");
-      if(IsHyst) {
-        class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+      if (ExportStateEnd) {
+        CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd)
       }
-      return(OutputsModel);
-
+      rm(RESULTS)
+    } ### ENDFOR iLayer
+    names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
+  } ### ENDIF RunSnowModule
+  if (!inherits(RunOptions, "CemaNeige")) {
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- NULL
+    CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  
+  
+  ## GR model______________________________________________________________________________________
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputsMod <- as.integer(1:length(FortranOutputs$GR))
+  } else {
+    IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr4j", PACKAGE = "airGR", 
+                      ## inputs
+                      LInputs = LInputSeries,                          ### length of input and output series
+                      InputsPrecip = CatchMeltAndPliq,                 ### input series of total precipitation [mm/d]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/d]
+                      NParam = NParamMod,                              ### number of model parameter
+                      Param = ParamMod,                                ### parameter set
+                      NStates = NStatesMod,                            ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputsMod)),    ### number of output series
+                      IndOutputs = IndOutputsMod,                      ### indices of output series
+                      ## outputs                                        
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), NStatesMod)                                           ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    idNStates <- seq_len(NStates*NLayers) %% NStates
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IsHyst = IsHyst, 
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, 
+                                        UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], 
+                                        GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], 
+                                        eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], 
+                                        GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
+                                        GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], 
+                                        verbose = FALSE)
+  }
+  
+  if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
+    RESULTS$Outputs[, which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## DatesR and OutputsModel only
+  if ( ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(CemaNeigeLayers), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  ## DatesR and OutputsModel and Sate
+  if ( ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(CemaNeigeLayers), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS)
+  class(OutputsModel) <- c("OutputsModel", "daily", "GR", "CemaNeige")
+  if (IsHyst) {
+    class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+  }
+  return(OutputsModel)
+  
 }
diff --git a/R/RunModel_CemaNeigeGR5H.R b/R/RunModel_CemaNeigeGR5H.R
index c8639d71338d8bd5ef4d204959258c2098160236..6cfcc4180c93eb3fa361830d55b0f382df949b57 100644
--- a/R/RunModel_CemaNeigeGR5H.R
+++ b/R/RunModel_CemaNeigeGR5H.R
@@ -1,28 +1,50 @@
-RunModel_CemaNeigeGR5H <- function(InputsModel,RunOptions,Param){
+RunModel_CemaNeigeGR5H <- function(InputsModel, RunOptions, Param) {
   
+  
+  ## Initialization of variables
   IsHyst <- inherits(RunOptions, "hysteresis")
   NParam <- ifelse(test = IsHyst, yes = 9L, no = 7L)
   NParamCN <- NParam - 5L
   NStates <- 4L
   FortranOutputs <- .FortranOutputs(GR = "GR5H", isCN = TRUE)
   IsIntStore <- inherits(RunOptions, "interception")
-  if(IsIntStore) {
+  if (IsIntStore) {
     Imax <- RunOptions$Imax
   } else {
     Imax <- -99
   }
   
-  ##Arguments_check
-  if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") }  
-  if(!inherits(InputsModel,"hourly"     )){ stop("'InputsModel' must be of class 'hourly'     ") }  
-  if(!inherits(InputsModel,"GR"         )){ stop("'InputsModel' must be of class 'GR'         ") }  
-  if(!inherits(InputsModel,"CemaNeige"  )){ stop("'InputsModel' must be of class 'CemaNeige'  ") }  
-  if(!inherits(RunOptions,"RunOptions"  )){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-  if(!inherits(RunOptions,"GR"          )){ stop("'RunOptions' must be of class 'GR'          ") }  
-  if(!inherits(RunOptions,"CemaNeige"   )){ stop("'RunOptions' must be of class 'CemaNeige'   ") }  
-  if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-  if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-  Param <- as.double(Param);
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }
+  if (!inherits(InputsModel, "hourly")) {
+    stop("'InputsModel' must be of class 'hourly'")
+  }
+  if (!inherits(InputsModel, "GR")) {
+    stop("'InputsModel' must be of class 'GR'")
+  }
+  if (!inherits(InputsModel, "CemaNeige")) {
+    stop("'InputsModel' must be of class 'CemaNeige'")
+  }
+  if (!inherits(RunOptions, "RunOptions")) {
+    stop("'RunOptions' must be of class 'RunOptions'")
+  }
+  if (!inherits(RunOptions, "GR")) {
+    stop("'RunOptions' must be of class 'GR'")
+  }
+  if (!inherits(RunOptions, "CemaNeige")) {
+    stop("'RunOptions' must be of class 'CemaNeige'")
+  }
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
+  }
+  Param <- as.double(Param)
+  
   
   Param_X1X3_threshold <- 1e-2
   Param_X4_threshold   <- 0.5
@@ -39,108 +61,132 @@ RunModel_CemaNeigeGR5H <- function(InputsModel,RunOptions,Param){
     Param[4L] <- Param_X4_threshold
   }     
   
-  ##Input_data_preparation
-  if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  
   LInputSeries <- as.integer(length(IndPeriod1))
-  if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs)); 
-  } else { IndOutputsMod <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
-  
-  ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
-  NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
-  ParamMod       <- Param[1:NParamMod];
-  NLayers        <- length(InputsModel$LayerPrecip);
-  NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
-  
-  ##Output_data_preparation
-  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-  
-  ##SNOW_MODULE________________________________________________________________________________##
-  if(inherits(RunOptions,"CemaNeige")){
-    if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
-    } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
-    CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputsMod <- as.integer(1:length(FortranOutputs))
+  } else {
+    IndOutputsMod <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
+  }
+  
+  ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)]
+  NParamMod      <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
+  ParamMod       <- Param[1:NParamMod]
+  NLayers        <- length(InputsModel$LayerPrecip)
+  NStatesMod     <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
+  
+  
+  ## Output data preparation
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  ## CemaNeige________________________________________________________________________________
+  if (inherits(RunOptions, "CemaNeige")) {
+    if ("all" %in% RunOptions$Outputs_Sim) {
+      IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN))
+    } else {
+      IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim)
+    }
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- "CemaNeigeLayers"
     
     
-    ##Call_DLL_CemaNeige_________________________
-    for(iLayer in 1:NLayers){
+    ## Call CemaNeige Fortran_________________________
+    for(iLayer in 1:NLayers) {
       if (!IsHyst) {
         StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
       } else {
         StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
       }
       RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR",
-                          ##inputs
-                          LInputs=LInputSeries,                                                         ### length of input and output series
-                          InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
-                          InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
-                          InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
-                          MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
-                          NParam=as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
-                          Param=as.double(ParamCemaNeige),                                              ### parameter set
-                          NStates=as.integer(NStates),                                                  ### number of state variables used for model initialisation = 4
-                          StateStart=StateStartCemaNeige,                                               ### state variables used when the model run starts
-                          IsHyst = as.integer(IsHyst),                                                  ### use of hysteresis
-                          NOutputs=as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
-                          IndOutputs=IndOutputsCemaNeige,                                               ### indices of output series
-                          ##outputs                                                               
-                          Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
-                          StateEnd=rep(as.double(-999.999),as.integer(NStates))                                   ### state variables at the end of the model run
+                          ## inputs
+                          LInputs = LInputSeries,                                                         ### length of input and output series
+                          InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
+                          InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
+                          InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
+                          MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
+                          NParam = as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
+                          Param = as.double(ParamCemaNeige),                                              ### parameter set
+                          NStates = as.integer(NStates),                                                  ### number of state variables used for model initialisation = 4
+                          StateStart = StateStartCemaNeige,                                               ### state variables used when the model run starts
+                          IsHyst = as.integer(IsHyst),                                                    ### use of hysteresis
+                          NOutputs = as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
+                          IndOutputs = IndOutputsCemaNeige,                                               ### indices of output series
+                          ## outputs                                                               
+                          Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm]
+                          StateEnd = rep(as.double(-999.999), as.integer(NStates))                                        ### state variables at the end of the model run
       )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
+      RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+      RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
       
-      ##Data_storage
-      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
-      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
-      if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-      if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-      if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
-      rm(RESULTS); 
-    } ###ENDFOR_iLayer
+      ## Data storage
+      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]
+      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
+      if (iLayer == 1) {
+        CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
+      }
+      if (iLayer > 1) {
+        CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
+      }
+      if (ExportStateEnd) {
+        CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd)
+      }
+      rm(RESULTS)
+    } ### ENDFOR iLayer
     names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
-  } ###ENDIF_RunSnowModule
-  if(!inherits(RunOptions,"CemaNeige")){
-    CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
-    CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]; }
+  } ### ENDIF RunSnowModule
+  if (!inherits(RunOptions, "CemaNeige")) {
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- NULL
+    CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]
+  }
   
   
   
-  ##MODEL______________________________________________________________________________________##
-  if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); 
-  } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim);  }
+  ## GR model______________________________________________________________________________________ 
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputsMod <- as.integer(1:length(FortranOutputs$GR))
+  } else {
+    IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim)
+  }
   
-  ##Use_of_IniResLevels
-  if(!is.null(RunOptions$IniResLevels)){
-    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
-    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
-    if(IsIntStore) {
-      RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax;  ### interception store level (mm)
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * Param[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * Param[3] ### routing store level (mm)
+    if (IsIntStore) {
+      RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax ### interception store level (mm)
     }
   }
   
-  ##Call_fortan
+  ## Call GR model Fortan
   RESULTS <- .Fortran("frun_gr5h",PACKAGE="airGR",
-                      ##inputs
-                      LInputs=LInputSeries,                             ### length of input and output series
-                      InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/h]
-                      InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/h]
-                      NParam=as.integer(length(Param)),                 ### number of model parameter
-                      Param=Param,                                      ### parameter set
-                      NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
-                      StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
-                      Imax=Imax,                                        ### maximal capacity of interception store
-                      NOutputs=as.integer(length(IndOutputsMod)),          ### number of output series
-                      IndOutputs=IndOutputsMod,                            ### indices of output series
-                      ##outputs
-                      Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)),  ### output series [mm or mm/h]
-                      StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
+                      ## inputs
+                      LInputs = LInputSeries,                             ### length of input and output series
+                      InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/h]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/h]
+                      NParam = as.integer(length(Param)),                 ### number of model parameter
+                      Param = Param,                                      ### parameter set
+                      NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates,                  ### state variables used when the model run starts
+                      Imax = Imax,                                        ### maximal capacity of interception store
+                      NOutputs = as.integer(length(IndOutputsMod)),       ### number of output series
+                      IndOutputs = IndOutputsMod,                         ### indices of output series
+                      ## outputs
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm or mm/h]
+                      StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates))                         ### state variables at the end of the model run
   )
-  RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-  RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
   if (ExportStateEnd) {
     RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
     idNStates <- seq_len(NStates*NLayers) %% NStates
@@ -154,45 +200,51 @@ RunModel_CemaNeigeGR5H <- function(InputsModel,RunOptions,Param){
                                         GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
                                         verbose = FALSE)
   }
-
-  if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
-  
-  ##Output_data_preparation
-  ##OutputsModel_only
-  ##OutputsModel_only
-  if(!ExportDatesR & !ExportStateEnd){
-    OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                       list(CemaNeigeLayers) );
-    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
-  ##DatesR_and_OutputsModel_only
-  if( ExportDatesR & !ExportStateEnd){
-    OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                       lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                       list(CemaNeigeLayers) );
-    names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers);      }
-  ##OutputsModel_and_SateEnd_only
-  if(!ExportDatesR & ExportStateEnd){
-    OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                       list(CemaNeigeLayers),
-                       list(RESULTS$StateEnd) );
-    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-  ##DatesR_and_OutputsModel_and_SateEnd
-  if( ExportDatesR & ExportStateEnd){
+  
+  if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
+    RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## DatesR and OutputsModel only
+  if ( ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  ## DatesR and OutputsModel and SateEnd
+  if ( ExportDatesR & ExportStateEnd) {
     OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                       lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                       lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
                        list(CemaNeigeLayers),
-                       list(RESULTS$StateEnd) );
-    names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
+                       list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
   
-  ##End
-  rm(RESULTS); 
-  class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige");
-  if(IsHyst) {
+  ## End
+  rm(RESULTS)
+  class(OutputsModel) <- c("OutputsModel", "hourly", "GR", "CemaNeige")
+  if (IsHyst) {
     class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
   }
-  if(IsIntStore) {
+  if (IsIntStore) {
     class(OutputsModel) <- c(class(OutputsModel), "interception")
   }
-  return(OutputsModel);
+  return(OutputsModel)
   
 }
diff --git a/R/RunModel_CemaNeigeGR5J.R b/R/RunModel_CemaNeigeGR5J.R
index 2d41be506a20dd5cebe5ef3e0ca5006aa5ada343..3e3344d5e3b589bb310d15e075a528e86a2b91b2 100644
--- a/R/RunModel_CemaNeigeGR5J.R
+++ b/R/RunModel_CemaNeigeGR5J.R
@@ -1,180 +1,226 @@
-RunModel_CemaNeigeGR5J <- function(InputsModel,RunOptions,Param){
-
+RunModel_CemaNeigeGR5J <- function(InputsModel, RunOptions, Param) {
   
+  
+  ## Initialization of variables
   IsHyst <- inherits(RunOptions, "hysteresis")
   NParam <- ifelse(test = IsHyst, yes = 9L, no = 7L)
   NParamCN <- NParam - 5L
   NStates <- 4L
   FortranOutputs <- .FortranOutputs(GR = "GR5J", isCN = TRUE)
-
-    ##Arguments_check
-      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(inherits(InputsModel,"daily"      )==FALSE){ stop("'InputsModel' must be of class 'daily'      ") }  
-      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(inherits(InputsModel,"CemaNeige"  )==FALSE){ stop("'InputsModel' must be of class 'CemaNeige'  ") }  
-      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(inherits(RunOptions,"CemaNeige"   )==FALSE){ stop("'RunOptions' must be of class 'CemaNeige'   ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-      
-      Param_X1X3_threshold <- 1e-2
-      Param_X4_threshold   <- 0.5
-      if (Param[1L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[1L] <- Param_X1X3_threshold
-      }
-      if (Param[3L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[3L] <- Param_X1X3_threshold
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }
+  if (!inherits(InputsModel, "daily")) {
+    stop("'InputsModel' must be of class 'daily'")
+  }
+  if (!inherits(InputsModel, "GR")) {
+    stop("'InputsModel' must be of class 'GR'")
+  }
+  if (!inherits(InputsModel, "CemaNeige")) {
+    stop("'InputsModel' must be of class 'CemaNeige'")
+  }
+  if (!inherits(RunOptions, "RunOptions")) {
+    stop("'RunOptions' must be of class 'RunOptions'")
+  }
+  if (!inherits(RunOptions, "GR")) {
+    stop("'RunOptions' must be of class 'GR'")
+  }
+  if (!inherits(RunOptions, "CemaNeige")) {
+    stop("'RunOptions' must be of class 'CemaNeige'")
+  }
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
+  }
+  Param <- as.double(Param)
+  
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold   <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }      
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run)
+  LInputSeries   <- as.integer(length(IndPeriod1))
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries
+  ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)]
+  NParamMod      <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
+  ParamMod       <- Param[1:NParamMod]
+  NLayers        <- length(InputsModel$LayerPrecip)
+  NStatesMod     <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  
+  ## CemaNeige________________________________________________________________________________
+  if (inherits(RunOptions, "CemaNeige")) {
+    if ("all" %in% RunOptions$Outputs_Sim) {
+      IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN))
+    } else {
+      IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim)
+    }
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- "CemaNeigeLayers"
+    
+    
+    ## Call CemaNeige Fortran_________________________
+    for(iLayer in 1:NLayers) {
+      if (!IsHyst) {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)]
+      } else {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
       }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }      
-
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries   <- as.integer(length(IndPeriod1))
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
-      NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
-      ParamMod       <- Param[1:NParamMod];
-      NLayers        <- length(InputsModel$LayerPrecip);
-      NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-
-
-    ##SNOW_MODULE________________________________________________________________________________##
-    if(inherits(RunOptions,"CemaNeige")==TRUE){
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
-      } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
-
+      RESULTS <- .Fortran("frun_cemaneige", PACKAGE="airGR",
+                          ## inputs
+                          LInputs = LInputSeries,                                                         ### length of input and output series
+                          InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/d]
+                          InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
+                          InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
+                          MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
+                          NParam = as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
+                          Param = as.double(ParamCemaNeige),                                              ### parameter set
+                          NStates = as.integer(NStates),                                                  ### number of state variables used for model initialising = 4
+                          StateStart = StateStartCemaNeige,                                               ### state variables used when the model run starts
+                          IsHyst  =  as.integer(IsHyst),                                                  ### use of hysteresis
+                          NOutputs = as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
+                          IndOutputs = IndOutputsCemaNeige,                                               ### indices of output series
+                          ## outputs                                                               
+                          Outputs =  matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm]
+                          StateEnd = rep(as.double(-999.999), as.integer(NStates))                                         ### state variables at the end of the model run
+      )
+      RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+      RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
       
-    ##Call_DLL_CemaNeige_________________________
-      for(iLayer in 1:NLayers){
-        if (!IsHyst) {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)]
-        } else {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
+      ## Data storage
+      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]
+      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
+      if (iLayer == 1) {
+        CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
         }
-        RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR",
-                        ##inputs
-                            LInputs=LInputSeries,                                                         ### length of input and output series
-                            InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/d]
-                            InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
-                            InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
-                            MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
-                            NParam=as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
-                            Param=as.double(ParamCemaNeige),                                              ### parameter set
-                            NStates=as.integer(NStates),                                                  ### number of state variables used for model initialising = 4
-                            StateStart=StateStartCemaNeige,                                               ### state variables used when the model run starts
-                            IsHyst = as.integer(IsHyst),                                                  ### use of hysteresis
-                            NOutputs=as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
-                            IndOutputs=IndOutputsCemaNeige,                                               ### indices of output series
-                        ##outputs                                                               
-                            Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
-                            StateEnd=rep(as.double(-999.999),as.integer(NStates))                                   ### state variables at the end of the model run
-                         )
-        RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-        RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-
-        ##Data_storage
-        CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
-        IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
-        if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
-        rm(RESULTS); 
-      } ###ENDFOR_iLayer
-      names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
-    } ###ENDIF_RunSnowModule
-    if(inherits(RunOptions,"CemaNeige")==FALSE){
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
-      CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]; }
-
-
-
-    ##MODEL______________________________________________________________________________________##
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); 
-      } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim);  }
-
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3];  ### routing store level (mm)
+      if (iLayer > 1) {
+        CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr5j",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                          ### length of input and output series
-                     InputsPrecip=CatchMeltAndPliq,                 ### input series of total precipitation [mm/d]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/d]
-                     NParam=NParamMod,                              ### number of model parameter
-                     Param=ParamMod,                                ### parameter set
-                     NStates=NStatesMod,                            ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputsMod)),    ### number of output series
-                     IndOutputs=IndOutputsMod,                      ### indices of output series
-                 ##outputs                                        
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),NStatesMod)                                      ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
       if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        idNStates <- seq_len(NStates*NLayers) %% NStates
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR5J, InputsModel = InputsModel, IsHyst = IsHyst,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
-                                            GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
-                                            eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
-                                            GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
-                                            GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
-                                            verbose = FALSE)
+        CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd)
       }
-      
-      if(inherits(RunOptions,"CemaNeige")==TRUE & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
-      ##DatesR_and_OutputsModel_only
-      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers);      }
-      ##OutputsModel_and_SateEnd_only
-      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if(ExportDatesR==TRUE & ExportStateEnd==TRUE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-      class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige");
-      if(IsHyst) {
-        class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
-      }
-      return(OutputsModel);
-
+      rm(RESULTS)
+    } ### ENDFOR iLayer
+    names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
+  } ### ENDIF RunSnowModule
+  if (!inherits(RunOptions, "CemaNeige")) {
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- NULL
+    CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]
+    }
+  
+  
+  
+  ## GR model______________________________________________________________________________________
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputsMod <- as.integer(1:length(FortranOutputs$GR))
+  } else {
+    IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr5j", PACKAGE = "airGR",
+                      ## inputs
+                      LInputs = LInputSeries,                          ### length of input and output series
+                      InputsPrecip = CatchMeltAndPliq,                 ### input series of total precipitation [mm/d]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/d]
+                      NParam = NParamMod,                              ### number of model parameter
+                      Param = ParamMod,                                ### parameter set
+                      NStates = NStatesMod,                            ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputsMod)),    ### number of output series
+                      IndOutputs = IndOutputsMod,                      ### indices of output series
+                      ## outputs                                        
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), NStatesMod)                                      ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    idNStates <- seq_len(NStates*NLayers) %% NStates
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR5J, InputsModel = InputsModel, IsHyst = IsHyst,
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
+                                        UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
+                                        GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
+                                        eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
+                                        GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
+                                        GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
+                                        verbose = FALSE)
+  }
+  
+  if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
+    RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## DatesR and OutputsModel only
+  if (ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  ## DatesR and OutputsModel and SateEnd
+  if (ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS)
+  class(OutputsModel) <- c("OutputsModel", "daily", "GR", "CemaNeige")
+  if (IsHyst) {
+    class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+  }
+  return(OutputsModel)
+  
 }
diff --git a/R/RunModel_CemaNeigeGR6J.R b/R/RunModel_CemaNeigeGR6J.R
index 54b4497f6f6a989952eb6978d37f9bc1e46af026..d82a0241ec42abb8a607d291d60f588885f8defb 100644
--- a/R/RunModel_CemaNeigeGR6J.R
+++ b/R/RunModel_CemaNeigeGR6J.R
@@ -1,186 +1,232 @@
-RunModel_CemaNeigeGR6J <- function(InputsModel,RunOptions,Param){
-
+RunModel_CemaNeigeGR6J <- function(InputsModel, RunOptions, Param) {
+  
   
+  ## Initialization of variables
   IsHyst <- inherits(RunOptions, "hysteresis")
   NParam <- ifelse(test = IsHyst, yes = 10L, no = 8L)
   NParamCN <- NParam - 6L
   NStates <- 4L
   FortranOutputs <- .FortranOutputs(GR = "GR6J", isCN = TRUE)
-
-    ##Arguments_check
-      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(inherits(InputsModel,"daily"      )==FALSE){ stop("'InputsModel' must be of class 'daily'      ") }  
-      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(inherits(InputsModel,"CemaNeige"  )==FALSE){ stop("'InputsModel' must be of class 'CemaNeige'  ") }  
-      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(inherits(RunOptions,"CemaNeige"   )==FALSE){ stop("'RunOptions' must be of class 'CemaNeige'   ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-      
-      Param_X1X3X6_threshold <- 1e-2
-      Param_X4_threshold     <- 0.5
-      if (Param[1L] < Param_X1X3X6_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
-        Param[1L] <- Param_X1X3X6_threshold
-      }
-      if (Param[3L] < Param_X1X3X6_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
-        Param[3L] <- Param_X1X3X6_threshold
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }
+  if (!inherits(InputsModel, "daily")) {
+    stop("'InputsModel' must be of class 'daily'")
+  }
+  if (!inherits(InputsModel, "GR")) {
+    stop("'InputsModel' must be of class 'GR'")
+  }
+  if (!inherits(InputsModel, "CemaNeige")) {
+    stop("'InputsModel' must be of class 'CemaNeige'")
+  }
+  if (!inherits(RunOptions, "RunOptions")) {
+    stop("'RunOptions' must be of class 'RunOptions'")
+  }
+  if (!inherits(RunOptions, "GR")) {
+    stop("'RunOptions' must be of class 'GR'")
+  }
+  if (!inherits(RunOptions, "CemaNeige")) {
+    stop("'RunOptions' must be of class 'CemaNeige'")
+  }
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
+  }
+  Param <- as.double(Param)
+  
+  
+  Param_X1X3X6_threshold <- 1e-2
+  Param_X4_threshold     <- 0.5
+  if (Param[1L] < Param_X1X3X6_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
+    Param[1L] <- Param_X1X3X6_threshold
+  }
+  if (Param[3L] < Param_X1X3X6_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
+    Param[3L] <- Param_X1X3X6_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }      
+  if (Param[6L] < Param_X1X3X6_threshold) {
+    warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
+    Param[6L] <- Param_X1X3X6_threshold
+  }         
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run)
+  LInputSeries   <- as.integer(length(IndPeriod1))
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries
+  ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)]
+  NParamMod      <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
+  ParamMod       <- Param[1:NParamMod]
+  NLayers        <- length(InputsModel$LayerPrecip)
+  NStatesMod     <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  
+  ## CemaNeige________________________________________________________________________________
+  if (inherits(RunOptions, "CemaNeige")) {
+    if ("all" %in% RunOptions$Outputs_Sim) {
+      IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN))
+    } else {
+      IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim)
+    }
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- "CemaNeigeLayers"
+    
+    
+    ## Call CemaNeige Fortran_________________________
+    for(iLayer in 1:NLayers) {
+      if (!IsHyst) {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)]
+      } else {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
       }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }      
-      if (Param[6L] < Param_X1X3X6_threshold) {
-        warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
-        Param[6L] <- Param_X1X3X6_threshold
-      }         
-
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries   <- as.integer(length(IndPeriod1))
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
-      NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
-      ParamMod       <- Param[1:NParamMod];
-      NLayers        <- length(InputsModel$LayerPrecip);
-      NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-
-
-    ##SNOW_MODULE________________________________________________________________________________##
-    if(inherits(RunOptions,"CemaNeige")==TRUE){
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
-      } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
-
+      RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR",
+                          ## inputs
+                          LInputs = LInputSeries,                                                         ### length of input and output series
+                          InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/d]
+                          InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
+                          InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
+                          MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
+                          NParam = as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
+                          Param = as.double(ParamCemaNeige),                                              ### parameter set
+                          NStates = as.integer(NStates),                                                  ### number of state variables used for model initialising = 4
+                          StateStart = StateStartCemaNeige,                                               ### state variables used when the model run starts
+                          IsHyst = as.integer(IsHyst),                                                    ### use of hysteresis                        
+                          NOutputs = as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
+                          IndOutputs = IndOutputsCemaNeige,                                               ### indices of output series
+                          ## outputs                                                               
+                          Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol = length(IndOutputsCemaNeige)), ### output series [mm]
+                          StateEnd = rep(as.double(-999.999), as.integer(NStates))                                       ### state variables at the end of the model run
+      )
+      RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+      RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
       
-    ##Call_DLL_CemaNeige_________________________
-      for(iLayer in 1:NLayers){
-        if (!IsHyst) {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)]
-        } else {
-          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
-        }
-        RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR",
-                        ##inputs
-                            LInputs=LInputSeries,                                                          ### length of input and output series
-                            InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                    ### input series of total precipitation [mm/d]
-                            InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1],  ### input series of fraction of solid precipitation [0-1]
-                            InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                        ### input series of air mean temperature [degC]
-                            MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                        ### value of annual mean solid precip [mm/y]
-                            NParam=as.integer(NParamCN),                                                   ### number of model parameters = 2 or 4
-                            Param=as.double(ParamCemaNeige),                                               ### parameter set
-                            NStates=as.integer(NStates),                                                   ### number of state variables used for model initialising = 4
-                            StateStart=StateStartCemaNeige,                                                ### state variables used when the model run starts
-                            IsHyst = as.integer(IsHyst),                       ### use of hysteresis                        
-                            NOutputs=as.integer(length(IndOutputsCemaNeige)),                              ### number of output series
-                            IndOutputs=IndOutputsCemaNeige,                                                ### indices of output series
-                        ##outputs                                                               
-                            Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)),  ### output series [mm]
-                            StateEnd=rep(as.double(-999.999),as.integer(NStates))                                    ### state variables at the end of the model run
-                         )
-        RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-        RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-
-        ##Data_storage
-        CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
-        IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
-        if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
-        if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
-        rm(RESULTS); 
-      } ###ENDFOR_iLayer
-      names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
-    } ###ENDIF_RunSnowModule
-    if(inherits(RunOptions,"CemaNeige")==FALSE){
-      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
-      CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]; }
-
-
-
-    ##MODEL______________________________________________________________________________________##
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); 
-      } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim);  }
-
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm)
-        RunOptions$IniStates[3] <- RunOptions$IniResLevels[3]               ### exponential store level (mm)
+      ## Data storage
+      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]
+      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
+      if (iLayer == 1) {
+        CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr6j",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                          ### length of input and output series
-                     InputsPrecip=CatchMeltAndPliq,                 ### input series of total precipitation [mm/d]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/d]
-                     NParam=NParamMod,                              ### number of model parameter
-                     Param=ParamMod,                                ### parameter set
-                     NStates=NStatesMod,                            ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputsMod)),    ### number of output series
-                     IndOutputs=IndOutputsMod,                      ### indices of output series
-                 ##outputs                                        
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),NStatesMod)                                      ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        idNStates <- seq_len(NStates*NLayers) %% NStates
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR6J, InputsModel = InputsModel, IsHyst = IsHyst,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L],
-                                            UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
-                                            GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
-                                            eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
-                                            GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
-                                            GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
-                                            verbose = FALSE)
+      if (iLayer >1 ) {
+        CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
       }
-      
-      if(inherits(RunOptions,"CemaNeige")==TRUE & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
-      ##DatesR_and_OutputsModel_only
-      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers);      }
-      ##OutputsModel_and_SateEnd_only
-      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if(ExportDatesR==TRUE & ExportStateEnd==TRUE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(CemaNeigeLayers),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-      class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige");
-      if(IsHyst) {
-        class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+      if (ExportStateEnd) {
+        CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd)
       }
-      return(OutputsModel);
-
+      rm(RESULTS)
+    } ### ENDFOR iLayer
+    names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
+  } ### ENDIF RunSnowModule
+  if (!inherits(RunOptions, "CemaNeige")) {
+    CemaNeigeLayers <- list()
+    CemaNeigeStateEnd <- NULL
+    NameCemaNeigeLayers <- NULL
+    CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  
+  
+  ## GR model______________________________________________________________________________________
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputsMod <- as.integer(1:length(FortranOutputs$GR))
+  } else {
+    IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm)
+    RunOptions$IniStates[3] <- RunOptions$IniResLevels[3]               ### exponential store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr6j", PACKAGE = "airGR",
+                      ## inputs
+                      LInputs = LInputSeries,                          ### length of input and output series
+                      InputsPrecip = CatchMeltAndPliq,                 ### input series of total precipitation [mm/d]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/d]
+                      NParam = NParamMod,                              ### number of model parameter
+                      Param = ParamMod,                                ### parameter set
+                      NStates = NStatesMod,                            ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputsMod)),    ### number of output series
+                      IndOutputs = IndOutputsMod,                      ### indices of output series
+                      ## outputs                                        
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol = length(IndOutputsMod)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), NStatesMod)                                          ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ## remove negative values except for the ExpStore location
+    idNStates <- seq_len(NStates*NLayers) %% NStates
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR6J, InputsModel = InputsModel, IsHyst = IsHyst,
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L],
+                                        UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
+                                        GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
+                                        eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
+                                        GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
+                                        GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
+                                        verbose = FALSE)
+  }
+  
+  if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
+    RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1]
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR== FALSE & !ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## DatesR and OutputsModel only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  ## DatesR and OutputsModel and SateEnd
+  if (ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+                      list(CemaNeigeLayers),
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS)
+  class(OutputsModel) <- c("OutputsModel", "daily", "GR", "CemaNeige")
+  if (IsHyst) {
+    class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+  }
+  return(OutputsModel)
+  
 }
 
diff --git a/R/RunModel_GR1A.R b/R/RunModel_GR1A.R
index 432a1eaa9e22c1a51ef9c97faffd7e82298c6730..58bca283713067eb4ebc0547671b0fc61303b790 100644
--- a/R/RunModel_GR1A.R
+++ b/R/RunModel_GR1A.R
@@ -1,10 +1,12 @@
 RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
   
+  
+  ## Initialization of variables
   NParam <- 1
   FortranOutputs <- .FortranOutputs(GR = "GR1A")$GR
   
   
-  ## Arguments_check
+  ## Arguments check
   if (!inherits(InputsModel, "InputsModel")) {
     stop("'InputsModel' must be of class 'InputsModel'")
   }
@@ -48,8 +50,8 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
   ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
   
   
-  ## Call_fortan
-  RESULTS <- .Fortran("frun_gr1a", PACKAGE = "airGR",
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr1a", PACKAGE = "airGR", 
                       ## inputs
                       LInputs = LInputSeries,                             ### length of input and output series
                       InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/y]
@@ -61,11 +63,11 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
                       NOutputs = as.integer(length(IndOutputs)),          ### number of output series
                       IndOutputs = IndOutputs,                            ### indices of output series
                       ## outputs
-                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol=length(IndOutputs)), ### output series [mm]
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol=length(IndOutputs)), ### output series [mm]
                       StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates))                   ### state variables at the end of the model run
   )
-  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == (-999.999)] <- NA
-  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == (-999.999)] <- NA
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
   
   
   ## Output data preparation
@@ -76,20 +78,20 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
   }
   ## DatesR and OutputsModel only
   if (ExportDatesR & !ExportStateEnd) {
-    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
                       lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
     names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
   }
   ## OutputsModel and SateEnd only
   if (!ExportDatesR & ExportStateEnd) {
-    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
                       list(RESULTS$StateEnd))
     names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
   }
   ## DatesR and OutputsModel and SateEnd
   if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
-    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
                       list(RESULTS$StateEnd))
     names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
   }
diff --git a/R/RunModel_GR2M.R b/R/RunModel_GR2M.R
index 59c3e9d414e0692c91384e676e3f0671c1cce20b..385c5f1a798de5ea4ac460fd3fb0d516c7c6430b 100644
--- a/R/RunModel_GR2M.R
+++ b/R/RunModel_GR2M.R
@@ -1,98 +1,124 @@
-RunModel_GR2M <- function(InputsModel,RunOptions,Param){
-
-    NParam <- 2;
-    FortranOutputs <- .FortranOutputs(GR = "GR2M")$GR
-
-    ##Arguments_check
-      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(inherits(InputsModel,"monthly"    )==FALSE){ stop("'InputsModel' must be of class 'monthly'    ") }  
-      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-      
-      Param_X1X2_threshold <- 1e-2
-      if (Param[1L] < Param_X1X2_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold))
-        Param[1L] <- Param_X1X2_threshold
-      }
-      if (Param[2L] < Param_X1X2_threshold) {
-        warning(sprintf("Param[2] (X2: routing store capacity [mm]) < %.2f\n X2 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold))
-        Param[2L] <- Param_X1X2_threshold
-      }
-
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries <- as.integer(length(IndPeriod1))
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
-      } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
-
-    ##Output_data_preparation
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-      
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
-		RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[2];  ### routing store level (mm)
-      }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr2M",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                             ### length of input and output series
-                     InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/month]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/month]
-                     NParam=as.integer(length(Param)),                 ### number of model parameter
-                     Param=Param,                                      ### parameter set
-                     NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputs)),          ### number of output series
-                     IndOutputs=IndOutputs,                            ### indices of output series
-                 ##outputs
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs [round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) { 
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR2M, InputsModel = InputsModel,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            UH1 = NULL, UH2 = NULL,
-                                            GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
-                                            verbose = FALSE)
-      }
-      
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
-        OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(OutputsModel) <- FortranOutputs[IndOutputs];      }
-      ##DatesR_and_OutputsModel_only
-      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]);      }
-      ##OutputsModel_and_SateEnd_only
-      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-      class(OutputsModel) <- c("OutputsModel","monthly","GR");
-      return(OutputsModel);
-
+RunModel_GR2M <- function(InputsModel, RunOptions, Param) {
+  
+  
+  ## Initialization of variables
+  NParam <- 2
+  FortranOutputs <- .FortranOutputs(GR = "GR2M")$GR
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }  
+  if (!inherits(InputsModel, "monthly"    )) {
+    stop("'InputsModel' must be of class 'monthly'    ")
+  }  
+  if (!inherits(InputsModel, "GR"         )) {
+    stop("'InputsModel' must be of class 'GR'         ")
+  }  
+  if (!inherits(RunOptions, "RunOptions"  )) {
+    stop("'RunOptions' must be of class 'RunOptions'  ")
+  }  
+  if (!inherits(RunOptions, "GR"          )) {
+    stop("'RunOptions' must be of class 'GR'          ")
+  }  
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = ""))
+  }
+  Param <- as.double(Param)
+  
+  Param_X1X2_threshold <- 1e-2
+  if (Param[1L] < Param_X1X2_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold))
+    Param[1L] <- Param_X1X2_threshold
+  }
+  if (Param[2L] < Param_X1X2_threshold) {
+    warning(sprintf("Param[2] (X2: routing store capacity [mm]) < %.2f\n X2 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold))
+    Param[2L] <- Param_X1X2_threshold
+  }
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries <- as.integer(length(IndPeriod1))
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputs <- as.integer(1:length(FortranOutputs)) 
+  } else {
+    IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Output data preparation
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[2] ### routing store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr2M", PACKAGE = "airGR", 
+                      ## inputs
+                      LInputs = LInputSeries,                             ### length of input and output series
+                      InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/month]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/month]
+                      NParam = as.integer(length(Param)),                 ### number of model parameter
+                      Param = Param,                                      ### parameter set
+                      NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates,                  ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputs)),          ### number of output series
+                      IndOutputs = IndOutputs,                            ### indices of output series
+                      ## outputs
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates))                      ### state variables at the end of the model run
+  )
+  RESULTS$Outputs [round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) { 
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR2M, InputsModel = InputsModel, 
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, 
+                                        UH1 = NULL, UH2 = NULL, 
+                                        GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, 
+                                        verbose = FALSE)
+  }
+  
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+    names(OutputsModel) <- FortranOutputs[IndOutputs]
+  }
+  ## DatesR and OutputsModel only
+  if (ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
+  }
+  ## DatesR and OutputsModel and SateEnd
+  if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                       lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                       list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS) 
+  class(OutputsModel) <- c("OutputsModel", "monthly", "GR")
+  return(OutputsModel)
+  
 }
diff --git a/R/RunModel_GR4H.R b/R/RunModel_GR4H.R
index 71ecde1d427433921c2ef3c5ce42d0fca660303c..47c26ff968cce41eb982f897604c7d4b843d0162 100644
--- a/R/RunModel_GR4H.R
+++ b/R/RunModel_GR4H.R
@@ -1,103 +1,129 @@
-RunModel_GR4H <- function(InputsModel,RunOptions,Param){
-
-    NParam <- 4;
-    FortranOutputs <- .FortranOutputs(GR = "GR4H")$GR
-
-    ##Arguments_check
-      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(inherits(InputsModel,"hourly"     )==FALSE){ stop("'InputsModel' must be of class 'hourly'     ") }  
-      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-      
-      Param_X1X3_threshold <- 1e-2
-      Param_X4_threshold     <- 0.5
-      if (Param[1L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[1L] <- Param_X1X3_threshold
-      }
-      if (Param[3L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[3L] <- Param_X1X3_threshold
-      }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }     
-
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries <- as.integer(length(IndPeriod1))
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
-      } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
-
-    ##Output_data_preparation
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-      
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
-      }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr4h",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                             ### length of input and output series
-                     InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/h]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/h]
-                     NParam=as.integer(length(Param)),                 ### number of model parameter
-                     Param=Param,                                      ### parameter set
-                     NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputs)),          ### number of output series
-                     IndOutputs=IndOutputs,                            ### indices of output series
-                 ##outputs
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4H, InputsModel = InputsModel,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
-                                            GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
-                                            verbose = FALSE)
-      }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
-        OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(OutputsModel) <- FortranOutputs[IndOutputs];      }
-      ##DatesR_and_OutputsModel_only
-      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]);      }
-      ##OutputsModel_and_SateEnd_only
-      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-      class(OutputsModel) <- c("OutputsModel","hourly","GR");
-      return(OutputsModel);
-
+RunModel_GR4H <- function(InputsModel, RunOptions, Param) {
+  
+  
+  ## Initialization of variables
+  NParam <- 4
+  FortranOutputs <- .FortranOutputs(GR = "GR4H")$GR
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }  
+  if (!inherits(InputsModel, "hourly"     )) {
+    stop("'InputsModel' must be of class 'hourly'     ")
+  }  
+  if (!inherits(InputsModel, "GR"         )) {
+    stop("'InputsModel' must be of class 'GR'         ")
+  }  
+  if (!inherits(RunOptions, "RunOptions"  )) {
+    stop("'RunOptions' must be of class 'RunOptions'  ")
+  }  
+  if (!inherits(RunOptions, "GR"          )) {
+    stop("'RunOptions' must be of class 'GR'          ")
+  }  
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = ""))
+  }
+  Param <- as.double(Param)
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold     <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }     
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries <- as.integer(length(IndPeriod1))
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputs <- as.integer(1:length(FortranOutputs)) 
+  } else {
+    IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Output data preparation
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]  ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]  ### routing store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR", 
+                      ## inputs
+                      LInputs = LInputSeries,                             ### length of input and output series
+                      InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/h]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/h]
+                      NParam = as.integer(length(Param)),                 ### number of model parameter
+                      Param = Param,                                      ### parameter set
+                      NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates,                  ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputs)),          ### number of output series
+                      IndOutputs = IndOutputs,                            ### indices of output series
+                      ## outputs
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates))                      ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4H, InputsModel = InputsModel, 
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, 
+                                        UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], 
+                                        GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, 
+                                        verbose = FALSE)
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+    names(OutputsModel) <- FortranOutputs[IndOutputs]
+  }
+  ## DatesR and OutputsModel only
+  if (ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
+  }
+  ## DatesR and OutputsModel and SateEnd
+  if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS) 
+  class(OutputsModel) <- c("OutputsModel", "hourly", "GR")
+  return(OutputsModel)
+  
 }
diff --git a/R/RunModel_GR4J.R b/R/RunModel_GR4J.R
index 8d383a18a17e16f0ee3aac77e952ebc96727b47f..fc647035051dc0f05fb741f0f43ae1f1945ded08 100644
--- a/R/RunModel_GR4J.R
+++ b/R/RunModel_GR4J.R
@@ -1,102 +1,128 @@
-RunModel_GR4J <- function(InputsModel,RunOptions,Param){
-
-    NParam <- 4;
-    FortranOutputs <- .FortranOutputs(GR = "GR4J")$GR
-
-    ##Arguments_check
-      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(inherits(InputsModel,"daily"      )==FALSE){ stop("'InputsModel' must be of class 'daily'      ") }  
-      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-      
-      Param_X1X3_threshold <- 1e-2
-      Param_X4_threshold   <- 0.5
-      if (Param[1L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[1L] <- Param_X1X3_threshold
-      }
-      if (Param[3L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[3L] <- Param_X1X3_threshold
-      }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }
-
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries <- as.integer(length(IndPeriod1))
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
-      } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
-    ##Input_data_preparation      
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
-      }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr4j",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                             ### length of input and output series
-                     InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/d]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/d]
-                     NParam=as.integer(length(Param)),                 ### number of model parameter
-                     Param=Param,                                      ### parameter set
-                     NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputs)),          ### number of output series
-                     IndOutputs=IndOutputs,                            ### indices of output series
-                 ##outputs
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
-                                            GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
-                                            verbose = FALSE)
-      }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
-        OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(OutputsModel) <- FortranOutputs[IndOutputs];      }
-      ##DatesR_and_OutputsModel_only
-      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]);      }
-      ##OutputsModel_and_StateEnd_only
-      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_StateEnd
-      if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-      class(OutputsModel) <- c("OutputsModel","daily","GR");
-      return(OutputsModel);
-
+RunModel_GR4J <- function(InputsModel, RunOptions, Param) {
+  
+  
+  ## Initialization of variables
+  NParam <- 4
+  FortranOutputs <- .FortranOutputs(GR = "GR4J")$GR
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }  
+  if (!inherits(InputsModel, "daily"      )) {
+    stop("'InputsModel' must be of class 'daily'      ")
+  }  
+  if (!inherits(InputsModel, "GR"         )) {
+    stop("'InputsModel' must be of class 'GR'         ")
+  }  
+  if (!inherits(RunOptions, "RunOptions"  )) {
+    stop("'RunOptions' must be of class 'RunOptions'  ")
+  }  
+  if (!inherits(RunOptions, "GR"          )) {
+    stop("'RunOptions' must be of class 'GR'          ")
+  }  
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = ""))
+  }
+  Param <- as.double(Param)
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold   <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries <- as.integer(length(IndPeriod1))
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputs <- as.integer(1:length(FortranOutputs)) 
+  } else {
+    IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
+  }
+  ## Input data preparation      
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr4j", PACKAGE = "airGR", 
+                      ## inputs
+                      LInputs = LInputSeries,                             ### length of input and output series
+                      InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/d]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/d]
+                      NParam = as.integer(length(Param)),                 ### number of model parameter
+                      Param = Param,                                      ### parameter set
+                      NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates,                  ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputs)),          ### number of output series
+                      IndOutputs = IndOutputs,                            ### indices of output series
+                      ## outputs
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates))                      ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel, 
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, 
+                                        UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], 
+                                        GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, 
+                                        verbose = FALSE)
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+    names(OutputsModel) <- FortranOutputs[IndOutputs]
+  }
+  ## DatesR and OutputsModel only
+  if (ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
+  }
+  ## OutputsModel and StateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
+  }
+  ## DatesR and OutputsModel and StateEnd
+  if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS) 
+  class(OutputsModel) <- c("OutputsModel", "daily", "GR")
+  return(OutputsModel)
+  
 }
diff --git a/R/RunModel_GR5H.R b/R/RunModel_GR5H.R
index a36613d6aad5038fe134199a4a36fe85df3e382f..590a103291d3ea8e99f26681cd3eb1774ef05edb 100644
--- a/R/RunModel_GR5H.R
+++ b/R/RunModel_GR5H.R
@@ -1,117 +1,142 @@
-RunModel_GR5H <- function(InputsModel,RunOptions,Param){
-    
-    NParam <- 5;
-    FortranOutputs <- .FortranOutputs(GR = "GR5H")$GR
-    IsIntStore <- inherits(RunOptions, "interception")
-    if(IsIntStore) {
-      Imax <- RunOptions$Imax
-    } else {
-      Imax <- -99
+RunModel_GR5H <- function(InputsModel, RunOptions, Param) {
+  
+  
+  ## Initialization of variables
+  NParam <- 5
+  FortranOutputs <- .FortranOutputs(GR = "GR5H")$GR
+  IsIntStore <- inherits(RunOptions, "interception")
+  if (IsIntStore) {
+    Imax <- RunOptions$Imax
+  } else {
+    Imax <- -99
+  }
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }  
+  if (!inherits(InputsModel, "hourly"     )) {
+    stop("'InputsModel' must be of class 'hourly'     ")
+  }  
+  if (!inherits(InputsModel, "GR"         )) {
+    stop("'InputsModel' must be of class 'GR'         ")
+  }  
+  if (!inherits(RunOptions, "RunOptions"  )) {
+    stop("'RunOptions' must be of class 'RunOptions'  ")
+  }  
+  if (!inherits(RunOptions, "GR"          )) {
+    stop("'RunOptions' must be of class 'GR'          ")
+  }  
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = ""))
+  }
+  Param <- as.double(Param)
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold   <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }     
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries <- as.integer(length(IndPeriod1))
+  if ("all" %in% RunOptions$Outputs_Sim) { IndOutputs <- as.integer(1:length(FortranOutputs)) 
+  } else {
+    IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Output data preparation
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm)
+    if (IsIntStore) {
+      RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax ### interception store level (mm)
     }
-
-    ##Arguments_check
-      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(inherits(InputsModel,"hourly"     )==FALSE){ stop("'InputsModel' must be of class 'hourly'     ") }  
-      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-      
-      Param_X1X3_threshold <- 1e-2
-      Param_X4_threshold   <- 0.5
-      if (Param[1L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[1L] <- Param_X1X3_threshold
-      }
-      if (Param[3L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[3L] <- Param_X1X3_threshold
-      }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }     
-
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries <- as.integer(length(IndPeriod1))
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
-      } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
-
-    ##Output_data_preparation
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-      
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
-        if(IsIntStore) {
-          RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax;  ### interception store level (mm)
-        }
-      }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr5h",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                             ### length of input and output series
-                     InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/h]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/h]
-                     NParam=as.integer(length(Param)),                 ### number of model parameter
-                     Param=Param,                                      ### parameter set
-                     NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
-                     Imax=Imax,                                        ### maximal capacity of interception store
-                     NOutputs=as.integer(length(IndOutputs)),          ### number of output series
-                     IndOutputs=IndOutputs,                            ### indices of output series
-                 ##outputs
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm or mm/h]
-                     StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5H, InputsModel = InputsModel,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            IntStore = RESULTS$StateEnd[4L],
-                                            UH1 = NULL, UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
-                                            GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
-                                            verbose = FALSE)
-      }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
-        OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(OutputsModel) <- FortranOutputs[IndOutputs];      }
-      ##DatesR_and_OutputsModel_only
-      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]);      }
-      ##OutputsModel_and_StateEnd_only
-      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_StateEnd
-      if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-      class(OutputsModel) <- c("OutputsModel","hourly","GR");
-      if(IsIntStore) {
-        class(OutputsModel) <- c(class(OutputsModel), "interception")
-      }
-      return(OutputsModel);
-
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr5h", PACKAGE = "airGR", 
+                      ## inputs
+                      LInputs = LInputSeries,                             ### length of input and output series
+                      InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/h]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/h]
+                      NParam = as.integer(length(Param)),                 ### number of model parameter
+                      Param = Param,                                      ### parameter set
+                      NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates,                  ### state variables used when the model run starts
+                      Imax = Imax,                                        ### maximal capacity of interception store
+                      NOutputs = as.integer(length(IndOutputs)),          ### number of output series
+                      IndOutputs = IndOutputs,                            ### indices of output series
+                      ## outputs
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm or mm/h]
+                      StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates))                      ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5H, InputsModel = InputsModel, 
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, 
+                                        IntStore = RESULTS$StateEnd[4L], 
+                                        UH1 = NULL, UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], 
+                                        GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, 
+                                        verbose = FALSE)
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+    names(OutputsModel) <- FortranOutputs[IndOutputs]
+  }
+  ## DatesR and OutputsModel only
+  if (ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
+  }
+  ## OutputsModel and StateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
+  }
+  ## DatesR and OutputsModel and StateEnd
+  if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS) 
+  class(OutputsModel) <- c("OutputsModel", "hourly", "GR")
+  if (IsIntStore) {
+    class(OutputsModel) <- c(class(OutputsModel), "interception")
+  }
+  return(OutputsModel)
+  
 }
diff --git a/R/RunModel_GR5J.R b/R/RunModel_GR5J.R
index 56e750ae73aef1affd9762460837d445f3dc1b5a..33210729deffa802b0e51732e0659e27ee7802be 100644
--- a/R/RunModel_GR5J.R
+++ b/R/RunModel_GR5J.R
@@ -1,103 +1,129 @@
-RunModel_GR5J <- function(InputsModel,RunOptions,Param){
-
-    NParam <- 5;
-    FortranOutputs <- .FortranOutputs(GR = "GR5J")$GR
-
-    ##Arguments_check
-      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(inherits(InputsModel,"daily"      )==FALSE){ stop("'InputsModel' must be of class 'daily'      ") }  
-      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-      
-      Param_X1X3_threshold <- 1e-2
-      Param_X4_threshold   <- 0.5
-      if (Param[1L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[1L] <- Param_X1X3_threshold
-      }
-      if (Param[3L] < Param_X1X3_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
-        Param[3L] <- Param_X1X3_threshold
-      }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }      
-      
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries <- as.integer(length(IndPeriod1))
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
-      } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
-
-    ##Output_data_preparation
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-      
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
-      }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr5j",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                             ### length of input and output series
-                     InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/d]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/d]
-                     NParam=as.integer(length(Param)),                 ### number of model parameter
-                     Param=Param,                                      ### parameter set
-                     NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputs)),          ### number of output series
-                     IndOutputs=IndOutputs,                            ### indices of output series
-                 ##outputs
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5J, InputsModel = InputsModel,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
-                                            UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
-                                            GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
-                                            verbose = FALSE)
-      }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
-        OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(OutputsModel) <- FortranOutputs[IndOutputs];      }
-      ##DatesR_and_OutputsModel_only
-      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]);      }
-      ##OutputsModel_and_SateEnd_only
-      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-      class(OutputsModel) <- c("OutputsModel","daily","GR");
-      return(OutputsModel);
-
+RunModel_GR5J <- function(InputsModel, RunOptions, Param) {
+  
+  
+  ## Initialization of variables
+  NParam <- 5
+  FortranOutputs <- .FortranOutputs(GR = "GR5J")$GR
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }  
+  if (!inherits(InputsModel, "daily"      )) {
+    stop("'InputsModel' must be of class 'daily'      ")
+  }  
+  if (!inherits(InputsModel, "GR"         )) {
+    stop("'InputsModel' must be of class 'GR'         ")
+  }  
+  if (!inherits(RunOptions, "RunOptions"  )) {
+    stop("'RunOptions' must be of class 'RunOptions'  ")
+  }  
+  if (!inherits(RunOptions, "GR"          )) {
+    stop("'RunOptions' must be of class 'GR'          ")
+  }  
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = ""))
+  }
+  Param <- as.double(Param)
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold   <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }      
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries <- as.integer(length(IndPeriod1))
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputs <- as.integer(1:length(FortranOutputs)) 
+  } else {
+    IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Output data preparation
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr5j", PACKAGE = "airGR", 
+                      ## inputs
+                      LInputs = LInputSeries,                             ### length of input and output series
+                      InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/d]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/d]
+                      NParam = as.integer(length(Param)),                 ### number of model parameter
+                      Param = Param,                                      ### parameter set
+                      NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates,                  ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputs)),          ### number of output series
+                      IndOutputs = IndOutputs,                            ### indices of output series
+                      ## outputs
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates))                      ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5J, InputsModel = InputsModel, 
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, 
+                                        UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)], 
+                                        GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, 
+                                        verbose = FALSE)
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+    names(OutputsModel) <- FortranOutputs[IndOutputs]
+  }
+  ## DatesR and OutputsModel only
+  if (ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
+  }
+  ## DatesR and OutputsModel and SateEnd
+  if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS) 
+  class(OutputsModel) <- c("OutputsModel", "daily", "GR")
+  return(OutputsModel)
+  
 }
diff --git a/R/RunModel_GR6J.R b/R/RunModel_GR6J.R
index 15bd28423f7efa46e2962b9aa47dea9fddce0813..c971056fbd21f4fd423a0b98abe0065d62c5090b 100644
--- a/R/RunModel_GR6J.R
+++ b/R/RunModel_GR6J.R
@@ -1,109 +1,134 @@
-RunModel_GR6J <- function(InputsModel,RunOptions,Param){
-
-    NParam <- 6;
-    FortranOutputs <- .FortranOutputs(GR = "GR6J")$GR
-
-    ##Arguments_check
-      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }  
-      if(inherits(InputsModel,"daily"      )==FALSE){ stop("'InputsModel' must be of class 'daily'      ") }  
-      if(inherits(InputsModel,"GR"         )==FALSE){ stop("'InputsModel' must be of class 'GR'         ") }  
-      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
-      if(inherits(RunOptions,"GR"          )==FALSE){ stop("'RunOptions' must be of class 'GR'          ") }  
-      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
-      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
-      Param <- as.double(Param);
-      
-      Param_X1X3X6_threshold <- 1e-2
-      Param_X4_threshold     <- 0.5
-      if (Param[1L] < Param_X1X3X6_threshold) {
-        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
-        Param[1L] <- Param_X1X3X6_threshold
-      }
-      if (Param[3L] < Param_X1X3X6_threshold) {
-        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
-        Param[3L] <- Param_X1X3X6_threshold
-      }
-      if (Param[4L] < Param_X4_threshold) {
-        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
-        Param[4L] <- Param_X4_threshold
-      }
-      if (Param[6L] < Param_X1X3X6_threshold) {
-        warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
-        Param[6L] <- Param_X1X3X6_threshold
-      }      
-
-    ##Input_data_preparation
-      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
-      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
-      LInputSeries <- as.integer(length(IndPeriod1))
-      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
-      } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
-
-    ##Output_data_preparation
-      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
-      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
-      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
-      
-    ##Use_of_IniResLevels
-      if(!is.null(RunOptions$IniResLevels)){
-        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
-        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
-        RunOptions$IniStates[3] <- RunOptions$IniResLevels[3]            ### exponential store level (mm)
-      }
-
-    ##Call_fortan
-      RESULTS <- .Fortran("frun_gr6j",PACKAGE="airGR",
-                 ##inputs
-                     LInputs=LInputSeries,                             ### length of input and output series
-                     InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/d]
-                     InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/d]
-                     NParam=as.integer(length(Param)),                 ### number of model parameter
-                     Param=Param,                                      ### parameter set
-                     NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
-                     StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
-                     NOutputs=as.integer(length(IndOutputs)),          ### number of output series
-                     IndOutputs=IndOutputs,                            ### indices of output series
-                 ##outputs
-                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm]
-                     StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
-                     )
-      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
-      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
-      if (ExportStateEnd) {
-        RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
-        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR6J, InputsModel = InputsModel,
-                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L],
-                                            UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
-                                            GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
-                                            verbose = FALSE)
-      }
-
-    ##Output_data_preparation
-      ##OutputsModel_only
-      if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
-        OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
-        names(OutputsModel) <- FortranOutputs[IndOutputs];      }
-      ##DatesR_and_OutputsModel_only
-      if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]);      }
-      ##OutputsModel_and_SateEnd_only
-      if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
-        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd");      }
-      ##DatesR_and_OutputsModel_and_SateEnd
-      if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
-        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
-                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
-                           list(RESULTS$StateEnd) );
-        names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd");      }
-
-    ##End
-      rm(RESULTS); 
-      class(OutputsModel) <- c("OutputsModel","daily","GR");
-      return(OutputsModel);
-
+RunModel_GR6J <- function(InputsModel, RunOptions, Param) {
+  
+  
+  ## Initialization of variables
+  NParam <- 6
+  FortranOutputs <- .FortranOutputs(GR = "GR6J")$GR
+  
+  
+  ## Arguments check
+  if (!inherits(InputsModel, "InputsModel")) {
+    stop("'InputsModel' must be of class 'InputsModel'")
+  }  
+  if (!inherits(InputsModel, "daily"      )) {
+    stop("'InputsModel' must be of class 'daily'      ")
+  }  
+  if (!inherits(InputsModel, "GR"         )) {
+    stop("'InputsModel' must be of class 'GR'         ")
+  }  
+  if (!inherits(RunOptions, "RunOptions"  )) {
+    stop("'RunOptions' must be of class 'RunOptions'  ")
+  }  
+  if (!inherits(RunOptions, "GR"          )) {
+    stop("'RunOptions' must be of class 'GR'          ")
+  }  
+  if (!is.vector(Param) | !is.numeric(Param)) {
+    stop("'Param' must be a numeric vector")
+  }
+  if (sum(!is.na(Param)) != NParam) {
+    stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = ""))
+  }
+  Param <- as.double(Param)
+  
+  Param_X1X3X6_threshold <- 1e-2
+  Param_X4_threshold     <- 0.5
+  if (Param[1L] < Param_X1X3X6_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
+    Param[1L] <- Param_X1X3X6_threshold
+  }
+  if (Param[3L] < Param_X1X3X6_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
+    Param[3L] <- Param_X1X3X6_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }
+  if (Param[6L] < Param_X1X3X6_threshold) {
+    warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
+    Param[6L] <- Param_X1X3X6_threshold
+  }      
+  
+  ## Input data preparation
+  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
+    RunOptions$IndPeriod_WarmUp <- NULL
+  }
+  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
+  LInputSeries <- as.integer(length(IndPeriod1))
+  if ("all" %in% RunOptions$Outputs_Sim) {
+    IndOutputs <- as.integer(1:length(FortranOutputs)) 
+  } else {
+    IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
+  }
+  
+  ## Output data preparation
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
+  
+  ## Use of IniResLevels
+  if (!is.null(RunOptions$IniResLevels)) {
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm)
+    RunOptions$IniStates[3] <- RunOptions$IniResLevels[3]          ### exponential store level (mm)
+  }
+  
+  ## Call GR model Fortan
+  RESULTS <- .Fortran("frun_gr6j", PACKAGE = "airGR", 
+                      ## inputs
+                      LInputs = LInputSeries,                             ### length of input and output series
+                      InputsPrecip = InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/d]
+                      InputsPE = InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/d]
+                      NParam = as.integer(length(Param)),                 ### number of model parameter
+                      Param = Param,                                      ### parameter set
+                      NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
+                      StateStart = RunOptions$IniStates,                  ### state variables used when the model run starts
+                      NOutputs = as.integer(length(IndOutputs)),          ### number of output series
+                      IndOutputs = IndOutputs,                            ### indices of output series
+                      ## outputs
+                      Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm]
+                      StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates))                      ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
+  RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR6J, InputsModel = InputsModel, 
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L], 
+                                        UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], 
+                                        GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, 
+                                        verbose = FALSE)
+  }
+  
+  ## Output data preparation
+  ## OutputsModel only
+  if (!ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
+    names(OutputsModel) <- FortranOutputs[IndOutputs]
+  }
+  ## DatesR and OutputsModel only
+  if (ExportDatesR & !ExportStateEnd) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
+  }
+  ## OutputsModel and SateEnd only
+  if (!ExportDatesR & ExportStateEnd) {
+    OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
+  }
+  ## DatesR and OutputsModel and SateEnd
+  if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
+    OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), 
+                      lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), 
+                      list(RESULTS$StateEnd))
+    names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
+  }
+  
+  ## End
+  rm(RESULTS) 
+  class(OutputsModel) <- c("OutputsModel", "daily", "GR")
+  return(OutputsModel)
+  
 }
-  
\ No newline at end of file