From ef0d8151b07d9a095b46701d968698101fbb3ed7 Mon Sep 17 00:00:00 2001 From: David Dorchies <david.dorchies@inrae.fr> Date: Fri, 20 Oct 2023 13:28:33 +0200 Subject: [PATCH] tests: add vignettechunkignore feature For handling hydroPSO exception on V02 Refs #175 --- .vignettechunkignore | 6 ++++ tests/testthat/helper_vignettes.R | 50 +++++++++++++++++++++++++++---- vignettes/V02.1_param_optim.Rmd | 24 +++++++-------- 3 files changed, 62 insertions(+), 18 deletions(-) create mode 100644 .vignettechunkignore diff --git a/.vignettechunkignore b/.vignettechunkignore new file mode 100644 index 00000000..4ad31d40 --- /dev/null +++ b/.vignettechunkignore @@ -0,0 +1,6 @@ +# This file is used by the script tests/testthat/test-vignettes which test all +# chunks including those with `eval=FALSE` +# It serves to ignore chunks that should not be tested anyway +# Format: `path to the vignette`[space]`id of the chunk` +vignettes/V02.1_param_optim.Rmd hydroPSO1 +vignettes/V02.1_param_optim.Rmd hydroPSO2 diff --git a/tests/testthat/helper_vignettes.R b/tests/testthat/helper_vignettes.R index 98951fef..563da27f 100644 --- a/tests/testthat/helper_vignettes.R +++ b/tests/testthat/helper_vignettes.R @@ -5,7 +5,8 @@ #' @param force.eval Force execution of chunks with parameter eval=FALSE RunRmdChunks <- function(fileRmd, tmpFolder = "../tmp", - force.eval = TRUE) { + force.eval = TRUE, + chunkIgnore = getChunkIgnore()) { dir.create(tmpFolder, showWarnings = FALSE) output <- file.path(tmpFolder, gsub("\\.Rmd", "\\.R", basename(fileRmd), ignore.case = TRUE)) @@ -13,7 +14,13 @@ RunRmdChunks <- function(fileRmd, sTxt <- readLines(output) if (force.eval) { sectionLines <- grep("^## ----", sTxt) - chunksEvalStart <- grep("^## ----.*eval=F", sTxt) + chunkIgnore <- chunkIgnore[[fileRmd]] + if (!is.null(chunkIgnore)) { + regexChunk <- sprintf("(?!(%s))", paste(chunkIgnore, collapse = "|")) + } else { + regexChunk <- "" + } + chunksEvalStart <- grep(paste0("^## ----", regexChunk, ".*eval=F"), sTxt, ignore.case=TRUE, perl = TRUE) if (length(chunksEvalStart) > 0) { if (sectionLines[length(sectionLines)] == chunksEvalStart[length(chunksEvalStart)]) { lastEvalStart <- length(chunksEvalStart) - 1 @@ -69,16 +76,26 @@ RunRmdChunks <- function(fileRmd, #' @return TRUE if succeed. RunVignetteChunks <- function(vignette, tmpFolder = "../tmp", - force.eval = TRUE) { + force.eval = TRUE, + chunkIgnore = getChunkIgnore()) { if (file.exists(sprintf("../../vignettes/%s.Rmd", vignette))) { # testthat context in development environnement - RunRmdChunks(sprintf("../../vignettes/%s.Rmd", vignette), tmpFolder, force.eval) + RunRmdChunks(sprintf("../../vignettes/%s.Rmd", vignette), + tmpFolder = tmpFolder, + force.eval =force.eval, + chunkIgnore = chunkIgnore) } else if (file.exists(sprintf("vignettes/%s.Rmd", vignette))) { # context in direct run in development environnement - RunRmdChunks(sprintf("vignettes/%s.Rmd", vignette), tmpFolder, force.eval) + RunRmdChunks(sprintf("vignettes/%s.Rmd", vignette), + tmpFolder = tmpFolder, + force.eval =force.eval, + chunkIgnore = chunkIgnore) } else { # R CMD check context in package environnement - RunRmdChunks(system.file(sprintf("doc/%s.Rmd", vignette), package = "airGR"), tmpFolder, force.eval) + RunRmdChunks(system.file(sprintf("doc/%s.Rmd", vignette), package = "airGR"), + tmpFolder = tmpFolder, + force.eval =force.eval, + chunkIgnore = chunkIgnore) } return(TRUE) } @@ -96,3 +113,24 @@ TestQmmQlsConversion <- function(BasinObs, BasinArea, tolerance = 1E-7) { notNA <- which(!is.na(BasinObs$Qmm)) expect_equal(BasinObs$Qmm[notNA] * Conversion, BasinObs$Qls[notNA], tolerance = tolerance) } + +#' Read vignettechunkignore file +#' +#' @param chunkIgnoreFile path to the file +#' +#' @return [list] with one item by vignette containing the chunk id to ignore +#' +getChunkIgnore <- function(chunkIgnoreFile = "../../.vignettechunkignore") { + if (file.exists(chunkIgnoreFile)) { + chunkIgnore <- read.table(file = chunkIgnoreFile, + sep = " ", header = FALSE, + col.names = c("vignette", "chunk"), + stringsAsFactors = FALSE) + chunkIgnore <- lapply(setNames(nm = unique(chunkIgnore$vignette)), function(x) { + chunkIgnore$chunk[chunkIgnore$vignette == x] + }) + } else { + chunkIgnore <- list() + } + return(chunkIgnore) +} diff --git a/vignettes/V02.1_param_optim.Rmd b/vignettes/V02.1_param_optim.Rmd index 6c43ac85..71d75b19 100644 --- a/vignettes/V02.1_param_optim.Rmd +++ b/vignettes/V02.1_param_optim.Rmd @@ -10,7 +10,7 @@ vignette: > -```{r, warning=FALSE, include=FALSE, fig.keep='none', results='hide'} +```{r setup, warning=FALSE, include=FALSE, fig.keep='none', results='hide'} library(airGR) library(DEoptim) # library(hydroPSO) # Needs R version >= 3.6 or latticeExtra <= 0.6-28 on R 3.5. Archived on 2023-10-16 as requires archived packages 'hydroTSM' and 'hydroGOF'. @@ -41,13 +41,13 @@ Please note that the calibration period is defined in the `CreateRunOptions()` f <!-- example("Calibration_Michel", echo = FALSE, ask = FALSE) --> <!-- ``` --> -```{r, echo=TRUE, eval=FALSE} +```{r Calibration_Michel, echo=TRUE, eval=FALSE} example("Calibration_Michel") ``` In order for the `RunModel_*()` functions to run faster during the parameter estimation process, it is recommended that the outputs contain only the simulated flows (see the `Outputs_Sim` argument in the `CreateRunOptions()` help page). -```{r, results='hide', eval=FALSE} +```{r RunOptions, results='hide', eval=FALSE} RunOptions <- airGR::CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run, Outputs_Sim = "Qsim") @@ -66,7 +66,7 @@ Here we choose to minimize the root mean square error. The change of the repository from the "real" parameter space to a "transformed" space ensures homogeneity of displacement in the different dimensions of the parameter space during the step-by-step procedure of the calibration algorithm of the model. -```{r, warning=FALSE, results='hide', eval=FALSE} +```{r OptimGR4J, warning=FALSE, results='hide', eval=FALSE} OptimGR4J <- function(ParamOptim) { ## Transformation of the parameter set to real space RawParamOptim <- airGR::TransfoParam_GR4J(ParamIn = ParamOptim, @@ -86,7 +86,7 @@ OptimGR4J <- function(ParamOptim) { In addition, we need to define the lower and upper bounds of the four **GR4J** parameters in the transformed parameter space: -```{r, warning=FALSE, results='hide', eval=FALSE} +```{r boundsGR4J, warning=FALSE, results='hide', eval=FALSE} lowerGR4J <- rep(-9.99, times = 4) upperGR4J <- rep(+9.99, times = 4) ``` @@ -97,7 +97,7 @@ upperGR4J <- rep(+9.99, times = 4) We start with a local optimization strategy by using the PORT routines (using the `nlminb()` of the `stats` package) and by setting a starting point in the transformed parameter space: -```{r, warning=FALSE, results='hide', eval=FALSE} +```{r local1, warning=FALSE, results='hide', eval=FALSE} startGR4J <- c(4.1, 3.9, -0.9, -8.7) optPORT <- stats::nlminb(start = startGR4J, objective = OptimGR4J, @@ -111,7 +111,7 @@ We can also try a multi-start approach to test the consistency of the local opti Here we use the same grid used for the filtering step of the Michel's calibration strategy (`Calibration_Michel()` function). For each starting point, a local optimization is performed. -```{r, warning=FALSE, results='hide', eval=FALSE} +```{r local2, warning=FALSE, results='hide', eval=FALSE} startGR4JDistrib <- TransfoParam_GR4J(ParamIn = CalibOptions$StartParamDistrib, Direction = "RT") startGR4J <- expand.grid(data.frame(startGR4JDistrib)) @@ -126,7 +126,7 @@ listOptPORT <- apply(startGR4J, MARGIN = 1, FUN = optPORT_) We can then extract the best parameter sets and the value of the performance criteria: -```{r, warning=FALSE, results='hide', eval=FALSE} +```{r local3, warning=FALSE, results='hide', eval=FALSE} parPORT <- t(sapply(listOptPORT, function(x) x$par)) objPORT <- sapply(listOptPORT, function(x) x$objective) resPORT <- data.frame(parPORT, RMSE = objPORT) @@ -134,7 +134,7 @@ resPORT <- data.frame(parPORT, RMSE = objPORT) As can be seen below, the optimum performance criterion values (column *objective*) can differ from the global optimum value in many cases, resulting in various parameter sets. -```{r, warning=FALSE} +```{r local4, warning=FALSE} summary(resPORT) ``` @@ -154,7 +154,7 @@ Here we use the following R implementation of some popular strategies: ## Differential Evolution -```{r, warning=FALSE, results='hide', eval=FALSE} +```{r optDE, warning=FALSE, results='hide', eval=FALSE} optDE <- DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(NP = 40, trace = 10)) @@ -163,7 +163,7 @@ optDE <- DEoptim::DEoptim(fn = OptimGR4J, ## Particle Swarm -```{r, warning=FALSE, results='hide', message=FALSE, eval=FALSE} +```{r hydroPSO1, warning=FALSE, results='hide', message=FALSE, eval=FALSE} # to install the package temporary removed from CRAN # Rtools needed (windows : https://cran.r-project.org/bin/windows/Rtools/) # install.packages("https://cran.r-project.org/src/contrib/Archive/hydroPSO/hydroPSO_0.5-1.tar.gz", @@ -171,7 +171,7 @@ optDE <- DEoptim::DEoptim(fn = OptimGR4J, ``` -```{r, warning=FALSE, results='hide', message=FALSE, eval=FALSE} +```{r hydroPSO2, warning=FALSE, results='hide', message=FALSE, eval=FALSE} optPSO <- hydroPSO::hydroPSO(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(write2disk = FALSE, verbose = FALSE)) -- GitLab