RunModel_GR1A <- function(InputsModel, RunOptions, Param) { .ArgumentsCheckGR(InputsModel, RunOptions, Param) Param <- as.double(Param) ## Input data preparation if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { RunOptions$IndPeriod_WarmUp <- NULL } IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) LInputSeries <- as.integer(length(IndPeriod1)) if ("all" %in% RunOptions$Outputs_Sim) { IndOutputs <- as.integer(1:length(RunOptions$FortranOutputs$GR)) } else { IndOutputs <- which(RunOptions$FortranOutputs$GR %in% RunOptions$Outputs_Sim) } ## Output data preparation IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim ## Call GR model Fortan RESULTS <- .Fortran("frun_gr1a", PACKAGE = "airGR", ## inputs LInputs = LInputSeries, ### length of input and output series InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/y] InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/y] NParam = as.integer(length(Param)), ### number of model parameter Param = Param, ### parameter set NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising StateStart = RunOptions$IniStates, ### state variables used when the model run starts NOutputs = as.integer(length(IndOutputs)), ### number of output series IndOutputs = IndOutputs, ### indices of output series ## outputs Outputs = matrix(as.double(-99e9), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm/y] StateEnd = rep(as.double(-99e9), length(RunOptions$IniStates)) ### state variables at the end of the model run ) RESULTS$Outputs[RESULTS$Outputs <= -99e8] <- NA RESULTS$StateEnd[RESULTS$StateEnd <= -99e8] <- NA ## OutputsModel generation .GetOutputsModelGR(InputsModel, RunOptions, RESULTS, LInputSeries, Param) }