RunModel_CemaNeigeGR4H <- function(InputsModel, RunOptions, Param) { ## Initialization of variables IsHyst <- inherits(RunOptions, "hysteresis") NParamCN <- RunOptions$FeatFUN_MOD$NbParam - 4L NStates <- 4L .ArgumentsCheckGR(InputsModel, RunOptions, Param) Param <- as.double(Param) Param_X1X3_threshold <- 1e-2 Param_X4_threshold <- 0.5 if (Param[1L] < Param_X1X3_threshold) { warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) Param[1L] <- Param_X1X3_threshold } if (Param[3L] < Param_X1X3_threshold) { warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) Param[3L] <- Param_X1X3_threshold } if (Param[4L] < Param_X4_threshold) { warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) Param[4L] <- Param_X4_threshold } ## Input data preparation if (identical(RunOptions$IndPeriod_WarmUp, 0L)) { RunOptions$IndPeriod_WarmUp <- NULL } IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run) LInputSeries <- as.integer(length(IndPeriod1)) IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)] NParamMod <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst))) ParamMod <- Param[1:NParamMod] NLayers <- length(InputsModel$LayerPrecip) NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers) ## Output data preparation ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim ## CemaNeige________________________________________________________________________________ if (inherits(RunOptions, "CemaNeige")) { if ("all" %in% RunOptions$Outputs_Sim) { IndOutputsCemaNeige <- as.integer(1:length(RunOptions$FortranOutputs$CN)) } else { IndOutputsCemaNeige <- which(RunOptions$FortranOutputs$CN %in% RunOptions$Outputs_Sim) } CemaNeigeLayers <- list() CemaNeigeStateEnd <- NULL NameCemaNeigeLayers <- "CemaNeigeLayers" ## Call CemaNeige Fortran_________________________ for (iLayer in 1:NLayers) { if (!IsHyst) { StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)] } else { StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] } RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR", ## inputs LInputs = LInputSeries, ### length of input and output series InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h] InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4 Param = as.double(ParamCemaNeige), ### parameter set NStates = as.integer(NStates), ### number of state variables used for model initialising = 4 StateStart = StateStartCemaNeige, ### state variables used when the model run starts IsHyst = as.integer(IsHyst), ### use of hysteresis NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series IndOutputs = IndOutputsCemaNeige, ### indices of output series ## outputs Outputs = matrix(as.double(-99e9), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm, mm/h or degC] StateEnd = rep(as.double(-99e9), as.integer(NStates)) ### state variables at the end of the model run ) RESULTS$Outputs[RESULTS$Outputs <= -99e8] <- NA RESULTS$StateEnd[RESULTS$StateEnd <= -99e8] <- NA ## Data storage CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) names(CemaNeigeLayers[[iLayer]]) <- RunOptions$FortranOutputs$CN[IndOutputsCemaNeige] IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt") if (iLayer == 1) { CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers } if (iLayer > 1) { CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers } if (ExportStateEnd) { CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd) } rm(RESULTS) } ### ENDFOR iLayer names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) } ### ENDIF RunSnowModule if (!inherits(RunOptions, "CemaNeige")) { CemaNeigeLayers <- list() CemaNeigeStateEnd <- NULL NameCemaNeigeLayers <- NULL CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1] } ## GR model if ("all" %in% RunOptions$Outputs_Sim) { IndOutputsMod <- as.integer(1:length(RunOptions$FortranOutputs$GR)) } else { IndOutputsMod <- which(RunOptions$FortranOutputs$GR %in% RunOptions$Outputs_Sim) } ## Use of IniResLevels if (!is.null(RunOptions$IniResLevels)) { RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm) } ## Call GR model Fortan RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR", ## inputs LInputs = LInputSeries, ### length of input and output series InputsPrecip = CatchMeltAndPliq, ### input series of total precipitation [mm/h] InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] NParam = NParamMod, ### number of model parameter Param = ParamMod, ### parameter set NStates = NStatesMod, ### number of state variables used for model initialising StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts NOutputs = as.integer(length(IndOutputsMod)), ### number of output series IndOutputs = IndOutputsMod, ### indices of output series ## outputs Outputs = matrix(as.double(-99e9), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm or mm/h] StateEnd = rep(as.double(-99e9), NStatesMod) ### state variables at the end of the model run ) RESULTS$Outputs[RESULTS$Outputs <= -99e8] <- NA RESULTS$StateEnd[RESULTS$StateEnd <= -99e8] <- NA if (ExportStateEnd) { RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location idNStates <- seq_len(NStates*NLayers) %% NStates RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst, ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, UH1 = RESULTS$StateEnd[(1:(20*24)) + 7], UH2 = RESULTS$StateEnd[(1:(40*24)) + (7+20*24)], GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], verbose = FALSE) } if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) { RESULTS$Outputs[, which(RunOptions$FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1] } ## OutputsModel generation .GetOutputsModelGR(InputsModel, RunOptions, RESULTS, LInputSeries, Param, CemaNeigeLayers) }