RunModel_GR5H <- function(InputsModel,RunOptions,Param){ NParam <- 5; FortranOutputs <- .FortranOutputs(GR = "GR5H")$GR IsIntStore <- inherits(RunOptions, "interception") ##Arguments_check if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") } if(inherits(InputsModel,"hourly" )==FALSE){ stop("'InputsModel' must be of class 'hourly' ") } if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") } if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") } if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") } if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } Param <- as.double(Param); Param_X1X3_threshold <- 1e-2 Param_X4_threshold <- 0.5 if (Param[1L] < Param_X1X3_threshold) { warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) Param[1L] <- Param_X1X3_threshold } if (Param[3L] < Param_X1X3_threshold) { warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) Param[3L] <- Param_X1X3_threshold } if (Param[4L] < Param_X4_threshold) { warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) Param[4L] <- Param_X4_threshold } ##Input_data_preparation if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); LInputSeries <- as.integer(length(IndPeriod1)) if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } ##Output_data_preparation IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; ##Use_of_IniResLevels if(!is.null(RunOptions$IniResLevels)){ RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) if(IsIntStore){ RunOptions$IniStates[4] <- RunOptions$IniResLevels[4]*RunOptions$Imax; ### interception store level (mm) } } ##Call_fortan RESULTS <- .Fortran("frun_gr5h",PACKAGE="airGR", ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] NParam=as.integer(length(Param)), ### number of model parameter Param=Param, ### parameter set NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising StateStart=RunOptions$IniStates, ### state variables used when the model run starts IsIntStore=as.integer(IsIntStore), ### use of interception store Imax=RunOptions$Imax, ### maximal capacity of interception store NOutputs=as.integer(length(IndOutputs)), ### number of output series IndOutputs=IndOutputs, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm or mm/h] StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; if (ExportStateEnd) { RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5H, InputsModel = InputsModel, ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, IntStore = RESULTS$StateEnd[4L], UH1 = NULL, UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL, verbose = FALSE) } ##Output_data_preparation ##OutputsModel_only if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); names(OutputsModel) <- FortranOutputs[IndOutputs]; } ##DatesR_and_OutputsModel_only if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } ##OutputsModel_and_StateEnd_only if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(RESULTS$StateEnd) ); names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } ##DatesR_and_OutputsModel_and_StateEnd if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(RESULTS$StateEnd) ); names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } ##End rm(RESULTS); class(OutputsModel) <- c("OutputsModel","hourly","GR"); if(IsIntStore) { class(OutputsModel) <- c(class(OutputsModel), "interception") } return(OutputsModel); }