\encoding{UTF-8} \name{ErrorCrit_KGE} \alias{ErrorCrit_KGE} \title{Error criterion based on the KGE formula} \usage{ ErrorCrit_KGE(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE) } \arguments{ \item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} \item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} \item{warnings}{(optional) [boolean] boolean indicating if the warning messages are shown, default = \code{TRUE}} \item{verbose}{(optional) [boolean] boolean indicating if the function is run in verbose mode or not, default = \code{TRUE}} } \value{ [list] list containing the function outputs organised as follows: \tabular{ll}{ \emph{$CritValue } \tab [numeric] value of the criterion \cr \emph{$CritName } \tab [character] name of the criterion \cr \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr \emph{$SubCritNames } \tab [character] names of the components of the criterion \cr \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr \emph{$Ind_notcomputed} \tab [numeric] indices of the time steps where \emph{InputsCrit$BoolCrit} = \code{FALSE} or no data is available \cr } } \description{ Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009). } \details{ In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows the use of the function for model calibration: the product CritValue * Multiplier is the criterion to be minimised (Multiplier = -1 for KGE).\cr\cr The KGE formula is \deqn{KGE = 1 - \sqrt{(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}}{KGE = 1 - sqrt((r - 1)² + (\alpha - 1)² + (\beta - 1)²)} with the following sub-criteria: \deqn{r = \mathrm{the\: linear\: correlation\: coefficient\: between\:} sim\: \mathrm{and\:} obs}{r = the linear correlation coefficient between Q[sim] and Q[obs]} \deqn{\alpha = \frac{\sigma_{sim}}{\sigma_{obs}}}{\alpha = \sigma[sim] / \sigma[obs]} \deqn{\beta = \frac{\mu_{sim}}{\mu_{obs}}}{\beta = \mu[sim] / \mu[obs]} } \examples{ ## see example of the ErrorCrit function } \author{ Laurent Coron } \references{ Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr } \seealso{ \code{\link{ErrorCrit}}, \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}} }