#***************************************************************************************************************** #' Function which performs a single model run for MyModel. #' #' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. #***************************************************************************************************************** #' @title Run with the MyModel hydrological model #' @author Laurent Coron (December 2013) #' @encoding UTF-8 #' @export #_FunctionInputs__________________________________________________________________________________________________ #' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details #' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details #' @param Param [numeric] vector of 4 parameters #' \tabular{ll}{ #' MyModel X1 \tab production store capacity [mm] \cr #' MyModel X2 \tab groundwater exchange coefficient [mm/d] \cr #' MyModel X3 \tab routing store capacity [mm] \cr #' MyModel X4 \tab unit hydrograph time constant [d] \cr #' } #_FunctionOutputs_________________________________________________________________________________________________ #' @return [list] list containing the function outputs organised as follows: #' \tabular{ll}{ #' \emph{$DatesR } \tab [POSIXlt] series of dates \cr #' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr #' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr #' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr #' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr #' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr #' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr #' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr #' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr #' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr #' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr #' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr #' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr #' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr #' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr #' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr #' } #' (refer to the provided references or to the package source code for further details on these model outputs) #***************************************************************************************************************** RunModel_MyModel <- function(InputsModel,RunOptions,Param){ NParam <- 4; FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); ##Arguments_check if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } if(inherits(InputsModel,"MyModel" )==FALSE){ stop("InputsModel must be of class 'MyModel'\n"); return(NULL); } if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } if(inherits(RunOptions,"MyModel" )==FALSE){ stop("RunOptions must be of class 'MyModel' \n"); return(NULL); } if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } Param <- as.double(Param); ##Input_data_preparation if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); LInputSeries <- as.integer(length(IndPeriod1)) if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } ##Use_of_IniResLevels if("IniResLevels" %in% RunOptions){ RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) } ##Call_fortan RESULTS <- .Fortran("frun_mymodel",DUP=FALSE, ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] NParam=as.integer(length(Param)), ### number of model parameter Param=Param, ### parameter set NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising StateStart=RunOptions$IniStates, ### state variables used when the model run starts NOutputs=as.integer(length(IndOutputs)), ### number of output series IndOutputs=IndOutputs, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; ##Output_data_preparation IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; ##OutputsModel_only if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); names(OutputsModel) <- FortranOutputs[IndOutputs]; } ##DatesR_and_OutputsModel_only if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } ##OutputsModel_and_SateEnd_only if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(RESULTS$StateEnd) ); names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } ##DatesR_and_OutputsModel_and_SateEnd if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(RESULTS$StateEnd) ); names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } ##End rm(RESULTS); class(OutputsModel) <- c("OutputsModel","daily","MyModel"); return(OutputsModel); }