{ "cells": [ { "cell_type": "markdown", "source": [ "## `evalhyd-cli` demonstration" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "! evalhyd --help" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "### Deterministic evaluation" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Visualise streamflow observations" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {1, time: 4}\n", "! cat \"data/obs.csv\"" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Visualise streamflow predictions" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {series: 1, time: 4}\n", "! cat \"data/prd.csv\"" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Compute Nash-Sutcliffe efficiency" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# shape: {series: 1, subsets: 1, samples: 1}\n", "! evalhyd evald \"data/obs.csv\" \"data/prd.csv\" \"NSE\"" ] }, { "cell_type": "markdown", "source": [ "### Probabilistic evaluation" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Visualise streamflow observations" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {sites: 1, time: 5}\n", "! cat \"data/obs/site_a.csv\"" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Visualise streamflow predictions" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {sites: 1, lead times: 1, members: 3, time: 5}\n", "! cat \"data/prd/leadtime_1/site_a.csv\"" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Visualise streamflow thresholds" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {sites: 1, thresholds: 2}\n", "! cat \"data/thr/site_a.csv\"" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Compute Brier score" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {sites: 1, lead times: 1, subsets: 1, samples: 1, thresholds: 2}\n", "! evalhyd evalp \"data/obs\" \"data/prd\" \"BS\" --q_thr \"data/thr\" --events \"high\"" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "python", "language": "python", "name": "python" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 4 }