{ "cells": [ { "cell_type": "markdown", "source": [ "## `evalhyd-python` demonstration" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "import numpy\n", "import evalhyd" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "### Deterministic evaluation" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Define streamflow observations" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {1, time: 4}\n", "obs = numpy.array(\n", " [[4.7, 4.3, 5.5, 2.7]]\n", ")" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Define streamflow predictions" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {series: 1, time: 4}\n", "prd = numpy.array(\n", " [[5.3, 4.2, 5.7, 2.3]]\n", ")" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Compute Nash-Sutcliffe efficiency" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# shape: {series: 1, subsets: 1, samples: 1}\n", "evalhyd.evald(obs, prd, [\"NSE\"])" ] }, { "cell_type": "markdown", "source": [ "### Probabilistic evaluation" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Define streamflow observations" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {sites: 1, time: 5}\n", "obs = numpy.array(\n", " [[4.7, 4.3, 5.5, 2.7, 4.1]]\n", ")" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Define streamflow predictions" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {sites: 1, lead times: 1, members: 3, time: 5}\n", "prd = numpy.array(\n", " [[[[5.3, 4.2, 5.7, 2.3, 3.1],\n", " [4.3, 4.2, 4.7, 4.3, 3.3],\n", " [5.3, 5.2, 5.7, 2.3, 3.9]]]]\n", ")" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Define streamflow thresholds" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {sites: 1, thresholds: 2}\n", "thr = numpy.array(\n", " [[4., 5.]]\n", ")" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Compute Brier score" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# shape: {sites: 1, lead times: 1, subsets: 1, samples: 1, thresholds: 2}\n", "evalhyd.evalp(obs, prd, [\"BS\"], thr, events=\"high\")" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "hj-38-nompi", "language": "python", "name": "hj-38-nompi" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 4 }