Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
SimAquaLife
GR3D
Commits
e5939329
Commit
e5939329
authored
Apr 19, 2021
by
Poulet Camille
Browse files
Plot of survival curves according to hypothesis
parent
31d06ade
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
exploration/GR3D_Rdescription/GR3Dfunction.R
View file @
e5939329
...
...
@@ -191,7 +191,7 @@ spawnerSurvivalPostReproductionTempRef <- function(Triver,Tref, coeffa, coeffb){
}
#Dome-shape curve with temperature effect
spawnerSurvivalPostReproductionWithBellCurve
<-
function
(
Triver
,
Tmin
,
Topt
,
Tmax
,
coeffa
,
coeffb
){
spawnerSurvivalPostReproductionWithBellCurve
<-
function
(
Triver
,
Tmin
,
Topt
,
Tmax
,
coeffb
){
#P1:
#SpRiverPostSpawn = probSurvAfterRepro/(probSurvAfterRepro + (1 - probSurvAfterRepro)*exp(-coeffLogit*(TemperatureEffect(Triver, Tmin, Topt, Tmax))))
...
...
exploration/NEA_calibration_offline/1-Calibration_Thermal_Curves.Rmd
View file @
e5939329
...
...
@@ -102,12 +102,15 @@ quantile_spring = nea_presence_temp%>%
summarise(Tmin = min(spring_river_temperature),
Q1 = quantile(spring_river_temperature, 0.01),
Q5 = quantile(spring_river_temperature, 0.05),
Med = median(spring_river_temperature),
Mean = mean(spring_river_temperature),
Q95 = quantile(spring_river_temperature, 0.95),
Q99 = quantile(spring_river_temperature, 0.99),
Tmax = max(spring_river_temperature),.groups = 'drop')
#flextable() %>%
#autofit()
#----------------------------------------------------------------------
#see how many times and which watershed had survival below each quantile
nea_presence_temp %>%
...
...
@@ -131,14 +134,13 @@ nea_presence_temp %>%
freq_out = ((n_occurence_out/n_tot)*100),.groups ='drop') %>%
distinct()
#summarize(n = n_distinct(basin_name))
#-----------------
nea_presence_temp %>%
group_by(obs_1900_1950) %>%
filter(spring_river_temperature > quantile(spring_river_temperature, 0.95)) %>%
group_by(year) %>%
summarize(n = n_distinct(basin_name))
filter(spring_river_temperature > quantile(spring_river_temperature, 0.99)) %>%
group_by(basin_name) %>%
summarize(n = n_distinct(year)) %>%
inner_join(nea_riverBasinFeatures %>% select(basin_name, lat_outlet), by = 'basin_name')
#arrange(desc(n))
#-------------------
...
...
@@ -153,6 +155,25 @@ nea_presence_temp %>%
summarize(n = n())
#arrange(desc(n))
#----------------------
nea_presence_temp %>%
filter(basin_name == 'St. Johns') %>%
ggplot()+
geom_histogram(aes(x = spring_river_temperature > quantile_spring$Q99), position = 'identity',binwidth = 0.2, stat ='count')
#-------------------------------------------------------------
#Do the same for spring and summer temperature combined
#--------------------------------------------------------------
quantile_ss = nea_presence_temp%>%
group_by(obs_1900_1950) %>%
summarise(Tmin = min(c(spring_river_temperature, summer_river_temperature)),
Q1 = quantile(c(spring_river_temperature,summer_river_temperature), 0.01),
Q5 = quantile(c(spring_river_temperature,summer_river_temperature), 0.05),
Med = median(c(spring_river_temperature,summer_river_temperature)),
Mean = mean(c(spring_river_temperature,summer_river_temperature)),
Q95 = quantile(c(spring_river_temperature,summer_river_temperature), 0.95),
Q99 = quantile(c(spring_river_temperature,summer_river_temperature), 0.99),
Tmax = max(c(spring_river_temperature,summer_river_temperature)),.groups = 'drop')
```
...
...
@@ -447,7 +468,7 @@ ToptSurv = TminSurv + lambda *(TmaxSurv - TminSurv)
ggp_A = ggplot() +
geom_line(aes(temperature, temperatureEffect
(temperature, res_0A$par['TminSurv'],
geom_line(aes(temperature, temperatureEffect(temperature, res_0A$par['TminSurv'],
Topt = ToptSurv,
res_0A$par['TmaxSurv'])))+
geom_vline(xintercept = c(8,26))
...
...
@@ -468,7 +489,7 @@ ToptSurv = TminSurv + lambda *(TmaxSurv - TminSurv)
ggp_quant = ggplot() +
geom_line(aes(temperature, temperatureEffect
(temperature, res_0A_quantile$par['TminSurv'],
geom_line(aes(temperature, temperatureEffect(temperature, res_0A_quantile$par['TminSurv'],
Topt = ToptSurv,
res_0A_quantile$par['TmaxSurv'])))+
geom_vline(xintercept = c(8,26))
...
...
@@ -628,6 +649,8 @@ quantile_sum = nea_presence_temp%>%
summarise(Tmin = min(summer_river_temperature),
Q1 = quantile(summer_river_temperature, 0.01),
Q5 = quantile(summer_river_temperature, 0.05),
Med = median(summer_river_temperature),
Mean = mean(summer_river_temperature),
Q95 = quantile(summer_river_temperature, 0.95),
Q99 = quantile(summer_river_temperature, 0.99),
Tmax = max(summer_river_temperature),.groups = 'drop')
...
...
exploration/NEA_calibration_offline/4-Iteroparity.Rmd
View file @
e5939329
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment