diff --git a/Modules/Applications/AppHyperspectral/app/otbEndmemberNumberEstimation.cxx b/Modules/Applications/AppHyperspectral/app/otbEndmemberNumberEstimation.cxx index 2636aab91408d3bd099c365f06575f021eca38d9..0ab2645baa175018911b7a84a59e49c2ae3ab035 100644 --- a/Modules/Applications/AppHyperspectral/app/otbEndmemberNumberEstimation.cxx +++ b/Modules/Applications/AppHyperspectral/app/otbEndmemberNumberEstimation.cxx @@ -101,7 +101,7 @@ private: SetMaximumParameterFloatValue("algo.vd.far",1); SetDefaultParameterFloat( "algo.vd.far" , 1.0E-3 ); SetParameterDescription( "algo.vd.far" , - "False alarm rate for the virtual dimensionality algorithm"); + "False alarm rate for the virtual dimensionality algorithm"); AddParameter(ParameterType_Int,"number","Number of endmembers"); SetParameterDescription("number", "Estimated number of endmembers"); @@ -109,7 +109,8 @@ private: // Doc example parameter settings SetDocExampleParameterValue("in", "cupriteSubHsi.tif"); - SetDocExampleParameterValue("algo", "elm"); + SetDocExampleParameterValue("algo", "vd"); + SetDocExampleParameterValue("algo.vd.far", "1.0E-3"); SetOfficialDocLink(); } @@ -121,6 +122,7 @@ private: void DoExecute() override { + otbAppLogINFO("Computing statistics on input image"); auto statisticsFilter = StreamingStatisticsVectorImageFilterType::New(); statisticsFilter->SetInput(GetParameterImage("in")); @@ -129,6 +131,7 @@ private: const std::string algorithm = GetParameterString("algo"); if (algorithm=="elm") { + otbAppLogINFO("Estimation algorithm : Eigenvalue Likelihood Maximization"); auto elm = EigenvalueLikelihoodMaximisationType::New(); elm->SetCovariance(statisticsFilter->GetCovariance().GetVnlMatrix()); elm->SetCorrelation(statisticsFilter->GetCorrelation().GetVnlMatrix()); @@ -138,6 +141,7 @@ private: } else if (algorithm=="vd") { + otbAppLogINFO("Estimation algorithm : Virtual Dimensionality"); auto vd = VirtualDimensionalityType::New(); vd->SetCovariance(statisticsFilter->GetCovariance().GetVnlMatrix()); vd->SetCorrelation(statisticsFilter->GetCorrelation().GetVnlMatrix());