Commit 7b476847 authored by Mathias Chouet's avatar Mathias Chouet 🍝
Browse files

Merge branch '60-ajout-de-la-fonctionnalite-respect-des-criteres' into 'devel'

Resolve "Ajout de la fonctionnalité "Respect des critères""

See merge request !82
parents 9c8593e6 c402e11b
Pipeline #15406 passed with stages
in 16 minutes and 26 seconds
......@@ -270,7 +270,7 @@ case CalculatorType.MacroRugoCompound:
Les listes déroulantes sont toujours associées à des **propriétés** du Nub.
En général les valeurs autorisées sont tirées de l'**enum** correspondant, d'après le tableau `Session.enumFromProperty` de JaLHyd. Pour les autres cas, voir "si la liste n'est pas associée à un enum" ci-dessous.
En général les valeurs autorisées sont tirées de l'**enum** correspondant, d'après le tableau `Session.enumFromProperty` de JaLHyd. Pour les autres cas, voir les paragraphes "si la liste est associée à" ci-dessous.
#### configuration
......@@ -309,7 +309,7 @@ Dans le fichier de configuration du module, ajouter la définition des listes d
Une liste déroulante peut être associée à une **source**, qui détermine quels sont les choix possibles.
Pour ajouter une source, modifier la méthode `parseConfig()` de la classe `SelectField`, dans le fichier `src/app/formulaire/elements/select-field.ts`.
Pour ajouter une source, modifier la méthode `loadEntriesFromSource()` de la classe `SelectField`, dans le fichier `src/app/formulaire/elements/select-field.ts`.
Exemple pour la source "remous_target" associée à la propriété "varCalc", dans le module CourbeRemous :
......
......@@ -163,7 +163,7 @@
"schematics": {
"@schematics/angular:component": {
"prefix": "app",
"styleext": "scss"
"style": "scss"
},
"@schematics/angular:directive": {
"prefix": "app"
......
......@@ -20,8 +20,8 @@ The integration of the equation can be done by one of the following methods: [Ru
Depending on the flow regime, the calculation can be carried out:
* from downstream to upstream for the river regime with definition of a downstream boundary condition.
* from upstream to downstream for torrential regime with definition of an upstream boundary condition
* from downstream to upstream for subcritical flow with definition of a downstream boundary condition.
* from upstream to downstream for supercritical flow with definition of an upstream boundary condition
If we take the example of a rectangular channel, [the proposed scilab code example for solving an ordinary differential equation](../../methodes_numeriques/euler_explicite.md) is amended as follows:
......
# Lechapt and Calmon
Loss of charge in a circular pipe: Lechapt and Calmon abacus
Headloss in a circular pipe: Lechapt and Calmon abacus
Lechapt and Calmon formula is based on adjustements of [Cyril Frank Colebrook formula](https://en.wikipedia.org/wiki/Darcy_friction_factor_formulae#Colebrook%E2%80%93White_equation):
......@@ -8,7 +8,7 @@ $$J=L.Q^M.D^{-N}$$
With:
- \(J\): loss of charge in mm/m or m/km;
- \(J\): headloss in mm/m or m/km;
- \(Q\): flow in L/s;
- \(D\): pipe diameter in m;
- \(L\), \(M\) and \(N\) coefficients depending on roughness {ϵ}.
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
# Baffle fishway (or baffle fishway) setup
This module allows to dimension a baffle fishway. Supported baffle fishway types are:
- [plane baffles (Denil) fishway](theorie_plans.md);
- ["Fatou" baffle fishway](theorie_fatou.md);
- [superactive baffles fishway](theorie_suractif.md);
- [mixed / chevron baffles fishway](theorie_mixte.md).
See [all the formulas used for baffle fishways](formules.md).
## Hydraulic setup
This tool allows to calculate one of the following values:
- flow through the pass (m<sup>3</sup>/s);
- upstream head (m);
- pass width (m) for plane and Fatou types.
Given the following mandatory parameters:
- pass type (Plane, Fatou, superactive, mixed);
- [slope (m/m)](../hsl/pente.md).
Parameter "Space between baffles (m)" is optional. When not given, its standard value is calculated. When given, if its value deviates by more than 10% from standard value, an error is generated.
## Altimetric setup
Altimetric setup parameters (upstream water level and downstream water level) are optional and allow to calculate:
- pass length in horizontal projection and following the slope
- number of baffles
- apron and spilling elevations, upstream and downstream
- rake height of upstream side walls
## Generating a baffle fishway simulation module
Results of an altimetrically setup pass may be used to generate a [baffle fishway simulation](simulation.md) module, using the ad hoc button.
\ No newline at end of file
# Baffle fishways (or baffle fishways) calculation formulas
For calculation of:
- upstream head \(ha\);
- water level in the pass \(h\);
- flow \(Q\);
- flow velocity \(V\);
- upstream apron elevation \(Z_{r1}\);
- minimal rake height of upstream side walls \(Z_m\)
Refer to the formulas specific to each baffle fishway type:
- [plane baffles (Denil) fishway](theorie_plans.md);
- ["Fatou" baffle fishway](theorie_fatou.md);
- [superactive baffles fishway](theorie_suractif.md);
- [mixed / chevron baffles fishway](theorie_mixte.md).
## Upstream water elevation \(Z_1\)
$$Z_{1} = Z_{d1} + h_a$$
With \(Z_{d1}\) the spilling elevation of the first upstream baffle, \(h_a\) the upstream head.
## Pass length
Pass length along a water line parallel to the pass slope \(L_w\) equals
$$L_w = (Z_1 - Z_2)\dfrac{\sqrt{1 + S^2}}{S}$$
with \(Z_1\) and \(Z_2\) the upstream and downstream water elevations, \(S\) the slope.
Pass length along the slope \(L_S\) must be a multiple of the length between two baffles \(P\) rounded to the greater integer:
$$L_S = \lceil (L_w - \epsilon) / P \rceil \times P $$
With \(\epsilon\) = 1 mm to leave a margin before adding an extra baffle.
Horizontal projection of the pass length \(L_h\) thus equals:
$$L_h = \dfrac{L_S}{\sqrt{1 + S^2}} $$
## Number of baffles \(N_b\)
For plane and Fatou types:
$$N_b = L_S / P + 1$$
For superactive and mixed types:
$$N_b = L_S / P$$
## Downstream apron \(Z_{r2}\) and spilling \(Z_{d2}\) elevations:
$$Z_{r2} = Z_{r1} - \dfrac{L_S \times S}{\sqrt{1 + S^2}}$$
$$Z_{d2} = Z_{r2} + Z_{d1} - Z_{r1}$$
# Baffle fishway (or baffle fishway) simulation
This module allows to calculate different hydraulic conditions on a baffle fishway with a known geometry. This geometry may come from topographical measurements or from the [result of a baffle fishway setup](calage.md).
Supported baffle fishway types are:
- [plane baffles (Denil) fishway](theorie_plans.md);
- ["Fatou" baffle fishway](theorie_fatou.md);
- [superactive baffles fishway](theorie_suractif.md);
- [mixed / chevron baffles fishway](theorie_mixte.md).
See [all the formulas used for baffle fishways](formules.md).
This tool allows to calculate one of the following values:
- flow through the pass (m<sup>3</sup>/s);
- upstream water elevation (m);
- upstream spilling elevation (m).
Given the following mandatory parameters:
- pass type (Plane, Fatou, superactive, mixed);
- [slope (m/m)](../hsl/pente.md).
- pass width (m);
- upstream spilling or apron elevation (m);
- downstream spilling or apron elevation (m).
# "Fatou" baffle fiwhway
## Geometrical characteristics
![Characteristics of a Fatou baffle fishway](theorie_fatou_schema.png)
*Excerpt fromLarinier, 2002[^1]*
## Hydraulic laws given by abacuses
Experiments conducted by Larinier, 2002[^1] allowed to establish abacuses that link adimensional flow \(Q^*\):
$$ Q^* = \dfrac{Q}{\sqrt{g}L^{2,5}} $$
to upstream head \(ha\) and the average water level in the pass \(h\) :
![Abacuses of a Fatou baffle fishway for a slope of 10%](baffle_fishway_Fatou_slope_10_.svg)
*Abacuses of a Fatou baffle fishway for a slope of 10% (Excerpt fromLarinier, 2002[^1])*
![Abacuses of a Fatou baffle fishway for a slope of 15%](baffle_fishway_Fatou_slope_15_.svg)
*Abacuses of a Fatou baffle fishway for a slope of 15% (Excerpt fromLarinier, 2002[^1])*
![Abacuses of a Fatou baffle fishway for a slope of 20%](baffle_fishway_Fatou_slope_20_.svg)
*Abacuses of a Fatou baffle fishway for a slope of 20% (Excerpt fromLarinier, 2002[^1])*
To run calculations for all slopes between 8% and 22%, polynomes coefficients of abacuses above are themelves adjusted in the form of slope \(S\) depending polynomes.
We thus have:
$$ ha/L = a_2(S) Q^{*2} + a_1(S) Q^* + a_0(S) $$
$$a_2(S) = - 783.592S^2 + 269.991S - 25.2637$$
$$a_1(S) = 302.623S^2 - 106.203S + 13.2957$$
$$a_0(S) = 15.8096S^2 - 5.19282S + 0.465827$$
And:
$$ h/L = b_2(S) Q^{*2} + b_1(S) Q^* + b_0 $$
$$b_2(S) = - 73.4829S^2 + 54.6733S - 14.0622$$
$$b_1(S) = 42.4113S^2 - 24.4941S + 8.84146$$
$$b_0(S) = - 3.56494S^2 + 0.450262S + 0.0407576$$
## Calculation of \(ha\), \(h\) and \(Q\)
We can then use those coefficients to calculate \(ha\), \(h\) and \(Q^*\):
$$ ha = L \left( a_2 (Q^*)^2 + a_1 Q^* + a_0 \right)$$
$$ h = L \left( b_2 (Q^*)^2 + b_1 Q^* + b_0 \right)$$
Using the positive inverse function, depending on \(ha/L\), we get:
$$ Q^* = \dfrac{-a_1 + \sqrt{a_1^2 - 4 a_2 (a_0 - h_a/L)}}{2 a_2}$$
And we finally have:
$$ Q = Q^* \sqrt{g} L^{2,5} $$
Calculation limitations of \(Q^*\), \(ha/L\) and \(h/L\) are determined based on the extremities of the abacuses curves.
## Flow velocity
Flow velocity \(V\) corresponds to the minimum flow speed given the flow section \(A_w\) at the perpendicular of the baffle :
$$ V = \dfrac{Q}{A_w} $$
for Fatou baffle fishways using the notation of the schema above, we have:
$$ A_w = B \times h $$
Which gives with standard proportions:
$$ A_w = 0.6hL $$
## Upstream apron elevation \(Z_{r1}\)
$$ Z_{r1} = Z_{d1} + \frac{0.3 S - 0.2}{\sqrt{1 + S^2}} $$
## Minimal rake height of upstream side walls \(Z_m\)
$$ Z_m = Z_{r1} + \frac{4 L}{3 \sqrt{1 + S^2}} $$
[^1]: Larinier, M. 2002. “BAFFLE FISHWAYS.” Bulletin Français de La Pêche et de La Pisciculture, no. 364: 83–101. doi:[10.1051/kmae/2002109](https://doi.org/10.1051/kmae/2002109).
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment