From 1e29cf2c8813187fe461b426ea603b10c603ed86 Mon Sep 17 00:00:00 2001 From: unknown <olivier.delaigue@ANPI1430.antony.irstea.priv> Date: Thu, 26 Oct 2017 10:17:31 +0200 Subject: [PATCH] v1.0.9.55 minor revision of Param_Sets_GR4J documentation --- DESCRIPTION | 2 +- NEWS.rmd | 2 +- man/Param_Sets_GR4J.Rd | 7 +++---- 3 files changed, 5 insertions(+), 6 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 7b68150d..34db3d73 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: airGR Type: Package Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling -Version: 1.0.9.54 +Version: 1.0.9.55 Date: 2017-10-26 Authors@R: c( person("Laurent", "Coron", role = c("aut", "trl")), diff --git a/NEWS.rmd b/NEWS.rmd index c2690415..88c25f8d 100644 --- a/NEWS.rmd +++ b/NEWS.rmd @@ -14,7 +14,7 @@ output: -### 1.0.9.54 Release Notes (2017-10-26) +### 1.0.9.55 Release Notes (2017-10-26) #### New features diff --git a/man/Param_Sets_GR4J.Rd b/man/Param_Sets_GR4J.Rd index 2998a4fe..3c335d1a 100644 --- a/man/Param_Sets_GR4J.Rd +++ b/man/Param_Sets_GR4J.Rd @@ -20,8 +20,7 @@ \description{ These parameter sets can be used as an alternative for the grid-screening calibration procedure (i.e. first step in \code{\link{Calibration_Michel}}). -Please note that the given GR4J X4u variable does not correspond to the actual GR4J X4 parameter. As explained in Andréassian et al. (2014; section 2.1), the given GR4J X4u value has to be adjusted (rescaled) using catchment area (S) [km2] as follows: {X4 = X4u / 5.995 * S^0.3}. -3 (please note that the formula is erroneous in the publication). Please, see the example below. \cr +Please note that the given GR4J X4u variable does not correspond to the actual GR4J X4 parameter. As explained in Andréassian et al. (2014; section 2.1), the given GR4J X4u value has to be adjusted (rescaled) using catchment area (S) [km2] as follows: {X4 = X4u / 5.995 * S^0.3} (please note that the formula is erroneous in the publication). Please, see the example below. \cr As shown in Andréassian et al. (2014; figure 4), only using these parameters sets as the tested values for calibration is more efficient than a classical calibration when the amount of data is low (6 months or less). } @@ -61,7 +60,7 @@ InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$Date ## short calibration period selection (< 6 months) Ind_Cal <- seq(which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), - which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y \%H:\%M")=="01/03/1990 00:00")) + which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y \%H:\%M")=="28/02/1990 00:00")) ## preparation of the RunOptions object for the calibration period RunOptions_Cal <- CreateRunOptions(FUN_MOD = RunModel_GR4J, @@ -86,7 +85,7 @@ Param_Best <- unlist(Param_Sets_GR4J[which.max(OutputsCrit_Loop), ]) ## ---- validation step ## validation period selection -Ind_Val <- seq(which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y \%H:\%M")=="01/01/1991 00:00"), +Ind_Val <- seq(which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y \%H:\%M")=="01/03/1990 00:00"), which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) ## preparation of the RunOptions object for the validation period -- GitLab