diff --git a/man/CreateInputsCrit_Lavenne.Rd b/man/CreateInputsCrit_Lavenne.Rd index 5a52eef301a8ff590973c4616e5f6ee3732c39bf..543ccf361936666cbc8d821316daf67f8ee06390 100644 --- a/man/CreateInputsCrit_Lavenne.Rd +++ b/man/CreateInputsCrit_Lavenne.Rd @@ -9,7 +9,7 @@ \description{ -Creation of the \code{InputsCrit} object required to the \code{\link{ErrorCrit}} function. This function defines a composed criterion based on the formula proposed by Lavenne et al. (2019). +Creation of the \code{InputsCrit} object required to the \code{\link{ErrorCrit}} function. This function defines a composite criterion based on the formula proposed by Lavenne et al. (2019). } @@ -29,7 +29,7 @@ CreateInputsCrit_Lavenne(FUN_CRIT = ErrorCrit_KGE, \arguments{ -\item{FUN_CRIT}{[function] error criterion function (e.g. \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_NSE}})}. Default \code{\link{ErrorCrit_KGE}} +\item{FUN_CRIT}{[function] error criterion function (e.g. \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_NSE}}). Default \code{\link{ErrorCrit_KGE}}} \item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} @@ -37,13 +37,13 @@ CreateInputsCrit_Lavenne(FUN_CRIT = ErrorCrit_KGE, \item{Obs}{[numeric (atomic or list)] series of observed variable ([mm/time step] for discharge or SWE, [-] for SCA)} -\item{VarObs}{(optional) [character (atomic or list)] names of the observed variable (\code{"Q"} by default, or one of \code{"SCA"}, \code{"SWE"}])} +\item{VarObs}{(optional) [character (atomic or list)] names of the observed variable (\code{"Q"} by default, or one of \code{"SCA"}, \code{"SWE"})} \item{AprParamR}{[numeric] a priori parameter set from a donor catchment} \item{AprCrit}{(optional) [numeric] performance criterion of the donor catchment (1 by default)} -\item{k}{(optional) [numeric] coefficient used for the weighted average between \code{FUN_CRIT} and the gap between optimised parameter set and a priori parameter set calculated with the funciton produced by \code{\link{CreateErrorCrit_GAPX}}} +\item{k}{(optional) [numeric] coefficient used for the weighted average between \code{FUN_CRIT} and the gap between the optimised parameter set and an a priori parameter set calculated with the function produced by \code{\link{CreateErrorCrit_GAPX}}} \item{BoolCrit}{(optional) [boolean] boolean (the same length as \code{Obs}) giving the time steps to consider in the computation (all time steps are considered by default. See details)} @@ -55,22 +55,24 @@ CreateInputsCrit_Lavenne(FUN_CRIT = ErrorCrit_KGE, \value{ -\code{CreateInputsCrit_Lavenne} returns an object of class \emph{Compo} that is a list of lists such as the one described in \code{\link{CreateInputsCrit}}. +[list] object of class InputsCrit containing the data required to evaluate the model outputs (see \code{\link{CreateInputsCrit}} for more details). + +\code{CreateInputsCrit_Lavenne} returns an object of class \emph{Compo}. Items \code{Weights} of the criteria are respectively equal to \code{k} and \code{k * max(0, AprCrit)}. -To calculate the Lavenne criterion, it is necessary to use the \code{ErrorCrit} function as for any other composed criterion. +To calculate the de Lavenne criterion, it is necessary to use the \code{ErrorCrit} function as for any other composite criterion. } \details{ -The parameters \code{FUN_CRIT}, \code{Obs}, \code{VarObs}, \code{BoolCrit}, \code{transfo}, and \code{epsilon} must be use as they would be used for \code{\link{CreateInputsCrit}} in the case of a single criterion. +The parameters \code{FUN_CRIT}, \code{Obs}, \code{VarObs}, \code{BoolCrit}, \code{transfo}, and \code{epsilon} must be used as they would be used for \code{\link{CreateInputsCrit}} in the case of a single criterion. \code{\link{ErrorCrit_RMSE}} cannot be used in a composite criterion since it is not a unitless value. -\code{CreateInputsCrit_Lavenne} creates a composed criterion in respect with Equations 1 and 2 of Lavenne et al. (2019). +\code{CreateInputsCrit_Lavenne} creates a composite criterion in respect with Equations 1 and 2 of de Lavenne et al. (2019). } @@ -97,7 +99,7 @@ Param <- c(X1 = 257.238, X2 = 1.012, X3 = 88.235, X4 = 2.208) OutputsModel <- RunModel_GR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) -## The "a priori" parameters for Lavenne formula +## The "a priori" parameters for the de Lavenne formula AprParamR <- c(X1 = 157, X2 = 0.8, X3 = 100, X4 = 1.5) ## Single efficiency criterion: GAPX with a priori parameters