diff --git a/DESCRIPTION b/DESCRIPTION index 892dd5b154ae5f88ac2193bcbdacf19126a3478a..6c0b84d88d8674f7ad6f395e55e00e52f770ce64 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,8 +1,8 @@ Package: airGR Type: Package Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling -Version: 1.0.9.42 -Date: 2017-09-07 +Version: 1.0.9.43 +Date: 2017-09-12 Authors@R: c( person("Laurent", "Coron", role = c("aut", "trl")), person("Charles", "Perrin", role = c("aut", "ths")), diff --git a/R/RunModel_CemaNeigeGR6J.R b/R/RunModel_CemaNeigeGR6J.R index 24f7224bfcf4c0f7cb0582a86dbe1f939645250e..0bbef76f9cbb9e1f9d9fea39e874ac6b329d43ff 100644 --- a/R/RunModel_CemaNeigeGR6J.R +++ b/R/RunModel_CemaNeigeGR6J.R @@ -3,7 +3,7 @@ RunModel_CemaNeigeGR6J <- function(InputsModel,RunOptions,Param){ NParam <- 8; FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt", "Temp"); FortranOutputsMod <- c("PotEvap", "Precip", "Prod", "Pn", "Ps", "AE", "Perc", "PR", "Q9", "Q1", - "Rout", "Exch", "AExch1", "AExch2", "AExch", "QR", "QR1", "Exp", "QD", "Qsim"); + "Rout", "Exch", "AExch1", "AExch2", "AExch", "QR", "QRExp", "Exp", "QD", "Qsim"); ##Arguments_check if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } diff --git a/R/RunModel_GR6J.R b/R/RunModel_GR6J.R index d65e80a483cca688c1ced82d74883e06acd9f859..5014ba4807db1f51a0a4be98a460a17679eca812 100644 --- a/R/RunModel_GR6J.R +++ b/R/RunModel_GR6J.R @@ -2,7 +2,7 @@ RunModel_GR6J <- function(InputsModel,RunOptions,Param){ NParam <- 6; FortranOutputs <- c("PotEvap", "Precip", "Prod", "Pn", "Ps", "AE", "Perc", "PR", "Q9", "Q1", - "Rout", "Exch", "AExch1", "AExch2", "AExch", "QR", "QR1", "Exp", "QD", "Qsim"); + "Rout", "Exch", "AExch1", "AExch2", "AExch", "QR", "QRExp", "Exp", "QD", "Qsim"); ##Arguments_check if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } diff --git a/man/RunModel_CemaNeigeGR6J.Rd b/man/RunModel_CemaNeigeGR6J.Rd index c7819ee8a9be21ed6e772c2c97c0895bb3f10e5a..2f3c8410bce75a6d1b7926ccf1217e7a4d47b69a 100644 --- a/man/RunModel_CemaNeigeGR6J.Rd +++ b/man/RunModel_CemaNeigeGR6J.Rd @@ -19,15 +19,15 @@ RunModel_CemaNeigeGR6J(InputsModel, RunOptions, Param) \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} \item{Param}{[numeric] vector of 8 parameters -\tabular{ll}{ -GR6J X1 \tab production store capacity [mm] \cr -GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr -GR6J X3 \tab routing store capacity [mm] \cr -GR6J X4 \tab unit hydrograph time constant [d] \cr -GR6J X5 \tab intercatchment exchange threshold [-] \cr -GR6J X6 \tab coefficient for emptying exponential store [mm] \cr -CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr -CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr +\tabular{ll}{ +GR6J X1 \tab production store capacity [mm] \cr +GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr +GR6J X3 \tab routing store capacity [mm] \cr +GR6J X4 \tab unit hydrograph time constant [d] \cr +GR6J X5 \tab intercatchment exchange threshold [-] \cr +GR6J X6 \tab coefficient for emptying exponential store [mm] \cr +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr }} } @@ -35,37 +35,37 @@ CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \ \value{ [list] list containing the function outputs organised as follows: \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr - \emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr - \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr - \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr - \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr - \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr - \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr - \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr - \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr - \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr - \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr - \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr - \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr - \emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr - \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr - \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr - \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr - \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr - \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr - \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap} \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr + \emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr + \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr + \emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr + \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState} \tab [numeric] series of snow pack thermal state [°C] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d]\cr + \emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr } (refer to the provided references or to the package source code for further details on these model outputs) diff --git a/man/RunModel_GR6J.Rd b/man/RunModel_GR6J.Rd index 2afb073471ab3a15b8ab7a260e9737c3df40de67..9b357de00e37c8c2b161ff17daa8408455df8057 100644 --- a/man/RunModel_GR6J.Rd +++ b/man/RunModel_GR6J.Rd @@ -19,13 +19,13 @@ RunModel_GR6J(InputsModel, RunOptions, Param) \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} \item{Param}{[numeric] vector of 6 parameters -\tabular{ll}{ -GR6J X1 \tab production store capacity [mm] \cr -GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr -GR6J X3 \tab routing store capacity [mm] \cr -GR6J X4 \tab unit hydrograph time constant [d] \cr -GR6J X5 \tab intercatchment exchange threshold [-] \cr -GR6J X6 \tab coefficient for emptying exponential store [mm] \cr +\tabular{ll}{ +GR6J X1 \tab production store capacity [mm] \cr +GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr +GR6J X3 \tab routing store capacity [mm] \cr +GR6J X4 \tab unit hydrograph time constant [d] \cr +GR6J X5 \tab intercatchment exchange threshold [-] \cr +GR6J X6 \tab coefficient for emptying exponential store [mm] \cr }} } @@ -36,22 +36,22 @@ GR6J X6 \tab coefficient for emptying exponential store [mm] \emph{$DatesR } \tab [POSIXlt] series of dates \cr \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr - \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr - \emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr + \emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr + \emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr diff --git a/src/frun_GR6J.f b/src/frun_GR6J.f index 40e316d9a50be55b43f48ed7f8f915723ec5965a..0c331a03ccc49da688560bb2bd5f11d12f1653bc 100644 --- a/src/frun_GR6J.f +++ b/src/frun_GR6J.f @@ -153,7 +153,7 @@ C********************************************************************** DOUBLEPRECISION MISC(NMISC) DOUBLEPRECISION P1,E,Q DOUBLEPRECISION A,B,C,EN,ER,PN,PR,PS,WS,tanHyp,AR - DOUBLEPRECISION PERC,PRUH1,PRUH2,EXCH,QR,QD,QR1 + DOUBLEPRECISION PERC,PRUH1,PRUH2,EXCH,QR,QD,QRExp DOUBLEPRECISION AE,AEXCH1,AEXCH2 INTEGER K @@ -257,19 +257,19 @@ C Update of exponential store IF(AR.LT.-33.)AR=-33. IF(AR.GT.7.)THEN - QR1=St(3)+Param(6)/EXP(AR) + QRExp=St(3)+Param(6)/EXP(AR) GOTO 3 ENDIF IF(AR.LT.-7.)THEN - QR1=Param(6)*EXP(AR) + QRExp=Param(6)*EXP(AR) GOTO 3 ENDIF - QR1=Param(6)*LOG(EXP(AR)+1.) + QRExp=Param(6)*LOG(EXP(AR)+1.) 3 CONTINUE - St(3)=St(3)-QR1 + St(3)=St(3)-QRExp C Runoff from direct branch QD AEXCH2=EXCH @@ -277,30 +277,30 @@ C Runoff from direct branch QD QD=MAX(0.d0,StUH2(1)+EXCH) C Total runoff - Q=QR+QD+QR1 + Q=QR+QD+QRExp IF(Q.LT.0.) Q=0. C Variables storage - MISC( 1)=E ! PE ! observed potential evapotranspiration [mm/day] - MISC( 2)=P1 ! Precip ! observed total precipitation [mm/day] - MISC( 3)=St(1) ! Prod ! production store level (St(1)) [mm] - MISC( 4)=PN ! Pn ! net rainfall [mm/day] - MISC( 5)=PS ! Ps ! part of Ps filling the production store [mm/day] - MISC( 6)=AE ! AE ! actual evapotranspiration [mm/day] - MISC( 7)=PERC ! Perc ! percolation (PERC) [mm/day] - MISC( 8)=PR ! PR ! PR=PN-PS+PERC [mm/day] - MISC( 9)=StUH1(1) ! Q9 ! outflow from UH1 (Q9) [mm/day] - MISC(10)=StUH2(1) ! Q1 ! outflow from UH2 (Q1) [mm/day] - MISC(11)=St(2) ! Rout ! routing store level (St(2)) [mm] - MISC(12)=EXCH ! Exch ! potential third-exchange between catchments (EXCH) [mm/day] - MISC(13)=AEXCH1 ! AExch1 ! actual exchange between catchments from routing store (AEXCH1) [mm/day] - MISC(14)=AEXCH2 ! AExch2 ! actual exchange between catchments from direct branch (after UH2) (AEXCH2) [mm/day] + MISC( 1)=E ! PE ! observed potential evapotranspiration [mm/day] + MISC( 2)=P1 ! Precip ! observed total precipitation [mm/day] + MISC( 3)=St(1) ! Prod ! production store level (St(1)) [mm] + MISC( 4)=PN ! Pn ! net rainfall [mm/day] + MISC( 5)=PS ! Ps ! part of Ps filling the production store [mm/day] + MISC( 6)=AE ! AE ! actual evapotranspiration [mm/day] + MISC( 7)=PERC ! Perc ! percolation (PERC) [mm/day] + MISC( 8)=PR ! PR ! PR=PN-PS+PERC [mm/day] + MISC( 9)=StUH1(1) ! Q9 ! outflow from UH1 (Q9) [mm/day] + MISC(10)=StUH2(1) ! Q1 ! outflow from UH2 (Q1) [mm/day] + MISC(11)=St(2) ! Rout ! routing store level (St(2)) [mm] + MISC(12)=EXCH ! Exch ! potential third-exchange between catchments (EXCH) [mm/day] + MISC(13)=AEXCH1 ! AExch1 ! actual exchange between catchments from routing store (AEXCH1) [mm/day] + MISC(14)=AEXCH2 ! AExch2 ! actual exchange between catchments from direct branch (after UH2) (AEXCH2) [mm/day] MISC(15)=AEXCH1+AEXCH2+EXCH ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2+EXCH) [mm/day] - MISC(16)=QR ! QR ! outflow from routing store (QR) [mm/day] - MISC(17)=QR1 ! QR1 ! outflow from exponential store (QR1) [mm/day] - MISC(18)=St(3) ! Exp ! exponential store level (St(3)) (negative) [mm] - MISC(19)=QD ! QD ! outflow from UH2 branch after exchange (QD) [mm/day] - MISC(20)=Q ! Qsim ! simulated outflow at catchment outlet [mm/day] + MISC(16)=QR ! QR ! outflow from routing store (QR) [mm/day] + MISC(17)=QRExp ! QRExp ! outflow from exponential store (QRExp) [mm/day] + MISC(18)=St(3) ! Exp ! exponential store level (St(3)) (negative) [mm] + MISC(19)=QD ! QD ! outflow from UH2 branch after exchange (QD) [mm/day] + MISC(20)=Q ! Qsim ! simulated outflow at catchment outlet [mm/day] ENDSUBROUTINE