From 60219b28bc554509abe6a9d6de032e74d3df0cda Mon Sep 17 00:00:00 2001 From: Olivier Delaigue <olivier.delaigue@irstea.fr> Date: Wed, 28 Oct 2015 10:40:48 +0100 Subject: [PATCH] [0.8.1.0] Correctif --- DESCRIPTION | 3 +- INDEX | 67 --- MD5 | 24 -- Meta/Rd.rds | Bin 1436 -> 0 bytes Meta/data.rds | Bin 200 -> 0 bytes Meta/hsearch.rds | Bin 1260 -> 0 bytes Meta/links.rds | Bin 550 -> 0 bytes Meta/nsInfo.rds | Bin 443 -> 0 bytes Meta/package.rds | Bin 748 -> 0 bytes R/BasinData.R | 42 ++ R/Calibration.R | 29 ++ R/Calibration_HBAN.R | 404 ++++++++++++++++++ R/Calibration_optim.R | 152 +++++++ R/CreateCalibOptions.R | 242 +++++++++++ R/CreateInputsCrit.R | 81 ++++ R/CreateInputsModel.R | 171 ++++++++ R/CreateRunOptions.R | 295 ++++++++++++++ R/DataAltiExtrapolation_HBAN.R | 540 +++++++++++++++++++++++++ R/ErrorCrit.R | 22 + R/ErrorCrit_KGE.R | 128 ++++++ R/ErrorCrit_KGE2.R | 130 ++++++ R/ErrorCrit_NSE.R | 92 +++++ R/ErrorCrit_RMSE.R | 86 ++++ R/PEdaily_Oudin.R | 58 +++ R/RunModel.R | 22 + R/RunModel_CemaNeige.R | 132 ++++++ R/RunModel_CemaNeigeGR4J.R | 209 ++++++++++ R/RunModel_CemaNeigeGR5J.R | 211 ++++++++++ R/RunModel_CemaNeigeGR6J.R | 213 ++++++++++ R/RunModel_GR1A.R | 123 ++++++ R/RunModel_GR2M.R | 128 ++++++ R/RunModel_GR4H.R | 129 ++++++ R/RunModel_GR4J.R | 129 ++++++ R/RunModel_GR5J.R | 132 ++++++ R/RunModel_GR6J.R | 133 ++++++ R/SeriesAggreg.R | 134 ++++++ R/TransfoParam.R | 19 + R/TransfoParam_CemaNeige.R | 37 ++ R/TransfoParam_GR1A.R | 31 ++ R/TransfoParam_GR2M.R | 35 ++ R/TransfoParam_GR4H.R | 39 ++ R/TransfoParam_GR4J.R | 41 ++ R/TransfoParam_GR5J.R | 45 +++ R/TransfoParam_GR6J.R | 47 +++ R/airGR | 27 -- R/airGR.rdb | Bin 56780 -> 0 bytes R/airGR.rdx | Bin 721 -> 0 bytes R/plot_OutputsModel.R | 395 ++++++++++++++++++ help/AnIndex | 38 -- help/airGR.rdb | Bin 137484 -> 0 bytes help/airGR.rdx | Bin 967 -> 0 bytes help/aliases.rds | Bin 349 -> 0 bytes help/paths.rds | Bin 402 -> 0 bytes html/00Index.html | 101 ----- html/R.css | 57 --- libs/i386/airGR.dll | Bin 29696 -> 0 bytes libs/x64/airGR.dll | Bin 34816 -> 0 bytes man/BasinInfo.Rd | 22 + man/BasinObs.Rd | 23 ++ man/Calibration.Rd | 96 +++++ man/Calibration_HBAN.Rd | 128 ++++++ man/Calibration_optim.Rd | 104 +++++ man/CreateCalibOptions.Rd | 128 ++++++ man/CreateInputsCrit.Rd | 114 ++++++ man/CreateInputsModel.Rd | 90 +++++ man/CreateRunOptions.Rd | 122 ++++++ man/DataAltiExtrapolation_HBAN.Rd | 65 +++ man/ErrorCrit.Rd | 94 +++++ man/ErrorCrit_KGE.Rd | 51 +++ man/ErrorCrit_KGE2.Rd | 54 +++ man/ErrorCrit_NSE.Rd | 49 +++ man/ErrorCrit_RMSE.Rd | 44 ++ man/PEdaily_Oudin.Rd | 37 ++ man/RunModel.Rd | 62 +++ man/RunModel_CemaNeige.Rd | 86 ++++ man/RunModel_CemaNeigeGR4J.Rd | 114 ++++++ man/RunModel_CemaNeigeGR5J.Rd | 117 ++++++ man/RunModel_CemaNeigeGR6J.Rd | 118 ++++++ man/RunModel_GR1A.Rd | 87 ++++ man/RunModel_GR2M.Rd | 101 +++++ man/RunModel_GR4H.Rd | 94 +++++ man/RunModel_GR4J.Rd | 94 +++++ man/RunModel_GR5J.Rd | 97 +++++ man/RunModel_GR6J.Rd | 98 +++++ man/SeriesAggreg.Rd | 57 +++ man/TransfoParam.Rd | 46 +++ man/TransfoParam_CemaNeige.Rd | 44 ++ man/TransfoParam_GR1A.Rd | 24 ++ man/TransfoParam_GR2M.Rd | 24 ++ man/TransfoParam_GR4H.Rd | 24 ++ man/TransfoParam_GR4J.Rd | 44 ++ man/TransfoParam_GR5J.Rd | 44 ++ man/TransfoParam_GR6J.Rd | 44 ++ man/airGR.Rd | 71 ++++ man/plot_OutputsModel.Rd | 40 ++ src/frun_CEMANEIGE.f | 135 +++++++ src/frun_GR1A.f | 116 ++++++ src/frun_GR2M.f | 175 ++++++++ src/frun_GR4H.f | 225 +++++++++++ src/frun_GR4J.f | 225 +++++++++++ src/frun_GR5J.f | 226 +++++++++++ src/frun_GR6J.f | 249 ++++++++++++ src/utils_D.f | 272 +++++++++++++ src/utils_H.f | 272 +++++++++++++ tests/example_Calibration.R | 48 +++ tests/example_Calibration_HBAN.R | 46 +++ tests/example_Calibration_optim.R | 45 +++ tests/example_ErrorCrit.R | 61 +++ tests/example_RunModel.R | 29 ++ tests/example_RunModel_CemaNeige.R | 25 ++ tests/example_RunModel_CemaNeigeGR4J.R | 31 ++ tests/example_RunModel_CemaNeigeGR5J.R | 31 ++ tests/example_RunModel_CemaNeigeGR6J.R | 31 ++ tests/example_RunModel_GR1A.R | 40 ++ tests/example_RunModel_GR2M.R | 38 ++ tests/example_RunModel_GR4H.R | 28 ++ tests/example_RunModel_GR4J.R | 28 ++ tests/example_RunModel_GR5J.R | 28 ++ tests/example_RunModel_GR6J.R | 28 ++ tests/example_SeriesAggreg.R | 18 + tests/example_TransfoParam.R | 15 + tests/example_TransfoParam_CemaNeige.R | 15 + tests/example_TransfoParam_GR1A.R | 15 + tests/example_TransfoParam_GR2M.R | 15 + tests/example_TransfoParam_GR4H.R | 15 + tests/example_TransfoParam_GR4J.R | 15 + tests/example_TransfoParam_GR5J.R | 15 + tests/example_TransfoParam_GR6J.R | 15 + tests/example_plot_OutputsModel.R | 54 +++ 129 files changed, 10232 insertions(+), 316 deletions(-) delete mode 100644 INDEX delete mode 100644 MD5 delete mode 100644 Meta/Rd.rds delete mode 100644 Meta/data.rds delete mode 100644 Meta/hsearch.rds delete mode 100644 Meta/links.rds delete mode 100644 Meta/nsInfo.rds delete mode 100644 Meta/package.rds create mode 100644 R/BasinData.R create mode 100644 R/Calibration.R create mode 100644 R/Calibration_HBAN.R create mode 100644 R/Calibration_optim.R create mode 100644 R/CreateCalibOptions.R create mode 100644 R/CreateInputsCrit.R create mode 100644 R/CreateInputsModel.R create mode 100644 R/CreateRunOptions.R create mode 100644 R/DataAltiExtrapolation_HBAN.R create mode 100644 R/ErrorCrit.R create mode 100644 R/ErrorCrit_KGE.R create mode 100644 R/ErrorCrit_KGE2.R create mode 100644 R/ErrorCrit_NSE.R create mode 100644 R/ErrorCrit_RMSE.R create mode 100644 R/PEdaily_Oudin.R create mode 100644 R/RunModel.R create mode 100644 R/RunModel_CemaNeige.R create mode 100644 R/RunModel_CemaNeigeGR4J.R create mode 100644 R/RunModel_CemaNeigeGR5J.R create mode 100644 R/RunModel_CemaNeigeGR6J.R create mode 100644 R/RunModel_GR1A.R create mode 100644 R/RunModel_GR2M.R create mode 100644 R/RunModel_GR4H.R create mode 100644 R/RunModel_GR4J.R create mode 100644 R/RunModel_GR5J.R create mode 100644 R/RunModel_GR6J.R create mode 100644 R/SeriesAggreg.R create mode 100644 R/TransfoParam.R create mode 100644 R/TransfoParam_CemaNeige.R create mode 100644 R/TransfoParam_GR1A.R create mode 100644 R/TransfoParam_GR2M.R create mode 100644 R/TransfoParam_GR4H.R create mode 100644 R/TransfoParam_GR4J.R create mode 100644 R/TransfoParam_GR5J.R create mode 100644 R/TransfoParam_GR6J.R delete mode 100644 R/airGR delete mode 100644 R/airGR.rdb delete mode 100644 R/airGR.rdx create mode 100644 R/plot_OutputsModel.R delete mode 100644 help/AnIndex delete mode 100644 help/airGR.rdb delete mode 100644 help/airGR.rdx delete mode 100644 help/aliases.rds delete mode 100644 help/paths.rds delete mode 100644 html/00Index.html delete mode 100644 html/R.css delete mode 100644 libs/i386/airGR.dll delete mode 100644 libs/x64/airGR.dll create mode 100644 man/BasinInfo.Rd create mode 100644 man/BasinObs.Rd create mode 100644 man/Calibration.Rd create mode 100644 man/Calibration_HBAN.Rd create mode 100644 man/Calibration_optim.Rd create mode 100644 man/CreateCalibOptions.Rd create mode 100644 man/CreateInputsCrit.Rd create mode 100644 man/CreateInputsModel.Rd create mode 100644 man/CreateRunOptions.Rd create mode 100644 man/DataAltiExtrapolation_HBAN.Rd create mode 100644 man/ErrorCrit.Rd create mode 100644 man/ErrorCrit_KGE.Rd create mode 100644 man/ErrorCrit_KGE2.Rd create mode 100644 man/ErrorCrit_NSE.Rd create mode 100644 man/ErrorCrit_RMSE.Rd create mode 100644 man/PEdaily_Oudin.Rd create mode 100644 man/RunModel.Rd create mode 100644 man/RunModel_CemaNeige.Rd create mode 100644 man/RunModel_CemaNeigeGR4J.Rd create mode 100644 man/RunModel_CemaNeigeGR5J.Rd create mode 100644 man/RunModel_CemaNeigeGR6J.Rd create mode 100644 man/RunModel_GR1A.Rd create mode 100644 man/RunModel_GR2M.Rd create mode 100644 man/RunModel_GR4H.Rd create mode 100644 man/RunModel_GR4J.Rd create mode 100644 man/RunModel_GR5J.Rd create mode 100644 man/RunModel_GR6J.Rd create mode 100644 man/SeriesAggreg.Rd create mode 100644 man/TransfoParam.Rd create mode 100644 man/TransfoParam_CemaNeige.Rd create mode 100644 man/TransfoParam_GR1A.Rd create mode 100644 man/TransfoParam_GR2M.Rd create mode 100644 man/TransfoParam_GR4H.Rd create mode 100644 man/TransfoParam_GR4J.Rd create mode 100644 man/TransfoParam_GR5J.Rd create mode 100644 man/TransfoParam_GR6J.Rd create mode 100644 man/airGR.Rd create mode 100644 man/plot_OutputsModel.Rd create mode 100644 src/frun_CEMANEIGE.f create mode 100644 src/frun_GR1A.f create mode 100644 src/frun_GR2M.f create mode 100644 src/frun_GR4H.f create mode 100644 src/frun_GR4J.f create mode 100644 src/frun_GR5J.f create mode 100644 src/frun_GR6J.f create mode 100644 src/utils_D.f create mode 100644 src/utils_H.f create mode 100644 tests/example_Calibration.R create mode 100644 tests/example_Calibration_HBAN.R create mode 100644 tests/example_Calibration_optim.R create mode 100644 tests/example_ErrorCrit.R create mode 100644 tests/example_RunModel.R create mode 100644 tests/example_RunModel_CemaNeige.R create mode 100644 tests/example_RunModel_CemaNeigeGR4J.R create mode 100644 tests/example_RunModel_CemaNeigeGR5J.R create mode 100644 tests/example_RunModel_CemaNeigeGR6J.R create mode 100644 tests/example_RunModel_GR1A.R create mode 100644 tests/example_RunModel_GR2M.R create mode 100644 tests/example_RunModel_GR4H.R create mode 100644 tests/example_RunModel_GR4J.R create mode 100644 tests/example_RunModel_GR5J.R create mode 100644 tests/example_RunModel_GR6J.R create mode 100644 tests/example_SeriesAggreg.R create mode 100644 tests/example_TransfoParam.R create mode 100644 tests/example_TransfoParam_CemaNeige.R create mode 100644 tests/example_TransfoParam_GR1A.R create mode 100644 tests/example_TransfoParam_GR2M.R create mode 100644 tests/example_TransfoParam_GR4H.R create mode 100644 tests/example_TransfoParam_GR4J.R create mode 100644 tests/example_TransfoParam_GR5J.R create mode 100644 tests/example_TransfoParam_GR6J.R create mode 100644 tests/example_plot_OutputsModel.R diff --git a/DESCRIPTION b/DESCRIPTION index e0819b42..fafb3d22 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -13,5 +13,4 @@ Description: This package brings into R the hydrological modelling tools used at for their calibration and evaluation (GR4H, GR4J, GR5J, GR6J, GR2M, GR1A and CemaNeige). Use help(airGR) for package description. License: GPL-2 -Built: R 3.0.2; x86_64-w64-mingw32; 2015-10-27 18:41:54 UTC; windows -Archs: i386, x64 +Packaged: 2015-10-27 18:41:47 UTC; H61970 diff --git a/INDEX b/INDEX deleted file mode 100644 index 188e0fbd..00000000 --- a/INDEX +++ /dev/null @@ -1,67 +0,0 @@ -BasinInfo Data sample: characteristics of a fictional - catchment (L0123001, L0123002 or L0123003) -BasinObs Data sample: time series of observations of a - fictional catchment (L0123001, L0123002 or - L0123003) -Calibration Calibration algorithm which minimises an error - criterion on the model outputs using the - provided functions -Calibration_HBAN Calibration algorithm which minimises the error - criterion using the Irstea-HBAN procedure -Calibration_optim Calibration algorithm which minimises the error - criterion using the stats::optim function -CreateCalibOptions Creation of the CalibOptions object required to - the Calibration functions -CreateInputsCrit Creation of the InputsCrit object required to - the ErrorCrit functions -CreateInputsModel Creation of the InputsModel object required to - the RunModel functions -CreateRunOptions Creation of the RunOptions object required to - the RunModel functions -DataAltiExtrapolation_HBAN - Altitudinal extrapolation of precipitation and - temperature series -ErrorCrit Error criterion using the provided function -ErrorCrit_KGE Error criterion based on the KGE formula -ErrorCrit_KGE2 Error criterion based on the KGE' formula -ErrorCrit_NSE Error criterion based on the NSE formula -ErrorCrit_RMSE Error criterion based on the RMSE -PEdaily_Oudin Computation of daily series of potential - evapotranspiration with Oudin's formula -RunModel Run with the provided hydrological model - function -RunModel_CemaNeige Run with the CemaNeige snow module -RunModel_CemaNeigeGR4J - Run with the CemaNeigeGR4J hydrological model -RunModel_CemaNeigeGR5J - Run with the CemaNeigeGR5J hydrological model -RunModel_CemaNeigeGR6J - Run with the CemaNeigeGR6J hydrological model -RunModel_GR1A Run with the GR1A hydrological model -RunModel_GR2M Run with the GR2M hydrological model -RunModel_GR4H Run with the GR4H hydrological model -RunModel_GR4J Run with the GR4J hydrological model -RunModel_GR5J Run with the GR5J hydrological model -RunModel_GR6J Run with the GR6J hydrological model -SeriesAggreg Conversion of time series to another time-step - (aggregation only) -TransfoParam Transformation of the parameters using the - provided function -TransfoParam_CemaNeige - Transformation of the parameters from the - CemaNeige module -TransfoParam_GR1A Transformation of the parameters from the GR1A - model -TransfoParam_GR2M Transformation of the parameters from the GR2M - model -TransfoParam_GR4H Transformation of the parameters from the GR4H - model -TransfoParam_GR4J Transformation of the parameters from the GR4J - model -TransfoParam_GR5J Transformation of the parameters from the GR5J - model -TransfoParam_GR6J Transformation of the parameters from the GR6J - model -airGR Modelling tools used at Irstea-HBAN (France), - including GR4J and CemaNeige -plot_OutputsModel Default preview of model outputs diff --git a/MD5 b/MD5 deleted file mode 100644 index d21ce056..00000000 --- a/MD5 +++ /dev/null @@ -1,24 +0,0 @@ -745f1ff9a1a987be74e26d327e1001f3 *DESCRIPTION -8cfd5d38abb52c25f9de6da3b5a49dbd *INDEX -4ef88d7fe2a815ae9d537a6a0ce475e2 *Meta/Rd.rds -32a1c5de93e3b6254dbd86b07ba073ba *Meta/data.rds -85e37b304c759576eef3e1715799d846 *Meta/hsearch.rds -13463ac75ee802be8ab7942c547edf89 *Meta/links.rds -db1f9a1a649ce0c9ed5f0bf1321337a4 *Meta/nsInfo.rds -886528f90ab482d4b30d2586da61f7e7 *Meta/package.rds -ef20fcb07a98bb3a13d1dfbce9b66ab0 *NAMESPACE -ebf0fc819595d631b8bf280c4b049940 *R/airGR -44c5327b5161fa3578c84656f9e872c6 *R/airGR.rdb -af79b71953440b5fb2bb5968d1c7c4a5 *R/airGR.rdx -9a4212f4316f102accff6f1b737b591f *data/L0123001.rda -1940776e833cda1019508134b87c65f0 *data/L0123002.rda -517b0e945c588adcb1846db0b138cd10 *data/L0123003.rda -98c6e43c002546b43228d42f834515f2 *help/AnIndex -7d2aecc63e95084cf48a00bb02d63f5c *help/airGR.rdb -42aefbf56becfa3987a4b3e94f8c032d *help/airGR.rdx -ddae52805808b1d0202eea1457a18f12 *help/aliases.rds -06e18f0d21774860b6fe45293af4f4fb *help/paths.rds -e5b5791fbc25b39ec22b8509c01f4d69 *html/00Index.html -444535b9cb76ddff1bab1e1865a3fb14 *html/R.css -c27696c4a2f0ae0ccc8b7cd8ad62b66e *libs/i386/airGR.dll -991f7b24c923dfc3bd5b7420ae1a6cc7 *libs/x64/airGR.dll diff --git a/Meta/Rd.rds b/Meta/Rd.rds deleted file mode 100644 index 054d837052dfef37a15a13d83d69177f8f561af1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1436 zcmV;N1!MXjiwFP!000002JKi|Pa`)JPPwSC3oR|XmA2AKZdG+b1q9gyRj4o75N_K5 z%Cc4agv`WAyqy_OJq~H!`aAn$N{=Vw8QXJ7VEa@d5oU6}bB^tEb<VF(DwWDyWgb3r z^YA*q4*!<mvj(5<D+`rnc&@y`A@xuF9^2`3W7^Y*c5xG?q|chzr8gW4%KVhNu2HW~ z-Zair=$Q_&Ku|Bmo;Nwcf<zn_f#e8voe_BI2SX7yITgB24QjJ4aWi6_p`X$C@(>H$ za0PAsDL4+8o44PU7Uztc>#ZfU>$k_Pl>UW5ujUGzzsncsv~^(Zvem`Z9baDzyHqpm zQ#glpz~_o|-6S49C$vve@I@9p?$pkvFx00p>}w2b3Bz$`uaQr$w)5$=lLC5y{(1pj z-_Pgo2&W`$^!uFjHS!h5e%ND|m}4#EUg+dJ3qCU#%p=;EeoPzFkD9^Gim`eLrXPC= zQ-0jhcmtOS2p?hOgqh>ZNscQeD#2B_Y00Y0Zl|^i<xF13z?a#iPE=VLov5<Y*%U}~ zIi`PIoXF~=NutGsRU=hZF*EZw%L>VxWtEw$SdFw*Mpc2T43f>L82KtcTg%XTDY~!F zRU=7rh}Cuuv38P2%+p!VBPOe_=qagadMv9m<R_yFi%cdK0LfWwAURJ4I4c0^ML=@4 z#VGF-S0?GKj9chJq~^R=9-qeZ(*Qfa<HYq9%Z$IsghwIv0+$>hX8=xd1jJY<s1qXA zLm2g_BZ~lbk%NUZ@Q5$a#?QNZ)z`bbds`@et0KnL`|HhE`;DO;Dj7jx6u?q5yMg!H zsK9*uN*}bMiLl#eP)`OP8V#s3Kpyp}M?+W^`-sSLgB-wNC%_DUVnC25V+^rLz@Z@& z?|wuNIJ>1?(nY<Y@93rSx7k*dI_xD=?Wa5x1aHgwDpztycgV?qxj-ne2oDaTHj*46 zUf?up0+9`R5wqS|z&#&`BM>Kl3@L~63zqW4o3c&PvK6KcsYqQ?{AX3xp7<$Wn<|+Z zWrw!1wDa9tS3~wkA=?rJD$)C-R332R(142AZ9eEDUO>QN;Mq9(V?{r-3f-28x>#hx z7P-M8aK$kUtrqnd_lB;jhMUv)Us(d>3qaSl_`fOT*Bbg|lX>93#7<Fn*Q!Cl1f)Ba zCcOoN3fUwA8VA}4A|FLJfmflmfj#ik1UKw97<V~yS)V$f(KGxQ3w~<|CM^<$J{w7i zp{o*cJD*cFyPS2V3DqAWv|l3hogpN<`Ru&a_Uyd1lY8*qW4~nvv3bkv&}cIMmhezz zxz=qUrLoUI1&_$vP;>*dfumbg9Fe{|R=wn>_=dtgqhti~!a^X-OWQ-N<6x?e9%r5v zdPdaMX4eq;TsOtNWFZC~EDJI5aM`nm%ho?acHfjei>kaEIg~M1Iv3oDh0&Wgj$i?Y zY;GayJFYB5{mBVrfw!;M=#cdA&=s;5+)^@<+cB;e)*Wo|{ngR-kB?ve?_VmF^~mcJ z?|%}5+UURp(h-75H%192lpQIUc+P0SWXKya*h|=>278Ij$RSsOHhM7evJr%3xpWj^ z0@g^v1ntp8p{N{D6pBVS8%xw2Sy;|YMi-XBb4C~@N6{!_2Cn){T>CbcHR31+tL+l7 zc2WkGt(n=jH3~67b0lJ6#%RQ{MZt)~3g_&oq?{pRlbq4X6bAc*Iir+vhK!Bk(TXLN zH)7E%RORtG^YhVevp-b;zKlmxTgjb%yfwKf$=g^ev@oX$E&6b!Q$1rTCN3P&<lek+ z4h-u3Y8<Hd#VaZjrlpqeFnNnpQ?iCj;fJgGWxfPIB^(ln<ojDP9x>hxt<5ZRHri1e qT7}QtU-0kl?(T1U*N%%ryVE_9W6PbMyraUmfBpsVM}HAb8~^~yyt_OA diff --git a/Meta/data.rds b/Meta/data.rds deleted file mode 100644 index 216de635f65820f8e7827f455b266dfe5a43f744..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 200 zcmV;(05|_1iwFP!000002JMr*3c@fDfX}uFih`gIaHE1le>O*P5d=4Jy~dOVnnar5 z<BMr&l~U>hh(mG*AAH|**C_ya;JfGf)w*!s3<8+Ax!RKv>Zme}>r)uTNf<_(VHSU3 zNz0ZsJEx|v?4x)Xy@i(pSwchdUho~VoJwMrm%>=V4C)LCGr_FTiV9?8SuVM<pZXTt z80r##$)0xXR!EM<$$4$osoNh^x&NhZ2?EcRMorPb3F*eXz7v3PGoLTqq-AD00{{T1 CC0uy` diff --git a/Meta/hsearch.rds b/Meta/hsearch.rds deleted file mode 100644 index bc9992aa96926fa112a772dcdd25b255b0a311e3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1260 zcmV<I1QYuoiwFP!000002JKn@Pa8KBKLQodjj41}f2cIco2C^skjPy^8QL#tNcqz8 zMYNr^pOABL61R8fo6mvq&u@Fa*e`dN5CWZ;w4Fqh=lAVnKR>@0n_nM0j#F{w;ZvCh z()k)b3&48fICGDIT88l>%H{rfIrx7Jobvll-*Z(<xR&rNQL{wd65Ez|X^9<6{A7qq zbqlE~QZ7;+QZ=ONNNpqa5~&@e5W__b7cpGKa1p~r3>Pt6#BdSAMGO})JjC!2!$S-Y zF+9ZZ5W_<Z4>3H8vHXfAJUWcJ!Z4On#%Vh-<1d;t;B8427m;B-$*?XCUNue(e>KY& zvErc-JZ(xw6-&jZu@)!jDwP~Y@jxX_$rZZF@Q+1@1$l$>L6mp&e2*&H2o!Jqp(Kq( zFgCm8mXtzfFjkOp@n*kem|x|X?zrm7y9ui2$H-kdYjr3Ot}jjp9d0AG1oO?V;;9{9 zG+9Vb81FG7c{VQDKd&84lh&t7x2<#qrTgdA#ssE&Jb_s|n8cjqvp$K5=wH5LlCz}I z>q*wLy!VnuNmravNo}e;%ksvevzn7;)=?DTT8aW(&zRuo20{HM0j@1q^H<|QDA;^e z%-mmehLVJaalm$o-v=+gf}kXd`w0<ULP?kVI%{b_e5(9@$Rb77-fmT0Z)>Z%K@8;* zAua8#8}IF$cQ|^CBx%I8XVC`wGCdKWkMuEf$_Wj60uDewBv*az_esbj9`XcWX+)Sl zAH)Ya%mkF-PxToIbx?>HMu-fc+VoO>EX5`7uny@CB0qb!f13?a`zS(=ydTO$F}kS> zf=2RLXCT=>36LnNlHJ|3?%@&)z+qao(in78<!mX0?fJ-jMI`%uz$L6-iII+(R52v2 zqQg-Iy~!O`t67~L5BF)ZH+#m%ob45zjY{>MeKmAJSGtZuqOxpZ*Un?fd>(UUwk-mG zEQ}dM40hIJzj5?q>&9&x%Q|DSRy1kT1hh;JLvJ8mA;UpHjsE&=`Y#Fw(*dB(6!gEH zs-NjVXH5~p{$ZTbc9f|Gu~2Z_xen<i1XSs&7ITwmSCIK6ZCx*t!UU?YPeXYwZvE?y z6oKe*A3TP+eKdyO<qWZ=lOz&X+F}scgSa_aQ&;B+IJX(q?_;z*#pwH-k#0Y;>$=CY z>(&nLpnHe;P76p;cUl}8O%Yu(nb=dF={9hrX(YgfOxc@IbYrqc)3$FiG77G3FZtQD zR2k+<Myxw5gEXJo9*mFOTYYq;2n(r~%eva^9@0I}hT=}PkOTL&g`Bv*?a}>h>z`q} zowq$ot9+1ds1SkPT-Z*ka=m%&H30Z*eS`4G4|E~w4OgHGeDU`n*<)Qg2$b#xmz-Vc z>EwQ1l((GnmQ&tx9`Kg)=)?Qhn>*#;zdmplDlnKc%=r#fK{ykRegSu!AK<fCP+0<% z2zo@~3}42z>`z_lQr)4>;u-ZnQ9K8WZ+ZKSs=gUk4)+YTpdH!yzzrc74Mfa+i`a^M zq5H=WNx#E8vTO)tLns@<12%;6P2YLwH~oMAA7AC*AqHuKo%_qlH{SUnzoPlYMmuji zYa`$^!RN72XT=UYYMIvNn|LVNz;}V`jp1cW-{{8D@y0pM%{a%UH|+XK$j(fYbS3~f WvjQ~*TsUJj9q4amh+^2^9{>RQkz#ZJ diff --git a/Meta/links.rds b/Meta/links.rds deleted file mode 100644 index 8dcea7746eec82dfbde09be2b7e639ec79d0c4fa..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 550 zcmV+>0@?i^iwFP!000002A!2nPa821hPMHvLQ6$^-~bX;KLkCXghpBJAw&tOlAxsr zZjn(;u(V(DIuiVOgcI4Wz2o&dm6EJ?=9!7@vERAh3xc2#Z1HbnYc)LJKc~TVu*;uc zo6Q#gAVLRG>xm_C>k1Vly-6Rl=IT{oCw6T5Q0UY*K=n{e9w=fYOLg$n1<r<7-HA@0 zIq58CB+>C-5T_V1ybhY?tDvH0GHd=O&6lj`QNn5_qtWARj$@zX(K5A6<pR*xh@o!G zNdK8plxMMhhhP=^lxDO%_aD{R?9ZUDqd(nf+c)jx&O2>1Hd&bVwm(NCewj^|bCSA` zC*NOC3wSUjHS6I7O)yztoj>>B2T^CVc}(~pF_$Cv=BSuK^t<bgw#VLRXXuam&o%T% z%^mm-&^t^CF1m{a#S1t2m!h<I%x)1yiMtXyX+I@U5R8~|HEMCQBDJ_#m3n-%5gu-a zn-w|+_<HEhn8z987o3&UG}vx%{GABfNl}6eKG0j)uIgOE@Lu*P@%}+;8^Ux@?mNQ% z8FU!o_yT*0N>%C_Dpk2Zm;wJffv_J{Yrb5m5=~*)H^f;OKbeXRQLfDpU8%4{4ZW3{ zDleqm5U5qcb7)sfmp62JFQs?i&^n8;J+>G-Lz~f-Gqf4izkk$qM%wg?AlG2m4tXqq oN>n)1TFMT!9^e>NIKnE2THDV0CQ1t2MQ(h31Jh0)F;5Br07IAukN^Mx diff --git a/Meta/nsInfo.rds b/Meta/nsInfo.rds deleted file mode 100644 index ded75a3aa73e2d5a3afe43b76b32aee8385b6fea..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 443 zcmV;s0Yv^EiwFP!0000027Q!WPr@)1hReVpB7~2G3vc}eB6vS10WkwIyzq|Htj;D| zyL6p_Kd*MIE8PbyDW%VQ&fA`CXCF5J00Y#;FzU(Qq4;Twk<7`}6XPB<Kr7)E^zkQy z98)4uPeZ%Kv$>MIuX7r597thcF$6g}%Ih$ZBV~0|UP&19$YPi)D~;RKMSecPiAmn* z?gesa`W(;poWYR#rPH-$j8UfT(NSRcHlIn@&B1XwbhWJrb!<gDo0$u-f7q>K7iV|u zTAWv}VvwzO77E}BVGl`VR95EBWO+%QUR0klwWHLz^I%rMv0VWtiz-;<Ijw?f_uDOE z7)7S%G2~_Jok0?P(G6rUdsRj{E8U%bPSxrt3aXZ(pz0|J%QM3CoS<s!hd$-vdGpiD zn)VRTdP?uDirGl!nl!wEn0X9<hM_|O0~E=O3?|p_$=#4{xx~6F8c{r!W7DTsJxxo( zYJbwQEyJ5Q2r1)PV>QuUUv|^w26B#=>b_2zWBD+OPyyPAe^Xb%G`|p;!hGaVi!5x{ lbPq&)O4ON%X!alE(3oSQOk3N>KpKi-{{duKdSmni000v))TRIc diff --git a/Meta/package.rds b/Meta/package.rds deleted file mode 100644 index e7051aaf8526643f0f65b70c0d9ea1aae359984c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 748 zcmV<I0u%ioiwFP!000002GvwcPuoBcb{;eVS{0Q;uX_v<v63`U#7hkc4MBlKCR9BY zE%qi^VeeYI>!kd7+Oe}6V$)V?Z?&|K8IR}j%{TtKVOdt*D!|GY;9A&*tqiIyI5(}L zwGQVRrlRX;p)|zq1D+5qUS4sJ_&#M5q&W8_iX`z6R;VYWBDi{S*1ATO&jK@-?Cc`S zTtD(+>#ozhM3{M~O#*yP=+a}UW*^vfyQamBMy<YAt=FoJk6QDlk0U{tLhXSwxYo+! zlyVmhd^)2<pw4-})$87#qhr3%*pM!!lZbqxNrv`VoN6Dh9aK3zK_BdzUEf*ga^FT% zDp9zo8Qlv=T|yO#BL}G|LDNT1aGy`8i+vRQ1s3)OT75>~%S2g#L?n`AMg;hEIeZbS z2(AKCHpaeR6%pg(@gk&5fQ-|@QgWAK1#!m_a~0)GrUQ++h%Ko=kTJa%IJQZ?Co}9v z3$X&-x!6s56z_Y<zMt%kt9Y-s(!I-;b1MNF;)j)lIy*^JQyx_23L3_NY{RhbuwQLx z;lxQ=&^SWh5BBf&o7Fk208pKO0NpbkQ2pSrSwGxsqT5mX2+b+;_*`06F%M31#xuhK z0j0G{=nRL8qsP$P*G5$NODcXLLPDCxt^>g8`>R%@rd$}3UO`(FEMhdJ4haeKq!u?j z&qW)HK6MF`%fM$5^%Y#6VEW=IEb3{@#gvanQ!gu-*i4nK51rRl7PNB9xs#7Tyx?w@ zD&wtgL{`nBfC%a?)k!LeM-%4V%Z6ku-v6dO8M9KVS-Btjby2_0nV(I0=wk)k34Yaq z!HtUh_Ka8|69wF)75USXKY*HBWRo}9<o^Y)R6V8>#h8R92Ob&_(m?C9{{Kpn3apF+ zYo$u-<(aZAFNfy*rtS2Gqu%m2uct(_!|_r>wr*teC&>(9`6il7h*U-{^@5O#rMTXw e>;YIk;u-i1=-V2;m06DY|MU}Y7>;2@2LJ#(LTfny diff --git a/R/BasinData.R b/R/BasinData.R new file mode 100644 index 00000000..b1e6d222 --- /dev/null +++ b/R/BasinData.R @@ -0,0 +1,42 @@ +#' @name BasinInfo +#' @docType data +#' @title Data sample: characteristics of a fictional catchment (L0123001, L0123002 or L0123003) +#' @description +#' R-object containing the code, station's name, area and hypsometric curve of the catchment. +#' @encoding UTF-8 +#' @format +#' List named 'BasinInfo' containing +#' \itemize{ +#' \item two strings: catchment's code and station's name +#' \item one float: catchment's area in km2 +#' \item one numeric vector: catchment's hypsometric curve (min, quantiles 01 to 99 and max) in metres +#' } +#' @examples +#' require(airGR) +#' data(L0123001) +#' str(BasinInfo) + +NULL + + +#' @name BasinObs +#' @docType data +#' @title Data sample: time series of observations of a fictional catchment (L0123001, L0123002 or L0123003) +#' @description +#' R-object containing the times series of precipitation, temperature, potential evapotranspiration and discharges. \cr +#' Times series for L0123001 or L0123002 are at the daily time-step for use with daily models such as GR4J, GR5J, GR6J, CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J. +#' Times series for L0123003 are at the hourly time-step for use with hourly models such as GR4H. +#' @encoding UTF-8 +#' @format +#' Data frame named 'BasinObs' containing +#' \itemize{ +#' \item one POSIXlt vector: time series dates in the POSIXlt format +#' \item five numeric vectors: time series of catchment average precipitation [mm], catchment average air temperature [degC], catchment average potential evapotranspiration [mm], outlet discharge [l/s], outlet discharge [mm] +#' } +#' @examples +#' require(airGR) +#' data(L0123001) +#' str(BasinObs) + +NULL + diff --git a/R/Calibration.R b/R/Calibration.R new file mode 100644 index 00000000..874740b5 --- /dev/null +++ b/R/Calibration.R @@ -0,0 +1,29 @@ +#************************************************************************************************* +#' Calibration algorithm which minimises the error criterion using the provided functions. \cr +#************************************************************************************************* +#' @title Calibration algorithm which minimises an error criterion on the model outputs using the provided functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{Calibration_HBAN}}, \code{\link{Calibration_optim}}, +#' \code{\link{RunModel}}, \code{\link{ErrorCrit}}, \code{\link{TransfoParam}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, +#' \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +#' @example tests/example_Calibration.R +#' @export +#' @encoding UTF-8 +#_FunctionInputs__________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param CalibOptions [object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param FUN_CALIB (optional) [function] calibration algorithm function (e.g. Calibration_HBAN, Calibration_optim), default=Calibration_HBAN +#' @param FUN_TRANSFO (optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] see \code{\link{Calibration_HBAN}} or \code{\link{Calibration_optim}} +#************************************************************************************************** +Calibration <- function(InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_CALIB=Calibration_HBAN,FUN_TRANSFO=NULL,quiet=FALSE){ + return( FUN_CALIB(InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO,quiet=quiet) ) +} + diff --git a/R/Calibration_HBAN.R b/R/Calibration_HBAN.R new file mode 100644 index 00000000..152ac7a5 --- /dev/null +++ b/R/Calibration_HBAN.R @@ -0,0 +1,404 @@ +#************************************************************************************************* +#' Calibration algorithm which minimises the error criterion. \cr +#' \cr +#' The algorithm is based on a local search procedure. +#' First, a screening is performed using either a rough predefined grid or a list of parameter sets +#' and then a simple steepest descent local search algorithm is performed. +#' +#' A screening is first performed either from a rough predefined grid (considering various initial +#' values for each paramete) or from a list of initial parameter sets. \cr +#' The best set identified in this screening is then used as a starting point for the steepest +#' descent local search algorithm. \cr +#' For this search, the parameters are used in a transformed version, to obtain uniform +#' variation ranges (and thus a similar pace), while the true ranges might be quite different. \cr +#' At each iteration, we start from a parameter set of NParam values (NParam being the number of +#' free parameters of the chosen hydrological model) and we determine the 2*NParam-1 new candidates +#' by changing one by one the different parameters (+/- pace). \cr +#' All these candidates are tested and the best one kept to be the starting point for the next +#' iteration. At the end of each iteration, the pace is either increased or decreased to adapt +#' the progression speed. A diagonal progress can occasionally be done. \cr +#' The calibration algorithm stops when the pace becomes too small. \cr +#' +#' To optimise the exploration of the parameter space, transformation functions are used to convert +#' the model parameters. This is done using the TransfoParam functions. +#************************************************************************************************* +#' @title Calibration algorithm which minimises the error criterion using the Irstea-HBAN procedure +#' @author Laurent Coron (August 2013) +#' @references +#' Michel, C. (1991), +#' Hydrologie appliquée aux petits bassins ruraux, Hydrology handout (in French), Cemagref, Antony, France. +#' @example tests/example_Calibration_HBAN.R +#' @seealso \code{\link{Calibration}}, \code{\link{Calibration_optim}}, +#' \code{\link{RunModel_GR4J}}, \code{\link{TransfoParam_GR4J}}, \code{\link{ErrorCrit_RMSE}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, +#' \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param CalibOptions [object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param FUN_TRANSFO (optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$ParamFinalR } \tab [numeric] parameter set obtained at the end of the calibration \cr +#' \emph{$CritFinal } \tab [numeric] error criterion obtained at the end of the calibration \cr +#' \emph{$NIter } \tab [numeric] number of iterations during the calibration \cr +#' \emph{$NRuns } \tab [numeric] number of model runs done during the calibration \cr +#' \emph{$HistParamR } \tab [numeric] table showing the progression steps in the search for optimal set: parameter values \cr +#' \emph{$HistCrit } \tab [numeric] table showing the progression steps in the search for optimal set: criterion values \cr +#' \emph{$MatBoolCrit } \tab [boolean] table giving the requested and actual time steps when the model is calibrated \cr +#' \emph{$CritName } \tab [character] name of the calibration criterion \cr +#' \emph{$CritBestValue} \tab [numeric] theoretical best criterion value \cr +#' } +#************************************************************************************************** +Calibration_HBAN <- function(InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO=NULL,quiet=FALSE){ + + +##_____Arguments_check_____________________________________________________________________ + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions")==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(CalibOptions,"CalibOptions")==FALSE){ stop("CalibOptions must be of class 'CalibOptions' \n"); return(NULL); } + if(inherits(CalibOptions,"HBAN")==FALSE){ stop("CalibOptions must be of class 'HBAN' if Calibration_HBAN is used \n"); return(NULL); } + + + ##_check_FUN_TRANSFO + if(is.null(FUN_TRANSFO)){ + if(identical(FUN_MOD,RunModel_GR4H )){ FUN_TRANSFO <- TransfoParam_GR4H ; } + if(identical(FUN_MOD,RunModel_GR4J )){ FUN_TRANSFO <- TransfoParam_GR4J ; } + if(identical(FUN_MOD,RunModel_GR5J )){ FUN_TRANSFO <- TransfoParam_GR5J ; } + if(identical(FUN_MOD,RunModel_GR6J )){ FUN_TRANSFO <- TransfoParam_GR6J ; } + if(identical(FUN_MOD,RunModel_GR2M )){ FUN_TRANSFO <- TransfoParam_GR2M ; } + if(identical(FUN_MOD,RunModel_GR1A )){ FUN_TRANSFO <- TransfoParam_GR1A ; } + if(identical(FUN_MOD,RunModel_CemaNeige )){ FUN_TRANSFO <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J)){ FUN1 <- TransfoParam_GR4J; FUN2 <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR5J)){ FUN1 <- TransfoParam_GR5J; FUN2 <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ FUN1 <- TransfoParam_GR6J; FUN2 <- TransfoParam_CemaNeige; } + FUN_TRANSFO <- function(ParamIn,Direction){ + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + ParamOut <- NA*ParamIn; + NParam <- ncol(ParamIn); + ParamOut[, 1:(NParam-2)] <- FUN1(ParamIn[, 1:(NParam-2)],Direction); + ParamOut[,(NParam-1):NParam ] <- FUN2(ParamIn[,(NParam-1):NParam ],Direction); + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + } + } + if(is.null(FUN_TRANSFO)){ stop("FUN_TRANSFO was not found (in Calibration function) \n"); return(NULL); } + } + + ##_variables_initialisation + ParamFinalR <- NULL; ParamFinalT <- NULL; CritFinal <- NULL; + NRuns <- 0; NIter <- 0; + if("StartParamDistrib" %in% names(CalibOptions)){ PrefilteringType <- 2; } else { PrefilteringType <- 1; } + if(PrefilteringType==1){ NParam <- ncol(CalibOptions$StartParamList); } + if(PrefilteringType==2){ NParam <- ncol(CalibOptions$StartParamDistrib); } + if(NParam>20){ stop("Calibration_HBAN can handle a maximum of 20 parameters \n"); return(NULL); } + HistParamR <- matrix(NA,nrow=500*NParam,ncol=NParam); + HistParamT <- matrix(NA,nrow=500*NParam,ncol=NParam); + HistCrit <- matrix(NA,nrow=500*NParam,ncol=1); + CritName <- NULL; + CritBestValue <- NULL; + Multiplier <- NULL; + CritOptim <- +1E100; + ##_temporary_change_of_Outputs_Sim + RunOptions$Outputs_Sim <- RunOptions$Outputs_Cal; ### this reduces the size of the matrix exchange with fortran and therefore speeds the calibration + + + +##_____Parameter_Grid_Screening____________________________________________________________ + + + ##Definition_of_the_function_creating_all_possible_parameter_sets_from_different_values_for_each_parameter + ProposeCandidatesGrid <- function(DistribParam){ + ##Managing_matrix_sizes + Nvalmax <- nrow(DistribParam); + NParam <- ncol(DistribParam); + ##we_add_columns_to_MatDistrib_until_it_has_20_columns + DistribParam2 <- matrix(NA,nrow=Nvalmax,ncol=20); + DistribParam2[1:Nvalmax,1:NParam] <- DistribParam; + ##we_check_the_number_of_values_to_test_for_each_param + NbDistrib <- rep(1,20); + for(iC in 1:20){ NbDistrib[iC] <- max( 1 , Nvalmax-sum(is.na(DistribParam2[,iC])) ); } + ##Loop_on_the_various_values_to_test ###(if 4 param and 3 values for each => 3^4 sets) + ##NB_we_always_do_20_loops ###which_is_here_the_max_number_of_param_that_can_be_optimised + VECT <- NULL; + for(iL01 in 1:NbDistrib[01]){ for(iL02 in 1:NbDistrib[02]){ for(iL03 in 1:NbDistrib[03]){ for(iL04 in 1:NbDistrib[04]){ for(iL05 in 1:NbDistrib[05]){ + for(iL06 in 1:NbDistrib[06]){ for(iL07 in 1:NbDistrib[07]){ for(iL08 in 1:NbDistrib[08]){ for(iL09 in 1:NbDistrib[09]){ for(iL10 in 1:NbDistrib[10]){ + for(iL11 in 1:NbDistrib[11]){ for(iL12 in 1:NbDistrib[12]){ for(iL13 in 1:NbDistrib[13]){ for(iL14 in 1:NbDistrib[14]){ for(iL15 in 1:NbDistrib[15]){ + for(iL16 in 1:NbDistrib[16]){ for(iL17 in 1:NbDistrib[17]){ for(iL18 in 1:NbDistrib[18]){ for(iL19 in 1:NbDistrib[19]){ for(iL20 in 1:NbDistrib[20]){ + VECT <- c(VECT, + DistribParam2[iL01,01],DistribParam2[iL02,02],DistribParam2[iL03,03],DistribParam2[iL04,04],DistribParam2[iL05,05], + DistribParam2[iL06,06],DistribParam2[iL07,07],DistribParam2[iL08,08],DistribParam2[iL09,09],DistribParam2[iL10,10], + DistribParam2[iL11,11],DistribParam2[iL12,12],DistribParam2[iL13,13],DistribParam2[iL14,14],DistribParam2[iL15,15], + DistribParam2[iL16,16],DistribParam2[iL17,17],DistribParam2[iL18,18],DistribParam2[iL19,19],DistribParam2[iL20,20]); + } } } } } + } } } } } + } } } } } + } } } } } + MAT <- matrix(VECT,ncol=20,byrow=TRUE)[,1:NParam]; + if(is.matrix(MAT)==FALSE){ MAT <- cbind(MAT); } + Output <- NULL; + Output$NewCandidates <- MAT; + return(Output); + } + + + ##Creation_of_new_candidates_______________________________________________ + if(PrefilteringType==1){ CandidatesParamR <- CalibOptions$StartParamList; } + if(PrefilteringType==2){ DistribParamR <- CalibOptions$StartParamDistrib; DistribParamR[,!CalibOptions$OptimParam] <- NA; CandidatesParamR <- ProposeCandidatesGrid(DistribParamR)$NewCandidates; } + ##Remplacement_of_non_optimised_values_____________________________________ + CandidatesParamR <- apply(CandidatesParamR,1,function(x){ x[!CalibOptions$OptimParam] <- CalibOptions$FixedParam[!CalibOptions$OptimParam]; return(x); }); + if(NParam>1){ CandidatesParamR <- t(CandidatesParamR); } else { CandidatesParamR <- cbind(CandidatesParamR); } + + ##Loop_to_test_the_various_candidates______________________________________ + iNewOptim <- 0; + Ncandidates <- nrow(CandidatesParamR); + if(!quiet & Ncandidates>1){ + if(PrefilteringType==1){ cat(paste("\t List-Screening in progress (",sep="")); } + if(PrefilteringType==2){ cat(paste("\t Grid-Screening in progress (",sep="")); } + cat("0%"); + } + for(iNew in 1:nrow(CandidatesParamR)){ + if(!quiet & Ncandidates>1){ + for(k in c(2,4,6,8)){ if(iNew==round(k/10*Ncandidates)){ cat(paste(" ",10*k,"%",sep="")); } } + } + ##Model_run + Param <- CandidatesParamR[iNew,]; + OutputsModel <- FUN_MOD(InputsModel,RunOptions,Param); + ##Calibration_criterion_computation + OutputsCrit <- FUN_CRIT(InputsCrit,OutputsModel); + if(!is.na(OutputsCrit$CritValue)){ if(OutputsCrit$CritValue*OutputsCrit$Multiplier < CritOptim){ + CritOptim <- OutputsCrit$CritValue*OutputsCrit$Multiplier; + iNewOptim <- iNew; + } } + ##Storage_of_crit_info + if(is.null(CritName) | is.null(CritBestValue) | is.null(Multiplier)){ + CritName <- OutputsCrit$CritName; + CritBestValue <- OutputsCrit$CritBestValue; + Multiplier <- OutputsCrit$Multiplier; + } + } + if(!quiet & Ncandidates>1){ cat(" 100%) \n"); } + + + ##End_of_first_step_Parameter_Screening____________________________________ + ParamStartR <- CandidatesParamR[iNewOptim,]; if(!is.matrix(ParamStartR)){ ParamStartR <- matrix(ParamStartR,nrow=1); } + ParamStartT <- FUN_TRANSFO(ParamStartR,"RT"); + CritStart <- CritOptim; + NRuns <- NRuns+nrow(CandidatesParamR); + if(!quiet){ + if(Ncandidates> 1){ cat(paste("\t Screening completed (",NRuns," runs): \n",sep="")); } + if(Ncandidates==1){ cat(paste("\t Starting point for steepest-descent local search: \n",sep="")); } + cat(paste("\t Param = ",paste(formatC(ParamStartR,format="f",width=8,digits=3),collapse=" , "),"\n",sep="")); + cat(paste("\t Crit ",format(CritName,width=12,justify="left")," = ",formatC(CritStart*Multiplier,format="f",digits=4),"\n",sep="")); + } + ##Results_archiving________________________________________________________ + HistParamR[1,] <- ParamStartR; + HistParamT[1,] <- ParamStartT; + HistCrit[1,] <- CritStart; + + + + +##_____Steepest_Descent_Local_Search_______________________________________________________ + + + ##Definition_of_the_function_creating_new_parameter_sets_through_a_step_by_step_progression_procedure + ProposeCandidatesLoc <- function(NewParamOptimT,OldParamOptimT,RangesT,OptimParam,Pace){ + ##Format_checking + if(nrow(NewParamOptimT)!=1 | nrow(OldParamOptimT)!=1){ stop("each input set must be a matrix of one single line \n"); return(NULL); } + if(ncol(NewParamOptimT)!=ncol(OldParamOptimT) | ncol(NewParamOptimT)!=length(OptimParam)){ stop("each input set must have the same number of values \n"); return(NULL); } + ##Proposal_of_new_parameter_sets ###(local search providing 2*NParam-1 new sets) + NParam <- ncol(NewParamOptimT); + VECT <- NULL; + for(I in 1:NParam){ + ##We_check_that_the_current_parameter_should_indeed_be_optimised + if(OptimParam[I]==TRUE){ + for(J in 1:2){ + Sign <- 2*J-3; #Sign can be equal to -1 or +1 + ##We_define_the_new_potential_candidate + Add <- TRUE; + PotentialCandidateT <- NewParamOptimT; + PotentialCandidateT[1,I] <- NewParamOptimT[I]+Sign*Pace; + ##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary + if(PotentialCandidateT[1,I]<RangesT[1,I]){ PotentialCandidateT[1,I] <- RangesT[1,I]; } + if(PotentialCandidateT[1,I]>RangesT[2,I]){ PotentialCandidateT[1,I] <- RangesT[2,I]; } + ##We_check_the_set_is_not_outside_the_range_of_possible_values + if( NewParamOptimT[I]==RangesT[1,I] & Sign<0 ){ Add <- FALSE; } + if( NewParamOptimT[I]==RangesT[2,I] & Sign>0 ){ Add <- FALSE; } + ##We_check_that_this_set_has_not_been_tested_during_the_last_iteration + if(identical(PotentialCandidateT,OldParamOptimT)){ Add <- FALSE; } + ##We_add_the_candidate_to_our_list + if(Add==TRUE){ VECT <- c(VECT,PotentialCandidateT); } + } + } + } + Output <- NULL; + Output$NewCandidatesT <- matrix(VECT,ncol=NParam,byrow=TRUE); + return(Output); + } + + + ##Initialisation_of_variables + if(!quiet){ + cat("\t Steepest-descent local search in progress \n"); + } + Pace <- 0.64; + PaceDiag <- rep(0,NParam); + CLG <- 0.7^(1/NParam); + Compt <- 0; + CritOptim <- CritStart; + ##Conversion_of_real_parameter_values + RangesR <- CalibOptions$SearchRanges; + RangesT <- FUN_TRANSFO(RangesR,"RT"); + NewParamOptimT <- ParamStartT; + OldParamOptimT <- ParamStartT; + + + ##START_LOOP_ITER_________________________________________________________ + for(ITER in 1:(100*NParam)){ + + + ##Exit_loop_when_Pace_becomes_too_small___________________________________ + if(Pace<0.01){ break; } + + + ##Creation_of_new_candidates______________________________________________ + CandidatesParamT <- ProposeCandidatesLoc(NewParamOptimT,OldParamOptimT,RangesT,CalibOptions$OptimParam,Pace)$NewCandidatesT; + CandidatesParamR <- FUN_TRANSFO(CandidatesParamT,"TR"); + ##Remplacement_of_non_optimised_values_____________________________________ + CandidatesParamR <- apply(CandidatesParamR,1,function(x){ x[!CalibOptions$OptimParam] <- CalibOptions$FixedParam[!CalibOptions$OptimParam]; return(x); }); + if(NParam>1){ CandidatesParamR <- t(CandidatesParamR); } else { CandidatesParamR <- cbind(CandidatesParamR); } + + + ##Loop_to_test_the_various_candidates_____________________________________ + iNewOptim <- 0; + for(iNew in 1:nrow(CandidatesParamR)){ + ##Model_run + Param <- CandidatesParamR[iNew,]; + OutputsModel <- FUN_MOD(InputsModel,RunOptions,Param); + ##Calibration_criterion_computation + OutputsCrit <- FUN_CRIT(InputsCrit,OutputsModel); + if(!is.na(OutputsCrit$CritValue)){ if(OutputsCrit$CritValue*OutputsCrit$Multiplier < CritOptim){ + CritOptim <- OutputsCrit$CritValue*OutputsCrit$Multiplier; + iNewOptim <- iNew; + } } + } + NRuns <- NRuns+nrow(CandidatesParamR); + + + ##When_a_progress_has_been_achieved_______________________________________ + if(iNewOptim!=0){ + ##We_store_the_optimal_set + OldParamOptimT <- NewParamOptimT; + NewParamOptimT <- matrix(CandidatesParamT[iNewOptim,1:NParam],nrow=1); + Compt <- Compt+1; + ##When_necessary_we_increase_the_pace ### if_successive_progress_occur_in_a_row + if(Compt>2*NParam){ + Pace <- Pace*2; + Compt <- 0; + } + ##We_update_PaceDiag + VectPace <- NewParamOptimT-OldParamOptimT; + for(iC in 1:NParam){ if(CalibOptions$OptimParam[iC]==TRUE){ + if(VectPace[iC]!=0){ PaceDiag[iC] <- CLG*PaceDiag[iC]+(1-CLG)*VectPace[iC]; } + if(VectPace[iC]==0){ PaceDiag[iC] <- CLG*PaceDiag[iC]; } + } } + } else { + ##When_no_progress_has_been_achieved_we_decrease_the_pace_________________ + Pace <- Pace/2; + Compt <- 0; + } + + + ##Test_of_an_additional_candidate_using_diagonal_progress_________________ + if(ITER>4*NParam){ + + NRuns <- NRuns+1; + iNewOptim <- 0; iNew <- 1; + CandidatesParamT <- NewParamOptimT+PaceDiag; if(!is.matrix(CandidatesParamT)){ CandidatesParamT <- matrix(CandidatesParamT,nrow=1); } + ##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary + for(iC in 1:NParam){ if(CalibOptions$OptimParam[iC]==TRUE){ + if(CandidatesParamT[iNew,iC]<RangesT[1,iC]){ CandidatesParamT[iNew,iC] <- RangesT[1,iC]; } + if(CandidatesParamT[iNew,iC]>RangesT[2,iC]){ CandidatesParamT[iNew,iC] <- RangesT[2,iC]; } + } } + CandidatesParamR <- FUN_TRANSFO(CandidatesParamT,"TR"); + ##Model_run + Param <- CandidatesParamR[iNew,]; + OutputsModel <- FUN_MOD(InputsModel,RunOptions,Param); + ##Calibration_criterion_computation + OutputsCrit <- FUN_CRIT(InputsCrit,OutputsModel); + if(OutputsCrit$CritValue*OutputsCrit$Multiplier < CritOptim){ + CritOptim <- OutputsCrit$CritValue*OutputsCrit$Multiplier; + iNewOptim <- iNew; + } + ##When_a_progress_has_been_achieved + if(iNewOptim!=0){ + OldParamOptimT <- NewParamOptimT; + NewParamOptimT <- matrix(CandidatesParamT[iNewOptim,1:NParam],nrow=1); + } + + } + + + ##Results_archiving_______________________________________________________ + NewParamOptimR <- FUN_TRANSFO(NewParamOptimT,"TR"); + HistParamR[ITER+1,] <- NewParamOptimR; + HistParamT[ITER+1,] <- NewParamOptimT; + HistCrit[ITER+1,] <- CritOptim; + ### if(!quiet){ cat(paste("\t Iter ",formatC(ITER,format="d",width=3)," Crit ",formatC(CritOptim,format="f",digits=4)," Pace ",formatC(Pace,format="f",digits=4),"\n",sep="")); } + + + + } ##END_LOOP_ITER_________________________________________________________ + ITER <- ITER-1; + + + ##Case_when_the_starting_parameter_set_remains_the_best_solution__________ + if(CritOptim==CritStart & !quiet){ + cat("\t No progress achieved \n"); + } + + ##End_of_Steepest_Descent_Local_Search____________________________________ + ParamFinalR <- NewParamOptimR; + ParamFinalT <- NewParamOptimT; + CritFinal <- CritOptim; + NIter <- 1+ITER; + if(!quiet){ + cat(paste("\t Calibration completed (",NIter," iterations, ",NRuns," runs): \n",sep="")); + cat(paste("\t Param = ",paste(formatC(ParamFinalR,format="f",width=8,digits=3),collapse=" , "),"\n",sep="")); + cat(paste("\t Crit ",format(CritName,width=12,justify="left")," = ",formatC(CritFinal*Multiplier,format="f",digits=4),"\n",sep="")); + } + ##Results_archiving_______________________________________________________ + HistParamR <- cbind(HistParamR[1:NIter,]); colnames(HistParamR) <- paste("Param",1:NParam,sep=""); + HistParamT <- cbind(HistParamT[1:NIter,]); colnames(HistParamT) <- paste("Param",1:NParam,sep=""); + HistCrit <- cbind(HistCrit[1:NIter,]); ###colnames(HistCrit) <- paste("HistCrit"); + + BoolCrit_Actual <- InputsCrit$BoolCrit; BoolCrit_Actual[OutputsCrit$Ind_notcomputed] <- FALSE; + MatBoolCrit <- cbind( InputsCrit$BoolCrit , BoolCrit_Actual ); + colnames(MatBoolCrit) <- c("BoolCrit_Requested","BoolCrit_Actual"); + + +##_____Output______________________________________________________________________________ + OutputsCalib <- list(as.double(ParamFinalR),CritFinal*Multiplier,NIter,NRuns,HistParamR,HistCrit*Multiplier,MatBoolCrit,CritName,CritBestValue); + names(OutputsCalib) <- c("ParamFinalR","CritFinal","NIter","NRuns","HistParamR","HistCrit","MatBoolCrit","CritName","CritBestValue"); + class(OutputsCalib) <- c("OutputsCalib","HBAN"); + return(OutputsCalib); + + + +} + + + + + diff --git a/R/Calibration_optim.R b/R/Calibration_optim.R new file mode 100644 index 00000000..154d6b5d --- /dev/null +++ b/R/Calibration_optim.R @@ -0,0 +1,152 @@ +#************************************************************************************************* +#' Calibration algorithm which minimises the error criterion. \cr +#' \cr +#' The algorithm is based on the "optim" function from the "stats" R-package +#' (using method="L-BFGS-B", i.e. a local optimization quasi-Newton method). +#' +#' To optimise the exploration of the parameter space, transformation functions are used to convert +#' the model parameters. This is done using the TransfoParam functions. +#************************************************************************************************* +#' @title Calibration algorithm which minimises the error criterion using the stats::optim function +#' @author Laurent Coron (August 2013) +#' @example tests/example_Calibration_optim.R +#' @seealso \code{\link{Calibration}}, \code{\link{Calibration_HBAN}}, +#' \code{\link{RunModel_GR4J}}, \code{\link{TransfoParam_GR4J}}, \code{\link{ErrorCrit_RMSE}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, +#' \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param CalibOptions [object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param FUN_TRANSFO (optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$ParamFinalR } \tab [numeric] parameter set obtained at the end of the calibration \cr +#' \emph{$CritFinal } \tab [numeric] error criterion obtained at the end of the calibration \cr +#' \emph{$Nruns } \tab [numeric] number of model runs done during the calibration \cr +#' \emph{$CritName } \tab [character] name of the calibration criterion \cr +#' \emph{$CritBestValue} \tab [numeric] theoretical best criterion value \cr +#' } +#************************************************************************************************** +Calibration_optim <- function(InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO=NULL,quiet=FALSE){ + + + ##_check_class + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions")==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(CalibOptions,"CalibOptions")==FALSE){ stop("CalibOptions must be of class 'CalibOptions' \n"); return(NULL); } + if(inherits(CalibOptions,"optim")==FALSE){ stop("CalibOptions must be of class 'optim' if Calibration_optim is used \n"); return(NULL); } + + + ##_check_FUN_TRANSFO + if(is.null(FUN_TRANSFO)){ + if(identical(FUN_MOD,RunModel_GR4H )){ FUN_TRANSFO <- TransfoParam_GR4H ; } + if(identical(FUN_MOD,RunModel_GR4J )){ FUN_TRANSFO <- TransfoParam_GR4J ; } + if(identical(FUN_MOD,RunModel_GR5J )){ FUN_TRANSFO <- TransfoParam_GR5J ; } + if(identical(FUN_MOD,RunModel_GR6J )){ FUN_TRANSFO <- TransfoParam_GR6J ; } + if(identical(FUN_MOD,RunModel_GR2M )){ FUN_TRANSFO <- TransfoParam_GR2M ; } + if(identical(FUN_MOD,RunModel_GR1A )){ FUN_TRANSFO <- TransfoParam_GR1A ; } + if(identical(FUN_MOD,RunModel_CemaNeige )){ FUN_TRANSFO <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J)){ FUN1 <- TransfoParam_GR4J; FUN2 <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR5J)){ FUN1 <- TransfoParam_GR5J; FUN2 <- TransfoParam_CemaNeige; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ FUN1 <- TransfoParam_GR6J; FUN2 <- TransfoParam_CemaNeige; } + FUN_TRANSFO <- function(ParamIn,Direction){ + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + ParamOut <- NA*ParamIn; + NParam <- ncol(ParamIn); + ParamOut[, 1:(NParam-2)] <- FUN1(ParamIn[, 1:(NParam-2)],Direction); + ParamOut[,(NParam-1):NParam ] <- FUN2(ParamIn[,(NParam-1):NParam ],Direction); + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + } + } + if(is.null(FUN_TRANSFO)){ stop("FUN_TRANSFO was not found (in Calibration function) \n"); return(NULL); } + } + + + ##_RunModelAndCrit + RunModelAndCrit <- function(par,InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO){ + ParamT <- NA*CalibOptions$FixedParam; + ParamT[CalibOptions$OptimParam] <- par; + Param <- FUN_TRANSFO(ParamIn=ParamT,Direction="TR"); + Param[!CalibOptions$OptimParam] <- CalibOptions$FixedParam[!CalibOptions$OptimParam]; + OutputsModel <- FUN_MOD(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param); + OutputsCrit <- FUN_CRIT(InputsCrit=InputsCrit,OutputsModel=OutputsModel); + return(OutputsCrit$CritValue*OutputsCrit$Multiplier); + } + + + ##_temporary_change_of_Outputs_Sim + RunOptions$Outputs_Sim <- RunOptions$Outputs_Cal; ### this reduces the size of the matrix exchange with fortran and therefore speeds the calibration + ##_screenPrint + if(!quiet){ + cat(paste("\t Calibration in progress (function optim from the stats package) \n",sep="")); + } + + + ##_lower_and_upper_limit_values (transformed) + RangesR <- CalibOptions$SearchRanges; + RangesT <- FUN_TRANSFO(RangesR,"RT"); + lower <- RangesT[1,CalibOptions$OptimParam]; + upper <- RangesT[2,CalibOptions$OptimParam]; + + ##_starting_values (transformed) + ParamStartT <- FUN_TRANSFO(CalibOptions$StartParam,"RT"); + par_start <- ParamStartT[CalibOptions$OptimParam]; + + + ##_calibration + RESULT <- optim(par=par_start,fn=RunModelAndCrit,gr=NULL, + InputsModel,RunOptions,InputsCrit,CalibOptions,FUN_MOD,FUN_CRIT,FUN_TRANSFO, ## arguments for the RunModelAndCrit function (other than par) + method="L-BFGS-B",lower=lower,upper=upper,control=list(),hessian=FALSE) + + + ##_outputs_preparation + ParamFinalT <- NA*ParamStartT; + ParamFinalT[CalibOptions$OptimParam] <- RESULT$par; + ParamFinalR <- FUN_TRANSFO(ParamFinalT,"TR"); + ParamFinalR[!CalibOptions$OptimParam] <- CalibOptions$FixedParam[!CalibOptions$OptimParam]; + CritFinal <- RESULT$value; + + ##_storage_of_crit_info + OutputsModel <- FUN_MOD(InputsModel=InputsModel,RunOptions=RunOptions,Param=ParamFinalR); + OutputsCrit <- FUN_CRIT(InputsCrit=InputsCrit,OutputsModel=OutputsModel); + CritName <- OutputsCrit$CritName; + CritBestValue <- OutputsCrit$CritBestValue; + Multiplier <- OutputsCrit$Multiplier; + + ##_screenPrint + if(!quiet){ + if(RESULT$convergence==0){ + cat(paste("\t Calibration completed: \n",sep="")); + cat(paste("\t Param = ",paste(formatC(ParamFinalR,format="f",width=8,digits=3),collapse=" , "),"\n",sep="")); + cat(paste("\t Crit ",format(CritName,width=12,justify="left")," = ",formatC(CritFinal*Multiplier,format="f",digits=4),"\n",sep="")); + } else { + cat(paste("\t Calibration failed: \n",sep="")); + cat(paste("\t ",RESULT$message,sep="")); + } + } + + + ##_function_output + OutputsCalib <- list(as.double(ParamFinalR),CritFinal*Multiplier,as.integer(RESULT$counts[1]),CritName,CritBestValue); + names(OutputsCalib) <- c("ParamFinalR","CritFinal","NRuns","CritName","CritBestValue"); + class(OutputsCalib) <- c("OutputsCalib","optim"); + return(OutputsCalib); + + +} + + + + diff --git a/R/CreateCalibOptions.R b/R/CreateCalibOptions.R new file mode 100644 index 00000000..72fec803 --- /dev/null +++ b/R/CreateCalibOptions.R @@ -0,0 +1,242 @@ +#************************************************************************************************* +#' Creation of the CalibOptions object required to the Calibration functions. +#' +#' Users wanting to use FUN_MOD, FUN_CALIB or FUN_TRANSFO functions that are not included in +#' the package must create their own CalibOptions object accordingly. +#************************************************************************************************* +#' @title Creation of the CalibOptions object required to the Calibration functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{Calibration}}, \code{\link{RunModel}} +#' @example tests/example_Calibration.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param FUN_CALIB (optional) [function] calibration algorithm function (e.g. Calibration_HBAN, Calibration_optim), default=Calibration_HBAN +#' @param FUN_TRANSFO (optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined +#' @param OptimParam (optional) [boolean] vector of booleans indicating which parameters must be optimised (NParam columns, 1 line) +#' @param FixedParam (optional) [numeric] vector giving the values to allocate to non-optimised parameter values (NParam columns, 1 line) +#' @param SearchRanges (optional) [numeric] matrix giving the ranges of real parameters (NParam columns, 2 lines) +#' \tabular{llllll}{ +#' \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr +#' [1,] \tab 0 \tab -1 \tab 0 \tab ... \tab 0.0 \cr +#' [2,] \tab 3000 \tab +1 \tab 100 \tab ... \tab 3.0 \cr +#' } +#' @param StartParam (optional) [numeric] vector of parameter values used to start global search calibration procedure (e.g. Calibration_optim) +#' \tabular{llllll}{ +#' \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr +#' \tab 1000 \tab -0.5 \tab 22 \tab ... \tab 1.1 \cr +#' } +#' @param StartParamList (optional) [numeric] matrix of parameter sets used for grid-screening calibration procedure (values in columns, sets in line) +#' \tabular{llllll}{ +#' \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr +#' [set1] \tab 800 \tab -0.7 \tab 25 \tab ... \tab 1.0 \cr +#' [set2] \tab 1000 \tab -0.5 \tab 22 \tab ... \tab 1.1 \cr +#' [...] \tab ... \tab ... \tab ... \tab ... \tab ... \cr +#' [set n] \tab 200 \tab -0.3 \tab 17 \tab ... \tab 1.0 \cr +#' } +#' @param StartParamDistrib (optional) [numeric] matrix of parameter values used for grid-screening calibration procedure (values in columns, percentiles in line) \cr +#' \tabular{llllll}{ +#' \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr +#' [value1] \tab 800 \tab -0.7 \tab 25 \tab ... \tab 1.0 \cr +#' [value2] \tab 1000 \tab NA \tab 50 \tab ... \tab 1.2 \cr +#' [value3] \tab 1200 \tab NA \tab NA \tab ... \tab 1.6 \cr +#' } +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] object of class \emph{CalibOptions} containing the data required to evaluate the model outputs; it can include the following: +#' \tabular{ll}{ +#' \emph{$OptimParam } \tab [boolean] vector of booleans indicating which parameters must be optimised \cr +#' \emph{$FixedParam } \tab [numeric] vector giving the values to allocate to non-optimised parameter values \cr +#' \emph{$SearchRanges } \tab [numeric] matrix giving the ranges of real parameters \cr +#' \emph{$StartParam } \tab [numeric] vector of parameter values used to start global search calibration procedure \cr +#' \emph{$StartParamList } \tab [numeric] matrix of parameter sets used for grid-screening calibration procedure \cr +#' \emph{$StartParamDistrib} \tab [numeric] matrix of parameter values used for grid-screening calibration procedure \cr +#' } +#************************************************************************************************** +CreateCalibOptions <- function(FUN_MOD,FUN_CALIB=Calibration_HBAN,FUN_TRANSFO=NULL,OptimParam=NULL,FixedParam=NULL,SearchRanges=NULL, + StartParam=NULL,StartParamList=NULL,StartParamDistrib=NULL){ + + + ObjectClass <- NULL; + + ##check_FUN_MOD + BOOL <- FALSE; + if(identical(FUN_MOD,RunModel_GR4H )){ ObjectClass <- c(ObjectClass,"GR4H" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_GR4J )){ ObjectClass <- c(ObjectClass,"GR4J" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_GR5J )){ ObjectClass <- c(ObjectClass,"GR5J" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_GR6J )){ ObjectClass <- c(ObjectClass,"GR6J" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_GR2M )){ ObjectClass <- c(ObjectClass,"GR2M" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_GR1A )){ ObjectClass <- c(ObjectClass,"GR1A" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_CemaNeige )){ ObjectClass <- c(ObjectClass,"CemaNeige" ); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J)){ ObjectClass <- c(ObjectClass,"CemaNeigeGR4J"); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR5J)){ ObjectClass <- c(ObjectClass,"CemaNeigeGR5J"); BOOL <- TRUE; } + if(identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ ObjectClass <- c(ObjectClass,"CemaNeigeGR6J"); BOOL <- TRUE; } + if(!BOOL){ stop("incorrect FUN_MOD for use in CreateCalibOptions \n"); return(NULL); } + + ##check_FUN_CALIB + BOOL <- FALSE; + if(identical(FUN_CALIB,Calibration_HBAN )){ ObjectClass <- c(ObjectClass,"HBAN" ); BOOL <- TRUE; } + if(identical(FUN_CALIB,Calibration_optim )){ ObjectClass <- c(ObjectClass,"optim" ); BOOL <- TRUE; } + if(!BOOL){ stop("incorrect FUN_CALIB for use in CreateCalibOptions \n"); return(NULL); } + + ##check_FUN_TRANSFO + if(is.null(FUN_TRANSFO)){ + ##_set_FUN1 + if(identical(FUN_MOD,RunModel_GR4H ) ){ FUN1 <- TransfoParam_GR4H ; } + if(identical(FUN_MOD,RunModel_GR4J ) | identical(FUN_MOD,RunModel_CemaNeigeGR4J) ){ FUN1 <- TransfoParam_GR4J ; } + if(identical(FUN_MOD,RunModel_GR5J ) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) ){ FUN1 <- TransfoParam_GR5J ; } + if(identical(FUN_MOD,RunModel_GR6J ) | identical(FUN_MOD,RunModel_CemaNeigeGR6J) ){ FUN1 <- TransfoParam_GR6J ; } + if(identical(FUN_MOD,RunModel_GR2M ) ){ FUN1 <- TransfoParam_GR2M ; } + if(identical(FUN_MOD,RunModel_GR1A ) ){ FUN1 <- TransfoParam_GR1A ; } + if(identical(FUN_MOD,RunModel_CemaNeige) ){ FUN1 <- TransfoParam_CemaNeige; } + if(is.null(FUN1)){ stop("FUN1 was not found \n"); return(NULL); } + ##_set_FUN2 + FUN2 <- TransfoParam_CemaNeige; + ##_set_FUN_TRANSFO + if(sum(ObjectClass %in% c("GR4H","GR4J","GR5J","GR6J","GR2M","GR1A","CemaNeige"))>0){ + FUN_TRANSFO <- FUN1; + } else { + FUN_TRANSFO <- function(ParamIn,Direction){ + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + ParamOut <- NA*ParamIn; + NParam <- ncol(ParamIn); + if(NParam <= 3){ + ParamOut[, 1:(NParam-2)] <- FUN1(cbind(ParamIn[,1:(NParam-2)]),Direction); + } else { + ParamOut[, 1:(NParam-2)] <- FUN1(ParamIn[,1:(NParam-2) ],Direction); } + ParamOut[,(NParam-1):NParam ] <- FUN2(ParamIn[,(NParam-1):NParam],Direction); + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + } + } + } + if(is.null(FUN_TRANSFO)){ stop("FUN_TRANSFO was not found \n"); return(NULL); } + + ##NParam + if("GR4H" %in% ObjectClass){ NParam <- 4; } + if("GR4J" %in% ObjectClass){ NParam <- 4; } + if("GR5J" %in% ObjectClass){ NParam <- 5; } + if("GR6J" %in% ObjectClass){ NParam <- 6; } + if("GR2M" %in% ObjectClass){ NParam <- 2; } + if("GR1A" %in% ObjectClass){ NParam <- 1; } + if("CemaNeige" %in% ObjectClass){ NParam <- 2; } + if("CemaNeigeGR4J" %in% ObjectClass){ NParam <- 6; } + if("CemaNeigeGR5J" %in% ObjectClass){ NParam <- 7; } + if("CemaNeigeGR6J" %in% ObjectClass){ NParam <- 8; } + + ##check_OptimParam + if(is.null(OptimParam)){ + OptimParam <- rep(TRUE,NParam); + } else { + if(!is.vector(OptimParam) ){ stop("OptimParam must be a vector of booleans \n"); return(NULL); } + if(length(OptimParam)!=NParam){ stop("Incompatibility between OptimParam length and FUN_MOD \n"); return(NULL); } + if(!is.logical(OptimParam) ){ stop("OptimParam must be a vector of booleans \n"); return(NULL); } + } + + ##check_FixedParam + if(is.null(FixedParam)){ + FixedParam <- rep(NA,NParam); + } else { + if(!is.vector(FixedParam) ){ stop("FixedParam must be a vector \n"); return(NULL); } + if(length(FixedParam)!=NParam ){ stop("Incompatibility between OptimParam length and FUN_MOD \n"); return(NULL); } + if(sum(!OptimParam)>0){ + if(!is.numeric(FixedParam[!OptimParam])){ stop("if OptimParam[i]==FALSE, FixedParam[i] must be a numeric value \n"); return(NULL); } } + } + + ##check_SearchRanges + if(is.null(SearchRanges)){ + ParamT <- matrix(c(rep(-9.99,NParam),rep(+9.99,NParam)),ncol=NParam,byrow=TRUE); + SearchRanges <- TransfoParam(ParamIn=ParamT,Direction="TR",FUN_TRANSFO=FUN_TRANSFO); + } else { + if(!is.matrix( SearchRanges) ){ stop("SearchRanges must be a matrix \n"); return(NULL); } + if(!is.numeric(SearchRanges) ){ stop("SearchRanges must be a matrix of numeric values \n"); return(NULL); } + if(sum(is.na(SearchRanges))!=0){ stop("SearchRanges must not include NA values \n"); return(NULL); } + if(nrow(SearchRanges)!=2 ){ stop("SearchRanges must have 2 rows \n"); return(NULL); } + if(ncol(SearchRanges)!=NParam ){ stop("Incompatibility between SearchRanges ncol and FUN_MOD \n"); return(NULL); } + } + + ##check_StartParamList_and_StartParamDistrib__default_values + if( ("HBAN" %in% ObjectClass & is.null(StartParamList) & is.null(StartParamDistrib)) | + ("optim" %in% ObjectClass & is.null(StartParam)) ){ + + if("GR4H"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10),ncol=NParam,byrow=TRUE); } + if("GR4J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10),ncol=NParam,byrow=TRUE); } + if("GR5J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -1.70, +3.30, -9.10, -0.70, + +3.90, -0.60, +4.10, -8.70, +0.30, + +4.50, -0.10, +5.00, -8.10, +0.50),ncol=NParam,byrow=TRUE); } + if("GR6J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -1.00, +3.30, -9.10, -0.90, +3.00, + +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, + +4.50, +0.50, +5.00, -8.10, +1.10, +5.00),ncol=NParam,byrow=TRUE); } + if("GR2M"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -5.00, + +3.90, +0.00, + +4.50, +5.00),ncol=NParam,byrow=TRUE); } + if("GR1A"%in% ObjectClass){ + ParamT <- matrix( c( -5.00, + +0.00, + +5.00),ncol=NParam,byrow=TRUE); } + if("CemaNeige"%in% ObjectClass){ + ParamT <- matrix( c( -6.26, +0.55, + -2.13, +0.92, + +4.86, +1.40),ncol=NParam,byrow=TRUE); } + if("CemaNeigeGR4J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -2.00, +3.40, -9.10, -6.26, +0.55, + +3.90, -0.90, +4.10, -8.70, -2.13, +0.92, + +4.50, -0.10, +5.00, -8.10, +4.86, +1.40),ncol=NParam,byrow=TRUE); } + if("CemaNeigeGR5J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -1.70, +3.30, -9.10, -0.70, -6.26, +0.55, + +3.90, -0.60, +4.10, -8.70, +0.30, -2.13, +0.92, + +4.50, -0.10, +5.00, -8.10, +0.50, +4.86, +1.40),ncol=NParam,byrow=TRUE); } + if("CemaNeigeGR6J"%in% ObjectClass){ + ParamT <- matrix( c( +3.60, -1.00, +3.30, -9.10, -0.90, +3.00, -6.26, +0.55, + +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, -2.13, +0.92, + +4.50, +0.50, +5.00, -8.10, +1.10, +5.00, +4.86, +1.40),ncol=NParam,byrow=TRUE); } + + StartParamList <- NULL; + StartParamDistrib <- TransfoParam(ParamIn=ParamT,Direction="TR",FUN_TRANSFO=FUN_TRANSFO); + StartParam <- StartParamDistrib[2,]; + } + + ##check_StartParamList_and_StartParamDistrib__format + if("HBAN" %in% ObjectClass & !is.null(StartParamList)){ + if(!is.matrix( StartParamList) ){ stop("StartParamList must be a matrix \n"); return(NULL); } + if(!is.numeric(StartParamList) ){ stop("StartParamList must be a matrix of numeric values \n"); return(NULL); } + if(sum(is.na(StartParamList))!=0){ stop("StartParamList must not include NA values \n"); return(NULL); } + if(ncol(StartParamList)!=NParam ){ stop("Incompatibility between StartParamList ncol and FUN_MOD \n"); return(NULL); } + } + if("HBAN" %in% ObjectClass & !is.null(StartParamDistrib)){ + if(!is.matrix( StartParamDistrib) ){ stop("StartParamDistrib must be a matrix \n"); return(NULL); } + if(!is.numeric(StartParamDistrib[1,]) ){ stop("StartParamDistrib must be a matrix of numeric values \n"); return(NULL); } + if(sum(is.na(StartParamDistrib[1,]))!=0){ stop("StartParamDistrib must not include NA values on the first line \n"); return(NULL); } + if(ncol(StartParamDistrib)!=NParam ){ stop("Incompatibility between StartParamDistrib ncol and FUN_MOD \n"); return(NULL); } + } + if("optim" %in% ObjectClass & !is.null(StartParam)){ + if(!is.vector( StartParam) ){ stop("StartParam must be a vector \n"); return(NULL); } + if(!is.numeric(StartParam) ){ stop("StartParam must be a vector of numeric values \n"); return(NULL); } + if(sum(is.na(StartParam))!=0 ){ stop("StartParam must not include NA values \n"); return(NULL); } + if(length(StartParam)!=NParam ){ stop("Incompatibility between StartParam length and FUN_MOD \n"); return(NULL); } + } + + + ##Create_CalibOptions + CalibOptions <- list(OptimParam=OptimParam,FixedParam=FixedParam,SearchRanges=SearchRanges); + if(!is.null(StartParam )){ CalibOptions <- c(CalibOptions,list(StartParam=StartParam)); } + if(!is.null(StartParamList )){ CalibOptions <- c(CalibOptions,list(StartParamList=StartParamList)); } + if(!is.null(StartParamDistrib)){ CalibOptions <- c(CalibOptions,list(StartParamDistrib=StartParamDistrib)); } + class(CalibOptions) <- c("CalibOptions",ObjectClass); + return(CalibOptions); + + +} + + + diff --git a/R/CreateInputsCrit.R b/R/CreateInputsCrit.R new file mode 100644 index 00000000..09bc06d1 --- /dev/null +++ b/R/CreateInputsCrit.R @@ -0,0 +1,81 @@ +#************************************************************************************************* +#' Creation of the InputsCrit object required to the ErrorCrit functions. +#' +#' Users wanting to use FUN_CRIT functions that are not included in +#' the package must create their own InputsCrit object accordingly. +#************************************************************************************************* +#' @title Creation of the InputsCrit object required to the ErrorCrit functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateCalibOptions}} +#' @example tests/example_ErrorCrit.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Qobs [numeric] series of observed discharges [mm] +#' @param BoolCrit (optional) [boolean] boolean giving the time steps to consider in the computation (all time steps are consider by default) +#' @param transfo (optional) [character] name of the transformation (e.g. "", "sqrt", "log", "inv", "sort") +#' @param Ind_zeroes (optional) [numeric] indices of the time-steps where zeroes are observed +#' @param epsilon (optional) [numeric] epsilon to add to all Qobs and Qsim if \emph{$Ind_zeroes} is not empty +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] object of class \emph{InputsCrit} containing the data required to evaluate the model outputs; it can include the following: +#' \tabular{ll}{ +#' \emph{$BoolCrit } \tab [boolean] boolean giving the time steps to consider in the computation \cr +#' \emph{$Qobs } \tab [numeric] series of observed discharges [mm] \cr +#' \emph{$transfo } \tab [character] name of the transformation (e.g. "", "sqrt", "log", "inv", "sort") \cr +#' \emph{$Ind_zeroes} \tab [numeric] indices of the time-steps where zeroes are observed \cr +#' \emph{$epsilon } \tab [numeric] epsilon to add to all Qobs and Qsim if \emph{$Ind_zeroes} is not empty \cr +#' } +#************************************************************************************************** +CreateInputsCrit <- function(FUN_CRIT,InputsModel,RunOptions,Qobs,BoolCrit=NULL,transfo="",Ind_zeroes=NULL,epsilon=NULL){ + + ObjectClass <- NULL; + + ##check_FUN_CRIT + BOOL <- FALSE; + if(identical(FUN_CRIT,ErrorCrit_NSE) | identical(FUN_CRIT,ErrorCrit_KGE) | identical(FUN_CRIT,ErrorCrit_KGE2) | + identical(FUN_CRIT,ErrorCrit_RMSE)){ + BOOL <- TRUE; } + if(!BOOL){ stop("incorrect FUN_CRIT for use in CreateInputsCrit \n"); return(NULL); } + + ##check_arguments + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n" ); return(NULL); } + if(inherits(RunOptions ,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n" ); return(NULL); } + LLL <- length(InputsModel$DatesR[RunOptions$IndPeriod_Run]) + + if(is.null(Qobs) ){ stop("Qobs is missing \n"); return(NULL); } + if(!is.vector( Qobs)){ stop(paste("Qobs must be a vector of numeric values \n",sep="")); return(NULL); } + if(!is.numeric(Qobs)){ stop(paste("Qobs must be a vector of numeric values \n",sep="")); return(NULL); } + if(length(Qobs)!=LLL){ stop("Qobs and InputsModel series must have the same length \n"); return(NULL); } + + if(is.null(BoolCrit)){ BoolCrit <- rep(TRUE,length(Qobs)); } + if(!is.logical(BoolCrit)){ stop("BoolCrit must be a vector of boolean \n" ); return(NULL); } + if(length(BoolCrit)!=LLL){ stop("BoolCrit and InputsModel series must have the same length \n"); return(NULL); } + + if(is.null(transfo) ){ stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + if(!is.vector(transfo )){ stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + if(length(transfo)!=1 ){ stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + if(!is.character(transfo)){ stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + if(transfo %in% c("","sqrt","log","inv") == FALSE){ + stop("transfo must be a chosen among the following: '', 'sqrt', 'log' or 'inv' \n"); return(NULL); } + + if(!is.null(Ind_zeroes)){ + if(!is.vector( Ind_zeroes)){ stop("Ind_zeroes must be a vector of integers \n" ); return(NULL); } + if(!is.integer(Ind_zeroes)){ stop("Ind_zeroes must be a vector of integers \n" ); return(NULL); } + } + if(!is.null(epsilon)){ + if(!is.vector( epsilon) | length(epsilon)!=1 | !is.numeric(epsilon)){ + stop("epsilon must be single numeric value \n" ); return(NULL); } + epsilon=as.double(epsilon); + } + + ##Create_InputsCrit + InputsCrit <- list(BoolCrit=BoolCrit,Qobs=Qobs,transfo=transfo,Ind_zeroes=Ind_zeroes,epsilon=epsilon); + class(InputsCrit) <- c("InputsCrit",ObjectClass); + return(InputsCrit); + + +} + diff --git a/R/CreateInputsModel.R b/R/CreateInputsModel.R new file mode 100644 index 00000000..8dcacd06 --- /dev/null +++ b/R/CreateInputsModel.R @@ -0,0 +1,171 @@ +#************************************************************************************************* +#' Creation of the InputsModel object required to the RunModel functions. +#' +#' Users wanting to use FUN_MOD functions that are not included in +#' the package must create their own InputsModel object accordingly. +#************************************************************************************************* +#' @title Creation of the InputsModel object required to the RunModel functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}, \code{\link{DataAltiExtrapolation_HBAN}} +#' @example tests/example_RunModel.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param DatesR [POSIXlt] vector of dates required to create the GR model and CemaNeige module inputs +#' @param Precip [numeric] time series of total precipitation (catchment average) [mm], required to create the GR model and CemaNeige module inputs +#' @param PotEvap [numeric] time series of potential evapotranspiration (catchment average) [mm], required to create the GR model inputs +#' @param TempMean (optional) [numeric] time series of mean air temperature [degC], required to create the CemaNeige module inputs +#' @param TempMin (optional) [numeric] time series of min air temperature [degC], possibly used to create the CemaNeige module inputs +#' @param TempMax (optional) [numeric] time series of max air temperature [degC], possibly used to create the CemaNeige module inputs +#' @param ZInputs (optional) [numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m] +#' @param HypsoData (optional) [numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m], required to create the GR model inputs, if not defined a single elevation is used for CemaNeige +#' @param NLayers (optional) [numeric] integer giving the number of elevation layers requested [-], required to create the GR model inputs, default=5 +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] object of class \emph{InputsModel} containing the data required to evaluate the model outputs; it can include the following: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] vector of dates \cr +#' \emph{$Precip } \tab [numeric] time series of total precipitation (catchment average) [mm] \cr +#' \emph{$PotEvap } \tab [numeric] time series of potential evapotranspiration (catchment average) [mm], \cr\tab defined if FUN_MOD includes GR4H, GR4J, GR5J, GR6J, GR2M or GR1A \cr \cr +#' \emph{$LayerPrecip } \tab [list] list of time series of precipitation (layer average) [mm], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr +#' \emph{$LayerTempMean } \tab [list] list of time series of mean air temperature (layer average) [degC], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr +#' \emph{$LayerFracSolidPrecip} \tab [list] list of time series of solid precip. fract. (layer average) [-], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr +#' } +#************************************************************************************************** +CreateInputsModel <- function(FUN_MOD,DatesR,Precip,PotEvap=NULL,TempMean=NULL,TempMin=NULL,TempMax=NULL,ZInputs=NULL,HypsoData=NULL,NLayers=5,quiet=FALSE){ + + ObjectClass <- NULL; + + ##check_FUN_MOD + BOOL <- FALSE; + if(identical(FUN_MOD,RunModel_GR4H)){ + ObjectClass <- c(ObjectClass,"hourly","GR"); + TimeStep <- as.integer(60*60); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_GR6J)){ + ObjectClass <- c(ObjectClass,"daily","GR"); + TimeStep <- as.integer(24*60*60); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_GR2M)){ + ObjectClass <- c(ObjectClass,"GR","monthly"); + TimeStep <- as.integer(c(28,29,30,31)*24*60*60); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_GR1A)){ + ObjectClass <- c(ObjectClass,"GR","yearly"); + TimeStep <- as.integer(c(365,366)*24*60*60); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_CemaNeige)){ + ObjectClass <- c(ObjectClass,"daily","CemaNeige"); + TimeStep <- as.integer(24*60*60); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + ObjectClass <- c(ObjectClass,"daily","GR","CemaNeige"); + TimeStep <- as.integer(24*60*60); + BOOL <- TRUE; + } + if(!BOOL){ stop("incorrect FUN_MOD for use in CreateInputsModel \n"); return(NULL); } + + ##check_arguments + if("GR" %in% ObjectClass | "CemaNeige" %in% ObjectClass){ + if(is.null(DatesR)){ stop("DatesR is missing \n"); return(NULL); } + if("POSIXlt" %in% class(DatesR) == FALSE & "POSIXct" %in% class(DatesR) == FALSE){ stop("DatesR must be defined as POSIXlt or POSIXct \n"); return(NULL); } + if("POSIXlt" %in% class(DatesR) == FALSE){ DatesR <- as.POSIXlt(DatesR); } + if(difftime(tail(DatesR,1),tail(DatesR,2),units="secs")[[1]] %in% TimeStep==FALSE){ stop(paste("the time step of the model inputs must be ",TimeStep," seconds \n",sep="")); return(NULL); } + LLL <- length(DatesR); + } + if("GR" %in% ObjectClass){ + if(is.null(Precip )){ stop("Precip is missing \n" ); return(NULL); } + if(is.null(PotEvap )){ stop("PotEvap is missing \n" ); return(NULL); } + if(!is.vector( Precip) | !is.vector( PotEvap)){ stop("Precip and PotEvap must be vectors of numeric values \n"); return(NULL); } + if(!is.numeric(Precip) | !is.numeric(PotEvap)){ stop("Precip and PotEvap must be vectors of numeric values \n"); return(NULL); } + if(length(Precip)!=LLL | length(PotEvap)!=LLL){ stop("Precip, PotEvap and DatesR must have the same length \n"); return(NULL); } + } + if("CemaNeige" %in% ObjectClass){ + if(is.null(Precip )){ stop("Precip is missing \n" ); return(NULL); } + if(is.null(TempMean)){ stop("TempMean is missing \n"); return(NULL); } + if(!is.vector( Precip) | !is.vector( TempMean)){ stop("Precip and TempMean must be vectors of numeric values \n"); return(NULL); } + if(!is.numeric(Precip) | !is.numeric(TempMean)){ stop("Precip and TempMean must be vectors of numeric values \n"); return(NULL); } + if(length(Precip)!=LLL | length(TempMean)!=LLL){ stop("Precip, TempMean and DatesR must have the same length \n"); return(NULL); } + if(is.null(TempMin)!=is.null(TempMax)){ stop("TempMin and TempMax must be both defined if not null \n"); return(NULL); } + if(!is.null(TempMin) & !is.null(TempMax)){ + if(!is.vector( TempMin) | !is.vector( TempMax)){ stop("TempMin and TempMax must be vectors of numeric values \n"); return(NULL); } + if(!is.numeric(TempMin) | !is.numeric(TempMax)){ stop("TempMin and TempMax must be vectors of numeric values \n"); return(NULL); } + if(length(TempMin)!=LLL | length(TempMax)!=LLL){ stop("TempMin, TempMax and DatesR must have the same length \n"); return(NULL); } + } + if(!is.null(HypsoData)){ + if(!is.vector( HypsoData)){ stop("HypsoData must be a vector of numeric values if not null \n"); return(NULL); } + if(!is.numeric(HypsoData)){ stop("HypsoData must be a vector of numeric values if not null \n"); return(NULL); } + if(length(HypsoData)!=101){ stop("HypsoData must be of length 101 if not null \n"); return(NULL); } + if(sum(is.na(HypsoData))!=0 & sum(is.na(HypsoData))!=101){ stop("HypsoData must not contain any NA if not null \n"); return(NULL); } + } + if(!is.null(ZInputs)){ + if(length(ZInputs)!=1 ){ stop("\t ZInputs must be a single numeric value if not null \n"); return(NULL); } + if(is.na(ZInputs) | !is.numeric(ZInputs)){ stop("\t ZInputs must be a single numeric value if not null \n"); return(NULL); } + } + if(is.null(HypsoData)){ + if(!quiet){ warning("\t HypsoData is missing => a single layer is used and no extrapolation is made \n"); } + HypsoData <- as.numeric(rep(NA,101)); ZInputs <- as.numeric(NA); NLayers <- as.integer(1); + } + if(is.null(ZInputs)){ + if(!quiet & !identical(HypsoData,as.numeric(rep(NA,101)))){ warning("\t ZInputs is missing => HypsoData[51] is used \n"); } + ZInputs <- HypsoData[51]; + } + } + + + ##check_NA_values + BOOL_NA <- rep(FALSE,length(DatesR)); + if("GR" %in% ObjectClass){ + BOOL_NA_TMP <- (Precip < 0) | is.na(Precip ); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < 0 or NA values detected in Precip series \n"); } } + BOOL_NA_TMP <- (PotEvap < 0) | is.na(PotEvap); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < 0 or NA values detected in PotEvap series \n"); } } + } + if("CemaNeige" %in% ObjectClass){ + BOOL_NA_TMP <- (Precip < 0 ) | is.na(Precip ); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < 0 or NA values detected in Precip series \n"); } } + BOOL_NA_TMP <- (TempMean<(-150)) | is.na(TempMean); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < -150) or NA values detected in TempMean series \n"); } } + if(!is.null(TempMin) & !is.null(TempMax)){ + BOOL_NA_TMP <- (TempMin<(-150)) | is.na(TempMin); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < -150) or NA values detected in TempMin series \n"); } } + BOOL_NA_TMP <- (TempMax<(-150)) | is.na(TempMax); if(sum(BOOL_NA_TMP)!=0){ BOOL_NA <- BOOL_NA | BOOL_NA_TMP; if(!quiet){ warning("\t Values < -150) or NA values detected in TempMax series \n"); } } } + } + if(sum(BOOL_NA)!=0){ + WTxt <- NULL; + WTxt <- paste(WTxt,"\t Missing values are not allowed in InputsModel \n",sep=""); + Select <- (max(which(BOOL_NA))+1):length(BOOL_NA); + if(Select[1]>Select[2]){ stop(paste("time series could not be trunced since missing values were detected at the list time-step \n",sep="")); return(NULL); } + if("GR" %in% ObjectClass){ + Precip <- Precip[Select]; PotEvap <- PotEvap[Select]; } + if("CemaNeige" %in% ObjectClass){ + Precip <- Precip[Select]; TempMean <- TempMean[Select]; if(!is.null(TempMin) & !is.null(TempMax)){ TempMin <- TempMin[Select]; TempMax <- TempMax[Select]; } } + WTxt <- paste(WTxt,"\t -> data were trunced to keep the most recent available time-steps \n",sep=""); + WTxt <- paste(WTxt,"\t -> ",length(Select)," time-steps were kept \n",sep=""); + if(!is.null(WTxt) & !quiet){ warning(WTxt); } + } + + + ##DataAltiExtrapolation_HBAN + if("CemaNeige" %in% ObjectClass){ + RESULT <- DataAltiExtrapolation_HBAN(DatesR=DatesR,Precip=Precip,TempMean=TempMean,TempMin=TempMin,TempMax=TempMax,ZInputs=ZInputs,HypsoData=HypsoData,NLayers=NLayers,quiet=quiet); + if(!quiet){ if(NLayers==1){ cat(paste("\t Input series were successfully created on 1 elevation layer for use by CemaNeige \n",sep="")); + } else { cat(paste("\t Input series were successfully created on ",NLayers," elevation layers for use by CemaNeige \n",sep="")); } } + } + + + ##Create_InputsModel + InputsModel <- list(DatesR=DatesR); + if("GR" %in% ObjectClass){ + InputsModel <- c(InputsModel,list(Precip=as.double(Precip),PotEvap=as.double(PotEvap))); } + if("CemaNeige" %in% ObjectClass){ + InputsModel <- c(InputsModel,list(LayerPrecip=RESULT$LayerPrecip,LayerTempMean=RESULT$LayerTempMean, + LayerFracSolidPrecip=RESULT$LayerFracSolidPrecip,ZLayers=RESULT$ZLayers)); } + + class(InputsModel) <- c("InputsModel",ObjectClass); + return(InputsModel); + + +} + diff --git a/R/CreateRunOptions.R b/R/CreateRunOptions.R new file mode 100644 index 00000000..35d930ee --- /dev/null +++ b/R/CreateRunOptions.R @@ -0,0 +1,295 @@ +#************************************************************************************************* +#' Creation of the RunOptions object required to the RunModel functions. +#' +#' Users wanting to use FUN_MOD functions that are not included in +#' the package must create their own RunOptions object accordingly. +#' +#' ##### Initialisation options ##### +#' +#' The model initialisation options can either be set to a default configuration or be defined by the user. +#' +#' This is done via three vectors: \cr \emph{IndPeriod_WarmUp}, \emph{IniStates}, \emph{IniResLevels}. \cr +#' A default configuration is used for initialisation if these vectors are not defined. +#' +#' (1) Default initialisation options: +#' +#' \itemize{ +#' \item \emph{IndPeriod_WarmUp} default setting ensures a one-year warm-up using the time-steps preceding the \emph{IndPeriod_Run}. +#' The actual length of this warm-up might be shorter depending on data availability (no missing value being allowed on model input series). +#' +#' \item \emph{IniStates} and \emph{IniResLevels} are automatically set to initialise all the model states at 0, except for the production and routing stores which are initialised at 50\% of their capacity. This initialisation is made at the very beginning of the model call (i.e. at the beginning of \emph{IndPeriod_WarmUp} or at the beginning of IndPeriod_Run if the warm-up period is disabled). +#' } +#' +#' (2) Customisation of initialisation options: +#' +#' \itemize{ +#' \item \emph{IndPeriod_WarmUp} can be used to specify the indices of the warm-up period (within the time-series prepared in InputsModel). \cr +#' - remark 1: for most common cases, indices corresponding to one or several years preceding \emph{IndPeriod_Run} are used (e.g. \emph{IndPeriod_WarmUp <- 1000:1365} and \emph{IndPeriod_Run <- 1366:5000)}. \cr +#' However, it is also possible to perform a long-term initialisation if other indices than the warm-up ones are set in \emph{IndPeriod_WarmUp} (e.g. \emph{IndPeriod_WarmUp <- c( 1:5000 , 1:5000 , 1:5000 ,1000:1365 )}). \cr +#' - remark 2: it is also possible to completely disable the warm-up period when using \emph{IndPeriod_WarmUp <- 0}. +#' +#' \item \emph{IniStates} and \emph{IniResLevels} can be used to specify the initial model states. \cr +#' - remark 1: if \emph{IniStates} is used, all model states must be provided (e.g. 60 floats [mm] are required for GR4J, GR5J and GR6J; 60+2*NLayers floats [mm] are required for CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J; see fortran source code for details). \cr +#' - remark 2: in addition to \emph{IniStates}, \emph{IniResLevels} allows to set the filling rate of the production and routing stores for the GR models. For instance for GR4J, GR5J and GR6J: \emph{IniResLevels <- c(0.3,0.5)} should be used to obtain initial fillings of 30\% and 50\% for the production and routing stores, respectively. \emph{IniResLevels} is optional and can only be used if \emph{IniStates} is also defined (the state values corresponding to these two stores in \emph{IniStates} are not used in such case). \cr \cr +#' } +#************************************************************************************************* +#' @title Creation of the RunOptions object required to the RunModel functions +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}} +#' @example tests/example_RunModel.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param IndPeriod_WarmUp (optional) [numeric] index of period to be used for the model warm-up [-] +#' @param IndPeriod_Run [numeric] index of period to be used for the model run [-] +#' @param IniStates (optional) [numeric] vector of initial model states [mm] +#' @param IniResLevels (optional) [numeric] vector of initial filling rates for production and routing stores (2 values between 0 and 1) [-] +#' @param Outputs_Cal (optional) [character] vector giving the outputs needed for the calibration \cr (e.g. c("Qsim")), the least outputs the fastest the calibration +#' @param Outputs_Sim (optional) [character] vector giving the requested outputs \cr (e.g. c("DatesR","Qsim","SnowPack")), default="all" +#' @param RunSnowModule (optional) [boolean] option indicating whether CemaNeige should be activated, default=TRUE +#' @param MeanAnSolidPrecip (optional) [numeric] vector giving the annual mean of average solid precipitation for each layer (computed from InputsModel if not defined) [mm/y] +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [list] object of class \emph{RunOptions} containing the data required to evaluate the model outputs; it can include the following: +#' \tabular{ll}{ +#' \emph{IndPeriod_WarmUp } \tab [numeric] index of period to be used for the model warm-up [-] \cr +#' \emph{IndPeriod_Run } \tab [numeric] index of period to be used for the model run [-] \cr +#' \emph{IniStates } \tab [numeric] vector of initial model states [mm] \cr +#' \emph{IniResLevels } \tab [numeric] vector of initial filling rates for production and routing stores [-] \cr +#' \emph{Outputs_Cal } \tab [character] character vector giving only the outputs needed for the calibration \cr +#' \emph{Outputs_Sim } \tab [character] character vector giving the requested outputs \cr +#' \emph{RunSnowModule } \tab [boolean] option indicating whether CemaNeige should be activated \cr +#' \emph{MeanAnSolidPrecip} \tab [numeric] vector giving the annual mean of average solid precipitation for each layer [mm/y] \cr +#' } +#**************************************************************************************************' +CreateRunOptions <- function(FUN_MOD,InputsModel,IndPeriod_WarmUp=NULL,IndPeriod_Run,IniStates=NULL,IniResLevels=NULL, + Outputs_Cal=NULL,Outputs_Sim="all",RunSnowModule=TRUE,MeanAnSolidPrecip=NULL,quiet=FALSE){ + + + ObjectClass <- NULL; + + ##check_FUN_MOD + BOOL <- FALSE; + if(identical(FUN_MOD,RunModel_GR4H)){ + ObjectClass <- c(ObjectClass,"GR","hourly"); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_GR6J)){ + ObjectClass <- c(ObjectClass,"GR","daily"); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_GR2M)){ + ObjectClass <- c(ObjectClass,"GR","monthly"); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_GR1A)){ + ObjectClass <- c(ObjectClass,"GR","yearly"); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_CemaNeige)){ + ObjectClass <- c(ObjectClass,"CemaNeige","daily"); + BOOL <- TRUE; + } + if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + ObjectClass <- c(ObjectClass,"GR","CemaNeige","daily"); + BOOL <- TRUE; + } + if(!BOOL){ stop("incorrect FUN_MOD for use in CreateRunOptions \n"); return(NULL); } + + + ##check_InputsModel + if(!inherits(InputsModel,"InputsModel")){ + stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if("GR" %in% ObjectClass & !inherits(InputsModel,"GR")){ + stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if("CemaNeige" %in% ObjectClass & !inherits(InputsModel,"CemaNeige")){ + stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if("hourly" %in% ObjectClass & !inherits(InputsModel,"hourly")){ + stop("InputsModel must be of class 'hourly' \n"); return(NULL); } + if("daily" %in% ObjectClass & !inherits(InputsModel,"daily")){ + stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if("monthly" %in% ObjectClass & !inherits(InputsModel,"monthly")){ + stop("InputsModel must be of class 'monthly' \n"); return(NULL); } + if("yearly" %in% ObjectClass & !inherits(InputsModel,"yearly")){ + stop("InputsModel must be of class 'yearly' \n"); return(NULL); } + + + ##check_IndPeriod_Run + if(!is.vector( IndPeriod_Run)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); } + if(!is.numeric(IndPeriod_Run)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); } + if(identical(as.integer(IndPeriod_Run),as.integer(seq(from=IndPeriod_Run[1],to=tail(IndPeriod_Run,1),by=1)))==FALSE){ + stop("IndPeriod_Run must be a continuous sequence of integers \n"); return(NULL); } + if(storage.mode(IndPeriod_Run)!="integer"){ stop("IndPeriod_Run should be of type integer \n"); return(NULL); } + + + ##check_IndPeriod_WarmUp + WTxt <- NULL; + if(is.null(IndPeriod_WarmUp)){ + WTxt <- paste(WTxt,"\t Model warm-up period not defined -> default configuration used \n",sep=""); + ##If_the_run_period_starts_at_the_very_beginning_of_the_time_series + if(IndPeriod_Run[1]==as.integer(1)){ + IndPeriod_WarmUp <- as.integer(0); + WTxt <- paste(WTxt,"\t No data were found for model warm-up! \n",sep=""); + ##We_look_for_the_longest_period_preceeding_the_run_period_with_a_maximum_of_one_year + } else { + TmpDateR <- InputsModel$DatesR[IndPeriod_Run[1]] - 365*24*60*60; ### minimal date to start the warmup + IndPeriod_WarmUp <- which(InputsModel$DatesR==max(InputsModel$DatesR[1],TmpDateR)) : (IndPeriod_Run[1]-1); + if("hourly" %in% ObjectClass){ TimeStep <- as.integer( 60*60); } + if("daily" %in% ObjectClass){ TimeStep <- as.integer( 24*60*60); } + if("monthly" %in% ObjectClass){ TimeStep <- as.integer( 30.44*24*60*60); } + if("yearly" %in% ObjectClass){ TimeStep <- as.integer(365.25*24*60*60); } + if(length(IndPeriod_WarmUp)*TimeStep/(365*24*60*60)>=1){ + WTxt <- paste(WTxt,"\t The year preceding the run period is used \n",sep=""); + } else { + WTxt <- paste(WTxt,"\t Less than a year (without missing values) was found for model warm-up: \n",sep=""); + WTxt <- paste(WTxt,"\t (",length(IndPeriod_WarmUp)," time-steps are used for initialisation) \n",sep=""); + } + } + } + if(!is.null(IndPeriod_WarmUp)){ + if(!is.vector( IndPeriod_WarmUp)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); } + if(!is.numeric(IndPeriod_WarmUp)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); } + if(storage.mode(IndPeriod_WarmUp)!="integer"){ stop("IndPeriod_Run should be of type integer \n"); return(NULL); } + if(identical(IndPeriod_WarmUp,as.integer(0))){ + WTxt <- paste(WTxt,"\t No warm-up period is used! \n",sep=""); } + if((IndPeriod_Run[1]-1)!=tail(IndPeriod_WarmUp,1) & !identical(IndPeriod_WarmUp,as.integer(0))){ + WTxt <- paste(WTxt,"\t Model warm-up period is not directly before the model run period \n",sep=""); } + } + if(!is.null(WTxt) & !quiet){ warning(WTxt); } + + + ##check_IniStates_and_IniResLevels + if(is.null(IniStates) & is.null(IniResLevels) & !quiet){ + warning("\t Model states initialisation not defined -> default configuration used \n"); } + if("CemaNeige" %in% ObjectClass){ NLayers <- length(InputsModel$LayerPrecip); } else { NLayers <- 0; } + NState <- NULL; + if("GR" %in% ObjectClass | "CemaNeige" %in% ObjectClass){ + if("hourly" %in% ObjectClass){ NState <- 3*24*20; } + if("daily" %in% ObjectClass){ NState <- 3*20 + 2*NLayers; } + if("monthly" %in% ObjectClass){ NState <- 2; } + if("yearly" %in% ObjectClass){ NState <- 1; } + } + if(!is.null(IniStates)){ + if(!is.vector( IniStates) ){ stop("IniStates must be a vector of numeric values \n"); return(NULL); } + if(!is.numeric(IniStates) ){ stop("IniStates must be a vector of numeric values \n"); return(NULL); } + if(length(IniStates)!=NState){ stop(paste("The length of IniStates must be ",NState," for the chosen FUN_MOD \n",sep="")); return(NULL); } + } else { + IniStates <- as.double(rep(0.0,NState)); + } + if("GR" %in% ObjectClass & ("monthly" %in% ObjectClass | "daily" %in% ObjectClass | "hourly" %in% ObjectClass)){ + if(!is.null(IniResLevels)){ + if(!is.vector(IniResLevels) ){ stop("IniResLevels must be a vector of numeric values \n"); return(NULL); } + if(!is.numeric(IniResLevels)){ stop("IniResLevels must be a vector of numeric values \n"); return(NULL); } + if(length(IniResLevels)!=2 ) { stop("The length of IniStates must be 2 for the chosen FUN_MOD \n"); return(NULL); } + } else { + IniResLevels <- as.double(c(0.3,0.5)); + } + } else { + if(!is.null(IniResLevels)){ stop("IniResLevels can only be used with monthly or daily or hourly GR models \n") } + } + + + ##check_Outputs_Cal_and_Sim + + ##Outputs_all + Outputs_all <- NULL; + if(identical(FUN_MOD,RunModel_GR4H)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); } + if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR4J)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); } + if(identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); } + if(identical(FUN_MOD,RunModel_GR6J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QR1","Exp","QD","Qsim"); } + if(identical(FUN_MOD,RunModel_GR2M)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Qsim"); } + if(identical(FUN_MOD,RunModel_GR1A)){ + Outputs_all <- c(Outputs_all,"PotEvap","Precip","Qsim"); } + if("CemaNeige" %in% ObjectClass){ + Outputs_all <- c(Outputs_all,"Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); } + + ##check_Outputs_Sim + if(!is.vector( Outputs_Sim)){ stop("Outputs_Sim must be a vector of characters \n"); return(NULL); } + if(!is.character(Outputs_Sim)){ stop("Outputs_Sim must be a vector of characters \n"); return(NULL); } + if(sum(is.na(Outputs_Sim))!=0){ stop("Outputs_Sim must not contain NA \n"); return(NULL); } + if("all" %in% Outputs_Sim){ Outputs_Sim <- c("DatesR",Outputs_all,"StateEnd"); } + Test <- which(Outputs_Sim %in% c("DatesR",Outputs_all,"StateEnd") == FALSE); if(length(Test)!=0){ + stop(paste("Outputs_Sim is incorrectly defined: ",paste(Outputs_Sim[Test],collapse=", ")," not found \n",sep="")); return(NULL); } + Outputs_Sim <- Outputs_Sim[!duplicated(Outputs_Sim)]; + + ##check_Outputs_Cal + if(is.null(Outputs_Cal)){ + if("GR" %in% ObjectClass ){ Outputs_Cal <- c("Qsim"); } + if("CemaNeige" %in% ObjectClass ){ Outputs_Cal <- c("all"); } + if("GR" %in% ObjectClass & "CemaNeige" %in% ObjectClass){ Outputs_Cal <- c("PliqAndMelt","Qsim"); } + } else { + if(!is.vector( Outputs_Cal)){ stop("Outputs_Cal must be a vector of characters \n"); return(NULL); } + if(!is.character(Outputs_Cal)){ stop("Outputs_Cal must be a vector of characters \n"); return(NULL); } + if(sum(is.na(Outputs_Cal))!=0){ stop("Outputs_Cal must not contain NA \n"); return(NULL); } + } + if("all" %in% Outputs_Cal){ Outputs_Cal <- c("DatesR",Outputs_all,"StateEnd"); } + Test <- which(Outputs_Cal %in% c("DatesR",Outputs_all,"StateEnd") == FALSE); if(length(Test)!=0){ + stop(paste("Outputs_Cal is incorrectly defined: ",paste(Outputs_Cal[Test],collapse=", ")," not found \n",sep="")); return(NULL); } + Outputs_Cal <- Outputs_Cal[!duplicated(Outputs_Cal)]; + + + ##check_RunSnowModule + if("CemaNeige" %in% ObjectClass){ + if(!is.vector( RunSnowModule)){ stop("RunSnowModule must be a single boolean \n"); return(NULL); } + if(!is.logical(RunSnowModule)){ stop("RunSnowModule must be either TRUE or FALSE \n"); return(NULL); } + if(length(RunSnowModule)!=1 ){ stop("RunSnowModule must be either TRUE or FALSE \n"); return(NULL); } + } + + + ##check_MeanAnSolidPrecip + if("CemaNeige" %in% ObjectClass & is.null(MeanAnSolidPrecip)){ + NLayers <- length(InputsModel$LayerPrecip); + SolidPrecip <- NULL; for(iLayer in 1:NLayers){ + if(iLayer==1){ SolidPrecip <- InputsModel$LayerFracSolidPrecip[[1]]*InputsModel$LayerPrecip[[iLayer]]/NLayers; + } else { SolidPrecip <- SolidPrecip + InputsModel$LayerFracSolidPrecip[[iLayer]]*InputsModel$LayerPrecip[[iLayer]]/NLayers; } } + Factor <- NULL; + if(inherits(InputsModel,"hourly" )){ Factor <- 365.25*24; } + if(inherits(InputsModel,"daily" )){ Factor <- 365.25; } + if(inherits(InputsModel,"monthly")){ Factor <- 12; } + if(inherits(InputsModel,"yearly" )){ Factor <- 1; } + if(is.null(Factor)){ stop("InputsModel must be of class 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + MeanAnSolidPrecip <- rep(mean(SolidPrecip)*Factor,NLayers); ### default value: same Gseuil for all layers + if(!quiet){ warning("\t MeanAnSolidPrecip not defined -> it was automatically set to c(",paste(round(MeanAnSolidPrecip),collapse=","),") \n"); } + } + if("CemaNeige" %in% ObjectClass & !is.null(MeanAnSolidPrecip)){ + if(!is.vector( MeanAnSolidPrecip) ){ stop(paste("MeanAnSolidPrecip must be a vector of numeric values \n",sep="")); return(NULL); } + if(!is.numeric(MeanAnSolidPrecip) ){ stop(paste("MeanAnSolidPrecip must be a vector of numeric values \n",sep="")); return(NULL); } + if(length(MeanAnSolidPrecip)!=NLayers){ stop(paste("MeanAnSolidPrecip must be a numeric vector of length ",NLayers," \n",sep="")); return(NULL); } + } + + + ##check_PliqAndMelt + if(RunSnowModule & "GR" %in% ObjectClass & "CemaNeige" %in% ObjectClass){ + if("PliqAndMelt" %in% Outputs_Cal == FALSE & "all" %in% Outputs_Cal == FALSE){ + WTxt <- NULL; + WTxt <- paste(WTxt,"\t PliqAndMelt was not defined in Outputs_Cal but is needed to feed the hydrological model with the snow module outputs \n",sep=""); + WTxt <- paste(WTxt,"\t -> it was automatically added \n",sep=""); + if(!is.null(WTxt) & !quiet){ warning(WTxt); } + Outputs_Cal <- c(Outputs_Cal,"PliqAndMelt"); } + if("PliqAndMelt" %in% Outputs_Sim == FALSE & "all" %in% Outputs_Sim == FALSE){ + WTxt <- NULL; + WTxt <- paste(WTxt,"\t PliqAndMelt was not defined in Outputs_Sim but is needed to feed the hydrological model with the snow module outputs \n",sep=""); + WTxt <- paste(WTxt,"\t -> it was automatically added \n",sep=""); + if(!is.null(WTxt) & !quiet){ warning(WTxt); } + Outputs_Sim <- c(Outputs_Sim,"PliqAndMelt"); } + } + + + ##Create_RunOptions + RunOptions <- list(IndPeriod_WarmUp=IndPeriod_WarmUp,IndPeriod_Run=IndPeriod_Run,IniStates=IniStates,IniResLevels=IniResLevels, + Outputs_Cal=Outputs_Cal,Outputs_Sim=Outputs_Sim); + if("CemaNeige" %in% ObjectClass){ + RunOptions <- c(RunOptions,list(RunSnowModule=RunSnowModule,MeanAnSolidPrecip=MeanAnSolidPrecip)); } + class(RunOptions) <- c("RunOptions",ObjectClass); + return(RunOptions); + + +} + diff --git a/R/DataAltiExtrapolation_HBAN.R b/R/DataAltiExtrapolation_HBAN.R new file mode 100644 index 00000000..7a5354b6 --- /dev/null +++ b/R/DataAltiExtrapolation_HBAN.R @@ -0,0 +1,540 @@ +#***************************************************************************************************************** +#' Function which extrapolates the precipitation and air temperature series for different elevation layers (method from Valery, 2010). +#' +#' Elevation layers of equal surface are created the 101 elevation quantiles (\emph{HypsoData}) +#' and the number requested elevation layers (\emph{NLayers}). \cr +#' Forcing data (precipitation and air temperature) are extrapolated using gradients from Valery (2010). +#' (e.g. gradP=0.0004 [m-1] for France and gradT=0.434 [degreC/100m] for January, 1st). \cr +#' This function is used by the \emph{CreateInputsModel} function. \cr +#***************************************************************************************************************** +#' @title Altitudinal extrapolation of precipitation and temperature series +#' @author Laurent Coron, Pierre Brigode (June 2014) +#' @references +#' Turcotte, R., L.-G. Fortin, V. Fortin, J.-P. Fortin and J.-P. Villeneuve (2007), +#' Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent +#' in southern Quebec, Canada, Nordic Hydrology, 38(3), 211, doi:10.2166/nh.2007.009. \cr +#' Valéry, A. (2010), Modélisation précipitations-débit sous influence nivale ? : Elaboration d'un module neige +#' et évaluation sur 380 bassins versants, PhD thesis (in french), AgroParisTech, Paris, France. \cr +#' USACE (1956), Snow Hydrology, pp. 437, U.S. Army Coprs of Engineers (USACE) North Pacific Division, Portland, Oregon, USA. +#' @seealso \code{\link{CreateInputsModel}}, \code{\link{RunModel_CemaNeigeGR4J}} +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param DatesR [POSIXlt] vector of dates +#' @param Precip [numeric] time series of daily total precipitation (catchment average) [mm] +#' @param TempMean [numeric] time series of daily mean air temperature [degC] +#' @param TempMin (optional) [numeric] time series of daily min air temperature [degC] +#' @param TempMax (optional) [numeric] time series of daily max air temperature [degC] +#' @param ZInputs [numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m] +#' @param HypsoData [numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m] +#' @param NLayers [numeric] integer giving the number of elevation layers requested [-] +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return list containing the extrapolated series of precip. and air temp. on each elevation layer +#' \tabular{ll}{ +#' \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm] \cr +#' \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [degC] \cr +#' \emph{$LayerTempMin } \tab [list] list of time series of daily min air temperature (layer average) [degC] \cr +#' \emph{$LayerTempMax } \tab [list] list of time series of daily max air temperature (layer average) [degC] \cr +#' \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-] \cr +#' \emph{$ZLayers } \tab [numeric] vector of median elevation for each layer \cr +#' } +#***************************************************************************************************************** +DataAltiExtrapolation_HBAN <- function(DatesR,Precip,TempMean,TempMin=NULL,TempMax=NULL,ZInputs,HypsoData,NLayers,quiet=FALSE){ + + + ##Altitudinal_gradient_functions_______________________________________________________________ + ##unique_gradient_for_precipitation + GradP_Valery2010 <- function(){ + return(0.00041); ### value from Val? PhD thesis page 126 + } + ##daily_gradients_for_mean_min_and_max_air_temperature + GradT_Valery2010 <- function(){ + RESULT <- matrix(c( + 1, 1, 0.434, 0.366, 0.498, + 2, 1, 0.434, 0.366, 0.500, + 3, 1, 0.435, 0.367, 0.501, + 4, 1, 0.436, 0.367, 0.503, + 5, 1, 0.437, 0.367, 0.504, + 6, 1, 0.439, 0.367, 0.506, + 7, 1, 0.440, 0.367, 0.508, + 8, 1, 0.441, 0.368, 0.510, + 9, 1, 0.442, 0.368, 0.512, + 10, 1, 0.444, 0.368, 0.514, + 11, 1, 0.445, 0.368, 0.517, + 12, 1, 0.446, 0.368, 0.519, + 13, 1, 0.448, 0.369, 0.522, + 14, 1, 0.450, 0.369, 0.525, + 15, 1, 0.451, 0.369, 0.527, + 16, 1, 0.453, 0.370, 0.530, + 17, 1, 0.455, 0.370, 0.533, + 18, 1, 0.456, 0.370, 0.537, + 19, 1, 0.458, 0.371, 0.540, + 20, 1, 0.460, 0.371, 0.543, + 21, 1, 0.462, 0.371, 0.547, + 22, 1, 0.464, 0.372, 0.550, + 23, 1, 0.466, 0.372, 0.554, + 24, 1, 0.468, 0.373, 0.558, + 25, 1, 0.470, 0.373, 0.561, + 26, 1, 0.472, 0.374, 0.565, + 27, 1, 0.474, 0.374, 0.569, + 28, 1, 0.476, 0.375, 0.573, + 29, 1, 0.478, 0.375, 0.577, + 30, 1, 0.480, 0.376, 0.582, + 31, 1, 0.483, 0.376, 0.586, + 1, 2, 0.485, 0.377, 0.590, + 2, 2, 0.487, 0.377, 0.594, + 3, 2, 0.489, 0.378, 0.599, + 4, 2, 0.492, 0.379, 0.603, + 5, 2, 0.494, 0.379, 0.607, + 6, 2, 0.496, 0.380, 0.612, + 7, 2, 0.498, 0.381, 0.616, + 8, 2, 0.501, 0.381, 0.621, + 9, 2, 0.503, 0.382, 0.625, + 10, 2, 0.505, 0.383, 0.630, + 11, 2, 0.508, 0.384, 0.634, + 12, 2, 0.510, 0.384, 0.639, + 13, 2, 0.512, 0.385, 0.643, + 14, 2, 0.515, 0.386, 0.648, + 15, 2, 0.517, 0.387, 0.652, + 16, 2, 0.519, 0.387, 0.657, + 17, 2, 0.522, 0.388, 0.661, + 18, 2, 0.524, 0.389, 0.666, + 19, 2, 0.526, 0.390, 0.670, + 20, 2, 0.528, 0.391, 0.674, + 21, 2, 0.530, 0.392, 0.679, + 22, 2, 0.533, 0.393, 0.683, + 23, 2, 0.535, 0.393, 0.687, + 24, 2, 0.537, 0.394, 0.691, + 25, 2, 0.539, 0.395, 0.695, + 26, 2, 0.541, 0.396, 0.699, + 27, 2, 0.543, 0.397, 0.703, + 28, 2, 0.545, 0.398, 0.707, + 29, 2, 0.546, 0.399, 0.709, + 1, 3, 0.547, 0.399, 0.711, + 2, 3, 0.549, 0.400, 0.715, + 3, 3, 0.551, 0.401, 0.718, + 4, 3, 0.553, 0.402, 0.722, + 5, 3, 0.555, 0.403, 0.726, + 6, 3, 0.557, 0.404, 0.729, + 7, 3, 0.559, 0.405, 0.732, + 8, 3, 0.560, 0.406, 0.736, + 9, 3, 0.562, 0.406, 0.739, + 10, 3, 0.564, 0.407, 0.742, + 11, 3, 0.566, 0.408, 0.745, + 12, 3, 0.567, 0.409, 0.748, + 13, 3, 0.569, 0.410, 0.750, + 14, 3, 0.570, 0.411, 0.753, + 15, 3, 0.572, 0.412, 0.756, + 16, 3, 0.573, 0.413, 0.758, + 17, 3, 0.575, 0.414, 0.761, + 18, 3, 0.576, 0.415, 0.763, + 19, 3, 0.577, 0.416, 0.765, + 20, 3, 0.579, 0.417, 0.767, + 21, 3, 0.580, 0.417, 0.769, + 22, 3, 0.581, 0.418, 0.771, + 23, 3, 0.582, 0.419, 0.773, + 24, 3, 0.583, 0.420, 0.774, + 25, 3, 0.584, 0.421, 0.776, + 26, 3, 0.585, 0.422, 0.777, + 27, 3, 0.586, 0.422, 0.779, + 28, 3, 0.587, 0.423, 0.780, + 29, 3, 0.588, 0.424, 0.781, + 30, 3, 0.589, 0.425, 0.782, + 31, 3, 0.590, 0.425, 0.783, + 1, 4, 0.591, 0.426, 0.784, + 2, 4, 0.591, 0.427, 0.785, + 3, 4, 0.592, 0.427, 0.785, + 4, 4, 0.593, 0.428, 0.786, + 5, 4, 0.593, 0.429, 0.787, + 6, 4, 0.594, 0.429, 0.787, + 7, 4, 0.595, 0.430, 0.787, + 8, 4, 0.595, 0.431, 0.788, + 9, 4, 0.596, 0.431, 0.788, + 10, 4, 0.596, 0.432, 0.788, + 11, 4, 0.597, 0.432, 0.788, + 12, 4, 0.597, 0.433, 0.788, + 13, 4, 0.597, 0.433, 0.788, + 14, 4, 0.598, 0.434, 0.788, + 15, 4, 0.598, 0.434, 0.788, + 16, 4, 0.598, 0.435, 0.787, + 17, 4, 0.599, 0.435, 0.787, + 18, 4, 0.599, 0.436, 0.787, + 19, 4, 0.599, 0.436, 0.786, + 20, 4, 0.599, 0.436, 0.786, + 21, 4, 0.600, 0.437, 0.785, + 22, 4, 0.600, 0.437, 0.785, + 23, 4, 0.600, 0.437, 0.784, + 24, 4, 0.600, 0.438, 0.784, + 25, 4, 0.600, 0.438, 0.783, + 26, 4, 0.601, 0.438, 0.783, + 27, 4, 0.601, 0.438, 0.782, + 28, 4, 0.601, 0.439, 0.781, + 29, 4, 0.601, 0.439, 0.781, + 30, 4, 0.601, 0.439, 0.780, + 1, 5, 0.601, 0.439, 0.779, + 2, 5, 0.601, 0.439, 0.778, + 3, 5, 0.601, 0.439, 0.778, + 4, 5, 0.601, 0.440, 0.777, + 5, 5, 0.601, 0.440, 0.776, + 6, 5, 0.601, 0.440, 0.775, + 7, 5, 0.601, 0.440, 0.775, + 8, 5, 0.601, 0.440, 0.774, + 9, 5, 0.601, 0.440, 0.773, + 10, 5, 0.602, 0.440, 0.772, + 11, 5, 0.602, 0.440, 0.772, + 12, 5, 0.602, 0.440, 0.771, + 13, 5, 0.602, 0.440, 0.770, + 14, 5, 0.602, 0.440, 0.770, + 15, 5, 0.602, 0.440, 0.769, + 16, 5, 0.602, 0.440, 0.768, + 17, 5, 0.602, 0.440, 0.768, + 18, 5, 0.602, 0.440, 0.767, + 19, 5, 0.602, 0.440, 0.767, + 20, 5, 0.602, 0.440, 0.766, + 21, 5, 0.602, 0.440, 0.766, + 22, 5, 0.602, 0.440, 0.765, + 23, 5, 0.602, 0.440, 0.765, + 24, 5, 0.602, 0.440, 0.764, + 25, 5, 0.602, 0.440, 0.764, + 26, 5, 0.602, 0.440, 0.764, + 27, 5, 0.602, 0.439, 0.763, + 28, 5, 0.602, 0.439, 0.763, + 29, 5, 0.602, 0.439, 0.763, + 30, 5, 0.602, 0.439, 0.762, + 31, 5, 0.602, 0.439, 0.762, + 1, 6, 0.602, 0.439, 0.762, + 2, 6, 0.602, 0.439, 0.762, + 3, 6, 0.602, 0.439, 0.762, + 4, 6, 0.602, 0.439, 0.762, + 5, 6, 0.602, 0.439, 0.762, + 6, 6, 0.602, 0.438, 0.761, + 7, 6, 0.602, 0.438, 0.761, + 8, 6, 0.602, 0.438, 0.761, + 9, 6, 0.602, 0.438, 0.761, + 10, 6, 0.602, 0.438, 0.761, + 11, 6, 0.602, 0.438, 0.762, + 12, 6, 0.602, 0.438, 0.762, + 13, 6, 0.602, 0.438, 0.762, + 14, 6, 0.602, 0.438, 0.762, + 15, 6, 0.602, 0.437, 0.762, + 16, 6, 0.602, 0.437, 0.762, + 17, 6, 0.602, 0.437, 0.762, + 18, 6, 0.602, 0.437, 0.762, + 19, 6, 0.602, 0.437, 0.763, + 20, 6, 0.602, 0.437, 0.763, + 21, 6, 0.602, 0.437, 0.763, + 22, 6, 0.602, 0.436, 0.763, + 23, 6, 0.602, 0.436, 0.763, + 24, 6, 0.602, 0.436, 0.764, + 25, 6, 0.602, 0.436, 0.764, + 26, 6, 0.601, 0.436, 0.764, + 27, 6, 0.601, 0.436, 0.764, + 28, 6, 0.601, 0.436, 0.764, + 29, 6, 0.601, 0.435, 0.765, + 30, 6, 0.601, 0.435, 0.765, + 1, 7, 0.601, 0.435, 0.765, + 2, 7, 0.600, 0.435, 0.765, + 3, 7, 0.600, 0.435, 0.765, + 4, 7, 0.600, 0.434, 0.766, + 5, 7, 0.600, 0.434, 0.766, + 6, 7, 0.599, 0.434, 0.766, + 7, 7, 0.599, 0.434, 0.766, + 8, 7, 0.599, 0.434, 0.766, + 9, 7, 0.598, 0.433, 0.766, + 10, 7, 0.598, 0.433, 0.766, + 11, 7, 0.598, 0.433, 0.766, + 12, 7, 0.597, 0.433, 0.766, + 13, 7, 0.597, 0.432, 0.767, + 14, 7, 0.597, 0.432, 0.767, + 15, 7, 0.596, 0.432, 0.767, + 16, 7, 0.596, 0.432, 0.766, + 17, 7, 0.595, 0.431, 0.766, + 18, 7, 0.595, 0.431, 0.766, + 19, 7, 0.594, 0.431, 0.766, + 20, 7, 0.594, 0.430, 0.766, + 21, 7, 0.593, 0.430, 0.766, + 22, 7, 0.593, 0.430, 0.766, + 23, 7, 0.592, 0.429, 0.765, + 24, 7, 0.592, 0.429, 0.765, + 25, 7, 0.591, 0.428, 0.765, + 26, 7, 0.590, 0.428, 0.765, + 27, 7, 0.590, 0.428, 0.764, + 28, 7, 0.589, 0.427, 0.764, + 29, 7, 0.588, 0.427, 0.764, + 30, 7, 0.588, 0.426, 0.763, + 31, 7, 0.587, 0.426, 0.763, + 1, 8, 0.586, 0.425, 0.762, + 2, 8, 0.586, 0.425, 0.762, + 3, 8, 0.585, 0.424, 0.761, + 4, 8, 0.584, 0.424, 0.761, + 5, 8, 0.583, 0.423, 0.760, + 6, 8, 0.583, 0.423, 0.760, + 7, 8, 0.582, 0.422, 0.759, + 8, 8, 0.581, 0.421, 0.758, + 9, 8, 0.580, 0.421, 0.758, + 10, 8, 0.579, 0.420, 0.757, + 11, 8, 0.578, 0.420, 0.756, + 12, 8, 0.578, 0.419, 0.755, + 13, 8, 0.577, 0.418, 0.754, + 14, 8, 0.576, 0.418, 0.754, + 15, 8, 0.575, 0.417, 0.753, + 16, 8, 0.574, 0.416, 0.752, + 17, 8, 0.573, 0.415, 0.751, + 18, 8, 0.572, 0.415, 0.750, + 19, 8, 0.571, 0.414, 0.749, + 20, 8, 0.570, 0.413, 0.748, + 21, 8, 0.569, 0.413, 0.747, + 22, 8, 0.569, 0.412, 0.746, + 23, 8, 0.568, 0.411, 0.745, + 24, 8, 0.567, 0.410, 0.744, + 25, 8, 0.566, 0.409, 0.743, + 26, 8, 0.565, 0.409, 0.742, + 27, 8, 0.564, 0.408, 0.741, + 28, 8, 0.563, 0.407, 0.740, + 29, 8, 0.562, 0.406, 0.738, + 30, 8, 0.561, 0.405, 0.737, + 31, 8, 0.560, 0.405, 0.736, + 1, 9, 0.558, 0.404, 0.735, + 2, 9, 0.557, 0.403, 0.734, + 3, 9, 0.556, 0.402, 0.732, + 4, 9, 0.555, 0.401, 0.731, + 5, 9, 0.554, 0.401, 0.730, + 6, 9, 0.553, 0.400, 0.728, + 7, 9, 0.552, 0.399, 0.727, + 8, 9, 0.551, 0.398, 0.725, + 9, 9, 0.550, 0.397, 0.724, + 10, 9, 0.549, 0.396, 0.723, + 11, 9, 0.548, 0.396, 0.721, + 12, 9, 0.546, 0.395, 0.720, + 13, 9, 0.545, 0.394, 0.718, + 14, 9, 0.544, 0.393, 0.717, + 15, 9, 0.543, 0.392, 0.715, + 16, 9, 0.542, 0.391, 0.713, + 17, 9, 0.541, 0.391, 0.712, + 18, 9, 0.540, 0.390, 0.710, + 19, 9, 0.538, 0.389, 0.709, + 20, 9, 0.537, 0.388, 0.707, + 21, 9, 0.536, 0.388, 0.705, + 22, 9, 0.535, 0.387, 0.703, + 23, 9, 0.533, 0.386, 0.702, + 24, 9, 0.532, 0.385, 0.700, + 25, 9, 0.531, 0.385, 0.698, + 26, 9, 0.530, 0.384, 0.696, + 27, 9, 0.528, 0.383, 0.694, + 28, 9, 0.527, 0.383, 0.692, + 29, 9, 0.526, 0.382, 0.690, + 30, 9, 0.525, 0.381, 0.688, + 1, 10, 0.523, 0.381, 0.686, + 2, 10, 0.522, 0.380, 0.684, + 3, 10, 0.521, 0.379, 0.682, + 4, 10, 0.519, 0.379, 0.680, + 5, 10, 0.518, 0.378, 0.678, + 6, 10, 0.517, 0.377, 0.676, + 7, 10, 0.515, 0.377, 0.674, + 8, 10, 0.514, 0.376, 0.671, + 9, 10, 0.512, 0.376, 0.669, + 10, 10, 0.511, 0.375, 0.667, + 11, 10, 0.510, 0.375, 0.664, + 12, 10, 0.508, 0.374, 0.662, + 13, 10, 0.507, 0.374, 0.659, + 14, 10, 0.505, 0.373, 0.657, + 15, 10, 0.504, 0.373, 0.654, + 16, 10, 0.502, 0.372, 0.652, + 17, 10, 0.501, 0.372, 0.649, + 18, 10, 0.499, 0.372, 0.647, + 19, 10, 0.498, 0.371, 0.644, + 20, 10, 0.496, 0.371, 0.641, + 21, 10, 0.495, 0.371, 0.639, + 22, 10, 0.493, 0.370, 0.636, + 23, 10, 0.492, 0.370, 0.633, + 24, 10, 0.490, 0.370, 0.630, + 25, 10, 0.489, 0.369, 0.628, + 26, 10, 0.487, 0.369, 0.625, + 27, 10, 0.485, 0.369, 0.622, + 28, 10, 0.484, 0.368, 0.619, + 29, 10, 0.482, 0.368, 0.616, + 30, 10, 0.481, 0.368, 0.613, + 31, 10, 0.479, 0.368, 0.610, + 1, 11, 0.478, 0.368, 0.607, + 2, 11, 0.476, 0.367, 0.604, + 3, 11, 0.475, 0.367, 0.601, + 4, 11, 0.473, 0.367, 0.598, + 5, 11, 0.471, 0.367, 0.595, + 6, 11, 0.470, 0.367, 0.592, + 7, 11, 0.468, 0.367, 0.589, + 8, 11, 0.467, 0.366, 0.586, + 9, 11, 0.465, 0.366, 0.583, + 10, 11, 0.464, 0.366, 0.580, + 11, 11, 0.462, 0.366, 0.577, + 12, 11, 0.461, 0.366, 0.574, + 13, 11, 0.459, 0.366, 0.571, + 14, 11, 0.458, 0.366, 0.568, + 15, 11, 0.456, 0.366, 0.565, + 16, 11, 0.455, 0.366, 0.562, + 17, 11, 0.454, 0.366, 0.559, + 18, 11, 0.452, 0.365, 0.556, + 19, 11, 0.451, 0.365, 0.553, + 20, 11, 0.450, 0.365, 0.550, + 21, 11, 0.448, 0.365, 0.547, + 22, 11, 0.447, 0.365, 0.544, + 23, 11, 0.446, 0.365, 0.542, + 24, 11, 0.445, 0.365, 0.539, + 25, 11, 0.443, 0.365, 0.536, + 26, 11, 0.442, 0.365, 0.533, + 27, 11, 0.441, 0.365, 0.531, + 28, 11, 0.440, 0.365, 0.528, + 29, 11, 0.439, 0.365, 0.526, + 30, 11, 0.438, 0.365, 0.523, + 1, 12, 0.437, 0.365, 0.521, + 2, 12, 0.436, 0.365, 0.519, + 3, 12, 0.435, 0.365, 0.517, + 4, 12, 0.434, 0.365, 0.515, + 5, 12, 0.434, 0.365, 0.513, + 6, 12, 0.433, 0.365, 0.511, + 7, 12, 0.432, 0.365, 0.509, + 8, 12, 0.431, 0.365, 0.507, + 9, 12, 0.431, 0.365, 0.505, + 10, 12, 0.430, 0.365, 0.504, + 11, 12, 0.430, 0.365, 0.502, + 12, 12, 0.429, 0.365, 0.501, + 13, 12, 0.429, 0.365, 0.500, + 14, 12, 0.429, 0.365, 0.498, + 15, 12, 0.428, 0.365, 0.497, + 16, 12, 0.428, 0.365, 0.496, + 17, 12, 0.428, 0.365, 0.496, + 18, 12, 0.428, 0.365, 0.495, + 19, 12, 0.428, 0.365, 0.494, + 20, 12, 0.428, 0.365, 0.494, + 21, 12, 0.428, 0.365, 0.494, + 22, 12, 0.428, 0.365, 0.493, + 23, 12, 0.429, 0.365, 0.493, + 24, 12, 0.429, 0.366, 0.493, + 25, 12, 0.429, 0.366, 0.493, + 26, 12, 0.430, 0.366, 0.494, + 27, 12, 0.430, 0.366, 0.494, + 28, 12, 0.431, 0.366, 0.495, + 29, 12, 0.431, 0.366, 0.495, + 30, 12, 0.432, 0.366, 0.496, + 31, 12, 0.433, 0.366, 0.497),ncol=5,byrow=TRUE); + dimnames(RESULT) <- list(1:366,c("day","month","grad_Tmean","grad_Tmin","grad_Tmax")); + return(RESULT); + } + + + + ##Format_______________________________________________________________________________________ + HypsoData <- as.double(HypsoData); + ZInputs <- as.double(ZInputs); + + + ##ElevationLayers_Creation_____________________________________________________________________ + ZLayers <- as.double(rep(NA,NLayers)); + if(!identical(HypsoData,as.double(rep(NA,101)))){ + nmoy <- 100 %/% NLayers; + nreste <- 100 %% NLayers; + ncont <- 0; + for(iLayer in 1:NLayers){ + if(nreste > 0){ nn <- nmoy+1; nreste <- nreste-1; } else { nn <- nmoy; } + if(nn==1){ ZLayers[iLayer] <- HypsoData[ncont+1]; } + if(nn==2){ ZLayers[iLayer] <- 0.5 * (HypsoData[ncont+1] + HypsoData[ncont+2]); } + if(nn>2 ){ ZLayers[iLayer] <- HypsoData[ncont+nn/2]; } + ncont <- ncont+nn; + } + } + + + ##Precipitation_extrapolation__________________________________________________________________ + ##Initialisation + LayerPrecip <- list(); + if(identical(ZInputs,HypsoData[51]) & NLayers==1){ + LayerPrecip[[1]] <- as.double(Precip); + } else { + ##Elevation_gradients_for_daily_mean_precipitation + GradP <- GradP_Valery2010(); ### single value + TabGradP <- rep(GradP,length(Precip)); + ##Extrapolation + ##Thresold_of_inputs_median_elevation + Zthreshold <- 4000; + ##_On_each_elevation_layer... + for(iLayer in 1:NLayers){ + ##If_layer_elevation_smaller_than_Zthreshold + if(ZLayers[iLayer] <= Zthreshold){ + LayerPrecip[[iLayer]] <- as.double(Precip*exp(TabGradP*(ZLayers[iLayer]-ZInputs))); + ##If_layer_elevation_greater_than_Zthreshold + } else { + ##If_inputs_median_elevation_smaller_than_Zthreshold + if(ZInputs <= Zthreshold){ LayerPrecip[[iLayer]] <- as.double(Precip*exp(TabGradP*(Zthreshold-ZInputs))); + ##If_inputs_median_elevation_greater_then_Zthreshold + } else { LayerPrecip[[iLayer]] <- as.double(Precip); } + } + } + } + + + + ##Temperature_extrapolation____________________________________________________________________ + ##Initialisation + LayerTempMean <- list(); LayerTempMin <- list(); LayerTempMax <- list(); + if(identical(ZInputs,HypsoData[51]) & NLayers==1){ + LayerTempMean[[1]] <- as.double(TempMean); + if(!is.null(TempMin) & !is.null(TempMax)){ LayerTempMin[[1]] <- as.double(TempMin); LayerTempMax[[1]] <- as.double(TempMax); } + } else { + ##Elevation_gradients_for_daily_mean_min_and_max_temperature + GradT <- GradT_Valery2010(); ### Day, Month, GradTmean, GradTmin and GradTmax for iCol=1,2,3,4,5, respectively + TabGradT <- matrix(NA,nrow=length(Precip),ncol=3); + for(iday in 1:366){ + ind <- which(as.numeric(format(DatesR,format="%d"))==GradT[iday,1] & as.numeric(format(DatesR,format="%m"))==GradT[iday,2]); + TabGradT[ind,1:3] <- GradT[iday,3:5]; + } + ##Extrapolation + ##On_each_elevation_layer... + for(iLayer in 1:NLayers){ + LayerTempMean[[iLayer]] <- as.double(TempMean + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,1])/100); + if(!is.null(TempMin) & !is.null(TempMax)){ + LayerTempMin[[iLayer]] <- as.double(TempMin + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,2])/100); + LayerTempMax[[iLayer]] <- as.double(TempMax + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,3])/100); + } + } + } + + + + ##Solid_Fraction_for_each_elevation_layer______________________________________________________ + LayerFracSolidPrecip <- list(); + ##Thresold_of_inputs_median_elevation + Zthreshold <- 1500; + ##On_each_elevation_layer... + for(iLayer in 1:NLayers){ + Option <- "USACE"; + if(!is.na(ZInputs)){ if(ZInputs < Zthreshold & !is.null(TempMin) & !is.null(TempMax)){ Option <- "Hydrotel"; } } + ##Turcotte_formula_from_Hydrotel + if(Option=="Hydrotel"){ + TempMin <- LayerTempMin[[iLayer]]; + TempMax <- LayerTempMax[[iLayer]]; + SolidFraction <- 1 - TempMax/(TempMax - TempMin); + SolidFraction[TempMin >= 0] <- 0; + SolidFraction[TempMax <= 0] <- 1; + } + ##USACE_formula + if(Option=="USACE"){ + USACE_Tmin <- -1.0; + USACE_Tmax <- 3.0; + TempMean <- LayerTempMean[[iLayer]]; + SolidFraction <- 1- (TempMean - USACE_Tmin)/(USACE_Tmax - USACE_Tmin); + SolidFraction[TempMean > USACE_Tmax] <- 0; + SolidFraction[TempMean < USACE_Tmin] <- 1; + } + LayerFracSolidPrecip[[iLayer]] <- as.double(SolidFraction); + } + + + + + ##END__________________________________________________________________________________________ + return(list(LayerPrecip=LayerPrecip,LayerTempMean=LayerTempMean,LayerTempMin=LayerTempMin,LayerTempMax=LayerTempMax, + LayerFracSolidPrecip=LayerFracSolidPrecip,ZLayers=ZLayers)); + +} + + diff --git a/R/ErrorCrit.R b/R/ErrorCrit.R new file mode 100644 index 00000000..fe874c83 --- /dev/null +++ b/R/ErrorCrit.R @@ -0,0 +1,22 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion with the provided function. +#***************************************************************************************************************** +#' @title Error criterion using the provided function +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}} +#' @example tests/example_ErrorCrit.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param FUN_CRIT [function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE) +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs, see \code{\link{ErrorCrit_RMSE}} or \code{\link{ErrorCrit_NSE}} for details +#*****************************************************************************************************************' +ErrorCrit <- function(InputsCrit,OutputsModel,FUN_CRIT,quiet=FALSE){ + return( FUN_CRIT(InputsCrit,OutputsModel,quiet=quiet) ) +} + diff --git a/R/ErrorCrit_KGE.R b/R/ErrorCrit_KGE.R new file mode 100644 index 00000000..b7d8972b --- /dev/null +++ b/R/ErrorCrit_KGE.R @@ -0,0 +1,128 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009). +#' +#' In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +#' the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +#' (e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +#***************************************************************************************************************** +#' @title Error criterion based on the KGE formula +#' @author Laurent Coron (June 2014) +#' @references +#' Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), +#' Decomposition of the mean squared error and NSE performance criteria: Implications +#' for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr +#' @seealso \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}} +#' @examples ## see example of the ErrorCrit function +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$CritValue } \tab [numeric] value of the criterion \cr +#' \emph{$CritName } \tab [character] name of the criterion \cr +#' \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr +#' \emph{$SubCritNames } \tab [character] names of the sub-criteria \cr +#' \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr +#' \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr +#' \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr +#' } +#***************************************************************************************************************** +ErrorCrit_KGE <- function(InputsCrit,OutputsModel,quiet=FALSE){ + + +##Arguments_check________________________________ + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(OutputsModel,"OutputsModel")==FALSE){ stop("OutputsModel must be of class 'OutputsModel' \n"); return(NULL); } + + +##Initialisation_________________________________ + CritName <- NA; + if(InputsCrit$transfo=="" ){ CritName <- "KGE[Q]" ; } + if(InputsCrit$transfo=="sqrt"){ CritName <- "KGE[sqrt(Q)]"; } + if(InputsCrit$transfo=="log" ){ CritName <- "KGE[log(Q)]" ; } + if(InputsCrit$transfo=="inv" ){ CritName <- "KGE[1/Q]" ; } + if(InputsCrit$transfo=="sort"){ CritName <- "KGE[sort(Q)]"; } + CritValue <- NA; + CritBestValue <- +1; + Multiplier <- -1; ### must be equal to -1 or +1 only + + +##Data_preparation_______________________________ + VarObs <- InputsCrit$Qobs ; VarObs[!InputsCrit$BoolCrit] <- NA; + VarSim <- OutputsModel$Qsim; VarSim[!InputsCrit$BoolCrit] <- NA; + ##Data_transformation + if("Ind_zeroes" %in% names(InputsCrit) & "epsilon" %in% names(InputsCrit)){ if(length(InputsCrit$Ind_zeroes)>0){ + VarObs <- VarObs + InputsCrit$epsilon; + VarSim <- VarSim + InputsCrit$epsilon; + } } + if(InputsCrit$transfo=="sqrt"){ VarObs <- sqrt(VarObs); VarSim <- sqrt(VarSim); } + if(InputsCrit$transfo=="log" ){ VarObs <- log(VarObs) ; VarSim <- log(VarSim) ; VarSim[VarSim < -1E100] <- NA; } + if(InputsCrit$transfo=="inv" ){ VarObs <- 1/VarObs ; VarSim <- 1/VarSim ; VarSim[abs(VarSim) > 1E+100] <- NA; } + if(InputsCrit$transfo=="sort"){ VarObs <- sort(VarObs); VarSim <- sort(VarSim); } + ##TS_ignore + TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit ; + Ind_TS_ignore <- which(TS_ignore); if(length(Ind_TS_ignore)==0){ Ind_TS_ignore <- NULL; } + if(sum(!TS_ignore)==0){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } + if(sum(!TS_ignore)==1){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } ### to avoid a problem in standard deviation computation + if(inherits(OutputsModel,"hourly" )){ WarningTS <- 365; } + if(inherits(OutputsModel,"daily" )){ WarningTS <- 365; } + if(inherits(OutputsModel,"monthly")){ WarningTS <- 12; } + if(inherits(OutputsModel,"yearly" )){ WarningTS <- 3; } + if(sum(!TS_ignore)<WarningTS & !quiet){ warning(paste("\t criterion computed on less than ",WarningTS," time-steps \n",sep="")); } + ##Other_variables_preparation + meanVarObs <- mean(VarObs[!TS_ignore]); + meanVarSim <- mean(VarSim[!TS_ignore]); + iCrit <- 0; + SubCritNames <- NULL; + SubCritValues <- NULL; + + + +##SubErrorCrit_____KGE_rPearson__________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," rPEARSON(sim vs. obs)",sep=""); + SubCritValues[iCrit] <- NA; + Numer <- sum( (VarObs[!TS_ignore]-meanVarObs)*(VarSim[!TS_ignore]-meanVarSim) ); + Deno1 <- sqrt( sum((VarObs[!TS_ignore]-meanVarObs)^2) ); + Deno2 <- sqrt( sum((VarSim[!TS_ignore]-meanVarSim)^2) ); + if(Numer==0){ if(Deno1==0 & Deno2==0){ Crit <- 1; } else { Crit <- 0; } + } else { Crit <- Numer/(Deno1*Deno2); } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##SubErrorCrit_____KGE_alpha_____________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," STDEVsim/STDEVobs",sep=""); + SubCritValues[iCrit] <- NA; + Numer <- sd(VarSim[!TS_ignore]); + Denom <- sd(VarObs[!TS_ignore]); + if(Numer==0 & Denom==0){ Crit <- 1; } else { Crit <- Numer/Denom ; } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##SubErrorCrit_____KGE_beta______________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," MEANsim/MEANobs",sep=""); + SubCritValues[iCrit] <- NA; + if(meanVarSim==0 & meanVarObs==0){ Crit <- 1; } else { Crit <- meanVarSim/meanVarObs ; } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##ErrorCrit______________________________________ + if(sum(is.na(SubCritValues))==0){ + CritValue <- ( 1 - sqrt( (SubCritValues[1]-1)^2 + (SubCritValues[2]-1)^2 + (SubCritValues[3]-1)^2 ) ); + } + + +##Output_________________________________________ + OutputsCrit <- list(CritValue,CritName,SubCritValues,SubCritNames,CritBestValue,Multiplier,Ind_TS_ignore); + names(OutputsCrit) <- c("CritValue","CritName","SubCritValues","SubCritNames","CritBestValue","Multiplier","Ind_notcomputed"); + return(OutputsCrit); + +} + + diff --git a/R/ErrorCrit_KGE2.R b/R/ErrorCrit_KGE2.R new file mode 100644 index 00000000..48741328 --- /dev/null +++ b/R/ErrorCrit_KGE2.R @@ -0,0 +1,130 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion based on the KGE' formula proposed by Kling et al. (2012). +#' +#' In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +#' the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +#' (e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +#***************************************************************************************************************** +#' @title Error criterion based on the KGE' formula +#' @author Laurent Coron (June 2014) +#' @references +#' Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), +#' Decomposition of the mean squared error and NSE performance criteria: Implications +#' for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr +#' Kling, H., Fuchs, M. and Paulin, M. (2012), +#' Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, +#' Journal of Hydrology, 424-425, 264-277, doi:10.1016/j.jhydrol.2012.01.011. +#' @seealso \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}} +#' @examples ## see example of the ErrorCrit function +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$CritValue } \tab [numeric] value of the criterion \cr +#' \emph{$CritName } \tab [character] name of the criterion \cr +#' \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr +#' \emph{$SubCritNames } \tab [character] names of the sub-criteria \cr +#' \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr +#' \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr +#' \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr +#' } +#*****************************************************************************************************************' +ErrorCrit_KGE2 <- function(InputsCrit,OutputsModel,quiet=FALSE){ + + +##Arguments_check________________________________ + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(OutputsModel,"OutputsModel")==FALSE){ stop("OutputsModel must be of class 'OutputsModel' \n"); return(NULL); } + + +##Initialisation_________________________________ + CritName <- NA; + if(InputsCrit$transfo=="" ){ CritName <- "KGE'[Q]" ; } + if(InputsCrit$transfo=="sqrt"){ CritName <- "KGE'[sqrt(Q)]"; } + if(InputsCrit$transfo=="log" ){ CritName <- "KGE'[log(Q)]" ; } + if(InputsCrit$transfo=="inv" ){ CritName <- "KGE'[1/Q]" ; } + if(InputsCrit$transfo=="sort"){ CritName <- "KGE'[sort(Q)]"; } + CritValue <- NA; + CritBestValue <- +1; + Multiplier <- -1; ### must be equal to -1 or +1 only + + +##Data_preparation_______________________________ + VarObs <- InputsCrit$Qobs ; VarObs[!InputsCrit$BoolCrit] <- NA; + VarSim <- OutputsModel$Qsim; VarSim[!InputsCrit$BoolCrit] <- NA; + ##Data_transformation + if("Ind_zeroes" %in% names(InputsCrit) & "epsilon" %in% names(InputsCrit)){ if(length(InputsCrit$Ind_zeroes)>0){ + VarObs <- VarObs + InputsCrit$epsilon; + VarSim <- VarSim + InputsCrit$epsilon; + } } + if(InputsCrit$transfo=="sqrt"){ VarObs <- sqrt(VarObs); VarSim <- sqrt(VarSim); } + if(InputsCrit$transfo=="log" ){ VarObs <- log(VarObs) ; VarSim <- log(VarSim) ; VarSim[VarSim < -1E100] <- NA; } + if(InputsCrit$transfo=="inv" ){ VarObs <- 1/VarObs ; VarSim <- 1/VarSim ; VarSim[abs(VarSim) > 1E+100] <- NA; } + if(InputsCrit$transfo=="sort"){ VarObs <- sort(VarObs); VarSim <- sort(VarSim); } + ##TS_ignore + TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit ; + Ind_TS_ignore <- which(TS_ignore); if(length(Ind_TS_ignore)==0){ Ind_TS_ignore <- NULL; } + if(sum(!TS_ignore)==0){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } + if(sum(!TS_ignore)==1){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } ### to avoid a problem in standard deviation computation + if(inherits(OutputsModel,"hourly" )){ WarningTS <- 365; } + if(inherits(OutputsModel,"daily" )){ WarningTS <- 365; } + if(inherits(OutputsModel,"monthly")){ WarningTS <- 12; } + if(inherits(OutputsModel,"yearly" )){ WarningTS <- 3; } + if(sum(!TS_ignore)<WarningTS & !quiet){ warning(paste("\t criterion computed on less than ",WarningTS," time-steps \n",sep="")); } + ##Other_variables_preparation + meanVarObs <- mean(VarObs[!TS_ignore]); + meanVarSim <- mean(VarSim[!TS_ignore]); + iCrit <- 0; + SubCritNames <- NULL; + SubCritValues <- NULL; + + +##SubErrorCrit_____KGE_rPearson__________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," rPEARSON(sim vs. obs)",sep=""); + SubCritValues[iCrit] <- NA; + Numer <- sum( (VarObs[!TS_ignore]-meanVarObs)*(VarSim[!TS_ignore]-meanVarSim) ); + Deno1 <- sqrt( sum((VarObs[!TS_ignore]-meanVarObs)^2) ); + Deno2 <- sqrt( sum((VarSim[!TS_ignore]-meanVarSim)^2) ); + if(Numer==0){ if(Deno1==0 & Deno2==0){ Crit <- 1; } else { Crit <- 0; } + } else { Crit <- Numer/(Deno1*Deno2); } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##SubErrorCrit_____KGE_gama______________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," CVsim/CVobs",sep=""); + SubCritValues[iCrit] <- NA; + if(meanVarSim==0){ if(sd(VarSim[!TS_ignore])==0){ CVsim <- 1; } else { CVsim <- 99999; } } else { CVsim <- sd(VarSim[!TS_ignore])/meanVarSim; } + if(meanVarObs==0){ if(sd(VarObs[!TS_ignore])==0){ CVobs <- 1; } else { CVobs <- 99999; } } else { CVobs <- sd(VarObs[!TS_ignore])/meanVarObs; } + if(CVsim==0 & CVobs==0){ Crit <- 1; } else { Crit <- CVsim/CVobs ; } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##SubErrorCrit_____KGE_beta______________________ + iCrit <- iCrit+1; + SubCritNames[iCrit] <- paste(CritName," MEANsim/MEANobs",sep=""); + SubCritValues[iCrit] <- NA; + if(meanVarSim==0 & meanVarObs==0){ Crit <- 1; } else { Crit <- meanVarSim/meanVarObs ; } + if(is.numeric(Crit) & is.finite(Crit)){ SubCritValues[iCrit] <- Crit; } + + +##ErrorCrit______________________________________ + if(sum(is.na(SubCritValues))==0){ + CritValue <- ( 1 - sqrt( (SubCritValues[1]-1)^2 + (SubCritValues[2]-1)^2 + (SubCritValues[3]-1)^2 ) ); + } + + +##Output_________________________________________ + OutputsCrit <- list(CritValue,CritName,SubCritValues,SubCritNames,CritBestValue,Multiplier,Ind_TS_ignore); + names(OutputsCrit) <- c("CritValue","CritName","SubCritValues","SubCritNames","CritBestValue","Multiplier","Ind_notcomputed"); + return(OutputsCrit); + +} + + diff --git a/R/ErrorCrit_NSE.R b/R/ErrorCrit_NSE.R new file mode 100644 index 00000000..3db43d1b --- /dev/null +++ b/R/ErrorCrit_NSE.R @@ -0,0 +1,92 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion based on the NSE formula proposed by Nash & Sutcliffe (1970). +#' +#' In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +#' the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +#' (e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +#***************************************************************************************************************** +#' @title Error criterion based on the NSE formula +#' @author Laurent Coron (June 2014) +#' @references +#' Nash, J.E. and Sutcliffe, J.V. (1970), +#' River flow forecasting through conceptual models part 1. +#' A discussion of principles, Journal of Hydrology, 10(3), 282-290, doi:10.1016/0022-1694(70)90255-6. \cr +#' @seealso \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} +#' @examples ## see example of the ErrorCrit function +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$CritValue } \tab [numeric] value of the criterion \cr +#' \emph{$CritName } \tab [character] name of the criterion \cr +#' \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr +#' \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr +#' \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr +#' } +#***************************************************************************************************************** +ErrorCrit_NSE <- function(InputsCrit,OutputsModel,quiet=FALSE){ + + +##Arguments_check________________________________ + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(OutputsModel,"OutputsModel")==FALSE){ stop("OutputsModel must be of class 'OutputsModel' \n"); return(NULL); } + + +##Initialisation_________________________________ + CritName <- NA; + if(InputsCrit$transfo=="" ){ CritName <- "NSE[Q]" ; } + if(InputsCrit$transfo=="sqrt"){ CritName <- "NSE[sqrt(Q)]"; } + if(InputsCrit$transfo=="log" ){ CritName <- "NSE[log(Q)]" ; } + if(InputsCrit$transfo=="inv" ){ CritName <- "NSE[1/Q]" ; } + if(InputsCrit$transfo=="sort"){ CritName <- "NSE[sort(Q)]"; } + CritValue <- NA; + CritBestValue <- +1; + Multiplier <- -1; ### must be equal to -1 or +1 only + + +##Data_preparation_______________________________ + VarObs <- InputsCrit$Qobs ; VarObs[!InputsCrit$BoolCrit] <- NA; + VarSim <- OutputsModel$Qsim; VarSim[!InputsCrit$BoolCrit] <- NA; + ##Data_transformation + if("Ind_zeroes" %in% names(InputsCrit) & "epsilon" %in% names(InputsCrit)){ if(length(InputsCrit$Ind_zeroes)>0){ + VarObs <- VarObs + InputsCrit$epsilon; + VarSim <- VarSim + InputsCrit$epsilon; + } } + if(InputsCrit$transfo=="sqrt"){ VarObs <- sqrt(VarObs); VarSim <- sqrt(VarSim); } + if(InputsCrit$transfo=="log" ){ VarObs <- log(VarObs) ; VarSim <- log(VarSim) ; VarSim[VarSim < -1E100] <- NA; } + if(InputsCrit$transfo=="inv" ){ VarObs <- 1/VarObs ; VarSim <- 1/VarSim ; VarSim[abs(VarSim) > 1E+100] <- NA; } + if(InputsCrit$transfo=="sort"){ VarObs <- sort(VarObs); VarSim <- sort(VarSim); } + ##TS_ignore + TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit ; + Ind_TS_ignore <- which(TS_ignore); if(length(Ind_TS_ignore)==0){ Ind_TS_ignore <- NULL; } + if(sum(!TS_ignore)==0){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } + if(inherits(OutputsModel,"hourly" )){ WarningTS <- 365; } + if(inherits(OutputsModel,"daily" )){ WarningTS <- 365; } + if(inherits(OutputsModel,"monthly")){ WarningTS <- 12; } + if(inherits(OutputsModel,"yearly" )){ WarningTS <- 3; } + if(sum(!TS_ignore)<WarningTS & !quiet){ warning(paste("\t criterion computed on less than ",WarningTS," time-steps \n",sep="")); } + ##Other_variables_preparation + meanVarObs <- mean(VarObs[!TS_ignore]); + meanVarSim <- mean(VarSim[!TS_ignore]); + + +##ErrorCrit______________________________________ + Emod <- sum((VarSim[!TS_ignore]-VarObs[!TS_ignore])^2); + Eref <- sum((VarObs[!TS_ignore]-mean(VarObs[!TS_ignore]))^2); + if(Emod==0 & Eref==0){ Crit <- 0; } else { Crit <- (1-Emod/Eref); } + if(is.numeric(Crit) & is.finite(Crit)){ CritValue <- Crit; } + + +##Output_________________________________________ + OutputsCrit <- list(CritValue,CritName,CritBestValue,Multiplier,Ind_TS_ignore); + names(OutputsCrit) <- c("CritValue","CritName","CritBestValue","Multiplier","Ind_notcomputed"); + return(OutputsCrit); + +} + + diff --git a/R/ErrorCrit_RMSE.R b/R/ErrorCrit_RMSE.R new file mode 100644 index 00000000..b4d1d93a --- /dev/null +++ b/R/ErrorCrit_RMSE.R @@ -0,0 +1,86 @@ +#***************************************************************************************************************** +#' Function which computes an error criterion based on the root mean square error (RMSE). +#' +#' In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +#' the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +#' (e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +#***************************************************************************************************************** +#' @title Error criterion based on the RMSE +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} +#' @examples ## see example of the ErrorCrit function +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsCrit [object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details +#' @param OutputsModel [object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$CritValue } \tab [numeric] value of the criterion \cr +#' \emph{$CritName } \tab [character] name of the criterion \cr +#' \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr +#' \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr +#' \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr +#' } +#***************************************************************************************************************** +ErrorCrit_RMSE <- function(InputsCrit,OutputsModel,quiet=FALSE){ + + +##Arguments_check________________________________ + if(inherits(InputsCrit,"InputsCrit")==FALSE){ stop("InputsCrit must be of class 'InputsCrit' \n"); return(NULL); } + if(inherits(OutputsModel,"OutputsModel")==FALSE){ stop("OutputsModel must be of class 'OutputsModel' \n"); return(NULL); } + + +##Initialisation_________________________________ + CritName <- NA; + if(InputsCrit$transfo=="" ){ CritName <- "RMSE[Q]" ; } + if(InputsCrit$transfo=="sqrt"){ CritName <- "RMSE[sqrt(Q)]"; } + if(InputsCrit$transfo=="log" ){ CritName <- "RMSE[log(Q)]" ; } + if(InputsCrit$transfo=="inv" ){ CritName <- "RMSE[1/Q]" ; } + if(InputsCrit$transfo=="sort"){ CritName <- "RMSE[sort(Q)]"; } + + CritValue <- NA; + CritBestValue <- +1; + Multiplier <- +1; ### must be equal to -1 or +1 only + + +##Data_preparation_______________________________ + VarObs <- InputsCrit$Qobs ; VarObs[!InputsCrit$BoolCrit] <- NA; + VarSim <- OutputsModel$Qsim; VarSim[!InputsCrit$BoolCrit] <- NA; + ##Data_transformation + if("Ind_zeroes" %in% names(InputsCrit) & "epsilon" %in% names(InputsCrit)){ if(length(InputsCrit$Ind_zeroes)>0){ + VarObs <- VarObs + InputsCrit$epsilon; + VarSim <- VarSim + InputsCrit$epsilon; + } } + if(InputsCrit$transfo=="sqrt"){ VarObs <- sqrt(VarObs); VarSim <- sqrt(VarSim); } + if(InputsCrit$transfo=="log" ){ VarObs <- log(VarObs) ; VarSim <- log(VarSim) ; VarSim[VarSim < -1E100] <- NA; } + if(InputsCrit$transfo=="inv" ){ VarObs <- 1/VarObs ; VarSim <- 1/VarSim ; VarSim[abs(VarSim) > 1E+100] <- NA; } + if(InputsCrit$transfo=="sort"){ VarObs <- sort(VarObs); VarSim <- sort(VarSim); } + ##TS_ignore + TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit ; + Ind_TS_ignore <- which(TS_ignore); if(length(Ind_TS_ignore)==0){ Ind_TS_ignore <- NULL; } + if(sum(!TS_ignore)==0){ OutputsCrit <- list(NA); names(OutputsCrit) <- c("CritValue"); return(OutputsCrit); } + if(inherits(OutputsModel,"hourly" )){ WarningTS <- 365; } + if(inherits(OutputsModel,"daily" )){ WarningTS <- 365; } + if(inherits(OutputsModel,"monthly")){ WarningTS <- 12; } + if(inherits(OutputsModel,"yearly" )){ WarningTS <- 3; } + if(sum(!TS_ignore)<WarningTS & !quiet){ warning(paste("\t criterion computed on less than ",WarningTS," time-steps \n",sep="")); } + + +##ErrorCrit______________________________________ + Numer <- sum((VarSim-VarObs)^2,na.rm=TRUE); + Denom <- sum(!is.na(VarObs)); + if(Numer==0){ Crit <- 0; } else { Crit <- sqrt(Numer/Denom); } + if(is.numeric(Crit) & is.finite(Crit)){ CritValue <- Crit; } + + +##Output_________________________________________ + OutputsCrit <- list(CritValue,CritName,CritBestValue,Multiplier,Ind_TS_ignore); + names(OutputsCrit) <- c("CritValue","CritName","CritBestValue","Multiplier","Ind_notcomputed"); + return(OutputsCrit); + +} + + diff --git a/R/PEdaily_Oudin.R b/R/PEdaily_Oudin.R new file mode 100644 index 00000000..1f3b2c6d --- /dev/null +++ b/R/PEdaily_Oudin.R @@ -0,0 +1,58 @@ +#***************************************************************************************************************** +#' Function which computes daily PE using the formula from Oudin et al. (2005). +#***************************************************************************************************************** +#' @title Computation of daily series of potential evapotranspiration with Oudin's formula +#' @author Laurent Coron (December 2013) +#' @references +#' Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil and C. Loumagne (2005), +#' Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-Towards a +#' simple and efficient potential evapotranspiration model for rainfall-runoff modelling, Journal of Hydrology, +#' 303(1-4), 290-306, doi:10.1016/j.jhydrol.2004.08.026. +#' @examples +#' require(airGR) +#' data(L0123001) +#' PotEvap <- PEdaily_Oudin(JD=as.POSIXlt(BasinObs$DatesR)$yday,Temp=BasinObs$T,LatRad=0.8) +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param JD [numeric] time series of julian day [-] +#' @param Temp [numeric] time series of daily mean air temperature [degC] +#' @param LatRad [numeric] latitude of measurement for the temperature series [rad] +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [numeric] time series of daily potential evapotranspiration [mm/d] +#*****************************************************************************************************************' +PEdaily_Oudin <- function(JD,Temp,LatRad){ + + PE_Oudin_D <- rep(NA,length(Temp)); + for(k in 1:length(Temp)){ + + FI <- LatRad ### latitude in rad + ### FI <- LatDeg/(180/pi) ### conversion from deg to rad + COSFI <- cos(FI) + AFI <- abs(LatRad/42.) + + TETA <- 0.4093*sin(JD[k]/58.1-1.405) + COSTETA <- cos(TETA) + COSGZ <- max(0.001,cos(FI-TETA)) + GZ <- acos(COSGZ) + COSGZ2 <- COSGZ*COSGZ + if(COSGZ2 >= 1){ SINGZ <- 0. } else { SINGZ <- sqrt(1.-COSGZ2) } + COSOM <- 1.-COSGZ/COSFI/COSTETA + if(COSOM < -1.){ COSOM <- -1. } + if(COSOM > 1.){ COSOM <- 1. } + COSOM2 <- COSOM*COSOM + if(COSOM2 >= 1.){ SINOM <- 0. } else { SINOM <- sqrt(1.-COSOM2) } + OM <- acos(COSOM) + COSPZ <- COSGZ+COSFI*COSTETA*(SINOM/OM-1.) + if(COSPZ < 0.001){ COSPZ <- 0.001 } + ETA <- 1.+cos(JD[k]/58.1)/30. + GE <- 446.*OM*COSPZ*ETA + + if(Temp[k] >= -5.0) { PE_Oudin_D[k] <- GE*(Temp[k]+5.)/100./28.5 } else { PE_Oudin_D[k] <- 0 } + + } + + return(PE_Oudin_D); + +} + diff --git a/R/RunModel.R b/R/RunModel.R new file mode 100644 index 00000000..4acfd1e2 --- /dev/null +++ b/R/RunModel.R @@ -0,0 +1,22 @@ +#***************************************************************************************************************** +#' Function which performs a single model run with the provided function. +#***************************************************************************************************************** +#' @title Run with the provided hydrological model function +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{RunModel_GR4J}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of model parameters +#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J) +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +#*****************************************************************************************************************' +RunModel <- function(InputsModel,RunOptions,Param,FUN_MOD){ + return( FUN_MOD(InputsModel,RunOptions,Param) ) +} + diff --git a/R/RunModel_CemaNeige.R b/R/RunModel_CemaNeige.R new file mode 100644 index 00000000..cfce9e20 --- /dev/null +++ b/R/RunModel_CemaNeige.R @@ -0,0 +1,132 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the CemaNeige daily snow module. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the CemaNeige snow module +#' @author Laurent Coron (January 2014) +#' @references +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? +#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? +#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +#' @seealso \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_CemaNeige.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 2 parameters +#' \tabular{ll}{ +#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run: CemaNeige states [mm & degC] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_CemaNeige <- function(InputsModel,RunOptions,Param){ + + NParam <- 2; + FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,0)){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):length(IndPeriod1); + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + + + ##SNOW_MODULE________________________________________________________________________________## + ParamCemaNeige <- Param; + NLayers <- length(InputsModel$LayerPrecip); + if(sum(is.na(ParamCemaNeige))!=0){ stop("Param contains missing values \n"); return(NULL); } + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); + } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + StateStartCemaNeige <- RunOptions$IniStates[ (2*(iLayer-1)+1):(2*(iLayer-1)+2) ]; + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", + ##inputs + LInputs=as.integer(length(IndPeriod1)), ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(2), ### number of model parameter = 2 + Param=ParamCemaNeige, ### parameter set + NStates=as.integer(2), ### number of state variables used for model initialising = 2 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=length(IndPeriod1),ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); + + ##Output_data_preparation + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- list(CemaNeigeLayers); + names(OutputsModel) <- NameCemaNeigeLayers; } + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",NameCemaNeigeLayers); } + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(CemaNeigeLayers), + CemaNeigeStateEnd ); + names(OutputsModel) <- c(NameCemaNeigeLayers,"StateEnd"); } + if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + list(CemaNeigeLayers), + CemaNeigeStateEnd ); + names(OutputsModel) <- c("DatesR",NameCemaNeigeLayers,"StateEnd"); } + + ##End + class(OutputsModel) <- c("OutputsModel","daily","CemaNeige"); + return(OutputsModel); + +} + diff --git a/R/RunModel_CemaNeigeGR4J.R b/R/RunModel_CemaNeigeGR4J.R new file mode 100644 index 00000000..abde2411 --- /dev/null +++ b/R/RunModel_CemaNeigeGR4J.R @@ -0,0 +1,209 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the CemaNeige-GR4J daily lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the CemaNeigeGR4J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Perrin, C., C. Michel and V. Andréassian (2003), +#' Improvement of a parsimonious model for streamflow simulation, +#' Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? +#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? +#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +#' @seealso \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_CemaNeigeGR4J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 6 parameters +#' \tabular{ll}{ +#' GR4J X1 \tab production store capacity [mm] \cr +#' GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr +#' GR4J X3 \tab routing store capacity [mm] \cr +#' GR4J X4 \tab unit hydrograph time constant [d] \cr +#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_CemaNeigeGR4J <- function(InputsModel,RunOptions,Param){ + + NParam <- 6; + FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); + FortranOutputsMod <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ParamCemaNeige <- Param[(length(Param)-1):length(Param)]; + NParamMod <- as.integer(length(Param)-2); + ParamMod <- Param[1:NParamMod]; + NLayers <- length(InputsModel$LayerPrecip); + NStatesMod <- as.integer(length(RunOptions$IniStates)-2*NLayers); + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + + + ##SNOW_MODULE________________________________________________________________________________## + if(RunOptions$RunSnowModule==TRUE){ + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); + } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ]; + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(2), ### number of model parameter = 2 + Param=ParamCemaNeige, ### parameter set + NStates=as.integer(2), ### number of state variables used for model initialising = 2 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); + if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); + } ###ENDIF_RunSnowModule + if(RunOptions$RunSnowModule==FALSE){ + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } + + + + ##MODEL______________________________________________________________________________________## + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod)); + } else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr4j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=NParamMod, ### number of model parameter + Param=ParamMod, ### parameter set + NStates=NStatesMod, ### number of state variables used for model initialising + StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs=IndOutputsMod, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } + + ##Output_data_preparation + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); + return(OutputsModel); + +} + diff --git a/R/RunModel_CemaNeigeGR5J.R b/R/RunModel_CemaNeigeGR5J.R new file mode 100644 index 00000000..59c37e47 --- /dev/null +++ b/R/RunModel_CemaNeigeGR5J.R @@ -0,0 +1,211 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the CemaNeige-GR5J daily lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the CemaNeigeGR5J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances +#' et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr +#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), +#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, +#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? +#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? +#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +#' @seealso \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_CemaNeigeGR5J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 7 parameters +#' \tabular{ll}{ +#' GR5J X1 \tab production store capacity [mm] \cr +#' GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +#' GR5J X3 \tab routing store capacity [mm] \cr +#' GR5J X4 \tab unit hydrograph time constant [d] \cr +#' GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr +#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_CemaNeigeGR5J <- function(InputsModel,RunOptions,Param){ + + NParam <- 7; + FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); + FortranOutputsMod <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ParamCemaNeige <- Param[(length(Param)-1):length(Param)]; + NParamMod <- as.integer(length(Param)-2); + ParamMod <- Param[1:NParamMod]; + NLayers <- length(InputsModel$LayerPrecip); + NStatesMod <- as.integer(length(RunOptions$IniStates)-2*NLayers); + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + + ##SNOW_MODULE________________________________________________________________________________## + if(RunOptions$RunSnowModule==TRUE){ + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); + } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ]; + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(2), ### number of model parameter = 2 + Param=ParamCemaNeige, ### parameter set + NStates=as.integer(2), ### number of state variables used for model initialising = 2 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); + if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); + } ###ENDIF_RunSnowModule + if(RunOptions$RunSnowModule==FALSE){ + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } + + + + ##MODEL______________________________________________________________________________________## + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod)); + } else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr5j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=NParamMod, ### number of model parameter + Param=ParamMod, ### parameter set + NStates=NStatesMod, ### number of state variables used for model initialising + StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs=IndOutputsMod, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } + + ##Output_data_preparation + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); + return(OutputsModel); + +} + diff --git a/R/RunModel_CemaNeigeGR6J.R b/R/RunModel_CemaNeigeGR6J.R new file mode 100644 index 00000000..a572ea0a --- /dev/null +++ b/R/RunModel_CemaNeigeGR6J.R @@ -0,0 +1,213 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the CemaNeige-GR6J daily lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the CemaNeigeGR6J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), +#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, +#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? +#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr +#' Valéry, A., V. Andréassian and C. Perrin (2014), +#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? +#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +#' @seealso \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_GR6J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_CemaNeigeGR6J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 8 parameters +#' \tabular{ll}{ +#' GR6J X1 \tab production store capacity [mm] \cr +#' GR6J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +#' GR6J X3 \tab routing store capacity [mm] \cr +#' GR6J X4 \tab unit hydrograph time constant [d] \cr +#' GR6J X5 \tab intercatchment exchange coefficient 2 [-] \cr +#' GR6J X6 \tab coefficient for emptying exponential store [-] \cr +#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr +#' \emph{$Exp } \tab [numeric] series of exponential store level (X(6)) (negative) [mm] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr +#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_CemaNeigeGR6J <- function(InputsModel,RunOptions,Param){ + + NParam <- 8; + FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); + FortranOutputsMod <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QR1","Exp","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ParamCemaNeige <- Param[(length(Param)-1):length(Param)]; + NParamMod <- as.integer(length(Param)-2); + ParamMod <- Param[1:NParamMod]; + NLayers <- length(InputsModel$LayerPrecip); + NStatesMod <- as.integer(length(RunOptions$IniStates)-2*NLayers); + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + + + ##SNOW_MODULE________________________________________________________________________________## + if(RunOptions$RunSnowModule==TRUE){ + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); + } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ]; + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(2), ### number of model parameter = 2 + Param=ParamCemaNeige, ### parameter set + NStates=as.integer(2), ### number of state variables used for model initialising = 2 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); + if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); + } ###ENDIF_RunSnowModule + if(RunOptions$RunSnowModule==FALSE){ + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } + + + + ##MODEL______________________________________________________________________________________## + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod)); + } else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% RunOptions){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr6j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=NParamMod, ### number of model parameter + Param=ParamMod, ### parameter set + NStates=NStatesMod, ### number of state variables used for model initialising + StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputsMod)), ### number of output series + IndOutputs=IndOutputsMod, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } + + ##Output_data_preparation + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); + names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR1A.R b/R/RunModel_GR1A.R new file mode 100644 index 00000000..c0525db3 --- /dev/null +++ b/R/RunModel_GR1A.R @@ -0,0 +1,123 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the GR1A yearly lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR1A hydrological model +#' @author Laurent Coron (March 2015) +#' @example tests/example_RunModel_GR1A.R +#' @references +#' Mouelhi S. (2003), +#' Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier, +#' PhD thesis (in French), ENGREF, Cemagref Antony, France. \cr +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 4 parameters +#' \tabular{ll}{ +#' GR1A X1 \tab model parameter [mm] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/h] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_GR1A <- function(InputsModel,RunOptions,Param){ + + NParam <- 1; + FortranOutputs <- c("PotEvap","Precip","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"yearly" )==FALSE){ stop("InputsModel must be of class 'yearly' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + + BOOL_Fortran <- FALSE; if(BOOL_Fortran){ + ##Call_fortan + RESULTS <- .Fortran("frun_gr1a",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/y] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/y] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + } else { + ##R_version + L <- length(IndPeriod1) + P0 <- InputsModel$Precip[ IndPeriod1][1:(L-1)] + P1 <- InputsModel$Precip[ IndPeriod1][2: L ] + E1 <- InputsModel$PotEvap[IndPeriod1][2: L ] + Q1 <- P1*(1.-1./(1.+((0.7*P1+0.3*P0)/Param[1]/E1)^2.0)^0.5) + PEQ <- rbind(c(NA,NA,NA),cbind(P1,E1,Q1)) + Outputs <- PEQ[,IndOutputs] + if(is.vector(Outputs)){ Outputs <- cbind(Outputs); } + RESULTS <- list(NOutputs=length(IndOutputs),IndOutputs=IndOutputs,Outputs=Outputs,StatesEnd=NA) + } + + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","yearly","GR"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR2M.R b/R/RunModel_GR2M.R new file mode 100644 index 00000000..f21542a6 --- /dev/null +++ b/R/RunModel_GR2M.R @@ -0,0 +1,128 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the GR2M monthly lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR2M hydrological model +#' @author Laurent Coron (March 2015) +#' @example tests/example_RunModel_GR2M.R +#' @references +#' Mouelhi S. (2003), +#' Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier, +#' PhD thesis (in French), ENGREF, Cemagref Antony, France. \cr +#' Mouelhi, S., C. Michel, C. Perrin and V. Andréassian (2006), +#' Stepwise development of a two-parameter monthly water balance model, +#' Journal of Hydrology, 318(1-4), 200-214, doi:10.1016/j.jhydrol.2005.06.014. +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 4 parameters +#' \tabular{ll}{ +#' GR2M X1 \tab production store capacity [mm] \cr +#' GR2M X2 \tab groundwater exchange coefficient [mm/month] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/h] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/h] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/h] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/h] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/h] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/h] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/h] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/h] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#***************************************************************************************************************** +RunModel_GR2M <- function(InputsModel,RunOptions,Param){ + + NParam <- 2; + FortranOutputs <- c("PotEvap","Precip","Prod","Rout","Qsim"); + ### FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"monthly" )==FALSE){ stop("InputsModel must be of class 'monthly' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% names(RunOptions)){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr2m",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/month] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/month] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","monthly","GR"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR4H.R b/R/RunModel_GR4H.R new file mode 100644 index 00000000..2befb604 --- /dev/null +++ b/R/RunModel_GR4H.R @@ -0,0 +1,129 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the GR4H hourly lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR4H hydrological model +#' @author Laurent Coron (July 2014) +#' @seealso \code{\link{RunModel_GR4J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_GR4H.R +#' @references +#' Mathevet, T. (2005), +#' Quels modèles pluie-débit globaux pour le pas de temps horaire ? Développement empirique et comparaison de modèles sur un large échantillon de bassins versants, +#' PhD thesis (in French), ENGREF - Cemagref (Antony), Paris, France. +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 4 parameters +#' \tabular{ll}{ +#' GR4H X1 \tab production store capacity [mm] \cr +#' GR4H X2 \tab groundwater exchange coefficient [mm/h] \cr +#' GR4H X3 \tab routing store capacity [mm] \cr +#' GR4H X4 \tab unit hydrograph time constant [h] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/h] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/h] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/h] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/h] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/h] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/h] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/h] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/h] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#*****************************************************************************************************************' +RunModel_GR4H <- function(InputsModel,RunOptions,Param){ + + NParam <- 4; + FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"hourly" )==FALSE){ stop("InputsModel must be of class 'hourly' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% names(RunOptions)){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr4h",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","hourly","GR"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR4J.R b/R/RunModel_GR4J.R new file mode 100644 index 00000000..50c7e373 --- /dev/null +++ b/R/RunModel_GR4J.R @@ -0,0 +1,129 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the GR4J daily lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR4J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Perrin, C., C. Michel and V. Andréassian (2003), +#' Improvement of a parsimonious model for streamflow simulation, +#' Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. +#' @seealso \code{\link{RunModel_GR5J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR4J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_GR4J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 4 parameters +#' \tabular{ll}{ +#' GR4J X1 \tab production store capacity [mm] \cr +#' GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr +#' GR4J X3 \tab routing store capacity [mm] \cr +#' GR4J X4 \tab unit hydrograph time constant [d] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#*****************************************************************************************************************' +RunModel_GR4J <- function(InputsModel,RunOptions,Param){ + + NParam <- 4; + FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% names(RunOptions)){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr4j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR5J.R b/R/RunModel_GR5J.R new file mode 100644 index 00000000..7d3a60ea --- /dev/null +++ b/R/RunModel_GR5J.R @@ -0,0 +1,132 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the GR5J daily lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR5J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances +#' et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr +#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet, and V. Andréassian (2011), +#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, +#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +#' @seealso \code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR5J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_GR5J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 5 parameters +#' \tabular{ll}{ +#' GR5J X1 \tab production store capacity [mm] \cr +#' GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +#' GR5J X3 \tab routing store capacity [mm] \cr +#' GR5J X4 \tab unit hydrograph time constant [d] \cr +#' GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#*****************************************************************************************************************' +RunModel_GR5J <- function(InputsModel,RunOptions,Param){ + + NParam <- 5; + FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% names(RunOptions)){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr5j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR"); + return(OutputsModel); + +} + diff --git a/R/RunModel_GR6J.R b/R/RunModel_GR6J.R new file mode 100644 index 00000000..b9e930a0 --- /dev/null +++ b/R/RunModel_GR6J.R @@ -0,0 +1,133 @@ +#***************************************************************************************************************** +#' Function which performs a single run for the GR6J daily lumped model. +#' +#' For further details on the model, see the references section. +#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +#***************************************************************************************************************** +#' @title Run with the GR6J hydrological model +#' @author Laurent Coron (December 2013) +#' @references +#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), +#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, +#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +#' @seealso \code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, +#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +#' @example tests/example_RunModel_GR6J.R +#' @useDynLib airgr +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details +#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details +#' @param Param [numeric] vector of 6 parameters +#' \tabular{ll}{ +#' GR6J X1 \tab production store capacity [mm] \cr +#' GR6J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +#' GR6J X3 \tab routing store capacity [mm] \cr +#' GR6J X4 \tab unit hydrograph time constant [d] \cr +#' GR6J X5 \tab intercatchment exchange coefficient 2 [-] \cr +#' GR6J X6 \tab coefficient for emptying exponential store [-] \cr +#' } +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return [list] list containing the function outputs organised as follows: +#' \tabular{ll}{ +#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr +#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr +#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr +#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr +#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr +#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr +#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr +#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr +#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr +#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr +#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr +#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr +#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr +#' \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr +#' \emph{$Exp } \tab [numeric] series of exponential store level (X(6)) (negative) [mm] \cr +#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr +#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr +#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr +#' } +#' (refer to the provided references or to the package source code for further details on these model outputs) +#*****************************************************************************************************************' +RunModel_GR6J <- function(InputsModel,RunOptions,Param){ + + NParam <- 6; + FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QR1","Exp","QD","Qsim"); + + ##Arguments_check + if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } + if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } + if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } + if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } + if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } + if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } + if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } + Param <- as.double(Param); + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ##Use_of_IniResLevels + if("IniResLevels" %in% names(RunOptions)){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr6j",PACKAGE="airgr", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/d] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + ##OutputsModel_only + if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ + OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(OutputsModel) <- FortranOutputs[IndOutputs]; } + ##DatesR_and_OutputsModel_only + if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } + ##OutputsModel_and_SateEnd_only + if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","daily","GR"); + return(OutputsModel); + +} + diff --git a/R/SeriesAggreg.R b/R/SeriesAggreg.R new file mode 100644 index 00000000..ec67f7ac --- /dev/null +++ b/R/SeriesAggreg.R @@ -0,0 +1,134 @@ +#************************************************************************************************* +#' Conversion of time series to another time-step (aggregation only). +#' Warning : on the aggregated outputs, the dates correpond to the beginning ot the time-step +#' (e.g. for daily time-series 01/03/2005 00:00 = value for period 01/03/2005 00:00 - 01/03/2005 23:59 ) +#' (e.g. for monthly time-series 01/03/2005 00:00 = value for period 01/03/2005 00:00 - 31/03/2005 23:59 ) +#' (e.g. for yearly time-series 01/03/2005 00:00 = value for period 01/03/2005 00:00 - 28/02/2006 23:59 ) +#************************************************************************************************* +#' @title Conversion of time series to another time-step (aggregation only) +#' @author Laurent Coron (March 2015) +#' @example tests/example_SeriesAggreg.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________ +#' @param TabSeries [POSIXlt+numeric] dataframe containing the vector of dates and the time series values +#' @param TimeFormat [character] desired format (i.e. "hourly", "daily", "monthly" or "yearly") +#' @param NewTimeFormat [character] desired format (i.e. "hourly", "daily", "monthly" or "yearly") +#' @param ConvertFun [character] names of aggregation functions (e.g. for P[mm],T[deg],Q[mm] : ConvertFun=c("sum","mean","sum")) +#' @param YearFirstMonth (optional) [numeric] integer used when NewTimeFormat="yearly" to set when the starting month of the year (e.g. 01 for calendar year or 09 for hydrological year starting in september) +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________ +#' @return [POSIXlt+numeric] dataframe containing a vector of aggregated dates and time series values +#**************************************************************************************************' +SeriesAggreg <- function(TabSeries,TimeFormat,NewTimeFormat,ConvertFun,YearFirstMonth=01,quiet=FALSE){ + + + ##_Arguments_check + + ##check_TabSeries + if(is.null(TabSeries) ){ stop("TabSeries must be a dataframe containing the dates and data to be converted \n"); return(NULL); } + if(!is.data.frame(TabSeries)){ stop("TabSeries must be a dataframe containing the dates and data to be converted \n"); return(NULL); } + if(ncol(TabSeries)<2){ stop("TabSeries must contain at least two columns (including the coulmn of dates \n"); return(NULL); } + if("POSIXlt" %in% class(TabSeries[,1]) == FALSE & "POSIXct" %in% class(TabSeries[,1]) == FALSE){ stop("TabSeries first column must be a vector of class POSIXlt or POSIXct \n"); return(NULL); } + for(iCol in 2:ncol(TabSeries)){ + if(!is.numeric(TabSeries[,iCol])){ stop("TabSeries columns (other than the first one) be of numeric class \n"); return(NULL); } } + ##check_TimeFormat + if(is.null( TimeFormat)){ stop("TimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + if(!is.vector( TimeFormat)){ stop("TimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + if(!is.character(TimeFormat)){ stop("TimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + if(length(TimeFormat)!=1 ){ stop("TimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + if(TimeFormat %in% c("hourly","daily","monthly","yearly")==FALSE){ + stop("TimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + ##check_NewTimeFormat + if(is.null( NewTimeFormat)){ stop("NewTimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + if(!is.vector( NewTimeFormat)){ stop("NewTimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + if(!is.character(NewTimeFormat)){ stop("NewTimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + if(length(NewTimeFormat)!=1 ){ stop("NewTimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + if(NewTimeFormat %in% c("hourly","daily","monthly","yearly")==FALSE){ + stop("NewTimeFormat must be 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); } + ##check_ConvertFun + if(is.null( ConvertFun)){ stop("ConvertFun must be a vector of character \n"); return(NULL); } + if(!is.vector( ConvertFun)){ stop("ConvertFun must be a vector of character \n"); return(NULL); } + if(!is.character(ConvertFun)){ stop("ConvertFun must be a vector of character \n"); return(NULL); } + if(length(ConvertFun)!=(ncol(TabSeries)-1)){ stop(paste("ConvertFun must be of length ",ncol(TabSeries)-1," (length=ncol(TabSeries)-1) \n",sep="")); return(NULL); } + if(sum(ConvertFun %in% c("sum","mean")==FALSE)!=0){ stop("ConvertFun elements must be either 'sum' or 'mean' \n"); return(NULL); } + ##check_YearFirstMonth + if(is.null( YearFirstMonth)){ stop("YearFirstMonth must be an integer between 1 and 12 \n"); return(NULL); } + if(!is.vector( YearFirstMonth)){ stop("YearFirstMonth must be an integer between 1 and 12 \n"); return(NULL); } + if(!is.numeric(YearFirstMonth)){ stop("YearFirstMonth must be an integer between 1 and 12 \n"); return(NULL); } + YearFirstMonth <- as.integer(YearFirstMonth); + if(length(YearFirstMonth)!=1){ stop(paste("YearFirstMonth must be only one integer between 1 and 12 \n",sep="")); return(NULL); } + if(YearFirstMonth %in% (1:12) == FALSE){ stop(paste("YearFirstMonth must be only one integer between 1 and 12 \n",sep="")); return(NULL); } + ##check_DatesR_integrity + if(TimeFormat=="hourly" ){ by <- "hours" ; } + if(TimeFormat=="daily" ){ by <- "days" ; } + if(TimeFormat=="monthly"){ by <- "months"; } + if(TimeFormat=="yearly" ){ by <- "years" ; } + TmpDatesR <- seq(from=TabSeries[1,1],to=tail(TabSeries[,1],1),by=by) + if(!identical(TabSeries[,1],TmpDatesR)){ stop("Problem detected in TabSeries dates vector (in comparison with seq(from=TabSeries[1,1],to=tail(TabSeries[,1],1))) \n"); return(NULL); } + ##check_conversion_direction + if((TimeFormat == "daily" & NewTimeFormat %in% c("hourly") ) | + (TimeFormat == "monthly" & NewTimeFormat %in% c("hourly","daily") ) | + (TimeFormat == "yearly" & NewTimeFormat %in% c("hourly","daily","monthly"))){ + stop("only time aggregation can be performed \n"); return(NULL); } + ##check_if_conversion_not_needed + if((TimeFormat == "hourly" & NewTimeFormat=="hourly" ) | + (TimeFormat == "daily" & NewTimeFormat=="daily" ) | + (TimeFormat == "monthly" & NewTimeFormat=="monthly") | + (TimeFormat == "yearly" & NewTimeFormat=="yearly" )){ + if(!quiet){ warning("\t The old and new format are identical \n\t -> no time-step conversion was performed \n"); return(TabSeries); } } + + + ##_Time_step_conversion + + ##_Handle_conventional_difference_between_hourly_series_and_others + TmpDatesR <- TabSeries[,1]; + if(TimeFormat=="hourly"){ TmpDatesR <- TmpDatesR - 60*60; } + Hmax <- "00"; if(TimeFormat=="hourly"){ Hmax <- "23" } + + ##_Identify_the_part_of_the_series_to_be_aggregated + NDaysInMonth <- list("31",c("28","29"),"31","30","31","30","31","31","30","31","30","31") + YearLastMonth <- YearFirstMonth+11; if(YearLastMonth>12){ YearLastMonth <- YearLastMonth-12; } + YearFirstMonthTxt <- formatC(YearFirstMonth,format="d",width=2,flag="0") + YearLastMonthTxt <- formatC(YearLastMonth,format="d",width=2,flag="0") + if(NewTimeFormat=="daily" ){ Ind1 <- which(format(TmpDatesR, "%H")=="00"); + Ind2 <- which(format(TmpDatesR, "%H")==Hmax); + if(Ind2[1]<Ind1[1]){ Ind2 <- Ind2[2:length(Ind2)]; } + if(tail(Ind1,1)>tail(Ind2,1)){ Ind1 <- Ind1[1:(length(Ind1)-1)]; } + ### Aggr <- NULL; iii <- 0; for(kkk in 1:length(Ind1)){ + ### iii <- iii+1; Aggr <- c(Aggr,rep(iii,length(Ind1[kkk]:Ind2[kkk]))); } + Aggr <- as.numeric(format(TmpDatesR[min(Ind1):max(Ind2)],"%Y%m%d")); ### more efficient + NewDatesR <- data.frame(seq(from=TmpDatesR[min(Ind1)],to=TmpDatesR[max(Ind2)],by="days")) + } + if(NewTimeFormat=="monthly"){ Ind1 <- which(format(TmpDatesR, "%d%H")=="0100"); + Ind2 <- which(format(TmpDatesR,"%m%d%H") %in% paste(c("0131","0228","0229","0331","0430","0531","0630","0731","0831","0930","1031","1130","1231"),Hmax,sep="")); + Ind2[1:(length(Ind2)-1)][diff(Ind2)==1] <- NA; Ind2 <- Ind2[!is.na(Ind2)]; ### to keep only feb 29 if both feb 28 and feb 29 exists + if(Ind2[1]<Ind1[1]){ Ind2 <- Ind2[2:length(Ind2)]; } + if(tail(Ind1,1)>tail(Ind2,1)){ Ind1 <- Ind1[1:(length(Ind1)-1)]; } + ### Aggr <- NULL; iii <- 0; for(kkk in 1:length(Ind1)){ + ### iii <- iii+1; Aggr <- c(Aggr,rep(iii,length(Ind1[kkk]:Ind2[kkk]))); } + Aggr <- as.numeric(format(TmpDatesR[min(Ind1):max(Ind2)],"%Y%m")); ### more efficient + NewDatesR <- data.frame(seq(from=TmpDatesR[min(Ind1)],to=TmpDatesR[max(Ind2)],by="months")) + } + if(NewTimeFormat=="yearly" ){ Ind1 <- which(format(TmpDatesR,"%m%d%H") %in% paste(YearFirstMonthTxt,"0100",sep="")); + Ind2 <- which(format(TmpDatesR,"%m%d%H") %in% paste(YearLastMonthTxt,NDaysInMonth[[YearLastMonth]],Hmax,sep="")); + Ind2[1:(length(Ind2)-1)][diff(Ind2)==1] <- NA; Ind2 <- Ind2[!is.na(Ind2)]; ### to keep only feb 29 if both feb 28 and feb 29 exists + if(Ind2[1]<Ind1[1]){ Ind2 <- Ind2[2:length(Ind2)]; } + if(tail(Ind1,1)>tail(Ind2,1)){ Ind1 <- Ind1[1:(length(Ind1)-1)]; } + Aggr <- NULL; iii <- 0; for(kkk in 1:length(Ind1)){ + iii <- iii+1; Aggr <- c(Aggr,rep(iii,length(Ind1[kkk]:Ind2[kkk]))); } + ### Aggr <- as.numeric(format(TmpDatesR[min(Ind1):max(Ind2)],"%Y")); ### not working if YearFirstMonth != 01 + NewDatesR <- data.frame(seq(from=TmpDatesR[min(Ind1)],to=TmpDatesR[max(Ind2)],by="years")) + } + ##_Aggreation_and_export + NewTabSeries <- data.frame(NewDatesR) + for(iCol in 2:ncol(TabSeries)){ + AggregData <- aggregate(TabSeries[min(Ind1):max(Ind2),iCol],by=list(Aggr),FUN=ConvertFun[iCol-1],na.rm=F)[,2] + NewTabSeries <- data.frame(NewTabSeries,AggregData) + } + names(NewTabSeries) <- names(TabSeries) + return(NewTabSeries); + + +} + diff --git a/R/TransfoParam.R b/R/TransfoParam.R new file mode 100644 index 00000000..ae0da09c --- /dev/null +++ b/R/TransfoParam.R @@ -0,0 +1,19 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa) using the provided function. +#************************************************************************************************** +#' @title Transformation of the parameters using the provided function +#' @author Laurent Coron (June 2014) +#' @seealso \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +#' @example tests/example_TransfoParam.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @param FUN_TRANSFO [function] model parameters transformation function (e.g. TransfoParam_GR4J, TransfoParam_CemaNeigeGR4J) +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#**************************************************************************************************' +TransfoParam <- function(ParamIn,Direction,FUN_TRANSFO){ + return( FUN_TRANSFO(ParamIn,Direction) ) +} + diff --git a/R/TransfoParam_CemaNeige.R b/R/TransfoParam_CemaNeige.R new file mode 100644 index 00000000..73ba2134 --- /dev/null +++ b/R/TransfoParam_CemaNeige.R @@ -0,0 +1,37 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the CemaNeige module +#' @author Laurent Coron (December 2013) +#' @seealso \code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}} +#' @example tests/example_TransfoParam_CemaNeige.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_CemaNeige <- function(ParamIn,Direction){ + + NParam <- 2; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the CemaNeige module requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- (ParamIn[,1]+9.99)/19.98; ### CemaNeige X1 (weighting coefficient for snow pack thermal state) + ParamOut[,2] <- exp(ParamIn[,2]); ### CemaNeige X2 (degree-day melt coefficient) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- ParamIn[,1]*19.98-9.99; ### CemaNeige X1 (weighting coefficient for snow pack thermal state) + ParamOut[,2] <- log(ParamIn[,2]); ### CemaNeige X2 (degree-day melt coefficient) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR1A.R b/R/TransfoParam_GR1A.R new file mode 100644 index 00000000..963d6bd4 --- /dev/null +++ b/R/TransfoParam_GR1A.R @@ -0,0 +1,31 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR1A model +#' @author Laurent Coron (March 2015) +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR1A <- function(ParamIn,Direction){ + + NParam <- 1; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR1A model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- (ParamIn+10.0)/8; + } + if(Direction=="RT"){ + ParamOut <- ParamIn*8-10.0; + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR2M.R b/R/TransfoParam_GR2M.R new file mode 100644 index 00000000..e3fba4cd --- /dev/null +++ b/R/TransfoParam_GR2M.R @@ -0,0 +1,35 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR2M model +#' @author Laurent Coron (March 2015) +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR2M <- function(ParamIn,Direction){ + + NParam <- 2; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR2M model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- exp(1.5*ParamIn[,1]); + ParamOut[,2] <- ParamIn[,2]/5; + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- log(ParamIn[,1])/1.5; + ParamOut[,2] <- ParamIn[,2]*5; + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR4H.R b/R/TransfoParam_GR4H.R new file mode 100644 index 00000000..caa4ac6c --- /dev/null +++ b/R/TransfoParam_GR4H.R @@ -0,0 +1,39 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR4H model +#' @author Laurent Coron (July 2014) +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR4H <- function(ParamIn,Direction){ + + NParam <- 4; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR4H model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- exp(1.5*ParamIn[,1]); ### GR4H X1 (production store capacity) + ParamOut[,2] <- sinh(ParamIn[,2]); ### GR4H X2 (groundwater exchange coefficient) + ParamOut[,3] <- exp(ParamIn[,3]); ### GR4H X3 (routing store capacity) + ParamOut[,4] <- 20+(19.5*24)*(ParamIn[,4]-9.99)/(19.98*24); ### GR4H X4 (unit hydrograph time constant) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- log(ParamIn[,1])/1.5; ### GR4H X1 (production store capacity) + ParamOut[,2] <- asinh(ParamIn[,2]); ### GR4H X2 (groundwater exchange coefficient) + ParamOut[,3] <- log(ParamIn[,3]); ### GR4H X3 (routing store capacity) + ParamOut[,4] <- 9.99+(19.98*24)*(ParamIn[,4]-20)/(19.5*24); ### GR4H X4 (unit hydrograph time constant) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR4J.R b/R/TransfoParam_GR4J.R new file mode 100644 index 00000000..2613179d --- /dev/null +++ b/R/TransfoParam_GR4J.R @@ -0,0 +1,41 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR4J model +#' @author Laurent Coron (December 2013) +#' @seealso \code{\link{TransfoParam}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +#' @example tests/example_TransfoParam_GR4J.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR4J <- function(ParamIn,Direction){ + + NParam <- 4; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR4J model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- exp(1.5*ParamIn[,1]); ### GR4J X1 (production store capacity) + ParamOut[,2] <- sinh(ParamIn[,2]); ### GR4J X2 (groundwater exchange coefficient) + ParamOut[,3] <- exp(ParamIn[,3]); ### GR4J X3 (routing store capacity) + ParamOut[,4] <- 20+19.5*(ParamIn[,4]-9.99)/19.98; ### GR4J X4 (unit hydrograph time constant) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- log(ParamIn[,1])/1.5; ### GR4J X1 (production store capacity) + ParamOut[,2] <- asinh(ParamIn[,2]); ### GR4J X2 (groundwater exchange coefficient) + ParamOut[,3] <- log(ParamIn[,3]); ### GR4J X3 (routing store capacity) + ParamOut[,4] <- 9.99+19.98*(ParamIn[,4]-20)/19.5; ### GR4J X4 (unit hydrograph time constant) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR5J.R b/R/TransfoParam_GR5J.R new file mode 100644 index 00000000..126d25ba --- /dev/null +++ b/R/TransfoParam_GR5J.R @@ -0,0 +1,45 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR5J model +#' @author Laurent Coron (December 2013) +#' @seealso \code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +#' @example tests/example_TransfoParam_GR5J.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR5J <- function(ParamIn,Direction){ + + NParam <- 5; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR5J model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- exp(1.5*ParamIn[,1]); ### GR5J X1 (production store capacity) + ParamOut[,2] <- sinh(ParamIn[,2]); ### GR5J X2 (groundwater exchange coefficient 1) + ParamOut[,3] <- exp(ParamIn[,3]); ### GR5J X3 (routing store capacity) + ParamOut[,4] <- 20+19.5*(ParamIn[,4]-9.99)/19.98; ### GR5J X4 (unit hydrograph time constant) + ### ParamOut[,5] <- sinh(ParamIn[,5]); ### GR5J X5 (groundwater exchange coefficient 2) + ParamOut[,5] <- ParamIn[,5]/5; ### GR5J X5 (groundwater exchange coefficient 2) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- log(ParamIn[,1]) / 1.5; ### GR5J X1 (production store capacity) + ParamOut[,2] <- asinh(ParamIn[,2]); ### GR5J X2 (groundwater exchange coefficient 1) + ParamOut[,3] <- log(ParamIn[,3]); ### GR5J X3 (routing store capacity) + ParamOut[,4] <- 9.99+19.98*(ParamIn[,4]-20)/19.5; ### GR5J X4 (unit hydrograph time constant) + ### ParamOut[,5] <- asinh(ParamIn[,5]); ### GR5J X5 (groundwater exchange coefficient 2) + ParamOut[,5] <- ParamIn[,5]*5; ### GR5J X5 (groundwater exchange coefficient 2) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/TransfoParam_GR6J.R b/R/TransfoParam_GR6J.R new file mode 100644 index 00000000..ed558b69 --- /dev/null +++ b/R/TransfoParam_GR6J.R @@ -0,0 +1,47 @@ +#************************************************************************************************** +#' Function which transforms model parameters (from real to transformed parameters and vice versa). +#************************************************************************************************** +#' @title Transformation of the parameters from the GR6J model +#' @author Laurent Coron (December 2013) +#' @seealso \code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_CemaNeige}} +#' @example tests/example_TransfoParam_GR6J.R +#' @encoding UTF-8 +#' @export +#_FunctionInputsOutputs____________________________________________________________________________ +#' @param ParamIn [numeric] matrix of parameter sets (sets in line, parameter values in column) +#' @param Direction [character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real +#' @return \emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +#************************************************************************************************** +TransfoParam_GR6J <- function(ParamIn,Direction){ + + NParam <- 6; + Bool <- is.matrix(ParamIn); + if(Bool==FALSE){ ParamIn <- rbind(ParamIn); } + if(ncol(ParamIn)!=NParam){ stop(paste("the GR6J model requires ",NParam," parameters \n",sep="")); return(NULL); } + + if(Direction=="TR"){ + ParamOut <- ParamIn; + ParamOut[,1] <- exp(1.5*ParamIn[,1]); ### GR6J X1 (production store capacity) + ParamOut[,2] <- sinh(ParamIn[,2]); ### GR6J X2 (groundwater exchange coefficient 1) + ParamOut[,3] <- exp(ParamIn[,3]); ### GR6J X3 (routing store capacity) + ParamOut[,4] <- 20+19.5*(ParamIn[,4]-9.99)/19.98; ### GR6J X4 (unit hydrograph time constant) + ### ParamOut[,5] <- sinh(ParamIn[,5]); ### GR6J X5 (groundwater exchange coefficient 2) + ParamOut[,5] <- ParamIn[,5]/5; ### GR6J X5 (groundwater exchange coefficient 2) + ParamOut[,6] <- exp(ParamIn[,6]); ### GR6J X6 (coefficient for emptying exponential store) + } + if(Direction=="RT"){ + ParamOut <- ParamIn; + ParamOut[,1] <- log(ParamIn[,1]) / 1.5; ### GR6J X1 (production store capacity) + ParamOut[,2] <- asinh(ParamIn[,2]); ### GR6J X2 (groundwater exchange coefficient 1) + ParamOut[,3] <- log(ParamIn[,3]); ### GR6J X3 (routing store capacity) + ParamOut[,4] <- 9.99+19.98*(ParamIn[,4]-20)/19.5; ### GR6J X4 (unit hydrograph time constant) + ### ParamOut[,5] <- asinh(ParamIn[,5]); ### GR6J X5 (groundwater exchange coefficient 2) + ParamOut[,5] <- ParamIn[,5]*5; ### GR6J X5 (groundwater exchange coefficient 2) + ParamOut[,6] <- log(ParamIn[,6]); ### GR6J X6 (coefficient for emptying exponential store) + } + + if(Bool==FALSE){ ParamOut <- ParamOut[1,]; } + return(ParamOut); + +} + diff --git a/R/airGR b/R/airGR deleted file mode 100644 index 3b65e3cb..00000000 --- a/R/airGR +++ /dev/null @@ -1,27 +0,0 @@ -# File share/R/nspackloader.R -# Part of the R package, http://www.R-project.org -# -# Copyright (C) 1995-2012 The R Core Team -# -# This program is free software; you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation; either version 2 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# A copy of the GNU General Public License is available at -# http://www.r-project.org/Licenses/ - -local({ - info <- loadingNamespaceInfo() - pkg <- info$pkgname - ns <- .getNamespace(as.name(pkg)) - if (is.null(ns)) - stop("cannot find namespace environment for ", pkg, domain = NA); - dbbase <- file.path(info$libname, pkg, "R", pkg) - lazyLoad(dbbase, ns, filter = function(n) n != ".__NAMESPACE__.") -}) diff --git a/R/airGR.rdb b/R/airGR.rdb deleted file mode 100644 index f499c91aa680b1580687738478a2d764bcd9c0da..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 56780 zcmc$^Ly#_9%r)A^Y1_7K+wMMX+qP}nwr$(y(>`t6xbOGP?w#EFNB?9cgI%?gTB+1Z zB|tzxy&gHy`$h%^21W)DM&xFQDwvWD!j^;vh9Jl>u(Yr_g!ero+bc$dB0$8GcL)&z z!j|+6!cc-n!LSBj2&=<?*dj=%SQyAy7<w_M%w=X}<|f1MJCJ3hqnMMWWt0txX){L$ z$r)R@-X}LJsR*@!n<vmEfq;O1|4+X~V-X%TjCyxMuBKK&mO-vXW{KVoCKPA-kx&^0 zVMew>##ljxP-Tze|69QyS2EL+GSl;9M43;=#=u2EF!oQHmWpahmYPl~G_t`29Wr}h z<>ZLMyu2*H1{~<H0KW$a2*lJQ$5&BTA(#=BPXAC+HtkKo0;y;syK4j^pIy#}u0^^T z1g<vvQUCKOTT7g09N)&t`=*oY^^pq%sAFLH#4Fglu7ALw!V%tW-u?L$h+u}*D})Vu z&aLtvj#GcEZ)Qen{(_qdDn?mFF&*<6E*iYnwqj-OyU+qdW65utd^|I{JGf6$OL{|} zY+XHK50X(JS{Q<ED3?!3Y=F!v)W`z%&Jf0!rSgep&?Bi_6RgqN9>eTS9iA<09I2=y zJ_Qr@_^Y3+fAw=XTa8QcsevvJJ!4|HIJ0&soSLgd$t)2dt=UQ8y!*_nwY-L_q#W1Z zCUSR<9YbSvEj{S(iAz4j_4VLNzAXC27MV4)wf^y5C(W)Vx?!o;-##iU68_}s87oiq zS}LrrACO5Wb^8BUr2K!gNSJ)U0}95-+`#AnV%fIR!%RaX0>qFEYVqIG|4ViD{~sX= z5JMWM^?wnP{C|@X0*b)G(!k^lWVJRjOY}wrLYD(E2Lb}V^2l*bkb?;lL=0PhX1QKq zK<aj78%9<hgzbt<3=d`0-cjl24YKJcMA6RhH9yHTbbB!Y1tL_e6iV&F?#>g$g<@qa zu1bfpXTi$I>vl@7ldvX&L(6n4>LSv`*`r@g4Xa0LV^J=b3%7IS5fgI`P~s3e74j52 z{oOJ1kd5NpktK{SB#eH5X8$*{Cvhp{G-!U1G)wJfEr3-&ne{NE0B<Ng{0epH9z@+1 zJez#DKx_aTl>+$-*eeOFj@$o`snL5=tfE#+u99IZ$x^=7>zO<cy}#e)@0t*f1_E*# z_sBWM`*y||Rcj*~Z9<_ylwOuEcP`{)3gm2S6cL8rNc%UEsUdHhDs1UEzqHBEnVZtB z!Vi^?*9Y@NLj+se0*e>crpWz`@saLQww(WIO~LZ_wnY27ySLrDnum*Qg(dE2$2b4; z<r>g_OCJwcqFlMFn*Rv^ochUm|9(-dew@pds&Kus6kn`Wn*PS)85fU>k4ubiH}>A- z^Z7mQ2WeLGyco6CVBO?%WZVQEcXg^dKUG;8_tNe6l=4X4&h=QGS^J#fJ?=5o(9_Qn z>3-{}`*{{dJi&SSjvi+YO?@SOo}w@3a_O(L#pec^8DEa$rA!40@u_E7{b7H(xYW3e zM3J=ax3jaV+i<I{Z$F6N99F+h69_q;mf%|uoG7s^*Ah|OgH)tR?YgG4&QjJ@mkzT6 zObIP`D`G({S^k^Q%2H{U?Kh8pf0jT1sdEdu?f$y;&Da+zJ{P<pf&~yo!6Bu(g^}*a zHH@av#ZI9!zK=91*=$=rad*>eL;MTVZICL(34KF+H+Y>*Wc2lND_a1cG$SE>oWNCm zaxLYWQ|@)F)+;UoNbjsoNtKkstF}wbb{V#Gec<>IDc<Git;tF-RPqPWVu?arIbo<T zN7m$N<?+sr%ljUSgab1muG)&puw6f2aIGrSAm$3r0kD~Uat|I`+li)UGwB^!R^jZ* zx<+Rg?Hrt2w6|qx-2$`OlS;N@=3V~B;oRQdJt41GTL~(&w_wufVi`b=mKuwG;+4U9 zoo4hi&$z$izJld8cxYtA6=S^PC5(Qj4?NwTR#xafIQ6K$mWP1H<5{#)!LE#xJLW<5 zf&0w=<m|z<7%BI6hkWYCO7@#*09AVN+M)IIHm_#z@UqbQ3R)k{Lv(WPDn;tR$(^~j zX|*EsIoghGE8<S`t6b$;f`SPeB?*_z7R?dLz#2qNY+Q3`jzK)NNVaOIEG_K{CcNeX z>-26M#gphlJhUl{#1hJ8ml2H=mIeNsXTgR~p3Bi7gzyn7vP%&E#Uth?3@XteF2KsQ z6rfQCko2I&gZPSTb_UzXf!c?2b{806**wch_a=6c@)%a-Ts#Xw7~m;z2P^b1P}y-w z<S&c2s~sFB?lpRp$$>Qz=qBR5G9Gt6+5p8fp)gOON}y1puWB>;i)Y%a#W6h<VK<Z< zDZG8fw=|wa`O3KQ1pnAoi9HSb2RfmMRC107hl7X|m>HbIt>Hkl>?|JBVQ{g=LXdSx z8sYMUky)g@mb2=Zbu@3;*4<lEB!Hz%Ytbi-C1MtaqlNF3)>fB8XU)~Q*rT&d2)Zm7 zS#;lr(kfQGMuey*;09@dJ?sY09rRf6AiTnBzUx9xih(P~R9u%ygMV?~AqqQ)v{@Aa zfn`NoM?u^%mOI|Ka70XsEmdxn7ALES8tpkruTs4yW_%<=`4MwnhoqTD&N>9vZNG)a zUj=EpvLQkfGi0!V4DqK_uG*^+oC|wp6y`r3aH1eDXOY_mq2Fkhl$zmkihYc;JI-D^ z?o<*01Hl$JWAFDKR2}RCGwk+X^!8shW<2p#;=1S-290){Ub71TKMgDIyCfHlj4fvd zRmppMn0y5N?@wot8Ux_h#uSJhD8Te;T^*~Xtt&{9IvliSpW9s3T2)(`dwPN1U%Xj< z({s~54hxV_y8~~#At4vJIiYT-^c7*<bLR;?0wsiuN;A)qV=Bo3HS!ai&&t8AnqvU5 zkf~F_Y)T(}BVmR`4YzM}%#DUb^tHEa|NPR`x0WK4GK;lpbdfgo`Dtj<?pT9AKY72J zCMkkg#Smj$?1>~p$Zf~Zo31vN<~=<f)ET!pu-ZlXyFH}@e3_>sl{AHoADfMiQm!Ny z(GTMe*os>yQkDws;jXfuKO-%l#>;uKvfc_dTPl&3dq~+Yiz6+sqh;TMMq7JPa-SMT zThcaL<0#90H1yZ^jUz3$adJG3`q})5*=|n#?8yIvZj|iTM}F6R8!gG7t&9JQjsJ`H z|BI3Ti=Y3N@+5E8I~tkLyZFOKGx$m!C~y?{>Hn;7G76xAYv5*3hz24-o=6l0gn>R9 zD-jL_dMcv|IvD&F!x4Zyp(ujO1}%<a*MgtPvIssJND;-sfh?olO5kM7vLHDasEK9= zf}aVSaCA0c7lTg+Esn+|gFK;14E{I3OXnnui%Bw7xc#R;rnngLY!oYDoU~}TC;Ifo zgDcHo=X&e-?^fz|^E1#^(rZcJ5%hkx`lWmQ?~YBtJ>K?XX2$S*%9(EWBr~b9SzGGj zqqb*pGb@Eh-e^O0fo=&je-t61ep=b;JO`$5QdhJ$hRAIyWx7pMUhk2IM!}GsUe|u6 zD6nyS!_@Sl6m57*Ash7PJD9~uS7tD|l*V6#h7S<KQE}Mu&pxQl#{*hu=g_x`+3MCT z$4sn&$d(0J=lRkU9WN}(7i5cS5@lpQy?u{RM_}01?;bxX8j+px!ibt)nWEP5#(T@( z?uK2V0zQ`;FWiMlM#RvHwf%u;A6<EOU9=vp^CM>82E`!xIfAtDH^CH1Z~?@;S=@hA zkz@I2mN~^Wb{_Iw%W0}L5Hu<(w&B|WgD@NRr>M6}A9vD|OROp!9H=|0R)1ZGmu$4L z4Ab=UcX}uSpb8uS`)>J=d-{ZXSin6v)Qvz4>_?q`_{B>+>@o4;bIEn1OFtElB@@`5 z;t#lo3tg58M44WBWw~g(U`uU$k^ue^xyUS^nE*ZESG4JBjv~C`je<Oq+Od2HGN{~+ zyi^B=M6=Ce!tDkyXcleEpaXbW^|f5H45KMW3tz=f4$_3{C;PO?VDleN<yDzHH4=`c z`iMiqmo{z<mxkaFke}0Pq&l3NP65G}y>($gj6^&tw5Tj!p9F6R4uQ<Qt665#cRAK1 zI<}8^!~;4uKoBRhgl0h!>@Or*Oa5c7D$X1WZ{mx}1nlj>SwwldXCVCv60SFqEj;en zy52;3jUCBT+YUYc&e2EeePg4cRt{FDM)q!rrV7NIK#c;CS@1jRZV?&e4F_5Ihui`? z%+^+_RFRRe6p|1~aXuLi6k1v|azr+Mc_c?Dy$gr~tfU)+rO3Z<D7faZkw-ga2y$ln z-IKTH9O2<s<yK`DRtXv!k{Ay}(sB*g<-Sv)c}||#vj)bZOJ=!FX3ypGNY(0#GIdZ} zD!YZ+RaTBZdTTc+XPj6oDK=DXmD(jUT0>$itSPEpg=L3Slt0Yab~-#d^fXn;<q&vK zZ_TxKVWRWg*(u!>>AAD2lnpS4)R#E56q||Gq5H<~rB#L%Y}&?WFI2Bof;hlwCaP4` zLxX95vg2iz3vUB@he@6v+l&i0pZ1GI6jp5|^!sNF6mYh<eJXe;iE<j-6LY`m%p~q9 z`-cC>k)L6tjNXOHj$izHXWf4?_n7`;2ei-#<1j0A_>l=#mz>nGdw4+n(Lth0;Mt~C z^l!0bHNl(MhL7NwjJd&G4weqf^gaS_x~j8qv!FVY*C@PnzLJcNOg8a;h@~s=8q&Uq z@N-(N0yA*l2Vpb2PHfPLQ;cSef~~dXJnw!-CFoN8{1Udu$g$o6P>oifm1Wc&x3PdK z;@(f;0flb`HN_rw4&KskdU6&9snA<mn295ozcsBOH@3W1<|U+(Bd0E5C8jdtWh&Rq z+p2p9FW6{(*_gCl9f2;~zAx*~`Pm@IQ)=f*9D~1mh4||*`0GP(IAE92q*R&2;xseX z=O$TyhC_ax4`!Un3p#q;_D$Xb@%|ilaM_*7ELG>=f()|hU3cMO@2eQwR!+;zPUNso z@Q3x4AJiWrus=$UVqpRD=hQW_;ypIx3n|0h)S#$l-|U`nVf?A>jyYG@(5{Lfj8_tW zm1%vbd9=e#=;}Tg2-j3s+`ga8_KNI9E}6xvul!fSDXAR=(YtGH1D~76vmxjjqMERp z(U!o-ZTi#nu8js9tdPIG%79W)O%c{;;DR^qZLb<m)Qc44yaiT>d@qoE2;SS=b8wK) zVH7oyt{Y!x_t)oyp!~;a94*cZ0BOJwlfS$Q$8DC`4(mlmaB?}F&nMPxIq+Z-(C=T% z;eRIhhWkAYqK;NoiFBVdsZPU25egFml!WSjbU!0N4n4(m_B<->Os@^(leY){kleFJ zz*vlQ@*UxPl&e<n_%Xa54Ktc7*d@OUF&Gja4`Ys?Nv)wcqVYPN;adE<lF25clAp$k z(FO}uVq{o3RgYz=FH)AE9kd8jB=q`u3nnuqE_<l5LK-#gq(R?gi_FF}JCwknL^WeN z=3@Umlx}XIJ+dUJb?ZbnU?25ESO=sR;9lJoaCiU5h$VL$uK&;ezirTdi2e4<rB_!s zeo|fCfzYTsrw{w{YF&684*T+5V-KWSa9Q;cz~cjqI`9nboBY+6N}AuuN07GJ5g*C$ z^mxQB|H)#~ojYPaB}@o-R0e%L$y?pyo%rMgPdhZ|zC>%%ztg5~rsNr3BdouNB+<EZ zhX2XIxo)LJ(S1Xg$Y#7Ybi!T%cEldMI;4o(SIj;e#(eRU9}=v$T1H%)Ao)Khha_MK z>TZGdQCaQTrQ>m~7|%4FdirL7Hp5;c{xg(5gg>ZYQy+u}yTs?_rZ33MFJwq|W>@7< z_UZ@Q(qmMw!am5{fiC7k+U2hF`e*`?$0w0-dRByQ%}$=`Gv#9MfpyEN8qSmF3gsP7 z?P_+wx|18tJmq)V?<0@?zRW^T_o@6sqBRimjnI;4FU`u5^+=TeU@b^^_9%F<py?Az zKTssv6UKCev6(q$C{UI(fSkh@gBBM`VEy9cjN9#cY&_2Tf{ky_a>x5}lq;6B;aXcN ztuY4t2?rCMtBCT}i;=7^fGJUy{BbiWZ0LNE4`_J0V5XcdK>8D5dgj<wJH2p0w@T0A z)`A+ckE45cC>>KxHLI|nY#B3$yo41WDiDuZT*C^h=JcB;>|&|s^c!hOX#k{dKgU#n zkh~s<KI1&SmT0_inkZi(w!=VBwZ8q*VV0RG(bE*)04X!?R5r??Bb^YVlQt<P|FE}y z*eFh{!iZ!*A=J>i-R-aB-P+BC>||y2J}?WiaG7R;9|-Xpi{WpxIHvj8WWx@OndfQ^ zcV2yccU_*)tS7YS8&{IpD)2Uuv}x%FF6A|giSsb+Da@D?b;j}b?%%5>x4ybfy21^m zh>v2k7+!>pZQ^szeL-#eaWjB(6`xk!+B&SjCeNtkpmU+aI2jJLi&k+=rf>(t0R6si zRNm!7pa1&rk2)3{2}3Eu)#DZ52=o%W4~TyQSdR*UXQ;jjo_Be)XNYUSe1j6SU<Qx| zDg^gwW{MS_Z~0SiibsjuTrrRa`;*NUV9mj!sr?I%q}i$u1Vql{ku$4x?!3Z|>i)vd zISqS#H`yWxB7&ZjBpA4m02c_>bZ(PoY#?2AWyN9D+ja?h)<W?1pI#i6)zR0IX*z1< z$dh*;i>!Hl@($0-%d_dXluS}hh`Ldu?3zt_Jtd%eLn}#Ab^lEVX3ldP&c3)_>s?d6 zY@610us<ETIcci`q;*!q6&&vR8BWC3)!v+=FR3O=z(KUbnK)LIZwU&8A1<!ersoFl z^vc0ko+NJVT;qqYJz4bL{G0n(%k%c0Nto^jKzUuTe$DNlGE1QaS>7n@$+?&V!+G{v zTj%UzE5{dDw_z>(k)LpuzuNkj5V}eeV#kTgM7F%-0{<ijqJ<AABO?&j#F_F1&nV+n zP&_?`pfe9rVk$7jv6AF6t4rvXvT%*E$cG1r<sG;zm^6ICB3z4yj4`nhkJ0i)FPgQ~ zj<m-9c}D@D7ebdWlAPFSXO_ct8z@-mMvwg4kVyK)ftk*tvCRp#%vO<oJf4}hp!|%1 zxWh#F(!<JZvK<<ff{k;cWY(^#r39`#iJ0AouP+8xrCWg{5(H;43|qeWczB!`T)xRQ zH+rJf<<}u~Au61Eg)PVuxu!4(V1iCJIQ686)#EYhrRTJ4-JF!lPUUUUoRrC4{m;zG zWFPO~wqyq6sQ%YSxGY$JGsUv&$+ub#FkJ|-2eDMUBr8XVODBn){l#+Amnr?2>O6e# z%y8sFzht4Ralw=zOcML$CUP(|&dJ(AbpL$NGym)8nHI{wlFSr2?nd>}h5Pj<SvbyO z>Hea@I?~Tl@}q626!x~L_O*Y6wRi#^ihr|>AHhey$esxB*iNT)?k=?aBN5-#y%-m0 zTA%>zI2egDL?dOl--ntC@z*TyG@{8dVg*>DV<0;b(wE_S6CKj!2BLE3RFEgom1$pk zT;gOPZH3>>h#0was=L4$38nuo<0d@UyeFIBH|>sLtYhF3Rwh{+KC+1)7^(A#y6_g6 zM<OI^8r4px`xZKfN8U}hPT`(xE%tQClp-2G<R+v?8~1&^>4RM2o!9@U6#^sqYbskm z$At6VISp4~Ny9G??{oqz^EjnRn3p<H07T_4n+(2H8+QUmf;7IINsd{4Ie(h041)PR z{<j8R$oO%BE5Au8vzroR7^~FL4`^zGF6kCokuLcbT9Gc<7MsLW+Aoct{G}K!9kmC) z1d6<A8jX;7W~jAIp@Kueqe&7Vg0oxZX~$V~V)wv#hPWHIdRaP&Ik}CGAa%&po5SW) zCK|R>xISC{9di4~Pt#`6S4guVWj~Yv6NiBOZtO1E$9ZapVlv!~NPjePsA*r+P!krA zw}`NGl{t%;uZO5c5p|=yq30YVlOkKOK|13%5>?~fqz61|Hite09ILC{m{3P(0maKf z7RThIWb!@8|BOh!n!v7js60s<X<U$(KvrzC4B6vVQ3JXhq|BS#cB$Itl3Z?QK?0gp z))Syoj?24?g}tTG7FS@SHNb3&_v8;sa(1f5eUPbWULuJ_+`0vR0hOiexGy2pix9Xd z@CTwKoIHt;ezx7CTec7&1FZG8CEibvY5H?BrHIP5D*~p))wgTFm5L)!PN4oqd!T`{ zPDcLZhmtvS{^Y2uI}$$w|L^wAsisqjgZCBxrvG~oBg2bDE2^DPH$2L1XrVW{cI0zh zj3lXFY*4dcq!LQLbhW6EXrbEJ0{0R`%&ipzI!9aH4TBxnHbCCN^BRw$<ILGqUxjX1 zU{J9f8$9zs#6RnMLJkzlgF>!tAP1jbTM}G4%ITly(v9%ULv>5@%$>{7Z?%*YXBEnO z`B)XB%J*GX^3w0CX>kAe#}A@6yA~Be#B4@zm$*f0*_}r&qiH-;4Xv8^7gdnCA!Ll< zwjk|4TkM=={5c3#3baU|D_xKcFX7GRIjr<nX~bSF<T;CFIZT2ArXZ_)+NLi!@hCqK zN86&_No}6=v%}*0SXXc@2M2<6R0Uiq9m$eZr!snP0e{PBYv%B5*|60@vzWluH1g;) z`4QkuBqk0M{WX74&`YRpE8VfYqDBY{)E-NO4yzK8^LdDmtRkSDkeKZv9~JT*p~{qU znCw89@AXckOK&4zk0SV-NGcee;OhRZvd}Pp#xpW-_{sFSme8Y^Z&}JHjueg=kbBZT z^Vl(zCz+B%t|dTor~O*TZ&utVk)ZUhkUq2-?ICjA{l&)4F|c24($onpr2O7OME$t7 zv#UWHM3!$wh^KSXTe++&Y{dZx(P|Kho^Q@ssI-2wTJ#qu;eqE40JSrxj!4Zt7+Rnb zD<UQT()lD&B{AV><44vPb>V!gYLckI8(%8=+PL!Su^)aP5bkj>84Z8%3Y!xShC(#{ z3qlG^d<O)i+TxLOt)s1gBY~=iV>6&53?i3IP9>A|lms?K*0C@GECLc3qzjx%ErzC* z&1PeIyY$SBQHt=6b8Wr%x%<1o|6EufN&Q@zx|J?XhkT>g+uUsKZf>7Zp+QW`(tPT3 zI^%9Or*k;Zf+|K<3I9&9NhIJ#{re?inNPYZ^*qt90!vY6bK&nI7c(EH5T`I<oBWUu zUF`ARJTxbM-}mJaq4rFvCiDKhDpum)5LxL&mYB#HxaZlC!C=7fOwC|xe*&XDE%rW7 zQp2sno6xaU9y760uw{Bf)qSZ7Xdh)Z^7KzWc-`QBdPy6JNLmJfnq70Nrw5>$&!WE` zqZ6wyVOI)RmKYv(UYJ-LKHOyJZ8?cGK9OmsrB%uH)~RDHJ*9tUZ_wmMj~;gEr72Cf z&Lfp1R0EarZPQQ7=wwz}rAq0D{h9^uA-Zi|%uStKhyUI5mE&m(BrhOS8l#3(B0(Gs zXf%&;hXqBE)GqlZEPAs^9?4?!UxPg`?Le}2Q*6XxLTN-|xn?BBX++v|!(?hjszsvn z9Jd@X;nyP3dN^c1)R~STYa2t=u#1mfNW#~#*gnZ=&qlcqSVe%gi`GnpH~dc6Z_7YC zFIYo>j+>x$PQw=q;Uwe;?xu%^1X_}cV}L25q+o8zqh3N2D#3A0JMr+6GQo;ea~39R zMtS4TZKSq_mX5AjLG<iBfodCGw43V2;d$E2r9b%~cx=JtfZuZ6Z{dkPSqn;{l(3Ne zgNB(%roP~g7tjY6nAw&jt!wgDyc$8Y7AR>T=;HY7*r&9r@-GF(s@?Dq7r0;cXW~Wf z@VkeO*{7GdLM9fER{I6^qCPhf&UoVPqdm)w4Dq9y-Rv-8y$4C(+3^4eUywlz+=ZNU z;qgCD0-RL_2vz-u92kiYO?ydMcod^Z(MF048ciRz=&eVLDdnBZf<TPy18X-dwV*to z(KQQ$)Kka$uG?>%!GSPyY08c@mnr+-2wy=%@ook1Xzn`K5BD)=en7Q%g%2Ekz9Z#4 zcS>~%*p%AX{;>hIJ*Rm9b2H>rHaAtzFf>3rXH(bm&eU{n>7u6FmKst$l^S3N@RiR* zXnlq6btUl@4^jkoc$!GojZGB2sr<_Yj0w(6kvVNys)8?t31$tFlz}XR+Yd8vN9@~v zQEwyy5<+fQaHeN*hI`clEsqi7E38dBktwxWKYnw8pUq~ac1Y)vj683(K~l?Tt%@%k z%P-D0`@6YhV*SRi$_a633+;GOP;GFVHoL1veY3ABc(>O|*)lvw^yh}nH)thL{t))j zp(haI!M(-<xV&xFJz=i^i1--;34a7abdMI%jpO@+QusR=2;T*>qgDVCi@w>;FZ5$G z11o?ZTj;;lSpg@Jr1$okgu#|GG}k9|`geiD7++HYa8M2+Ot6r4`{!!!8vhQ<pesW7 zYA#&er?AG3_+Lyx4z$1RiJl+paIj2%F4|21H%xoLUpt9g0DE9?U<WQ%1frv0au8$K z0c&6!Yf8FnL``F1^v(GJOHQzbMgDwSp9gKd1{l)tx%t%FKo5f8I<{*heIu)gwUK3^ zaQaaz+_Y%RcRKDYaOpYq^sUsVoB4bfCqC;*v6|<#B98%S-H003d8SRwQ;4Z2Hj}c7 zILkwhg-v-lBivO+%r=vn;d~FM1G86Hz=bZD>aFk;IxW^ZjP!TNkvsnQ;kc#x3=FMX zdFa`x*pVl+!<x0=s`kVq=Ds(M6!fcI#89C9ibf($cB?xOd!XbOvq4}rA-~UvZ{jrF z>3Tc<c9ERbL@5-Hi_Md9*_MH?1d5QVD~f0;7j_j?JFr06;w)*Y8B}6(056U;o$rwM z>7F{x9)f^7`6bATb!2vka9oRTOJ~_%vrQG5)V#<clt28-L%a)cg=Zq|acl=uRnD5~ zC3Uciy9##pR%}ySRH2U(kly9@eUHO~NKZw$L#(x+#aZ_FA%UFd@Jf05w1!AlKN67h zOcm)WQ&5AP8X}yqgU%H@(xy@~_s3So>7_955w#-hOl-UV77=Qpgd42#J!h6wT54#R zQBDGcXu39Mje?pMaV*@NnZWsEW`y{XJ=STr1+fQc6uuvXmim?$Azon-eZ_U_hk-&s z9!D0sIQBt`!X3t9ytK`+sI-Oh7BkNaUD+=_mEONhQe$T|R4<*6D9hcozB{Hm|FjMs z<=m&S{PKigC9`NK3DkLr7qVyMI44|V<`MKM@$Yp_VZEd^3u@ayl0T@G_AdLPhC{^| zP2Z%bm-i4Kr{;fGczCe+OAds?3JC=D47q%ZFRYVpf2IOCi*9HCW(ul*zCj!NStg>e zgn!$ZkBt~!vU~R6l4HFN6n_Ho`b!Z~Q0FDzIVS)iV8YaW#c-hiJm9%AjYsDfS7bOr zFSL_>wX_vdf^dQPaO(Yja>bF{_xtZ5zhA%kARlEg1{l+uIYI7y2hk-r8u)^P(~wgL z5uPHHirvttLn3&#XZ`}19mY1Hh2o|4$5+KwM>s93(=sBwhMJ~Pa5>ATE88H{0qOs3 zae+vs^A+q8^6D@q*P?A<O^}0HeRn)_27k0_^%VvJ3`Xq75^fduqDStvSXQvO$U7ku zeIVDvPCKMCr*|w|JYbx!!teuvB^=<33)i^>Tw+c=XSl4srL#8_K0pI=UO+r)&A;<G zGxwXaURkfnO|)ttznnX;CV|TTImea%`|EtjNf6Kdk`veQJ)&oisHNZRtEqZ*aLNns z^+kZBoZSS*j%VEx*2F1m!ocYP0&f>sUh11x=TNj=GIf8{{suMNixCO7ci^|qvkiv> zK)$!bkS$1P*JZy)dhnEls3fV+fRBE1VnDqN1oAtBxYGb#hY*lu><iCEyF~2{$wnkS z$zdqSEDPz-yG~%tUjMsjFV6(XOtw+`h7cu#R;TAFe^%A)gxx6>pn1J5$j+4?0WU^z zNDpicNPz=36~hZBM(EKy0Zmrly}(E&o=<!F963sLc^fU6XeJYp=N0Nqpw8Y?&>Zl9 z_X7qKtOFj%NF*nJJQJwJw+;mYLWA_kS=HFHUuHy<2e@2wWBv==6MhI#f)ir%00u@u zHkJ(@EC7X$45yOYS*2`_zJ`T<EA|wVq;b1st@GB!hysgFdGW%?zwQ3?aeFL0^wis> zso>F9EUFjq^ZKT_ec!G5poa*tUzv?xlD-zYwzC!E%T^a~7T5Lr`FXz4@_o!r^5<&n zl-r6d^%%|K1er<ol5OWnVx$JD{!L>e^nIr?Uc{zQo(zwxCG`{(i>7iMRQA3Z$!_WV zL~{-UKLT?Hi^ROn_Iiymo%6jkwb01)_Zhc<+-S$icc5G^5`;3A?#Uc<)-{j#b@BF| zKBMOI{pAiJC#4h2{>-DEcQN$5yQ8%<qL#uG^)=p&J$>Rnjk#34?c3EPfHx`R@m!dW zHCb?km_vZ;c{L}wtal6GqCx*6y(~x3O*+qEo5SWoD5Y<=;KE{2()vrJIeupQw+<1T zc@9lVu_;V3+7T5d21?8t7ZUkZJz*@2+PH#oxG{#yRniR?^L<rKP@B9Zb~PldEtDRy zySXVja;#xZe%f<l$95WTD?U^dE=B_;)a$vR%Cxr2vLoS*2jVU|&1Z6gA9dcrJPUoN zb_EBBp3Q8GeM#t#wzf9@Kmyb<-)30E7n1U>1GT{2qb!s1N_cR`1-a7#v}(F<al}Yg z_a9?%tF(xUMNa10N{<n4P!+$w_V^JMJ}5*`JK14ur~4;VR*+Wb%r~N(RMG&cMii*X zz`Jzs0}35zMSpTRZ0y_Wl&~|x2qRk7n!?^{LWgmj&9Ci&GI9NLwQ>w8x3~3zAX71) z-cNVKGCs$}i%9jZ;;-(U)aY051&}RKw{(<0sO%AdL16Kw*hHuorVEBOOU&pPUT4t? z=NA?`<UhC+JZZgrann<*tWg_!USOGA^s!f8yRz^hgud8Q5un_1-08IMe-gH4Vmw$Q z-t-%aQrNaJPE>7=Ic!)0ss6lVUet1rp+^(Hh`DZsS7`OdRvogWe`u$+N2!ukh2YD! zx&y$pToQ9QSrJRaE|}{{{2qp7>QKTFb?(Ynf)D_}2*Q!?QuPO7P=)=XXGx(pM>c36 z4!nY=mma{rLZb+kXxJ3n0(^Bp7?Z8%$*gq`U{$hK7|CP7n;P<aXaS!vg~+#t^gkb3 zi`m7FKLVlojb_bQR_r&i;Hokc3@fUT^Rd=d;di_o1)j{g(lgp6LTk@^2~Y?G=FLgu zwj|YmJ?b3U5nIWlaggwX4=VZ-QlDZ$_qXCB624J7_<_#>92A2^iLL+|EKQX*8xuTm z)mAPjVJ6wV?A4sdDLTp>62p9uGU+9rJC8RUhCCWiARys`|Cw?wowiv~-I99K(J851 z-pDLq=vavWWu+}rTP-Pi6S1T^Fv&_i(#CgN(F~T%cfk_>kUYTf1N&iFG)cAFOs^NW zc5RfGnpgnT65MNCd!3Tp)jRgsS!J<S#!r0Q;@M;`^Ltuv*sIc7xj*`2VUGr>ze>4T zJxrT9IYq`2=lLW^@68P9?C9wNrL+DebyMXVBsbJ6&4-9PXFz<bXn^kiV9oWu6*X;& z>p9{<^aXXe4_H@>-O#Q+ZxdIadGM|agjeo5IkW-9y(N%c68L{SqZ969Tn^`k$N9d& z9xaPd5eL@!l?<@h?_@x{a=5vf`zsMnMxKunMc%KnS6w~U`Tbmvm31S^UEMuB1C~u- zd??u3K&^Hy5yx2E?89?Po>9rweXSPl5uNu2t{;XUn-tx>O}$&-W>|}*bL*lCn{B@1 z+n`?J1T`l>g>7~%lUWkn10!%(^4Mt-dB~8+m!R^nay_V-m?hWN(n@;KqER-CAo2cq zBPZ)29)B?%y0XWK<Cj^EjJjSr)LV37)`7=p2{6+wivp+VY*5?3unz9+|6I2hxLJ(h zWR~%PB%cnwO&ucM!x^SjuD02F0)TIZ1vRYV%M<f~6Y{|=oPn;}hJ-m#pMJ~4vLD0k z7N_tB=a8^mPUH1NuD?8W;9R-cSNN93WJWxs!z}1b{i>&%dj&0TYKm%G2D5wFDI1ys zw?or7@1P}m*Lr2~ldgPsk?@OvxHqr5^6;+jMN7(HW!mw)w(bxGDhlWTLVYp`hK1hn zg%T-uh=`b2Y)j5$QY%Dxw;Da>0@|_71t}P?m%;)x{nY1Pz)oo?&tl}@l7wAq!?`U! z$+uVI9|k_~Ne8iaHsP=st#IpXHRa4MrzCB-24w912!wHSb7q9fx|(|4PqF8~Gp2l8 z%(0V#RB>V$-JK`Pq3`sr&hkoNM^f-k0C&C?DaB|TEObkvE8;rFqP`hZE~p<aG<Ha( z4h1jVV4Z;6Ddpx;Gs-H_srWoz;EL9?#@6FS72*Z;2Met<6S$?l>;9HAGD#MqOSCd+ zIo#|z#J4o06avv28Tv)tgTW~1`3RzH&?jd^(qnkHUP))A2!tNnAWZ6r7x#qTP|QNS zBT15p^hWhRhZ72xgjLbDtvV+;RI}sT`;zqVaV8A=!+hi4jiI67wd%7`QZ?nfZcP3l zphB6IYS6EIyYy&t4TiBcl347>#X71nj(Q0=Nw|kiZ}dlru3hxk3&&e-q}wlsW7SPY zV#!yoaV%|GluK+**NTYgo&Cq{k;Z2hklFl>2xvj#4XlvM$HN968pa7DYdk~T{@@YW zWk)^hUA_ON7v6vyI&eV;1(7fgZF@w5Y|f0b@P}uTaH5Oe#XHw|^eoGjRbyC`8h;ZW z=hU#uV^~$rhn!8RpBfR38tvxE=4DS+JwH6EVadXaCQCqK34ns8BY#9@$$`L%u$7+F z$ka%@Yzw|71gvCcqTG$E?Y2}u&N7S?m$&eZ%4dQtp8AI3y<1e?m?~`JP_t5*n@)PQ z4D>cUKZw3{l*QAgmdCYCDZwKelPOGB3hsji9k|whE7%DY7g(8974P+DClQ1lXnyYa z+W1b^AY%k-ctN=yn2-sa#=_1T44DoAJlOtdN|r_HWL41ay(g-Vj845335pzd0HDs9 zI9UzDW<f_fPb%WKu7w{BQ-7!tVnIJr;7P${+v#DUIe>`FBdCxjW7Q>i5%xp1SG@ip zc;nTqDBe8}r*K6>Z=ckXBQq@|4-6((X)G~P3F7Ci#fHRk9&8?qcmI;Pk1~Q^7+y3r zFlCR9L}WZnc>89jsAIBjzEN)9^wg${Z?lc48y}>*4T^Ud9{#68^oXQnRvvO|a;Y)d zkt#4*u5iv9yP_idH=PT>ZxK#b2ZQ{l1cp~(&|P>xS|BZ0n6li{^i(YqV@qth3?1*6 z73hva_>;WE89mH5=oBJ@E_q+dTlvaRp^nWz0*`7~{UV`0hBxsE_SpYPTi`t~oT6~B zZpW5(wz^;mxgsQHOC<$DmeWJ1OJV{=XCn4_G}Q!CBNe9;3dvm9h$=KIt%sDYNL72P zki3O_{)LuvNyj%O4|wS}=4(4<v{_#nj4!?HyME|<2R6$ne`zr^*Zxgwq}W@?jlT`C zKB0qEt+BS?YT%E4wi>O4v+yUoeL9Smq?(AICEZB%z_utg3>qAO*mXx}=EvWFddAPX zU;tJx95EM7%s<JZIC}q}spY-fMk16?O$>msm4`BGt&+aN9&6oz)d(Bmp29XE^i@%H z)}Oq)dgPX0B|L{Q=WB=VLO@dg3TrgFl~7yp(3ZX%<-u|5rH9y=2}+o*1N7nL%h6?7 zdROHc_)C&WPP|-GEaqo(XkZWy<_ckx_0o)pat=b;UBR-NieFM0Dpj{xgOq%>K-ZI) z4UMFC$`2M{e7$e2&D{BA16XJ$8&D|#m9YFtplK@nz~n@-qbJ%u1if+ll-+Q@%59OL z>^a0WI7kudL$EgwwW|U2ZT^|*l1eyzOOvOQsjW+XTbY^tjo~DPhPnbLAk7H71aI#p z4+7|k<rGNXU++V1BnfttE#81^k{!~3`j|%CQoh^=Q!4?#QTx8-y+V}znb4jsG>6-- z7V^Q8vA-ep?2jWqQH(~T4Ze#2nP^^A2pJRccuow1;zLD@E}O%%$?#Yvm73`YCY{>` zNdpB=9#l7BH3@4Modn7CBgU(bh!M*%?~8xz0eKR-eD9fR2*-+?oND#*zn%_#HWA%^ zWUpqP%g%Gur&X}$?cwQ14Vt8OztTNa(mAw6&qUib)6+k;J(*<NHA9=^wr>V832xU+ zd;_y*0U|<-w#zA~UUFpOJ~ii@oT@Q4%!FJofA;FAk4UQ+fYH@okG!;dFY63{+6Q3J znP^u;p3NCj)O>{#z>DrJZETA)8alt%3qOr(UY;KlKS<w2&UaE)AL7fV<3`d`UH;+W z8n7a3n=9{qaY(<M2jAip)J8lcC$q%sPNoBtQ~i}m8~=82$VAXXUB3tUd?_@I@7W?d zf%ao3{J9QZL4Wj_cuja@fc`TcED!NDG*7rdLF>L8LxcFwW8f___?ZpBs#OHW{ELC; z|J?lsi2#(g3S!M{t&iM@JQgDocJ69<b}4^)EOGM-^Gj}54+La{@}IiG)l}J@@Wc!= zG`rKA^GcQ@>z4B|WH9(gqetQ97Q+-hY&y`r`8G%<4oA5tX^gj_`e6SMuAHiR%qBoo zU#ZG;z9w1x_tM%`h6U7PTGjA~pWpX&G5lwNGFAF`iSwN<K6(7l_i2CWu0p3O)#~IP z^sGZ#`_QlKZce{IKcjzg3|;bXoY<^_eoem?z(W}ScidI3Rs(O(dEEvtTkv(9Cao_L zZ+K1Lx1Q@718>P~Cia~Wzxh}jDB&Z@)W$n2T-V@*YpFAIN6jZfuEO7H_?0rO9-WP) z+8bb@;*(kDILqp(3LOMU`wmOE%+6qC4Vv5MV7g0YtI?FR2C&2VE)UXy68jvs+8e|N zDqp}+t7Qrq`$LDM+R*;G(c8qHZ+xTJc}AC=bQ!KYzTwFKG)&7?^6qYEzyUm9l^IxH z0@k_;ji*_(fX$`MGyTDj)eEre)7o!*vO~UwIAQ@3y8Cp-balyS%9&?&U9DaQpK+d~ zW<%phwBiBZjWcfwf+0WH9C`*2Ik!~}2bvFX(#bdcGR0-A_xOxTV{Z!Y>|Fg6F0+{I z-Kl5Yt?W))<bbwgyqrI-Ftdp&>U=|63v^<V+wc62(H*t5#>NB)i9_5lPo%0(LHnAL zzvh-7&K_V6ZuILw!kk0|j)zN;-_NX|qJk#4Xu9(^K$yFXHEGugiZ_LfIKtj-!9Exy z!@|+<<nPc2H{#<gHq&CUN7Y8&&JCwLf2pvFSSsF-g`3PYAW4lMh7<+hr2?mCn89KS z&YNdkR$g=wu8mA?3(;p87u3pLsTHnV)N^|@B-IHGb=YgBHL+iiD3sH*`!CEK${~RT z<)<>DH)Aw+u_FjDGEZfw<?9$BFM43+rXwylW6pvJ=mZW`?GepNP{w$3I<jUX@vjz} z3U37=4}_;+P7Q}rZOFk2B&I>hRd7OJ1c%bY5m+{TpaSDJC_glJ1jQ4l;KD6X`8Gfs zfnj4^hjRr;mA2fxa#40bI`*V#rJfqs6%m-ph93YXf-rbiW$`Naeg@3gAu)Gow}0>) zZG7Jt?f4Ls%R3*#jt_iiWT<etKxeVt@2%~iOPfwNZ0$BSWFW}#zKCqUcKoFm=b0c& zt~PNaq9l6M^eDR}?kd3M!C>f=rTplUOrqaVh97MA#6tM^+q42xL$~pg1j`9PYELE0 zt}H%1`s8GB5sin+$Cl<qo?A&*=_5<Z@IR1lD}qUwAC)upU_Sj$YsY6N4<}3v^2{no zQe%dQy;ecM%!-OT@lPNcU_Eps_#i*TowuC*AYDQ12&Z2X;$C54E-h}5d{=yyi>DgQ zuRi0%qY<^T&r(>R*~r9K4)m0#$Umqbztq(2(5P_GH$@@ZsdbTZl%>ER51(xN=#&mu zklr=h6YD&&y@K&%rMdT(f`{s6n|!&A{^i<1+>)}6t^(w{A4Afj1H@xyQ<Z1r;X72N z#jpHY$_RIAN%5s0f-Y7XFCG7_>+W*_J<T5Mkq9~hzEhZ=w$@X(z=dlAdOUzw<$Jgo zwICfKtNZ#-mU2IH4#xg2t?dp4O@I+Kgmv3oL3Hw=aO~0;*=ZU|7_7ZlQ$;G{*!El> z$n%<s*Kjn>n0h6o2h|8e5$_`%SvIBe|Gg`k%1y7hnldwJS|a7Y_`24Q4X+0`K`>hH zWMi&Q!2&)G|CNPtKS~+TTqB`e#_k3##%GxvS?j~#=3~e49AUaL1P+T?88tsbXriTN zY1@M}`kVt6SM^sMAEc|nS>u0@OcrsPWK3k<7R_Rn^idzPr5mtCOJ?5SS)ffCf#jU) zVd6dX<6B|ZNiW)>nXF4B9YG@_M@T_rh_YZ4Oo^0}W5*Wp{Bb=>WMq^`+KP*2O;QA( zDYd{!JHX1a>=3f^lFK}ZLLWh2Z1<oA4?>ykui^ZClCeX-q`8G%<H$J8W{%}HP9<rX z)hyA#nh5k!Dp!M1M-I!A?NvombX6jxVt0XMlYl#zx!+ES`E^p1f>j|_0CVL=l2)w3 zarw8vOZ-RDhX_7MaXy}<up&YtWdh+L3MRlmVk|fLEpCGvIu|`s2}lyWg&xF0ty7lF zDjyeUXFQ?eFR@bRU?MX;<FU3TRm$R&+a2?C&E&J%H588>Z^<O=Y4oxO3une?o~R02 zpconpvZ1yv!rXOg5<Qy13OLqs2v6U;Moj`VY&pH2vP_+|uiKby(a{I|#D~(_7%h?` z(}NnlRg%W=qx4me*luP_pN1ZCp))bK^}{t*G$)txo)rflg~A0*Ho}R{<F|8HdBRJc zZOo=<)ub`*c>t_4Ikc1_Qc7np8c>vL7P<WVMrS_cDAufm7Gzs=?ax6Ou4`!m67p!h z@J(r5=VRCPZ5HMkuKUMjv=66IW(JGQ6o$hFuZ9ayLx8@r`$m(LLrv0z=!s$hD{Z_; z;w<E>b08nU{}2E13<+Fks?^`cf`BsV3D8XK&eQ{*umb|}%r?^#E^Z%eh#CKFct2#@ zUwOrvw_PDyprb=+VLYv@P#YRbFmEw1-A9o^W5JN@z`^D4Jfz~|TD`)vvMD&to1Om6 zA~C><X4VJ+)=#AHVH3!N3HagQQQ0*ep4CF*mQ_Fbfj4z_TrKGJ@d+{~HV>V}6S)g| z=hv5YgDY@QkLf4=O5amk|7^zHrks$(J6FsU3e=l3M@M|gK4=qsp8uFs;_Yv!Xz`xR zhi>AN0$I|}vA5K(B<VLxWJ$jV!+CP@)7vB6S?xa=d!jPf8jPMA0fBEyUEKHlewhgb zTQc>`qNy^=9teOg0Bp<p$>^bM?So~(J+9<IUYliebptFqEjZK`Sbx0%IxC^TH;Q<- z<*9+k{2C1{=9zf%h1NM6hqhM>GOM_?2N+>2h@x#C>&A!RYqR_SLUg#}vOVww+G|S< zWdZCOrecXZw<y)Fe}QB+%dqhIgb*wUooAOJ?BY+GR(RB0$j;NePE<_?dd7BAX>_7I zf%xuV9meZ#*x(_x;C@6yiSgU=1y?%pnz9TM*OO?=mS^NDR`AVU=qs~SE3Vx(pCC|- zRgaqP>75L2LS3uP@(MTo$*y*u80;GKEw+X2ZO9yBnjA|@Lb>2sEOyr(Q!IL7)!d9C zW41+Oahf54G7AcQp77tl$>+D0A(m9ig%nBym2b+AiZAS`RELLcRj5w%Wx6NN)rvMc zD>EojxAVKeKAL-<-Y1@FA)ksyZuw<FOx+$=a}RP;7yK(5y<<Ic==BmIo0;+Js`^o* zm)PM1u??3#A$+ZGI@1FgujDuhVsXrQliLo(5!%^OJ`mB4HcuPOmK&|MDAsF|^rKlX zeqV!?!W;8L8^*&VV$55cUX7x!`g!c??df5?9P0*Tr5;b;BNmvXp^23yDQfam<TTMh zk7q3Y1J}^@61X{>ol<^LwK;jn<C(o@Hy&4svHM>-yl+Ba`4~o-Tmz&`<CN?+(FRf; zPdS#KVV)575h?n8sLqW77s~-N<)ma%zMb-62XRp;#8y~q<#FCr%3rLI7)=h|zz6I$ zS)@p$Yt7|aU&leT!87+v$*_KYkoPjr*eN5X75)~Y;6nJ7LV9z)dm`V@EQH^krO9tq zVGjV7J}Sjfnzvi#FGNh$v{Zg$798Jc)3o;tXlQn^{xhURp3#EW+L>InEz*9<QTTmM zIj12gVD?h@L{J+LganRD%4b)FpN)<K@b)&=y=H*cfA`->*IgSTd9hkEp;Z7xM-+HD zHLSV_<=sY2h-cAC7dbZ_6O+9h5E9?PBh@rIN$YrTOQA}<3GBbIggk~X|B4W$J<Bn5 zC#PacQg&yHS`_s25AXJ|AC2%0JT1(1(5|Sx>?UmJdNDm{Gnpn#A<@MwYK5BwGc+QQ ze73~@{B5WMtu-|fod(wvEc&TBqFx7Z8=b*!b6#%4!8F2PclTlFJPc`2<c@UT8h*S2 z6$g{-G!9#_b+yPKd@k~*r`WZ`uGzUEY)LXa$ghVANiDmMUd|&wW4-7$k0ZhcKrc9H z$qD&7V><v}R+v{h`&~|exxdr|+s*g3$1S(PTR3;r74&)1tc!nL13Xl7>arnr7RzKy z)Lnx2oNlM?MBii?f>npjy%xNfeagyoVDhOB7c!#~uYi7l9O7(0jU!NF&tmT~$$2VA z)JM8Rr}m-*wtqpxaXTau4mnVt%e!$${{4b_>dV>#0X6pgcc7UIV}m=2HO}BS$_~85 zN=*djAd4(aC=U|C8?hOTn3Mu0Y=j5~rgH_uWs*Pp4&qpds!9|>9YQU-%;Bq4AdIS} z7D^pLS^Bi2yhYsxN;=XwuS6iIEo~XK1Gvw%KkeJw@tdPZPqV1=_I}LH&CUG&J-xqf zeNL1tAy&@(t}kN#Y@GVee<d;YM@y`d)P32z&>(L0v%dM2)!k}oveaB&y6QyR{N*8Y z?>Je~;NI<J`#iU}=g?NZUlYafQ2`*|o^9dAlO1$do^*$Nu0r{t0Yvm|_cE@wa&N-G zF4>=4T;0u_u}HSivW@ueQNQax+IAv6xIYVbadAI!9P6i@mr{7-95*3p)@bMOW(hL; z_|dEZPRneKFCJB=+ojWKL-khfH}Y*|D7ll{?j)hkaX6um*2?!!H>y8ZDBJcqtM<H& z?ayN_H|r#MDdJbC<*~}}+Kk~8F=_LOlGSFHUAF4>R)xIoBTJPd_-|&?)viSL5)b~z z@z?(E_w9Wz!J})9zSsHMpA)@oYmK0g^fmzgQ>xoW3sRFYp?82qZCYb}U*{#@(`HQ9 z|MRPEg@wJ?Z8M0(`^Sc<%o+<T+0uWkCVY8*=L0L6NoCsO*4;P1<JZPtd{{=`)23k5 zXhxY?FZta#Ok33-yAjj5B_{N??`;9j{GEl~&tUYJLBNm+yCp_#U4F0eJ)ZsFAk9ve z6-(X6v~M|I_o@-A6&8-a&p)Tr<)0Y5Y<=I;$zRPFPpz?9_x}F=dxW2u6_(BJAKmCi z!Rfb^?92Q-&vJob*6DY2<H9r||LGW;*`1f&Te>k~x_?ydz^@xIHm6QQY-;TP!tIVb zhKzEGO~1yzKWha<@-S?dnDz9TKNnAL@60D2i)3135Psf^UH86PXFa^iv{7ur0IC>2 z03%uzW<7!HO`A*Zo%DONmmxF09)M9!wP}Z#!zaTx)<e&kr&d^HS@~AXsr|258}??* zGrdRfD5w7P1b@Lrw*8~|_LW<dKs)AiD{OnX?OUe6zuhd)dIqjhBb@@%3@fjuS;qL< zKiT(Wuea0a#-VA6*K+Y@++SFBuRiO0bYs$V!?yVSACa>O+~c0k{{Lu#IrNQ~{u{sS zGpx9m^NAjjb^mK3GK8NdtyuP%b0getk|$(dg=q)udr!_ku$k#+*mT3H%jav2dYrcj zGcqmz4`*)~R#(%k2}6KQAh<(tcXxMpcXxMpcX#*T?iLc<gS)#s1fR|GyyrXT`ex?O z{Oes^UEN(>a<5*ydufa<S>cNRQzN1|*eGhh6n$L7|2KESeU4c=YTF!B!zA^5;|-I} z+f~%@GRXH>gs7KYpV*~)BEDmmgL#4CxnwB1k*d^$B$dvnH@js`621$RiIxq}Zz^tc z3Nzdl&!!JBU)3$Q$pOtkzX6Pc`1r#dR}X)u2g^n6R^;OXi%W+LPr-EuGv)tSq`Gfp z+H#Gc^Injw6&L}@8-lrNj?o1CEz>QZ&gqN)<noU@VUh8SnutG407{-K(0!b_c(0v^ z*9`~un-50-#tjGL>U}$RAyHd&vku)$1hN4I9J6HiO|_R^z)*FQ(tvp@*RGP-zQj%Z z@c=UwhYyVwXib@V5B+x>?ROn=)h?S2n6_%KzkXKT^#TWbv&MA<eI&ywbm9e^gg^JA z<kTLFq>tQ&KW6+Pug1e<{@mjpY&xh1YozB2nGL|)@(M5vl6QDF@^T6jSPHP~g}KTe zW<P;j^7-|Tih7+Ms_pSM^jc$KCm6txR6Vy~(+!FpTPNb*XD}HVtCs)eT6}2lGp&8^ zGhH(e?)+zX;y+LB+UM^|YFA*~(oa(asCce`TD@E|Bfc_W1!HFU)TF1+MbY(jtIZ&j zXujr<xYFzr%U@el@pV}bQ$RH6odn$lOn@z!Obm=##>7z*rd$W?g<_V0?bC#+XK{G~ z=q`*;gPkK|<AhA>3=xp4Rm%JE2Www<(;m7_XhKBuzg$L`J`EpEjH}~YKT~imERA8> z_;^Q5+Y(PJey+e=0bn%&#fxMw>SRPi-U>=YU^7C4MhAh_cj8LOyYcmju`X43u_ndn zf<XCC+V;=e>Y|fc1*M{c+(aNYgNC;tEtrnk02UTTed}^P-neW7@i=A{M*QygiPGsM zm~=I(8Q>4!r*WrHgUKjhjec|$p9LV>8ZhpW0F)woYsR$aG>_@(RcT_Tc?={0_S!ek zN%g#kO@}?G=H`a|>wA2k&Rj!FHi1Kkewpx(o$xn%r2nTmAo&}k{=Z_!8}J72L-*G( zEG>=smmhx`N=Hn9=t*T_VVYw0La_>2BABUra(>Edxbz$PikwBjg9Bvk{d?id!Fvo7 z#P_M@wx7fFeX&lTlPBt9{)NM86l(Fx3U&Y~0aVOMd;%{zpFY!`Hc3n?lhJtpO7!h` zp3B+SXp>%dE~flkLa<jl4=_z9$FGBTkF_jd)vQ9E59Y*Qg-&D-!|#@kVB<m0WybLB zfR06#{U%yS*N92qBD}#rA)W>I$F#SL$pg%=w<|PLU;_k`KCbbDSLtt0bSORyhu9W& zf)V*=d!M9K0bql8T`<f&*m#1s3LrD^=PkuBz8wN<P!}lUmWIG7RKzqh6wD345>Ta4 z%qspVF0H~Oo=u)fUx%1s_&c~E|EBB)zBRxD%-Ekd|32pqoA{sR0{DO<q#J<dpcQ?X z6i`3_MxAO5Q0N|e0k9){1h6|=4=@(6gHDOoB(|?v|Bwy_#am}NZCSv&G>NT4v&Dqh zaan_$J2OG8u!p&lY~lO;89-*vfs#bioxPT#L+dc<NoO%w!3I;sTZzED85#9;*pDCT zFpF2g81$>+oW1ZvwYh>ic&tU0mS8ZvNY-(~L9HUiTf-*sKZ{1&#jAa$@j$upR(taQ zMZLxQFRH(b&wq+p0v$RN_&yM~mj6xQK>&MLpHBB3hPeYYeJ~EY2$Kc?X93hiP#sXC zzfC`t)SEYp&GSisP3kqz2LDgp7lwS@gnuXfFS`sV2D7OIP)i0(!{37^{#^i|2F(Hg zP0BazT>}Sd{GaOZg1dis@xcaboBl^TAQLvRhwKf2fJwepNjeFC5pkN)TvuiUIN^U) zd3(sLD+p8x;MmppPj+3Rz^8ipi0QGKVKk>etoXt|34njKm{6ciCImBc4qSYS!g{rt za|5Q#CYb$aD#K5u`M(Hs;9!p4+xPz~oQu)irw}MlXTtwJVuiuSa7$B`BnY@rKncV7 z&CPYX%3P&*z)=7haTu#MN&Xo^rp+f0eyCzAQP4tbpQmNDtr(zsR*g}-wGwk{bJ%Gn zotM#EE+{r&BR>G6i4E+o+*O+IAA9@5i?)&lx?2b|U(gqaPc;nt`-rr~LG17+{-a$G z%sR+#kFWgLXyS30O=-~&V!v<)L}`K^`YAqbUcl?coGv38F%oFib+t&Cb!N$30ht0X z7x+E!Ky&`1E49M+mBD1>JATkZG$p2tCg9wsq&u}vE*)sc`f~IaQYrNde?DuWX5Tf# zRiuG(nl>{q;&FkkF}`v2nezKg4qrRm0fzItx8)bj<G4P>;<_0Q*DKxuU23iwrk{ui z=)_AeaxX^|2Oz*|`Ek%TF-*)#<Ze(#a@Q{dEb&H~pYH0wkpRkoKMd?`M_L}{Yq*mb zu(wjG_IXoz>Tj5I=-r?Ua||5D-h#m1{MD;4euD47C9?4Y2IvR?{Z*uPAfDld1CCYb z9JB~A=9nmQp@s{?>B*mxj}6Xn!pVey;!wOG4ZoTc=ZOM`G|a>}UUUth;sI(kpIrpO zjsmQn52y;T8)=6k#+lQ?Pub3a>FSurLeoI<Xoz8m2|gOt=M-M4!aY(Gcu{~;$UjRU z;34z`61f?};nNa!dx2dFILwnz;`Cn=0{dzEiBfAP?kW7KBn)SS)p*0)1fb|Oy~t^H z;<xXgExULPhaG4?=fx>}O&zxP7Xe7+$0=;fMv#IB_JJ=-G=N@`?*C~A_b8Y%S_MD> z{f))yRVaK3z@@^cg&L^F32Zz3haq|A5>5gyZo?k~aytiY*dOEilWY@Uhzc+95e3x3 zA2jls+j!bsUZyP^qT%>lxX+bfrS0#<4RixOM)Cu?;zA5P-~-SJ*JUsFImjPz35^go zW)Y?t$#EI`2XK??u@!*fXd_ODVF$7#jDI~ACK5*mru_1gy7GPC3@>@*y9*a1`6O$X zm%jXo;T+IC+_(Gv+a`etw293Vy+400scbbtpng7rpc(hX)p(c#-<xeHf6m~O>Tnc6 zV8m1ebdx3sPqk6}esKa|7oLxp4EVbLxD?mg);cT-QIEu!e+z$f9|BhZ(B<-TXF7w) zb9sSo-}??>+{^1ZbKcJm@`#RE_mTZse|G$)5N0690%YL#9G0(n6aaML!C=<qezw-n zj^B`S#Q>f${G1t85KOuh39wU+hXI)MAYx$29TL9#@`8SRJpnkbDlZX0u^2Eo)E&fP zfYGZ7cjRE$^>Q+L#_fQN*T;WyPzVCXW&SA*2mr>v{{cF=z7Bv<9|!0=o_VC*OfZ=A zXt>ji`mwniX`CPoJD;X^FqHsWfALQ#I04kC_H*H!;)nem6h4jg@c|TUL9&nyAJF3$ zkI_*5X`x-{{u|verxQRg1v_wvCs?Hfn$90CvIx*!dthsU%SmEDbi${>b$x(gUh$%R z#*lh@U@k}fbk!Hd2!g{opm_&vyhy@eXnh*2rymWyJ{&gCDD=-zG3hUafR<D%;kS1N zrUQA~@oC+c)TDsukxxtM_R7Gxveoz;otrqa&||E&X)gvQqkdN~&@7L9R{Q<0fjJU5 z^iX85K`EefgAMw`gVw79rx>)cD+^<yEo=NI9R}DR7_dKc=}-)WqJJzJ7n%{@m+*6l z?obT++PThL-9@<%`$S-d$0AKIOMEdf7<8Xju~ZucvxNN5Qt+W*)~SU8LoML!1OKy1 zEds{m49B=vSHPHj@t6qgVTk~2p_MIk!ruW87_mV%V_?+LWjla*ZoxVUxMpX5LV&7e z($CC!oL~$8+uuPSXu1AxcEkSHRR5%9-?V?DJupLm7V!bmeLzNF^86>G@WZ$d5gb48 z+aO>Rug(Lp@qhA0XNMgbV9n_>y8vT;UUR>E&Fp6*oob(OP#?mW<4P86hQT~Mq6G1j zm&;^vm15c#JC%m!MxShk8o6qx3b(sr&h=l>o=)~>KNHscE+RCRnx=mrUgIsakZ>l} z$GT6R`C8At%Mc)+M_e#t=QXT!Ksz$E;*I0o62D%1o0fVZRa!^g_imrWP8xfndn@=! zQ7*VDNr`c%2HTxFZjz4rV6N^`kjuTx0uQ>yzq;Am_UK!c`=1)F%h=>}x-|{)kfn(0 zSC9oHbq`6dk8m5GJjm4Nx>snuuZ>EXP;R7fS)YvX?6y`+N)^25B`iUS{TL4ka*1eh zXUs8=X&y7YHa$&Nn3Sqn(MG>l{XV?vklQ32p-jTX=|w0Hew((Gd(*)!f+AF2Y?WB< z?#3w_!pvvBGQZrCEA53Gf%1OTqkM5Dje1CDKq<7nr%|*4e$J|?Hn-Is!Wnk*Cpl^m zZn7C^Upuv12z7**B=7q+d$)3~RPvVg_^IJ274bpRA(I$SM&PEtfC@9)>Q7P6_QVF- z{pb3iMkl>Vx(+)tA-pE~$0wMH{j~OC5s`uT%JpZhixIu@S9DtEgp}o=T?B_6L64FE zDZ}3uC@F&NANj`U(t;xuH3O7OB$3i7?Y$Q9?hIGsJE_W~IoHuRX3xzu<?dF6mG&zV ze`+14n)B_inB8|G1F<?UVjh#rh@VUqepD&<*mUhYYZK`e9x>d=&5R=XC@%N3ditoo zSyN=&cO5J%uOh7~+;zSZy=r%4XFj;!q;}a-rN{`BZ{}{K`1D+yShp^e3ID_k5lla< zzQr4ytud5w+BR=bZRwI8-N@>;p6eMHsGg^apS<4K*~wNJd~_aBn!3&ISh{_pHVI>B z{>z$TkyiqJ8CclDq9M}wrRR|<ZhxZ-x6cJn>Rm)ho?e8BW8*G_<~p`!0^(7rkPU?| zSM{$0VXs|`o8rT7DV{t&$sD`)(&}vfG%c0@E1r~<i#cI8B}X@}Njw!H$BjIl^cQWW zgxn1$i%L>^i)3_3r+e@jl&9RQq>2*z-**w*<=j8B68MIUSffNW1_AO7hq-!l^6R&z zu?KVuOtTuvaUKItWs)cWX760-{Xxl5G<g%kW!1kO^0sbgl1&$s-rLnlQDw3VLu;JN zh;k&F+pC#X6KCQ3(G~+o>KRoov)6DH%HwuPC5d*+R*oN>qiClS`y{zjR$@L*(+tzv z!bF7V`<w=Ho)hhUMUoIZYGINGO2wzQq~nZ>h^3a4i)pD|{)eyvDTnIF+`UpfZO6+5 z;4;%L=qu9JVy&+p@2aA)spOG6#8HqQD514;MFg8eatn?8PF59U*9+R3r54MNM4Y;7 zL!Nx2JX6g3inr6$=*uPMV<v?wPNfO{X(fi$tDLLIHdsQrazwSQP97_(`xCQa%RDiB z!!>7;WSkbF`Ohad=(Rd#WcxN9WqTDmB<QzmdL?3-nmbMgb%rrI7LhW^c87?Dkd7Mf z>8)*+Y<Ep1oU_*tHz{F*h$_b^BXO-pl*{!3`;`Hk5uthu&Kb`as@`%qH%<25TV9?} zc7U?5G71+WR6%2+`NGJk%&5p{(NnQe?;pgv^4=jm**8U3Cze9hE!L3ocD`FVXw+_C zZ<hV;mb<#?oV$g3Y63hcnNYs1h!xR#DO4)+Hy&-+?#}O|oF5n!2Z4m|rG~!#l5M{( zS5Q#n`hRiaIn*VL61z=C<le187M-fEffkaqPhI%vWxSj{7*smut@~QITr`g9rM;X% zhc2UCe(avU?*MP_!}$MS^9LdPYU~d}3P1zM;!k9zYwY2I@7H}l(m29A!33FS1Z|I& zH=v#B3Y<waJS-eX!oOt8q>l5mfD&I}<0D~#jN%T{D%0z7iZ}a;#<B2wW?VVGKwDqn z>tD!zYw<{o%3l{EsK!*1G!!(WLc?{hVRae#%(s5wI#nM87}nGnU?2h`guKA36oG#% z+1EUkT@yuN^$LL{Mks75V+#vz@K?{bk;K9W{SsLSO|BtKC1PWY))xyriH}RC;F<7@ z;1lzHOmzqGO#Y^&^1Ip1?8@DH5I0Lo$%Uk0mx;-&$LV0ryJ1rqMP!7+<B~4zF%;q> z?`QG`*$<Rt(96y;f|p~b8~NN?o-&%bgYIUI%lf!@s;P0;p<i;=d+u_6PK`laI74|G z4R9`C>2y6O`0JbM$4FjzN|&|$)F&?mQ54eS1w`Q;4PWG65|-z9{M*>loJN2zps;@! zL%>Jb({}VyK%A-D_}@DBYS_5c72zILxD>O(z#6$Qre`ZtZ7WT(CtI%{FOg<&?7t76 zAO)3=N571)!%IwT%0ah7;`_3s;^EV9;Uu&QazGQq*m`)R%1_xYscp3^%xJvwiCslG zqol9!ObQ<fFW0jm<7vR~sa|04=n(A+i0hTm<=OTuy|J#xz_lC1FY16+eDO8m!c2gD z9)5kBUoRi~oyJzR8+}#tbk%j976F$*hB<xza)fq3du>?lq+5mRR`2|=oC~_y{lHR` zw5692BlJG#f)mCXhHV>)Q2PQO_n~}52Bm0HX~bS;gTEfSG-+zAwX%4Y14iAGv<2r{ zeZh%1gpiHSvqNKl6Wed`cA9EJKN7*C^1$f5d{TzWLxYzB>$W&B?3xulgt5ZK(DGVS zDNaNeVEK%Jk475LQQ*J)dbR)9VRMYJq{7@S{R<5&JNr_|S7~7t12Ywq`lS~_{i`+- z+A$(OHD-s$88eABAvLj=`{GH;RuTf4dLuTdxgdD7tl{rrj9y>r&^H|2JPNAZsL8ne z#hGqrUBL&3R96kgk$q)(;s%xwVK;&Z;vkVNh_UGr1<ni2n+>}u-<-euk9i;|*NA(Y z6koR5c!x%N_wrGobL|JX8_3^;t~OXQuLjjw!j=6{Ez_v&!E-H2?#CsdrlQeAyzbME zmYS^VYMvPIWuX*}d!e>h5E&DSq6`|p{}8cn+}mEdnV6z?FhtX1QwZ9tp!C-?{)(4y zE#1GByp?4C#FU)Mm<(`@<C10&PC-K?BB|O!4e2^dte`P01^iBiYe(LiZrUnq-)0Gz zXGt!j3yE}#^$Iy8FYnXnEjAc%Xm*R<v4pXSjh!mb@F+{{BoFC#Rh5*fH2Q9*xHQ(g zm}x_J>s~u~Vt2m>uj;3<jRMa?9Ax^dJGgI*X3RMgGq#oz-NE}frba>s!p-yN+3_XA zt`|kOaX_PbM-7OuQr)?_?>f_W{feap`Uwhxm}vMi*eOWo?;52mb(*^AGw>>Q)<+nX zvPw)UvP5SW1oHwkJ_|<cgTC-|bJG(>-POGl3>nc%7RQ+*KZ76{X7gZ=ntr#Z6q_w8 z3E2(hk<BS)$WjuL;`AG*4iEnFJoIPfD7QqKWm}$&ae>OhrB95xVqT_&E-I%}#~ojh zgTgtJSyw%;WnIi&bZe=^Xr4pXR;mW$o@c6`TEpm!6u3bUBwS^puyxb44zoaW{MBO- zt_~Ys1X3kjbf0?(CZInMbC_jbxN%Ep+)!`1^hd^uK%IUP`%C2>mq&jF^YpiAGqeoZ zM7cx~kMU?a?R^Sxf6BU&cs)u3T>ct_eag|x1aQ6%R~Fl9>vE;7pnUcge(!}u`r>T` z=#7RnaJQcEV+)l%UZi`0c&Dy3-dT9svS0Xy?9!dsJQAHy40bVMZ>*;NS(ZL_Moybi z?@sFitwX-^(|%ALwb;DTj(mPRTVX_{NA8Ivypox^nO6dfw%L8_i^MTx)n2y7@jf|j zr5}w+u$5X_R;xX6Pn&8dh7v99>AzVoe~PrU4;wzmEtg6sg?R*A&!i4wBb8fhNd<vy zBJ8ayOz+2gw3vQJjGmpdgBLl>8T_+*(&l6Y^0#Ebo`L;0Pka?Sl4VI79DZ|x0305y zci-L%=@aiM`L{sT2U!BXk&grNIl_RAE}@^lL39s=VDj-~gWtorZeAc=A3`_V*l5BY zTnjlPSUEpHtDO2`K|m-s|7XCTNaRN@5$Wb&PR>%#ry-HS->x99@JB+ZMrlsafZ<A9 z+;Hy_J{CC<x?_3%QTqq|sA$iuQnIaOu@N_JYRTwQP;-9fKLJ0(X%gl|MkKK~JK2r5 zy=#`b&F?*tQ%;srTxilwLEvEb$GenAfopAxx|aRmLG~hOp0-C}>k8TibHaYt+r*vf z<4Wpkw^4Q()*n6ZY0(O<`W-~BsgPR=g&=_M6@5qqhcmQ-ni}W{{>=9ZFa)<}#}+=* zV5*@IzQB-uC)$->N(gIA8vk4AUJcupdJ??K1_#PT76>B`#-r?Hs%@1HY{^o~W|{TN zc75LWBczaW>1N0`SKP$RW?;Y%0|xv|V8CDh4EXGh#4uG|jE72{Xs)PjmCPzwA5)00 z+&B<5u4xX4GYT!zB11m_197QbqH>F`uBbC=Ph&%?NmCC$Wz1#_xT0@5CIVD?>7=QM znhfAG$Mh}zo*O_8Sazw2dMd)EGW;^G;(c=wH{v1f9Nv*^tnMteh$dTt1@IF(hhkBx zbLvJ2k;B#_zEi@<z@2w!<hif=c-(0c${`hx%4#*rO9@p#)#r>2w>TH4dkv-ACHH=P z31y2NVgNtX2y_2-)<smevK4Azt{hsZhRPC3wF+t}sx~HO(znruv26Qt&Jg+F8qM_6 zNb2{nRDLEeAUp)BSWaADlF#G4+Y*ZsV2bKOrt=3Cl<3e)ze`mM!y*(H#%mLxZvQ|` zJtO3=KBN3LZu#}Eu)4UX!_;ZXmc&<-Cau^n%(P!5$rucbVf6XX`rhFxr;<(NemW7i zS&eAV(BZ$Z%XCs_^v_U|C-MQqJ)Qs(6d+0;y-JwNF0tisB<v^8lgm!prr#IkLD6_N zB|xu(Pi|_!r~m~Dx52H4vBEQC{yJ*n)u1`c)n~Xzud-+7nicP4B7<->Z6fF7c8{HO z?gKx~!~@%5CKCZ<Bh=&&;%HFfvGO>CLb6HW#?oxA!61{FUYmf;ziG2T<R5VS4)gV5 z-LY4^BF6Ab{i7H<(|hTVMHw1CLugnWJa6JR!FT<vqSY_M5)6g2BHJ5F3L!QD7YEf< zLo4#ASmtilrluYn$e9hMjirjM<TXTIBRYK`(J3}T&7Y$E69vhuThS83M#(GXw_a$E zsx;2ASr}x~`@-Z${(Ty%?6t4}p*h;QlzP`1vvXyF!4pL}-dLJ$d1O3A`aGnFnqQjb zrcApO8fF~HE;K(g#3k++9hWVbGpZIeDF;b$!Zktr#Tn?la479!Oeu2d9P+Y-73E;V zyu5S9wD=LUK#ROmj+1(8omT>S$HIhBGs!PDV?xXyGs>trJf8vo9QLUApMXEDBJ^W- z3fZz;nhF&$1<sIB%GmHe-$&Y(GXfa!Tlt2fT%eLJ6cS?^n5VT+B$f33aF^BRJv(1H zp0rr|Hg~_@>D#$M7nOR)S~WOC|KOs1$iUfEV-UX(5*NOdj_f=q_32}VwD}c)8P1N1 zVE3gCDQCe$?@M5B1<n-Pv`EgQ$*_shd|k=Opdr0}wkEjhh}%v$lSLtNVJGf?BEE3* zOU(_+7k<>Gpg%pyzq$Rje~qaGZwi6>8lP#dsZT5Z=miM)S_k~CA~O*0D?-U`z_YjR z`F&&&)9M3$5`=%q9>%*4OIs#OP{=;M1oLmi&k=dE8wXMGxE+RiyUh~YIDb|d@G(!L zd8`}jy)}i)6IOs$L7|Wr2Fv{+&%h)Y-6CkI{({_XdQiG8V8hzlozdLCvtNgyM14P! zjbK{vrAdqkYdw-Z2(k4=zyBOX6h&n?F(0v@s+mOp4<k7r6RS$gNP0PWj?Hws;%LvW zgWwOR8jJ+DmPNO9>uukk_1>UQrQ#O|(9&vWS!2wlAL(|HYbuI|_CKB#%S1fGXV}QG z+?7GzJ^FBYL^;lxhvHwl?r9B=9EK8d89-iV43FSruT*qZv7t!()<jsZ6DWh?z<Urs zUT8i#U*ZsD|BU)>Pq;Sx%=@-}Cx9+q;E2<f0?pv>`+@viAi8J9?R*LQ_#xL}kU%wB zCR_M;{{d3Cjr<4#@}0^(djMnAc20EeY`}|PTT$L(E~_9oSa_M3j@(8_OQ9eVlHY=m zUyz2evvE10iz#XdFda1)cVu^0^79Yg(T}_43Y5i-oRR3Ep^bV2Evc;NsSMz=!PGVP zv1Y1D<H>ccYFt{(-qhy8S-A#mCGv+|$I{1v*89xL@%g>07uWTM=BsCDQ0L<?G0f5; zFWgS6AM@EvAHDdW$72u=ke(;PesY2{*?`7F;`imzQYJoG6G<>D_pbtWn}B>9X;E^t z_zC;w@XPl2$|0!Df~WxwHlnR$z_%mttu6u%uHATuNvFL(1+$OZgV`(*+D;wEO0pbF zywHMq_Tv!`yPY;7rKt_Jw=Os{nvZf&-CPJib4TI-sEU}~okPcRU`f(l+BqDRharRU z+7F4Re56Icdax!IxaxdE3^0f2ky?tUd{yrLcIKQ~n}+YT3=en7%k#G;TP&@pDgLk! zyBzB*1W!5Hnj(R^K##Ajo&4zpm#2n&V_CQ>-8*5%;HII_`CPbT{TzZbwWq+yBEbma zjY5V@qE@U1eR8B0X4_HF9kL$9fpVLb<4XJHW?wJW{UBnl8_yFo*B#>tVYNEa`dqB$ z<BDVKG2-qQXwJphZaUK8F^oH=ur3RGwNIF$oQ3R3dFiCMGgtranZ<pTt#wB&f2-S* zr$~SfMfm<B;h4JPcjj4GkR|m2<M}V0Pg~3I!#~17m1U6Jpj|Nj+`WQ~W}#)$pD7Tw z`e1-kJ1Qcn9)ANd_X@{`BnnCwrz*$gjq#M?bvg;gN<{}%uK|ygfgT-(?)5G4e^Xh{ zB_YdgUB~-Xh1&GRF8_rEwS_!q+>^2liHxRTnk-&4bU@JbmoJ(J@O)c>_uWhPrmElD zu34|KC&ZIqC`en4T_q<uPg!t)T9G%dO7uJ8k((NG7wSBWN9hOMxGnqEo-rv+R)!TI zBLgQg7A|kwNYKZ==1Jm<-9eN12vp++0y1{KcfHE*7;cBkyY1iCG{^KJmaKX)_IZyL zF8n85{D0GH*_c4hM$BSw*&wQnDN-D!1WhoIM90b$6seyge)G9L&80#q!83t|%|H#C zGuYo1-r-`p_)uj@m2d0pZp?F_E!ABS{=%L9^QfCfFLzjfiYy%)2dBd2cYh-{KdCZc z0jF(EIAPo5-=}3H8K@AlyI9@o(DjDZE?V<P)-Egey{Dn4rmEGS^M~1N4O)kx9vC_9 z7LC^FJhe55veOQuf}j#w`+~!>0~|h{($3v6`=lhZ{Z4ZjhErgI6!rum<$VM47Q;%U zhMc;iNlHg=6%%v)RwsVamsK31w4=Q224P}#D0JAj8*Z+w+{|Z;E*3NAGH1ozi*&fH zuL&ZjUSHd21JWwQA4plV_JdrW(=ASl2&#^Mj6O4&57Q8t1++%HP#2i#ZbXH4q*V~8 zW~Q|~-WGP3+7uNu%|d%W96o))Xqp%BmYauYs0=ta#vOFRgBo(sIiZ@Nz-A?c<rV9^ z{o{*o=>>h>B1%OIOLz5gc~qo1vTY1mQJ(Q_VD7x!H6xF5@K1>0$pM)YU76t&85m7L zfcY1Vlm_JKpRktP+aMsA!oWzSermfWjN<x`xlY<Gk6P%MpwuCgNuIR_iG)g%|3&aE zLDix#P&s9EUAlqD!>k3jQ>8$h8@zU!uj>n4Z_yPx!NAgn!-2c^84jIJUDL?l><p&O z_PE2B8WRncO58Wgd-J96k5?0!+|2np&gqX*p>8|8(X<EIkJ)!yKe9}%C|z{ocCWY? zFg@>m1wPLgtzBB4udnIdLvi6zS6NeFk~<;m!R#KgMS9<)HUColN+wx2Vi4_if-Im_ zWF<!AXV{(><Tx}e!2RJE3MVCL8#+u2yM4<*=piK0A{KCUZq|P=^w8@PT(^kgG;v|- z#*y^rCLGUQ+EKPSFMIt<`ig!R`H+jW)jA*Q-G%<mvpjAgjq%~#c`4F2W@X);Zjy2{ z+*nxmO-#h_k2LIe!tdqsoi!oiqvkKUef<oOH~AYRuAF2;Qt90*@Q-jk9$g>BnNn$e z)T6fspjDyn7f(!rTC({AUltziCco*g?~^g@Xh~j)oE}2OHJ~&7J|(_#Z9P2Fdbjf# z8}rVBmd6_4co=pFqL4_{YQv`Mk`gv`AU$Ozx%Pg&8OT$8mJXU*|E8T6t0T$Ha;nH) z)U-e}<aH&D@*=qGn@4sVNo<<z#Z90qno$Ypq}kYCgNT8;usjJ;Zw2EVy;Pk#B~A1o z>Cj2oMdkNuB@W&EMq{)`Gbhc4U|1xkF(t_LG(C$KF%-eC%AzqxvL(Pjd+XCAom8Js zYi79uNkCYLkLr-ZD;7?ZR)_3oj)1H|vV9;ir*)E{h^McvD`+0_)n7)kVhEbhw?w$B zdbM%K;?Sm5l-X*wnPQXwQAIo}P1bZBMMZ+PI)9o)nyAmPpkd1ulZj`aguv(TYByWA zp5F&%eU7f=d!7-9?pA97Tt22sopWtj!G!r6{4|LD%w+4A33=n^kKbpZWZ8iz`zlJ# z6Zj&xVTFA`KkkAZ;CU9iRQt0ax)mh~3;m=q?<E+l+w6<JUQolf-~B~v&17WBq6>4z z&syLN>>x+rP28Q(?$tQS*m<2uR;@3sXhR2OM=cQ@D_1~V$oT7Y6Qzc`>1c4Gm@rfC zEXc^o<8jw_hK=e1MwKU((bq}ZT`5IfZ*XiQXf+Hr<)iY8JLeKRPQlgD9pwCVKZ-9u z$1G%)+p!EPbKM>;t5q!fsSmS7uXSVap<1n<!7-%erSSMd?blx;`VGO8>|B{n&7;y= zEb(jp+LaYLGJ~MHOe3*k5@w?WD;zI`eUNK%vj_jU!YX1hS7z4;gcd&M^lA;_+X3qr zXW<sYX(Pl<EfZUY)4*t&SHa=pUe-%UqQ9V>A?00HV4~V;{im8zWA||pK~t~aXB*w> z$B(@nXr$>r(4_19WH2BhP@Mc0_!P2?;J!@f+xsO(sFXxFv|IQyMvtTu9y0N3LG0#+ zUZRzz0sqZh+qop}ApZw+2~&LOE6X#=9(vtVxZaEYc}ojxw?qf|$IqhH%Sc!&$g##X z5@h3()~*cj0on}4#V_rhgu~qkc#as4v%lljC^ktxK<U&!f<QoEDgR$Kdr9fg@t?lS zB$E)cw1PyjXUQ2#$Qwcn15Yf7gG;2=V_9=l;3vh<Dx;A8M%}`?)XPlFK)(zW;c-&1 z1Xae^6B`7i=gFtk?-w7Gq#5%Yr+*0Pfc0U7mhPh$v<EVLkKz=iD#OPMH~I(w1>{3> zd>GXuP!2ug{W5)tGyR^FMJ61)&sRYUlTtPL{)>K~%vXGpF7)fIVLeVCwyD@zDKROk z(QO-V;_Vjb))q882z5b}0f|(&RX7oAU$ea6ed=}`1hO-pzLU0tDK6_<$5(-Zk0lgg zA@Gd+#I@l7nCl3-DNKC!C|cW(>XU*O&IC(lyq#MTF8V-uo>6!eLTTwP|D8o1=&VC0 zWGeY=wD>)*<K0od^auYX!;gfSFCFW_YrVnqpwtmpD5Mh6a!b9u41#3{PjSWH!zjM8 z8J8L$H#dfaj}{UO7iWuG#~Q&t+y!|dTYm)uizEPtQS43qqaOJ!N|K%kRLg-Nibn7& z35=iK4vg3ol%P4mR9G@7u{}zxqq<Wftgt+klwuziD!5<*u~WEXK2GK@;!^mo=WvPZ z_a1e{E+od7q3<{HEtD*ZY~1zn2_5tC{U{L;MCnBm64TPdBN_lX1cQlhpi86VqBel! z;8<*^VQXG;Sh-gWfQ9}wv!ZMuL_DXcN+8+xPPmH+xfU3UJ>ouB!0_+NIDIaVl8PDP z0{QJBBx?K?_GB4nn<z@NFqXgeYAQ8<jj%#s>kFPi6Kms%<iR4UWsFrt9vGNd@r?Gc zAQ55kcE)DJ4;pvr@w61;&g^iA8EA-GNb7xj_idG*#8Etg+ho9UF-XRy+9a91ZM<6w z=MrZMxrvp2QGzn;m~aB$Q$YW}n6B-=?<qE4ljpGUAK5aQ)#NR5{RAXTeRUboG#32( z3;VUHk<M%je6M@nX%Q$w{rJa2i6_)yT}dkNwG=EREEI4BL+|;5C%{WG3Yf?I$`bTp zKn9ZuNI^gdT7ZdN!^Uov6(Ln`r?uF&p;+s2M&&q@RO>qtMT^0bDzm@=Kmd6tJjs=x z54?(otKWDuWv_Ig=M3+R?@a8>4R+~=K{}5n9jOQo$+80*Xp0H1huhTp^@Z@8x*`fm zweb;IPC@JP^rBv*S4m2hV)0L>uURi-8+os)`&px|CQ*|zvp*^9+~580o?Bduo0xOn z-?Z@4WS{ri%#4E6L0oELrRQ9rM*V#qu^H|gizMyo-`+~uPU7|~d6TBiJ%pDP1{eLW zhhalf@VFVISB3Z5?BejxEOeA-?Zv?QOEWjN2-(uBPyeE_+hTIk>zX6%HpFJ~fi{KA zew#QW>^30M0y}E=K~|vplI*=+7stFFijojL6^F7(LKDaRbtPgMtF>TSEY5%W3n>an z3r$)ouApI1!A=x4hmzn$=Jzj#4XHMFAPey93zn^R%O_GYEGw2uVyPuHPIE5J!~t1M zES+{paf}GO8)ryA=DFQ|(no{vE()sqabfORArxVx$ELf?cY~*!<ZV(1pg!^3#{P;C zsh+~s2F#G9chp43I)L>u?D&P)w$wy{qhGD5^wv9fLBpWct9Vqi*z`F^EE}Y2Q72}} zGGGSrSByE3YW`3w7|*DG)?xL=(PS4(Km^afAwCF`<Q@g-!)@qgY@`g3%PF@iHqtB0 z7IwIfj1-r$!Ri-HFYA}L>Llufp!6M_@%+sw0+m5G+2u<yCAbwiT+tN$E~S$+1bUQ5 zXlv0wC{qm9Kc_>|mf`(-2h?KT;+RSEa4KP$=hPuF+g8{htzV4e;=Q!af^W~~yAfP! z#~`OoqsBn7BFJ<4ElX(X#Z$z*$5)L9EpvM?tS)$%gSB31f10h7AwTf0-{rNQr@UWW zvA)_BJeP`bjo_Idn&yCDnJ&_6DE)pRA*+ek^x3ddnEKw9C12i9nLI0}DiJl&1!l7@ z=$>0PZYD7S%&XylWX!@CDsP&F?o^qo>+sx7W(daEf!}CY=;u-A^R1+Fc)WCY9NT!q z!k~oiB&8r}UDrO@7t+M2H!+w|&?D-u)le%Z&;Q0Get4r={8*?MKV_S7u?!9`N|I^K zP~RMD%6LMPm(ey0K84mFFPXmuP@kfuvrm!&b#n)m*yWJ0*27yBj8<(~b+HDOQz1~5 zGE)7$5vA3pEu;gxV8o!Qa#T(>`|v`NnpW3Hn89}`a))a$k5hIx)<l%oqBp!gSaA>f z3yuqPnMO81uKi_IpXdo9&e{wH_&oqL4>1HS#>Vgj6eW9OO<&9{yy`WzJ`3j^ciDz- zH)QjJ%i9)UbutAzI2GjE;nb}Yyc~9lL&%HQ0h9E4o9kX3oqDKfF_Zb6rR<M?d{mu7 z{3e${DK`R2zFmwu4CGtk22MPG!~gnr(>Mw7hURuD1uNdQE$MAoXxjJ3L5lRbllb0t zU^&x3S0aU?eKgy0-GYUj6U!YYF;a(f24R^b;qO3B4;Y3=|D4Ce);e6U<AN23C<G4% zN3+AEcyC}v3<<5sGFk?jrEW>`&~7L-u2j`zM`Pd#0HYCRU8E&qlb+!cth^WO{&d&x z{k8i!OV~R#eUPNfCD=peP?`yfxF-W98B6I@=0^h`-Kbtdh7^*ep4U&6g7E7f<kZL+ zqIj0^0;Dy8A^w4g7Fy8RkbBvauSh#-D0>3n!#^Yz-{jg}$DQ-&oaDKZW)*4=vzsH6 zyGpt_e@sO>=6mtSjR$tDlTA!RrAd7Q_lBlALmdp>eu!Xm9Ve1Rn53qLvVm+DRkoz$ z=lIFD0dnvc9@~whK;Ef!BnCBr!Gc|azX96XwLOL5pzOA+orCH<n_rILu9aHUoJm^g z6qks^!Y8P<iPm9^BL+cHnLew<Wezb}(uTp7EmZOh6VsdCGY<Co#cMu~oMSx)9fxL8 zYGs|yePGn@*Y1QDeh2Ab$P_!eDsj!>uRMoG#qsiGLtg+mPn=3BsNgyZ7Z_Hs*-Or! zAtWmQ)STW9(DM>9B?3I{0eA@`I@DB_7`(sEbsQqVKmSn0m;BW=Q)QLJs$^<V(5~V| zKVxulp6rEWP~Z%4+sZuYYR}|HCBF}_^A{03V!<XWr^Yh6qKiw{IRyb>a|Pa*pk<@9 zDvFRAQ_p}PNGg%klf@d$3<WN@kx2@RyCaW9KS(OW>5U)h<FBdVNX$VzOZNu(2LFcm zrjv90L-t3R=g(P-OJ{)4tOSn`LZ_S8%h|>Gd2Y5@Um~$d3Fsji*B1A|n%{f!tDNen zgvjAzeieq){Z`!Xv+<ma_6!X(>xCyK<an{vX4yqXwR<$h9KMgjrM~-`mW6s09VXBV zeHqrhmZ|uMoILJd<F9+=NMxp$GLUoeiM64E+9&B_8til-c|O!cc1lcBJTtIk@y*RO z`-1AiHtmtgIN;P-7Jz<-!1T)UQK@*_6H0zOOY>)48Qb@-SE6jL3Dc?bp(I*gw+_=_ zmg@<7DdwE5P|MMZzXtK{Q0gvdf_m`{$o|-Ib<~c51Rf)hOi^=${H?$wuN1)Eo{0!W zdc5oifgJ-gOt!3vQ&{5%rFe)x;?n&MtMR6z{o5bNF&I%-9MydSV()e36$!O1jZs$N zZa=(yIEqYUsYsLOF6uo3%f(PBI4_}B_=3TFSn4Du8l0P56+!3nb(ZRxZ^|>RQZg#6 z6Ei5kawuV$whmy8U0`Xp&Xo9m9U%%<D(pN3Pk{0+C8FNT*u@Xw3sBH^o0LkvhXr~t zCNIkAFPA(|7im_6#m7RaBuI~n!O&`2R(xy$@O^g7b_=ErEI`=DxoMq!pv7q`)VXoL zRlEa;(Y2{@;lbe47?45g%hH)@<!5JL^D-KfW)u^$A1&*?25aAtJcyj0fjf`FrmwS- z#t9)q;uvSb<U^}cFDY`4ruW8L2hJ~pgZ1o6qgrq+*hZ))<a(D9TU9G6EmCVt178hR zr0R4IK<|ShyOdcZCe!O>di0IbLIzNc9!N`F_Q)f0!SR2fq@c}EmrzuKFgXcC+LgvL z^i(xxW64fyX~~%sy%i(tL6J#_(TFtufrH+erMo71-R`%{b@$C%S-^|mkYm7DAf54q zi=&LJ`Eo@xLRQC<U4>sZc@*hZ%#!Uf+`r2kyq5e(G=1m|ZXJfwyGU@k5fYw;zk@3M zs@$(zpqSf=_X_9nf{ZVS3^LeNJ#v1|TGC&Wj-Sg1rgYqt+?zz?Gco-=n`kGxaPwpk zi+*Mi-3GA)jW8z|4M(zu18Of}*pS&ijFkk-CgddY6@V#BE>xdb@*~E*v2aq6yrxq3 zhs}er)CGW+)+&;Ysht}xYYaw?y@}2fDr9=}G<G(H&v~&D?Atyms*R!~E~|$p0C`IM z&xIX}VGe~`?USU3YMFVkL9M{yhP)$o^*A+=y?V)au1-#l`EDPFwRM$(85(3ge{SL7 z0e*b2hKdH4aD%NJg@U$O*-;Zci3EnxRVU*$IDv$e!bxs*kn?lOX&p#|Sb|u1Bwmz= z;v_^zPJ*qkYN$#_50pqE16nKnvnuT|`aFYA6@pxT`drj?*SgAGn1=7s4MFl>J>+xz zV7`4Vkce%qQ5>s-`#lwKNCj@g2{0iL{4xTqbgqL2{HmSe<YKFwnxHKmSAl#jb8eM2 z^A$oizgb|E1_fq{(W<E0swL;-qW9s@N`zo_*Wb1-<pR?7$2Tqj&q6JO%+HO;dQl%) z=PSkf5U#cf845&)Z3^Fv@V3r=C-uTXRqoT;zr*oausSN5RV8DDCViN8FC-=rluTz- zjR7l=^Z7>>2wxF&9_A<$n;QlP<m^tx{1bEvbcG~yDf!DfcGn~?zns4dvQ)T%3+p#- z?-5JrO$&xq{8|>1Ac<}C*by$knTa%=BAbhW8q{c`(F(o6qH}_)_~Ik~ll$*W+$QBu z#?&c`&>l$Zr0j*e4af+7{HVgEYlHmBU&_)ba2Ctqlfuz|I?!KzrE@Thc|w_@3fu|= z;Zb&|*in??lOi*ECHQr79-Rbp$%k3shFzvTK9FkYk=KdiXv>60Djk39c4HTCKp=Oo zDJGCI1ki%1(88UZ*DN^Ka`@;{Z!tv%>wP?6*p~P|1Pc=*OtMq6{OBi&lqxL;+5esC zhKrGO7QJSbyd<@#zXuC^4^h^G?4aLP*xR|Dd=Q~E32xMmdib}{n#FBhWQ<p_cO}EB zyL0Iq?BSzQ;Gk9Vw%27XeAo@9Jbz--C43^KNC4>8fpt$$E0iW;K0_mlk&gB-rj4QL zDD5|)zoaR4lc7e2C1mr^+jF~jGLul<;TnWGimzIvUXo*-e~V>%{t|Rok8&j|W@u2K z^Jp1v{=~cT+~Ksq3`i6Am?;E3M<aU^<~6&zEWR4S2;1RQm^wJd;&hlAubXjLtIY15 zC%9dZyAw5GHyPrO<R&v`13Bx<7DsFsmT3MlTSMVuT$8UR&I0vh0XW+q^-t3H0kO|; zzu!EYye4&xMXBp_uYT0v@S8JyCmG@#V6>yn0kU*~=(!eVSah_Geuly3do{bh=-fec z3BX-y8`G$J<3_wR42%kZUWJZW6Y#cxIr3c>br~I;I4arl7<ssKTsyQo!_7%=*sev$ znoRkLJsjpab2ztTXOnlp%LjK*jd1H}!>9(8q-OKJVg>rswfElKTAK^k;BnZh>fH|G zCF)yE7F`3_7AFJ(x5Lin0}96?oITuig_Uj;>L~Qo`r)2821GsuU8@Zuk_c4+TK>7T zxY1nrb{oe6`!tdT%A!~}dG|0K`&`5!VCegwkY3SVr=;Y?Mm&{Gyx}&~=uU}M-0-S8 zEdgciq$LkTryqImB^#o+3qQm26Wnb<m;T=S+&#GSad589;xSddO^U)jzP;2BBojvr zD3i9U(lOlUJuueM<<q$dgx%Z3);{N&9hDJoVqv?%aT<4pALQGN>Rt*jczoZvwqHI4 zN$3E6q0KyIRq=9chKJu@68nlT{142>%NaAvwU52wTT+w7;|C~v4L$Ht`acN7X%>h; zaE9n4{OS3RzuDxZB0v)p2ZNNz??92tNMH}ag~;-P8|Wc5Hy9IV^xjE*2z&_n3Hzy; zJ(tf~D0gojH@R^hRy&uO2_~<1cKf(KKDf#qEXNZ|Xjt?<jli+TaXjYnk$fbjI4X`j z@sLvu8WR02qUUijvoy6_!OU`b9|zytCIRkWj-z(RC?8J!B!7@E`cdslBeE#%&!wIQ z+rG<G%yUR4N6*CPQPCf<?3Dz{QoLtXfRN@nvp=pE|9c8IHKDaU;}GvS)MR+Ya>|i_ zIzLuhXq5F!>O|9*9dd#3d6j(<aW)s!eDti$9<4MjzAs$~_c+GR#?2NZXkY$5i3qt? zeYJ;nS=SV(fS~xD58oN7*5ul|Ayq$n+?Io_w)=}Dt3dHSWi7;h4t7ovU$(|pI8ef~ zMG-=b2<%3pWy8PBN-uB@Q`}MLGGMT($MziL?iX}Wf=-Z%$5$vlrWDy3RQJ>d2!+c{ z$THxkiwz~}rSsB4xP{MG>_-Uf!aoS+Fq#5P97{`te7i)$Y27?aReS?RpH<sSMoTqv z@!OF12>@$d0advL5ZOE@WEecs<}8BTd37AUkgE-aJ;(4j65{gE(smgU4Ic&ixzPJK zq;+S8yGIH%tb*c0!4<-!`$PbA8WxAY|A8O@{~rViLy6Z`u6O4~Qx5wcuWb)3eP!1k zhz9LXG?eWYq>*CtHl37}loGk=Q412m-)o?|mT#Jj75K5{zkI5HL(c5*N1${Bq(Xln zkfx+48tQD6R6Qq#VT)^0IibboJUIgOc*Jb1VS%>Qc_I<Dy6SjebD&wPN*;J6Raz#g z1k`Ow23yscBSKrEwQTeK#y8aZU64CD2@9eLMa>3idM5OezoyWbMN*op<=ZIT-A~G_ zoN^u4DfWrZbBfI0Y>M!C-;nfv<H=SXL>$7G*}M@Pzo7&f*br8mU6mysQG)O#dVg8% z8-WfyiKg}v)11u+ljgo48kX_kL-Lt~(B~=!=>he4q!sRhL98|0`9b&qopRIlw&gaw zng@cI3ETu<&0O2C6_PxQWY~FPqEC^PgyQCyS;X%C#X&ep{#0#S1xn=OGlHgI$vY!q zK5ghY;ea0}j8+uD)dV$dPBoXh&o+!Nh#8qe&118ah3b+j=%8~8e3Ylta%8i&kO1B* zHnQ)qq;25-yTE5!jyzgf&n>6swV+cMOr4yq#(Y=trfy`GDcwCZ$kneA^HjRsYeH?b zQBZ{l#tVn@F>=JAiE%c%*C56A?CfMu`SD@E!A&kivQ^p}^ag<d9V`H5xMFmHAT+>D zG-PLzog&SLL}ZZMZYse+E0~Z<BuAqTWMy5UuoLb#w#a`Vh|>QKL6}(DgY<bs|Ain_ z|7Qr|0E8e4|A8Qt;5Li^6W;#=1mWW<_*2H3M_tQy4TK;+{)Hf9t<kwH%Z}N#Pm^)Y z$RVC4+YTo6k}{5$FRieiReDC5zTK!sF@Lj<wn_}Yx!HgJu1L7^Tj>=V(ZMa^uueFp z+I>>*I)R`yv!kL(LrP6}G_-N!L2499#dKKB6vySEQeb2j9|6DP>=>2U3N<DwZ(|`2 zgs4-nJ2aVF#b4fKs6AyvWaTYHQ~C01c&};Sh(uyfVF;Sle;|m)KM*9=bc*y}2txEP z1i}4p2vYGM2=eU{g53NM2y*fMe}f>8`Tsx=^=OJ=i2>;?V*J|47Y+hBls!twz09L7 zKPa{Ih=bvxZ<Go*6>I07bYkYRzl7=7REi~}^QHJxqJlgte>AUI$>yPd`x{NTz4+57 zREr~@hX4^Om<dj5g5o-SC((kEzrF4t2V#(zi|7%H<Y9&d!y`#P3Z~*x7#pL8{K}TC z#A7Fw>6g0g07nPDRyB^>bYvV#o$G<;2knDk-_u)i{xz1#-;I~kpaO3IN<8uT%UiLe zf<8zaW>)Q`O`z%*^Kt3{b#!z`(XjN4hOyrWxkWb<?e@}Dcg30n*`C=wBOC?j^isuA zk$z*wY8GDTd2=J^e8sKG9$AW%Ofe<hW>RM_k3PC`Yxp!oS4b3cn#}p@JH>g!hcNFs zD7=`v^4er4%iKCbWEUBjs+_T2DadV{#v9KO8)YyhXBgrMhv4U={yyQz6ohHy<qys) zEF}TsCU?-~qy&5u{%_it_Kc^+`P`*FU9OplUL3kY16DP>-*i}I)gcwK8}irnrL(CZ zK~{ML<6h*gle=C5ZHz7;`PO}8esJB`ZUw}2W_zqoAz#yywqcYtRL2kF^rsE_Uo6@v zlUc7t>%svqg7}~v@_8S;n2n(L{!Uqcto<Yv;9W-MBOCL!@L+LqyQ{y!$WXgU>J&on zF>z4ajdgYUq8&Fl*u0DA8rL;=@)3G%@9@jzmc$igEgvM1O!jp(m+)|fcalKYWx}dn zP-DCOB|96w2!wfmzePr{(41rr(3Ash5sk%w&DMuSrb!sH_52mF1pNsj3~;@+=ML6^ zpbqbDn|R~-P;~MFhS?hE;M8;;Fbv&^Dm=gvk%P|Q1~>b2Zgn{586A-sX^IBq`_G=Z z4cto-u`sV^qtNEf<>BofKfadqMB@7NQR2lDveNfiUBCmx-9GJ6UC+eze8C|mXT@+U zU??XD4uh_c!#t{Ckt@MvBh;N+{b5C{*fzclLvy!f?xn#Q4<R23@)e$tx$lFQOGd^U zFI)Ws#b%}34}{Q*o(~8?ia$3&yp&MH5H`K+;rRy?jW#%t5Q_rwBM1L(LCXmS@3!@s zNAlTsf7egyUUzbnYr2u^5$F-(73Ni|xKX1-rG3d=Ud~<SU=OEoQW>6MnqB{Sk(+z5 ze7jsnEMY-m^ij<8V6^abC^zy_TvDan<Oe?zS+D%~F+3%`nVXxFTYp%3&ZordVXSfL zOyi_tM=<|>OK0icwlTlJnObN?O3$gB1lxWNEB^8z7mFeNwpW2fQhF)-H0PgK36RD< zkuWnZAcn~E87EpSQqA=%{+>!;Wu-F~P#3=9h)Tir6(P&=xt}30z52g4LFky7eQHVB z{J;nQ$0i8I6b)vBjfg(6-fXo>v1U9W%yW2=yN1<M-wTv0Cr)$Hxg~e|l2Mtm2Z<X# zHVYUFsyVS1li(mRk4}w$V*=<Cu}-DX+<h(o33Y#ajhldxsxF%w=(BtVL%eR7@<`Pp zL3zfg)iC+-eONr@Y3WQX7hJ7k3&BaZ7f5ryx$7Q9>Tyg7fuEumHv-3*>@{!j|Dx<1 zyEEI?02|x3ZQHi(ij#_M+erl#+jhlC#kMQ9ZS`B{o*sQ0U;01nJ@*`Qt^GVWqWnT~ zOHD3N+v-8C|3?rZW9HGuG4Gwk9y!Iy5NuHVcy5%0s+Nd6Lgh!e&QGl>vwsctK`~AS znn!2Vz7;^5PzCN029af4j3-!B;SX?;D~mFP5j1wlFB|O(9v6BQQ=Ahm?EeGg;BozH z2A+zjt&HTxgRTtXuZ<*n@WFBE-Nk?o6c{V?h{(%wcJ|pYPSGQezS#|81SQB43<p|f z6ND?Y#jM(z++sC3j7R`%gvQXgo07aRhUt8SLTfyhb$k7<jhI}dLPg&1Hj-<9PswOE zAC1zOyH{yGU!hmgu#j8GPnA}g@R2@*KkcOhtD(xAr|)_b5kKbw`cPHVk!nmXsR9Wu zhgET51qU@5*BP&QM(b*RP~%ur<WZL9l3uf>&Iol&Aj~xoCE7ux)NmfSgIs9&Ot|+8 z>Z{|(UuyKwP*#IsB5)E2y!d7TF6=6y`G>UnTdgQX&J*%}Nfu`0=E!ibn-q`_{_Q1x zga<T<LEpf%*f~1Yf!AB#RYI#EI0+lXc2Ng=TlRJd+B*8)z}=A%O?Hy8M?+C9w^#6Y zu`K0#oIR-yiPu+SMX~ZwB}(G_&|eeKMDZa28(D9Xp0ym;)ZG8qM%cP+2K3P%^8q&E z`sVZ>8*$WD<;!ur;j&?1<@+|@eNKrcadA0!xkJcvdm4~;9#SALb<<BFS!=Y5eZvUZ zf|EFv+_B78tVgTH_PcI5&$$*USCW>s9|}+7WN50!O~Lij+Q!{oz05^c96TW$iW&|q zDN#M8S`-ZQDh6gHyIz&y4J0~7c{7J}uLVe4BZ$Y@2)L=WGK7;fgc}BraKMKOMY>dE z-$kSsxrU}>MqhIzDyp?8)S|)(x6do)Mm^Nc&zzU)Zx8u{Zu|+?2<RbgN*Dk15a_=> z#8?Y*2ebDMJ%|H6umOoA&;z{u5dl^JjUD>vY`v7WuQfM2p;i+|QG)}=14bcl{*%21 zEq?6BKRsk^YMJjyaxK#5-yVX&Z4c=N=T)O=l3~z=j*asm@jEyzivCZZt({DL1gyf% zxY)o3aZWG_JIPHJB|t_vaRD--Rq(fmXuH1+dj9Pp)c^Jn>upvfbZ;;8Q625Q-O|<v z(%umS)mCD1MRX#yY)^$^_dqxQZk#1v5W2cm2dAW>TC0-K3jarCy~sVAI4)(&@TT93 z&djc)F^(8^<Ei<bL&j60>Uof-X^{S3H@XL!Vb4|O$KJghqt^0I7l}|{4OCHhgb=5A za)Vks3CXd?asyD+9iLaj3z5Q0CR~kJUYIoZLKHbcp%Fn@Y7<}zAWmnUxhC&o!ZnUU zHPJP1X%67&#}u9}!sIdvDZKbk2T=S;oU`Nf=vFAG$1F+*yLp?J*78Rg^SIGqJ~D~d z<GTX=)%)`~2@znwvBQha(>%l+N7>Nx^px(VfSq@<6P;sGJjKtZJB7={Ar{?95a7sQ zI-wOTbABDf2&U;e#?g;yI4>jXJSKoFDd?YV4cb|*^yH$j85F{8d2b2gjadi*OV4!+ zN>!kNLj+`A+&pxN&qM*mrWa#5ITBkmMW#S^&_V5Fs&#W?PDCc>sL_U~#&2-0Qr?pg zpqwNXY)P-G>Rb*|y55Q-p4h5y<|oTc8rfYvkUf690oPL2{76Oih)gD>Kb=41KB2tl zHhFjZ&GlDChEG@V^hJmNZyBNdS4JQLe1HBUBax3y>+HpG6X<_sq)%}4Ul~az68uL- zcD<=}M8*G~GNLaM@2zBmw(%B(Z}JJrxUo?>kMGHOofqDb6`GSqS)d=|&#d%KmpGL- zqV^~7M(uo=!lMJL*Qme2si!;l)E#G+K=#kNe|pGH&-vXyJ>-wQH^HQ*-+8Sr@zTS( zX$=ZR?c;O9^83vi@WJfLFE_s5mx;?-A6rZa7?^sThNh6ct}sL%yJ9`KG)^`6+jzU` z%bggs+vr&x)1wbeFhZ&ZcIzZuQ5qujLhC01LuJUpo{d$W1>|#7HStJ*|L+VP%221_ z<2dtR1L6HAq*d&u{nUJWrcE|;-2n?ck+g+dgUWtU)ZdXDJ`#P%cE$2l`6COH-b{f0 z?IF*A9wNZIGM~%zfAkO<hRWQZuZrH-E0{BB9eMq)7{i*N)2uFPiT3buypZ@T24c=L z9A>rdBxjxQHy*#vT?3>x$ds9zhHT5<%uWP|gvb$|3B`_qum1LsM_&h#PwKU%w=bXo z5|(HnAW~6}tPLGodt7lOf!t|(X`EZ&{8SY#O?Y8?R|6psnRzzb4Jum$yi7nJDTwx! zR%m#d*l1%6LVO4P1QiSt{7txxnw$6>LSr-K-n!Y=wfeyANYf`BcjaboahRT-oy~ug zi7l?IMt<hMP~~3<|MgxSl2&0UGx{}!o!Y1#PXI%kGEG~Vf}X4SK*&0Kea><6$mhOn zmu~xY!!DUq{xssZ+-S2)vY<EV5ThWa^!iDO7?Dm0qPiP=y0Jb>g+F?wOx!>FLTt9D z7;4~4K`OXyJ|)<KKg~SiH;pSI)MS=1yA6Uxw_sEI`sbLW$Y+u{6GLJaL9Y^ZbzYLK ze2JN(y*n-jgWk!S2cuaFpXl{hol*)bu<UR4HsAsYXMWt^TV|wccdwdK!t{3ED$ez= zvs2lC_M&O1?L++eGj6hi`!>Y^e$c86@F!<b=<9ddd55)HihdvHA8Zg7Wfszi3<yVj zDV*}A6+LK-c#9hRA}+vX4L|vBKpgE{<ZwXZkkdAi+NlTSqG&K0?(&SyYGdG1=~{39 z*m$*|qBIMutZ9*@1?%vGd^^q`DAxkan=?*#^~UFT$KYT-A|-_gqM6geqS{j)0&|03 zW<`EB1NIU8Y5OC~qm*Z6MA1)|Q%cr;ZGe@o09AKu9q*OCCEr}Xaa>+CIpl4qE$uQH z2cpLGS4!#zuXW}wpU|FagAT<_Rmtp-%4Haep?Gp#oxBdae`}*|xFN2>kv3;d<RbDG zT{PfEGxmYS3JleG(!MppAH&0?J9MlMW(1R^m?{G^z2YVvq*tk1@<YTPnj$s}JIb<G zc>f&e*DUvXrh|StIBLzr10uM(7Ry9&GRH;<+z`D88;;X{1YE7skTBSG-r2$YV-|NK zw*U!dV;{i`wf(?SrqY<DAk0#YyJTd602nZaS@E%AX1}_g9%roPrYM*G{Mim*n}pX^ zrCN@h3!g=yYjj%26sGH9lTt|p#Vqw;TGi0C!~W7tUG+GBk4-K|k4+}`k6r^@hoZIw z7VCDCz)y}7!<6B{*9SkoEfedg#0+by3ksCB5K{*!Au-5@Y+2<D&$=Az*~TGK#&dSQ ze%Pf3p%|C)l$J<#l$rQ5lW3al>n|<>20LumB?8?DkohsZ-#gCSflL%(;#DRdaSut* zzL5F{_X${4w{L>>?{~|!i-ura?7J(B3FmWC^LFF(7G<D@>eA7yWM@D1|12p&I-$-F zIAi}Ltws*2(vRt0{xxZVac4DE?+x6|CL*FF9%`@>m;GW1VlQMWto}w#%tgO8O=j66 z#j6N%Jw>LRx+Bx^X6BZ3g0lWg9CdLG=8{D_vIG2&LyGgk1J<AY%c!<P+1V^<4#8%K z*QyiJHbE9^Q%9Q03X8ha$535Ypekc&7gjty$dX7_ZfqS2OK$o-_g@r44zdg<fxQdz zef;~LP?uN3`5%sWdcF9*#8>vYV47TRnn=Jnw(|QTz5elrtv*GbFZoql%3c{ZBTE&K z5m(MriQttV$LAo?3%@L?PLDF=m?oROXP<_Cq8W&$&XDpv^1L(LA?z#A!UpjpR@NzP znfT=lOo=lAGKuZ@!|#@F?ABk;EkX8SVeL!LEk$S?cHe3PZLv?LOTNdP@i1vODVSD| zpl@Cz;q|1N+h<gEpT9yzONv&x4oSu<-ne)3Ew6y4NS*nVp}RP<bPbXj>P$X+w<4|* zUC87NU=TP^3_qz2q_sr<jK;Bh{Q+#R*KO<4(HHHSqv9}mg}6?kjAD=n`wcyk>u%RE zo-Le_Q&fj;l{NLZA6}A8juvV=ek^`(N=|{Qd2tjL{%gCbdjPI*{EeBwRFKwHfcLiu z)_M3F2CU$#ycQKVvJsv$$~LQ^9?Fqt{yac&7NOI$c7ZJ3=^RN$DiX){LcNaRqp6lE zzdhjNE~GkfqWH1EE<N>5SrD<`dd=j%SvGD=yUwUGkgeWFxJvXVt5iph<(KgB5T$=1 z?b;nf0SEi9U+=XQvzZfnjq0_mrd+(?Joo`-=jM3tYuvz4Rk?j%$^oTygtmcko|}Om z{=nB5w!A<<1k!--g0^n_I^gCu-ch^NF{lWA+HRg*s~%1>I5C61ZL2MghJK5c2sjEN zE$59L9rqqnORM;Gui&=eHR-dy6d$ozj7dEI-VOHfW>HG73d&m+;Acd4JJvm)<zzDH z)Ui)VhPT$S+cQS$PE+YboKJgkRtJA60&C8WTvvNn`&SdQuX?c&T}aDIp2y`SG0u<S z9&R`1<AP!5;kpEP2U<}0?~Mt>^zVu(-%|Zx<fKs!csZc}t4!iah-Iz4N84xzmxIR2 zy#7o)io)`0iN@<&Km*Tc;Gph`hiTzzDO|~Af>xaZotc2{Qi0mY6TQwj;YWN9aF`E# zf*YmVWC<;7=m+R<&ZrGbgeW}%`RZYjrc4@1jisO?DiyB8feU{{AXiW6tt;oARJazz z$xpT{;)it<a)3KjYPsvhKw0$pjvP~%EMhos-LeEMn`1bY9L5g{83u@Lj6lesU6l0= z65C3Ga7M~MM!WlJ(e5r2qKGj9t7A7%uBt3aNEQQcQ#l`@=dUYGuqcy@v>?!|QSk!R ze_PpL^*z_(GNm!lS(7143%Vo-o>@@Zm8eSPRqCKyzl=#T45rZVF_i*ULXKru)QM#w zcBom6L+HJN+J5U}b9FhDQ<oqWd~sD5MRh%Y!k-kPX;>)yDBePmby!_G`oktI(`KLI zUD&K1*vrn=!CU{wqJ&`zlt}>Iq=0l7>pMlVlV-6gx_C@9q$SJsGVgb%_v$bU#Up9? zrub)b?2%bT*QDH?L*W8Vi5iXcH(5P?L-WF(-`^H8R!((Y)JSVF0tjWhg+6xNL$eN> z5Q1w2Z;wtUrjF&Q<QADwMW=LyxS>F+Y;Y}crT#RSvk+sFtdsDz?jbj6g7goz^EO|B z&Zcx5HJV(-bMcP!(weGdL+12nA*{gWD8}9-vuv87L+KSnCBu>+jmmj+xdz1K+Yz2x zv_oHn(Mn~Ck183=j#uW<_Dmx$gxL>{%;IJ1Z+LErKIpv$ptQ33kPl>vYLjtZI?t?h zk{jYaN+=@sU;}HN>N{}&|6btgW8e`OY_-s%t%ZNQ5?s4_`gJp|`iJ^(IPBq~-*0$N zt2zOd&<yM{*^}%3T2x4~nuxedq38)l%3MJ&;MnM7ui^;?w-g+|!$-rTx4DpO3(Po= zt$ip(?{)=O>b|G$2S4vgCh1xdSgH$`(D;!8jFJc({EVD)-AxdTFDTvIaR5F+vH!-~ z(e##g53~afl<ssOp32M$OCx<L;M4Ii6T(^)^T2I$R%*}^c?6wXrvoniD)90Vq8rvq zl&ev9P#~>9OkCEErf*c+VbF_9*RU;gBP-)z(3ESD_rY@22^ZiVCDsO2bI)<cf&Y*L zsVlVc@vXb4{oK(!G8K}$Dt&RiZZo>A2Z>LsrIZ*Sl3`2TZ(&S6Na{Q9!q|dY>ZX^M zp26g`_N@+2&tpMg5U3;DWsRlYrti1trm16bEPK7hg~PjTTjc5T)mOyfPX(@v&@w0i z2oi-ZkKKZs+g^fO6#NELse5#*zMLjmOGLmno!PsZq&IJZD$cc7x91s{-yPF`U<-BD zY}Brpn;?>{qpViql27LEIVc$#WBQlZgF<?yEj<#Dg{joNW^*W_4#y`Vg0zvnIU9)& z#<E>+C6jIs6sfB#r9J@=l`_4*s~S6#;HPcT9v6@MHBa%(O5PBCFM%ry%>kwN)L^I* zk=jY(xdizR`%qH*7p3j9l@oh+uC>mlT)yD37H}AW8~1p~oxO}eAZt@lpC7y0_wi5? z(wR@&yM}NBe@20T2#@}<6tF&70;!lPs(r=rLkUfqky?GgaV{FERd}|E*@j$0jkJbz z99kz25rVXu9%Mm9KPfKyG2eg2|5)<A1LnS*iY9eeyhCqFrHBz&2e@H0eP<#oeRWm) zv?Gj6x<T!+$7!`k%^dJ|_wRT*YL$&I!&&&b3rWsJ?`lRJ+-mRcs`IT>lG{0koL_Mt zvFu_c{%@SacK7=4HoI6DEx>lgrKrAmEJfvC>e%KdrM)R+%6`w%VzJbxepRLt`st1> zn#Iqo#XM^9-cARR;&=sn7B#HFKw7l$B)c@CRgZL~&J~J4scWQ`MnZVSl2yb)Y3uk( zILISSf6hb~f+2}qLFfLo>OmH`PeG6d7+Aq#-2$JFAr!s$attZ6{0x~XjWLO6Z-Z9) z4naU{JaCf4-%FtRqkdF^D5)Yk3i7A2&2Z4|GjpL1ZbwUDmso~t6};R=OS5ZOM-4le zgL)8N+I9r%L3g4{@Qrn3o53SXKqcuoIRLm!hQVy~z1VBo%Rz|Y&g4t(=_C7gU#H5h zZ^#9-Lh51f(r&}Bg@tQC4#{nw88iASQvlkkxFM@G9dQC1Z`A3QT5fBR{iW@?2-$LQ ztTlqjvPf*&Zu6gz46{|Y;pBISd!s?gFjpXT)B02CXk`jC1($VUp!X7>?p!(49aM`V zW{j8ctpyjp1qci`7trr3bC2tdzsO4>8)7N`m?R~`Y!zG&nFN6ZR-U<iw`^mSC#wNv z5_C0*s560cL8WQaRdGTej9Jv@yO#v+$06{o{BaX4J%@5Z+N}%WHUk}X3fLq~_BvXo zp3>GmRegkO^N0x+<Hh>q6)dxOrvv=#Jh^Pi_g<4QpMB7kcSiU+O>92mjVtp5N5go; z6H*J|HyG`A2m?@<)~ZaovCxs!0^<8)q>SWVm--!r*gB&2xilMBn-AvNIH_y%d!<+a zZL=v>U=3npUha=sH!a|yL<%BfU|EpP<ivbEF>!qX8*EffMS^|7&-Q*{jlp`g!Gztu z;YnA&8Q}4>2d`{o$MZMk$P%jT>PS?Dc%TlokdJ6pxo;kctm=qpG__znyJqUoU<*_o zEx1z_BO(yRME;muAFBA6+KKKu3K#OTu0B4dDweJFlhgBY5xI>2by2?dUC?js(v9n7 zmG~{>y5ZaOt?En8aDA%i)O!&%RQ5!FzQsJ0%b!h@weN|K3c!;SfmllTHb;7r?W2cQ zGG-P}Fo?g}1r0?(*we|mz?C>aVm}FYO$D=KCIxI8K@>Ca@>YFW!Kw1YC@iaZ2e=Al zwm@(d-#<z9G<xhl?vAdqx4^j2<*GD=;Hf=~(pPg-7lf;LJVv-xC@ewVUfa?xc0K1b zn@~4mKevt~qRFXB(2d(XeyTz*P^e0`s}kV=Fr08NE8}R;gvc`Em-5sG7l0UT`WM5; z&(tZey}|r>JD*gB${W{QtzzrJcs1#Rg=R-KyY^tbjgJeZPTNuiw<@rZgo%qOGc=71 zjps{qPM-ArM|<lhuWM1@;NkCDcDiI~?o0Y{Iu`HN@$L%j52Iurz(dXz9IrbgxtH_G z5tw}zLPJ()@%nr}yF#EmBN4P&$X+2jj1<>mEEQMKe-<8XMAZ;_)@^wFw!1AyFKV6C zgKgAl|5GJkZ0TCIfHq%;Pt96#!feq!!Ge%{1q1WRZ1RngG+3$JWjCE->QG%ntgqsy z<X;L`WCMOiCOfFiRaw(We0@<gWuBXzY@{`0JJW8PTw`$B&*tdMrB2)^Vr;HYHVW_c zWqccqwj8HbvCt>#R<eK17$5(t!0npi5ioq>kqn(*J~f>%LVlK?M(&G80T&Y5gM0TT zn9lF1X5!Fz22%I}|5NyC48ZWgUkuyY?};G+l(xBT4iReO#)<3Li+i(xHVX+-v$^d% zgIcmdh66|>VhZDGi^LSqbFn5E;WOkrq#sxhY@{L-^4`kkxflQ0itQy?MDkJ&_VffR zD=+Vvk8T>kX`?<h8D7)I-lq*!o)gK%D_*{2GwdE9X5|m;-sT@Q-f9?W-&#W>I$PpP zYfSvj;u3eZJ}2wXKrsc=dD<gw19VTnr*c4J&rN)#Vw>*(D9okocl}L_Jo%PbnWeO5 zn!5uR<z=EQu3?zJ?Q^9GPqtrC&jJCsP6JDP06t9XBvau@FB7E7X-k9@f0xR491ql` zZ63Th5j;Kh4K%{bg|Ns@I0LfeOz8e{@E9&HjRz#m2dtw3l3K9gK{^?Zg7}{L1FXQ# z9(181ZaSg(hs!8|QGBJeaRWgF*=fN(usPZ~b3UJ6Z<z*V%|+RCf^|+Asc55Z^Pq#S zwLVa*4e@ZZ!$7*@mQ?$cNAr*#XD8ZraeWD{;9;;2yh;<8xlu`R7$L$T&upuVk(2%P zuJQu}*xacyI<f!m<jvS|83z!aS&IQmJNf|~x;mYirm(oKA1cw3ONVcqM4VNq+@P$r zZq&Y4og%%ErFEGjxxu)6nI?v<yU1v*5Mrv2sTQb`I0kJ_6P}sej#?u=Sg$?I_S+~M zl7Q=!+7QXtb!A1^@af1vT!{&K=IJ*Jg4Pu#<)+zWZ@DCt9bF6q7IG@2Um51D!zFJM zLc2UbcdGNlP`s~Fta(Wt<b#^X-)zqJ>II>X51*fLCo}l6hv;Vob~}nqAhQd~1p1k! z3UZTm=vkMS+a7#^CqI({l<hGL?3K%PG-!eR^Ivdc!?(~`+UL2T+COLf5tvyw&y+I8 zzLAGzaRwX^$<;NK@5$#mL}&CB0a^%shH!lNOdeQCG`zcU5cn**fJvpvQM|aTSP*An zcm>}z+$CF|!S%bGAzZw`p6yZq5n08^FCtJe3%b)--zvle-+-w^;K>K_DtRepw6yzM z7Ob%=7P96;Z)O)Z$odXmLT^ic%+11q$z(0)o1vHsnFQtn_gMght>pj^PW=bM)B;T` zryW0LAR&>421d<oO;Uv2pYONNh!b+Hd3m^HM&~NCwHO2hnlF8)Z531ej%L%c4bpz( z=GH6H8*rR!`_XLOa%qt6(;;L8&5ZKld9lR`{dmNfH;8R=ceXU2>JK<I;yvP-ljl%m zrQz+-^yp3LAH+c^lcw*(4rm~-y#LZtc%8pl!JFfty)GIB&e-Ba4KTL045G*|Il)vr z`EImFTr2q7?BQ%m(EoGuLq0&YFZBhlj2Jv#j&#F0iYG!HGoD*A3M1opx8H7Yhe!JT z!G+kB#MhN$;UEs$e3DtaN0u^x!l=^iKS=+ju!y5Z)066qU(Q1tS^(m$DK}!x{_!(% zir4U83i}D_{uhN03eBF3Pwm0H?;hFm02Ed^EKWrbAgMgdS2x!$S*@lxXwV6p9&Y{d z&@2iD9_~ZZN}Dv!bH-7yB)xflGnE2w%L8u^aFZ1k>&Nw2`euqYLh_6?!WFw487+C2 zhD6M`L=4+5W@vPDF1?O?!Q27Ddf%x#`yh(gB1>^jk*g!@#XHf=R2jNx{y;2RDO_BF z)qWvW&MY6t9c`BCl;@+WbRCZc>rIUvB2z4Dj*~Qrsg2BCX^gzF5SCo-R-+=Alw9ox zBdzOsdL)=QC?&}_UgNV^ReHc-+cA>hz6R!BBIfqPz{-TW7a{P?;58a^HZ`qu%1g*6 zfAbzZE$vI4(<|N8r|r@;5~j3vu^JjMER2(15=>BL9|#z5{y6Q)7yQ}u`={2?9_Jfo zl-cv#|Ag?rE_`Y|I4P<`)>Wj2EO{ay;Vn8pRF|Tq9Mc|0$8H%YfECl!qOByGf;lYy zHY0c}cu)GO5B{o#hAx|^cj3e>o7jSqhfb84g*`R#w=@@bSIZ`m$%=o`Vt&Y)eI7AV zzmFu5EWUq{%eQ(3AD1|_erS6)`YxxXe5{Lz8LaoKF4y<443Avfe;uwo1V-n|;cpCZ z^wK}D%VvhaSsnV1!!=&3Zp&m*ZG90Hpvb%gP^GIbA7y2K|6dRu`QIU230FVInSGhg z0j_n>9V)>yp!}N34RP#L3M)ej%R>JIiS%$yAhi*~hA6ijc)W2pOD)9c3I_Lr<YtDc z;%9mGg9=+t<XH8US!`nsq)Z(@mqeEGUl$%Q<wufU5FZ7dplUG@@$|`6u2%S4ABY$E zG$g~!*R7*>S{B-Y>{dnMzVAe^?g3ml`^Gx9&CY|mSJp(H({BRu1*XUndZJfO7G4l< z!nMFYrFVaGd$8~n9;#@ukVfQlAak#HR@oMaYs{vL%!PJLo2Ei*j3GFx<()#P>cs60 zE*5VdCOs-`p#^R9!6;WJ01zJbWI9tbm1^nME<=(G0}1F}M(QB)qUbdEthmR1{w_D? zg$me0>wWrRMdY)aRS_fpx%2(MAuRm=4`IEHeiMI`naP`3&J1=>o><)i-vM{oVFVsw zW#2H91TjJCW*zgITIaJDh|CXi;KEJ1&dnl~<|+-KPmw!x9K;@4Q<u_uLYI&HFFa%O z&gDF|lztgF?pn}s;h#okqQkgCI~eT2(rrkqI&8rN@cF{fa+tW617NTPv_4ZB!;gf~ zrx9TG5{T-a+t`1sg1WX}%Db@$e1~+afQ6;h5*>vhBBrz!aJ{t%iM$E3i9s{YWVJFA zjHwt-4$PR6x6GuhC!dUuEfI{}-31<JycjxVBXOzgQFddo*At0M#I6daLmL)<R$1E8 z-<)xD<f-~tngL8W|6dbc8=?umygvC{79|o~baQb^PAb;qZ2_3DvF|N^E5G_{cDSLN zm%f6Z-;hAP$7-F$OS#Ydo>pu^BbOzN2<4r_@hlsN{F<(uH~ZY?WPUm~B4|bMMb?=V z=PKW1+4;M{4zMNy#&@Yaie@kipfRt!*)J3B6UAW@XQB0~-X9c@mVR4uKvCuS&>5C- z#ks1*wL!7rou5!?i?!=t?=Rj@oWKg;x`)nrVQ73Tu`bipr$ie1e1~|{I+ieRujOf% zyW(?ct*Bk7A74Ll>6h|;rqaz1?#0ODaimMlW#i2nC4z?+8KOir7IdWrJw{he7Xx+X zQjU8%kV_6DmM^RmoCCu@d9OyDh7GrouMzA!Owtk3cO0quldfd9mI9}MN+z)|HoIIS zYwIIcvz)O^+ObooEwcCsbZ1x9+LBOl?W4BgC+aO}w<0$y+?vO`*VtIjTU~?19I4sd z_a_Q&P!<Yd^hy4!!WlgP6|P6no*{n);k8g)i?WOdsBr#2D(q3G&+?7)WdUYx{aa0_ zHhmRGB_fs%JPrHcjIE?htd-M*HeF*f=mBm}kpGC*iu@>%8jU{7e1c8)NYscndh~G# zN0D5!bNXvyk<Eju)Y_P;;8!G_1do@t+rhXwKYgp!x_DUUe}Y8jy$r4_up88$r#ZvU zh?Y)1*Co(hK#&;LGx*fpI5u0l8Ejt$r^)KpXr%xIi7h~oc&ADP1!J2E5Inkpd!2_d zG0u+PIyb~bdtL?tA_B}8{Vx;law0@J{l|p)0VbS>`qzXj8387o<n)gTJL-~J;4it= zLJ3?WJ|n(E`C+2uB9RQ$0}lJVmg?94NFz~K^RwopTbR4KExoi*ODEB#1lQ^zFr=*J z_7okH%0?|feQLU(x<lT`U;M{}?TBb0TZ?~oHpElpocWl=!_ofw$TZ=EB=BN!l*i=; zYMq;}7l^}}V|&*4+aqTF_K53ma^%UU023~(ndIs?LwS)akE@vGZ+l!BVpy6*oz4~p zs!9oCzTpwAda%*tU8V%8T<ag23E`4KTqg}+aA#9m>rJp~;|wVKcq4L!o#U(H$1M1c z+0PnaZ~}$pMCerfhfqjkd<`58t*r;LZO(ndF^h-7_n!LhKTg~pIR$5vv_B>QaAG6l z2JEP!in3i$bF|@R;s8RXipBb)U#G01&58^8#k_ItqYj*lB|vuQxHaL*6X{M{TJ57A z&A;_(U$J{>NjIAO=pbHjiY$RAW+qB-e7Syp7u#Y99Np-PmR!U~k{Xx%TP9lOX#Xt} zFG(}>)E4PwDAXM=H0{DoK*s$pYez#f&5i?V?@cYCQcL~%wg@7cq_MI$I(EWc4d)&v zGJfD*btpulJOMN<T6e{RRH!hN?Rz*t@2Nn333B5?rI+brTKj~4>Wi~d_-iAJ@<k-N z{O5p)(^&jtam+geKZ?|zF+$TO&|tu7@_8>3FZdhb9PtBQtbUS$wjC<9{*_{KfE4R( zNfsK}F<s2waPklcW|IM=80D84$ui(z>oq2fBGQk=x_M0RUmk-4cs$XyS)dZz3E;8b z9Xn2Z9__x1#RJj#t7M-u1S@hkLUB2cy77P~=s#%!mtqYFkS28hrU{MR$cJYrod2YW z$qqo8u&{AGe+Q%qt!wjlrN1FK8v_u6bJOpXS&cd;agaj9(6KR11C9Y{!j&)`w4a-4 z3LcgRTrEL>Vo=FoX1vmfs%JcLL1KF_v9bfAqvNhVe98HQU*^w9L<*Aq@0A)bY*Mcy zUxuV=N>lOg-vbR>SHZJ)`pp%5-Bn(<fqwtwTJ5y0;+TocA@K19+b`XWn@(40zsI3m z5gjgl-hBG=sCMQ`;JbQao%Mb$<`?C;T4n)W?lXR*Rf%ljM~5DwaJVxQYy+3k)Ee^W zRi#gxm(I-(TG9V6kmbwI&jCPQMmYKl<VLVkpfU3@=I7vz^U@#n+(ot;+tSgXY#sK+ zK;#QEV6m>4ng3cbqin&yR$TKz(OXVrBM50NB`mr=_Lx<GU{aiqd?ba9i@LJx?bi~W z2Ke(x;ok233)QYkE6`Y{uO(c9J4MKrC8dZLyr7Q+7E!vV2<=GRTM+c($TN2w=s8a+ zHF{enK8{ei+}&pd6zB5k4t)_m*IBlSe`Gd8n@`6Y^M?`XN@nwacud3C?C_Vz(NzE* zkK6Inr!D`(<C<Fh|L|BpQEyY*o!u^bf0E!zZ*h+D$2B<CbUF7B;&7i!ZXAd<7$GQj zsWRWqjKd=e$u2pM>1gut*<}#F6>kZ@xh7!afje!t-*La&XvoH{Dy@`#cpHX!a}yv< zm|DUE(!{un-hZVDdqA2%Hu=W*H%(ZYmJqM{B%&+V(HzcB+DNroAJIIJO23?zCby^; z`F)~l$GE!OosVfwdTH1-wnXE3mdamS$e41T6mz7aoFo0ZGVAd`w)GT0t%4oEJe4<e z@O&|JElkrMPCGM5D|2|&!H>tL1L-;8CV5vb0D`j20`{NU!@e&?9~!_R>^bS77J4HE z0uo04dn5Eh6;%=okr-M&YALOyrMbyMlB|pgIxh%ZOqixnrP4)W_#~WswKuknx3dE) z{ZaI5-|vFUq}|)TqxI>$i%dBmly!Ez(Z1*CW3_AYPKF_E{77PyQc#8f_CD9&`O;88 zb0lT-OS~wfhwq^~X3-qe;;fN<j#IHa&SU=;Va+#89$j~ToHxI|q0ri6o{8NQw7Rs# zk+VhAY-482XnynjSm^8o6DvKl!fG`heq*x~ZO!Y5Fh1JhYWFNI>VyP6{P?qrG8bjp zYF{z@jfuIo1?cpr_2g-`+q&)8Q|D@@UG75wG59zK0^cik+$R@Oet|2U?&=_nO2&u; zJ*t(K71CuwMdfRb@s-J%5D!V$iHovL@T2{&px^SvC=e)gDlGLI%&xTuUDr2WX~Zj} zX+XQwzXkODm-?ungh?W%y$RD_ZVUv^8AL1QaUqJVhj*8p`V29q2%)pQt7t|v*07L+ zHrS!+H)dUA%PYJJH>_TrEU~g%N@yj<e~c($^?+c1jlqz`Nvr3AY2kR^o;6k<+2UfU z*fb@Y36FR0@5|tB-87hO;_ZmKnA-0;<Jlh(w{;NV;*Bu25gR^)fl)?N15V3k3V<h7 zd5@6o9r`)sDjX!^q9`pxXZYM2)`aSwEytPoo$?G_H#nc_YV7WQYr&fCxC8DIFiJpm zeq;yP)bEOE#zqt+R%O7xTWb&a#YggAvj+c4llFl-i7RY7Wpd$@e-IkD%D-Jm&^ToN z)V#@&G*N+y@C!Yd>QyRvjE!3r$ZD^VV^2I4uw>&+lC-8(4JWghI|2rQD63;p{`tKS zgmXBx(DApj31NEKx4pd)G}xWAJR}2a6W{6b3_xB4*-*B?fO#!6O8O2|Cd(j_SA0wa zfiuL1khiMm2iBWp<7!HN8eS~2RM&)2aVnTj=uf#T7{;f^SHkBr&95lr#wHc<65=DQ zT+%!17jR8*uzd?{b~2o1y!7mpf)CUCP@mfvjxQbc;jtqr>3uU&7+Mf)2~KCINxTb3 zD$#=1@SG%pkq>_cyc%pGB!wD~5MlGjOXeFZb(esW1cqwG<pAwHSOJcWR*A*wyc%>q zYmG82A=IAdCFBBntDK~XDHRpQk026Ga76}7tP>ED)$Ug|$)n=5p(#u*^j(gnI=jX_ z$|@e+UTTopSU0o<C1ZW+?^U``gpMq^3+U>tHw1xg(H9Iu?JDjHgQtM`yk5YECP8oO zq;Z+H<Ea*0MaJL3wHr5+ocxjstVcE*mh|>tP{<0`QLwSS-Vz9s2V|ncDs#Qs@`tFX zfNoem61_i%{4t7=XO=36p&xY3@Oe*SMJ%;1Xm*|&zVNgj7_?62Jgb2Fzz&>1QfX(l zMNsh(U;=2z-vX7K!VqCdI)O)`@}(qYiNsvAH)jzzj?Y3%t56NUcVdjii;T0ewd(Gd zX`I^cM4)9b+T;E%0MGmh1p4EoO2Ay4rh*pwM&0Rjm8>{;O$am~<CIcaTT#v=4UItt zb-jpZSRREF%`M}i8}0V=k;cjzYYmu1eS9W`f!ZFepp#~CNrvgr?8ECL{;Z{5M110O zA}v`bHz$W+ingQ&%TWTQU>X4h@pUCd_WB7NIu5Cyj|OQLAqoqQlJLZaG%QUFvWy3M zUV~jF>*6Ba196px`4XahL5hRF*L<9*xo;C{y2#^F@lZ*FpK^?ERVVy{uO6uggUiQ1 zauC@>Q1mI-BU?;i*VqPYjLd}J(|^bgGyVP%6v(Kw>iqo2Sp9~Jj2OOqN~(8UxSWdQ zYr1rKa!R_oI47QcdcBR$_Qub;vSGlsjdO<lr#9x|ezakcL(G$O+We+L>UbGoOFDl2 z1L7K6NF-t%7{|KygTSy&5W4;E&4`me@HpAInTnA<KHkA-Q@ZW`gEDB^`PDicO}~Az zA0V71{p^s77#t(EvHKU+AWz?jHD!}tsoQ0JLRKbQB8m;1Bl`rFo2O`z&%n;3<Qq;= zj{1LuaP~5nup>UJpX*t{UD|jAciv&N%ds6ow7XJ-%nao(+}fkv77$uRX@YcE|JcCQ zgUy4<%-~o<wYcr#h)ZN8#t(b`H3%Ke(6aJFNdL6&7_eXlC?ZcQDQnH-e$up|n3MbI z5UjnH<FT-E?ns>ZI;_+9R#;*8fjy^j1xr?Fvi=c0;LV21+IS9h{}nvpT0@ipDEHTk zZ`$4~MVSe^-NlGDCM!{oZxA7<87uTO=dYvhR?kSULt~VIM`i&>X4KQaJ%g2SZ?7yU zp4*HSV3YRIn#Vd!-G8r%9(5$b+C>Aot0KAQ2V==E0$=Yi_&p%cx)#;^^kFWS=TLRh z+#J$BfmRmpB$U&wG#JUe99`|CrRnD_X~SVXBruxzoK@HrHtGpv{RkwoFZ2~J`E9C- zLkipMrIM_dQspmj@k(xuP7FqV8KSGPhiqzOt5!A{xJX#c7<lhF$_HzdqF%O<aNk3H z;x9YruPkC1bX2~){rS*d^rfeS=!H#r6JvPzBg>>{9BQ@DWLwXwfYfLw3$>zJBaGWB z^X~D$USj$ueBa$VNtbyH7!f7)7uiAdvr5rB@1H;4g|y^<ERd!%Qgrl{2b5fSWS#x- z!u@kcIX!XxR`2KReEMYCu)vqK;Gvp?VfFixbHRVb^ph2h>W;C?@MNKD$#Y8N>&oiP zFV!<FtAb;X<Wbs<XH-GEQFSiWPEB3ikGq82Z)G|0TdhHt%(QDr2N<>Bwk0eHz3_J> zzfa&iW(~O`jN-a;up%{~6J3#04E%4=7Tm?RaW-QRwLi$TSGc-dramn7jBN1hptt@o zm_|@o`A1{*X||npDs2jJL{%`GQk#7(vc|bhh$=OvdU!tW4GDb~UE$exUk%FkX7<>J z=U=xvqAMq%TtO2ipII&~aQz;kfE2hlh@TH0Kp+4aI-e&PG;JGCfPi9|<SYme67!E{ z4!Fr-I{ff2jH-MD0s=bz{~uAswDZpls%bu=JI)NWQdx6lYbR-Q0S;-qR;8Zj1R}{E zBToMawthh(b5WJwfVot#|23ED;6HPzzC>d|On?aZ@nC^~AbmWtn$_eLe+wb$w}9KA z#uiwp?hRTB#b6?$L}nl{T0%jhDxz!HfHc{yhlG6X``;3JsH2?DU5a$zR|9VpT|9PW zr*jfsbj2b4mimUNv7(W^A)wU6q>?z4<2hdti{VeLL2HrnLnbAA@SL4;oA*aXa3=A( z0+~!l3)P87>ZCNAnI^Ft5hp@0xv-DHVVMxjBol-rr@0*d<g&{SDWO#AX|e57AXdhK z21JQuwX)c50B?p!P!%Oq^&&|VRnRGMCQ31cRUj7--{DCi`#DGu**6^1m?vwX3Itw~ zuQtgRMzAeey_NQy3n3Q#`3ERU4wHeJC%G6}7N*RBQ)Ck(_YVPPD$ko$tX~pzO*U<I zT#XQ@@k+}x#ndW#yHZEuq4{>`R5w06`xA^ZWp`a5)cqG4Zk$J@%fGq19=cpcQIAl! zdPTuf!MKI%xqCb$jfF=K<A|?;K;kjBTlhk?i3=6&zV51T+F4U8upLW@C=cj%f0r*Q z)7bF=hsI<z(Q<*0E{=)LSX&?pQ`cCQgP1<F!v%)Zwz99bSGj#z$-cQ=ed)GOe6`)H zMmceZF4?o$4qk{}!lHqXG5`UA8+l}9t4+)HGodNW*EE8Q^Lxf@3nwpL9QN%XhU|zJ zpA!L=L=E&VEwO?2`L9(%Ra#}*=s&uc1U4~lr9EvvWi0c(KoQ5-aM#nzmwNaVS{v;X zDR$!`?{z8BXIyOa9fR4nVU8CU?+iys?saHo2tpieuqZ$Vkw=NCa&N3boHfd|K<!4S zim>l)rg5XSt1_h-O2wb>Nsw~#WoMFM19S7Gg6~N=JSr!0X$F=g5Iw@=Z`g%$xT^G+ zripRCGzevZBICY?4vGpT5KjbW-F(9o%J#@R%N0*<$^4>syv&Rw3pFiKrYIwE`#uop zQCNiORx`?lJ%_w=?@NM9MA}?bGR+|!U057+8}lsjwSp}l`|-Lia<uP6L&2vpfkQa0 z*#b}9|Kae!J>_Pfg8#~d9Kdh}2NF+wy<i#Nuv{CLK=5Ep6G!KWi;4HBiP?$h8nqbI zi&~c|-u1QkO9DUh-OB-d8p6te1-!(bN$8IOzsKkYNZWI07~lnx^~mZ{la}olLd#K@ zTL43=h9%fjXJVj4#E6C(42I2z>{GRogm040DpI;u^j3q3oj0YBr>KQh$NOn|+uiDO z*DXl^AA%$Sv##|`()IRP;^eoKIFGj`ep-vor!sH-RJH0^$cyo#Hu524IL`-eJia7K zkzq%&3(4{k5l&<E0UiyZbbSG`A)aGpou#`pyxqo6BKhR%8#YPyRFXy7tt()57tW?v z1+k59FuOk~aYRG@V2-R=7A<8^S(8~tCgY?*?_!N;6;IbJgF{IVxKLpcvH?||x(<9a z#++9THc~5?^p7ACWdx#1gn(vp8wq-mnvV-~u)q1G-OI^rLfQa{uxhHsX>$fgHj$CA zvB6vUB`1I-^&Ha|{g9Am%Oj9Xwan?8h8cisy%^*%-~2urvWZyW)Cl_-dg3n=>k1sF zWcQm<Fi~s944oxppd1gw$;XWQ*Io->z@0V7#kir^e$Wf2GO=dl@l8WffLOV&1@h`a zbIW>kbIp-<%>s(n9KR(;a?aN)>|!4DvkAF-;PV%fL&}z|@236%0n8^Wm+iqG>NzB^ zb^9z35Ud4YN4$o-{TdS%heBRJQ{=2d;W{~Lnw6?{rPDSOo0@t-hYjj3lT|5PCp!w+ z1hh&q;27sM_Yu*}CS1%MC39s8*3{-lgz0W4;q=?{N8PiU1k^Xvx={EQc1*!1DnBL` z<;bqP7SRs=&wBSimh1{R!xI>d(^*LVP38Q4M-3Npswq?WG7y1#j^r7Q>Ira8%gRjZ z5nFhU<q2q;lFYyEcSPpPiEbuPV|>ayGc0mAL5!2}dYD^4PxS_6@SO6v#YSFWq}MOB z+9`ulNo}K&u}h$Lk%T7Z8RK}tpsWUD5?K8<A&N?Pk&X;W8hnZM<e6_CK<z<hvsV0s zeie{VTlbOIw|5<evOk8InkwJ=j^XsS7Ui{1gMM$IqKAfhsBTyi3{#}Y=o+C{D+M9% zOK#WuLF{SP%}HebYinI^xY(8XbOv#rDBEVx;N)|<zK$lDmCW^dJy(iv<{P{dI6CE% zO5ZPCV~2j<F5u-susKRXF{8eBUa3AA_q06&^Mm4Vw$tTMjyyo`n%7Dntw+F{2GYoe z)I;)J5s^D*V$WDM^_T&|F<xGzg+mP*ryhTvkiY~*wC_>{?CEO1UT3@be}&yqLoSXo zek>)1FA*Aob_uL`z^fh1+b<$tH!bHi;gVkIE)9T!!s{b^eIL1dyp(%s#81Daw5D86 zQCPBOn7%hu1P!=j^H$K1cVI=Q+ymQ!>hb65TYpEdtf?#&5F=rv<>F8JAl<MJ?IB|a z0)k2V``C=j0N(R#g*j{3D2>5oid_k`N@Gk0x+o}dOq#*aZJN`vK#uYsXkeUviC_DK zzwUtnZ+pq8oE;k&804J7l<!2k_Z4+l8Bqw++)6Ne%OWHpA(bB1N!dhqbcuK-{U=L< z_IkPPB1bx-c`Z0_Zu-JG-m1-8@z1ev4D#ii0|(O6#!@tADn9V=QKC)#qcR~G%06s7 zd_t{9$^@+sD#=+*k_XUXD^QDM`qm|8erx_PiSs)#--rZP*!)<Dh`0z*+CX+;nWrCM z^@yf)bF|~#z);i!V@ga0)<9);hS6_`tPQ@SiltbC?K$(ImTvOPq<@%@StmT71}s}n zhb4yFh;4(D!U=GJmLu>hhGMWcguh2hmVH-Cewo#qQ-2q?%@;_ay75{#Oobb)yzYWv z?mw#DdgHn$fTy@`IwFszf03Q{#|~2e_AXKnz2z-xES$DDLb{OkyCQkd_h&G#LOJO3 ze7exfE+%rD(dQfB?r;{vc=z;}>}X2vJk@{|PK4qP@$k_R@TZr!yxxzjGiy}R;aI4w zo8r8SqlG-cMOI1e?+N<^yW_dFlW8ZEc^p~DmecgpOWd#OIg8KoPOdN-J9uOk)fa!v z=t+p!q?-K6y9-|Y7h0bc7dUCpC^O9Sjw+VawqAZ-i9Egmrdu)W1T^FjdqbEVyqu|g zluw;HMDvz7WW)?Zw%D_+AhQC9GW`!xWcP%y0G|MBSO&Z5D#El81B^i(<-Y#Z6tnze z;bIT16;+L4_8AJ-q@e9V!+%7|MbpwPV}gzK2PeA*IOLpM&XY-wXV398j0hBIF#n2? zuJiL9<{&I7YRYPdC2!N>A)#vQtDSG-rcwJ(UkorG8`X}EtA>k03YsqmDsFhZc-Ywh zesbx22YmdJpyx9lNpKaOn5pgK@O;zSumK!0fv9|QE5D~s1P6)Ln=^ghyeW0M0b+Ny z04VMwq&1tN<7BQT6lv9>2_|`@@PJ{GkBeUxK*X_H*epY|@<8kxs*YcY0G|q7MMKpU zy!Jwx%(;LJfi)-Z6LAo(((pd&J@v9EGEsI~wE*ANoy%{Zj9J7jNd*ge)ex^F?5E_H zHypqiQ;kf@Q`Bb|Mec;z!bM{Bne*d`C%rf+6N!Hn=2?mAR{7{LuA>Qwm#Vn7f0Cj* zZh&YDN>bHQ_u-52aTw(80vgVS4pHomxCX!55{;^Lapk@gH!#Sk9p#o6&9V;gg+N^N zb0TOoF;Uf0O>TW4qlm(V<|3q#(B({*FeGxoKZq61@Q(5SbYE_-)(5TMiD5aIj>hMD z!Mr_UvPIls#KFHnz284B8>6F)0^=jzmm-@l*!uu1OErQL0zIgP5S{fC{PFE2TP{q| z+MY5SVqY&8wEeQ6s3ZByPg}pIdRu6Dt5ZR*w<dRb`b)jTFR908(b0VoSMhp!`(C*v z-t-IjgNyDP5D*+-ff0Zx3hMx(#AFMRpwF_ES*>E#3#)-u6jVe@5QU&M!<La?NL9hf zMHde!49A5GgfX59J|MQ+M5D3RTkNLaxH?RTYB{k8JTY5bb_t9+!V`xi_SxCg6?1<+ zhwlQO9Q9TARX5Ahal*qEom`zOUEK-H#^I!Zp4Ej*f5+8Z30Czde3>bb;XMg9V|Q^U zDt+<Ha-z@9KIK3)gaUr9cBYndj>KOQ(s52@;u+pK%b<^CJbsn-kPB@wv0VF+5=g{H zydf>?%siAF)#6KN)U0x-1H=jSa*Fs*ctl0Wl_Gr}#qfD0-V{@Uqa#ZxOqs?gXONpf z1>AKX0S^5Irj`(x1E(&6e$B6&+$Y+}?|2Qs*YsAZ{D6-WR_i~Hj(jHI(E*(_T);S0 z4NWqV(zhE`?!+<t`{*omb;P4yy;zDMh6}f^MD?(IP%>*_4&jo?KTi>o0j3Z@w1s4- z>S#K>XYX&v)!qYVwNNSvybzIKPWWR|x6RET{KE9~v}%iT&IspX4|s+nu=a5zh*tfs z>Q%~Re<m-7$BF7dtrjGpX8}<yybUp?8_f2EW%%*caaZXGz7WPb)-<ir0io7m{z*`> zN8E|Ud97&`_M)<PMgMJslpQ6hu6?3xru<uR5^qwO#`IfaD^>uO@b5=05cQVacoBL* zzzCCSYq{GYQ2ylysV863m+ndbZn}q64F@6L8p0BWyjQw|qp$r_*8X!eja(A{z_a<O zV%UJ~jJ}g%Ji=8wV2vmVz}e*REue+-e^0<0^mJ}@_jX5tf({ATPKFFZLOde_rbrGR zfEfi@^~!P~IYtI)>~MA`HMdY;ZEWXt0C5v`K;b28K^>!}<YK&&T1^Q-8diwN=7RVE z#9YpYCq>SMpin#}sFxzBz+F7rd31JJ>+R)sq~M<10%Nx@|M9TARoQcOHjJlVOf{CL z0{e+u1s*TD^Yy72=^s3nz=H9PzXW#_*FP#K(Gs`C(rxSWUCEv4`AA5`XS1({bN%7Z zhnp^Eu>V(rm!QjtU3=datJ+IOmxi~9J6wnFRfv_hRBZh^`*NKdPkUIW9y-Swy9q8m z|MRlWbxBD&g}Udn+VV_4gNAtM4P!vrf^cylWMSfu(BL676&?q64G(Y?E^95;J|ccj zKh9%HSEAp+z>y{{Q~O97Z!dSA-FXiy3|)ozGqG0qK)?YKzF^hF%Z(O^w>#RC4=zP% z7YXAPX5JOw$~R+bT5N`Ab#r*kc=7393tJwjtG|1l+Vm1n*Oe@)qw!kT2*~znY7I2H zyGlN_$E9>~7v}X(lzW~X7O|nGtRoWqalf*goJVC~GEV5l5|wVAt>Yj;E0+X9G!biR zibKF=*dA%$e-X(Qu>~SD*CC{m=K2+>HB2__hD;&(5E&2;ffV(ibV?TH;OH;PwU3i6 z5Y7Z<bk7t3?~9O!hNv-{jl$CD%d4Wp>H2*wGjeOe2j$TWD=V-P2wbWVPc^DgE`g^^ z1<oLlSj)KszsO_7VVFKv1Xmc}JN)J(i9}%Z=KEa3(JR_7SeEq;Mco;E&RPaq?@;}i zFiQo?>No8bGD(H35n2C`940WR(uiv4%8f@~@(=U~ahU~o&HfnZWsWpK)-a$9G*Y!| zxgTFJWtIGMFJnnA5{qtR3j;OjaQT;a9sGp2pRR4w#cu62r5vv6s)~^F{!C}<s@C5n zoSRZhd3RzEiEHKarHMLlM1AOl_%6dme9iLw4FdcieB0u;^|xOn`|gS(+!kiFOGEPr zybr()!bh(A-21)dyr%|x@s~<t5e|Ff&QIMQxn8N^))>~gT_Q+eY(t?Q)Nc(FOZC57 z5zHNxbZMM&pOtLRR?oOz>RilJL&%k^M8Jr{F4$Y8TI(K)Y^UnxVDzq`CHT&JFUT|h zj{xQs8S0tCr<APWb414QAtqb+l#pqY8c5Wph%lS3?MIqWJDLlF$Of%LgzV~K*L9f) zk%W!7P{sfU&ug$jlMz{D4N|5DahRzGft(tLD5__x0m1D#CL+7QR|><hGR$5Do`pec z9`aHo*&u5cd1Uzs39^LF@6r(ELLVOn;{~nWzi`+#&HcJ&ZOg0Way-?wTApDiK`;?b z56mlU)@8to3wd;0>m$9?rwlWjpsqu$nWJNAgMlpy?%V`r*8?F>pULEmYqX<qIcnU< z+A?&N@g@NsZ^)}%>*sWf#+8ukdcOxM4FE^`J(y`CvIl|WnIeL2+_DkSCZi!j1`5PB zUjTOCeSC(H6|cz)Z}cTGK^U<aU@=a#my?DqKBvC~=1l<pd(jbJUveNAg4Cd3M>m7# z%OL4N{hkO|R>DW3c<IQbg8M1FW}`=fDQ(h&>Z@XO9Bms@Q(iv(1@CSUgf>VzOhjA> zi0@;9C6a)o?dV!@Zk34AT)ia|+4eJm)o1LkV=j=8QeWqmLSem*7~g>mHLQ%IaoBY7 z<Gdh|Cl&PrT1U@hi6CM)z=GDJ;nW#&03*<ePG`%^Jp~X}#cAW6^9JUK4R7ph*?0^e zeotH*ZU@%5B-3uio?{-}QpmR@;^%hM$!=>4c=a8qM28G(a~O6TO3kX-Gtvn>wV6s7 zL_J?kGVWG{aodry9Z1=290uRQDPKMUF&vQ>Z-9!#s!$}NMrTzl>I=G7+Sc|U6{o++ za{KgKE0x<rA=OGSJJSD!GK?OS;qq!YmR^Ipo5PjH&?!;fz=H`hU132d3h@jp4EKT{ zuWPoWg~_I#q*AJg=L92z`LNU@9AcaoCI1z0dkB=>L`Wv<zr)oYt^*}Gj&iHZf&t`q z`~aPS7vXya4__Ym^TRBB)I%8NQH-Moc%_fyoX?U|X-+xU1S0}2$Bl+St}$uZ#e-Eq z+?}9o9HA!d(2Ld}c0ru!wT&~>xFqZp#O>xq#&@?bz_CE;SxL$kZjbAZt&ql+VoJ)) zO90YBEm$|Hn|jL&p&zh4&;d15!F+o@i8`SP%U`6?evNBr8fzI*!VD0HB=5(N7}${) z!j*v3rte9RAVV@s8+SSiK52<Cl3<i;bmSSep)8{U=+cb313YgNi1FosPgV2m1EAkK z!869H4+2*0_50%v=ES`p>2t(q+oCpjWKMG|!<tsu`KL9eJ`gZOch$D;1x(VT6_QY= z)Xh6o*A85QFbH+i?MS9Qt-7;XOIPO%(@gz=mZNK7)2<uld9~n0=uB)5oe4Kv+>jXM z2YMLgK5Sa$3@gk_FY>S$>AxUStvylZ7g4UF3_{d=V&B0d_tN`^-ir_rdhYxs9JnZS zF=rlPwKzkB-7!%L6>7~0BJ*xpWY%QJz(uCAn7|b(dZ7%@D}6{IOy4DCU8|g%#2T0Y zao#h|We63H2u24R1S3tMZU<%Pl3<#?qRW${2t#QY8kZs1+Kgc2(x4>8P%4qDj3UM# zqNX~A-$B{_@-mw)W%fIeVE{-p40<nIU&9!>ec!=diqMFqru{Bi4`HOG&ue*(QsBC? z8P=ewsWpj~-+Lwey-K#sm3TV_LZ2?~{3wIBIoIB2SUS=4|FGVfro(2??kH^77?N*z zthgaVso~~yK1w1)bEZl9k>RjJ8R?*E=Io4?Rr>B!^y5p`Jt?A*G(B9*^0AKQnc9Ng zP4nVKB0Fp(JK!_amHa1^^~r7rEEhw^FSUvXlD`L&zZ24W6u`bg4Eu2McQW~Vgadnw z!iA@A_u-LH(?}zs`w%2x(5a<m0wt-uu7H?YSsVq#J6M8vZKP~j(Q7&4v;;hyILE^k z&qL^UiM*pcO}-<U(3=t?O>+z_qOPJ4bt%kv7^Er3rU({Qm+ZGOT11tzFU1XXJe<1h zc$OnhJxg&hEZzcK1+qfcUCuJnAB_uPEgp^eR=5`$m$HP5U{TrqB#|GyUz-Q;gpRi1 z9-j2NZ3851;i_D|kUhEJj!)~JZk<lv67lxo$s>2|-g^-A244?s6SFu?1Wr@v@>YV1 zMFJOXTqG#*;q=c&X>&$9JxZ3y^;KA>OvCz&ZcNV*!AfJjNMfoOy7a6l7`j1fv2e5} z$-3{VZhQ?A=L%Wd$M`DbA3nZ!5dTK8e$O)h7JYnYnSWO?{Vb!|mNUNfSU-!ee`Utk zSStRlW%^l~@o~NVipPh0-AS9=&1mbV$1Qy>PDh5_h5rpD;7<Al&Fe6wcwdogG<+1~ ztLyR`iiS976dh>6j(jcpA`OBElE&0eVJB*a=Vpx7O#T8Bz3>_CR}n4r!)@!tLVt!x zhun`VaCa_RjQ(q#==2a4^U|7yNp@a#DN=SNF$`IMKjaNaG1~=}pbB!#LefY$+g0>= zis=*3T9#HL`?RKRx;Nmc<W?fyP~SVkp*`~aWXEUn&Y_J0$9&5xKG>UDpvV>|E3+%I zG@}GeaFziME(fmHM}N}1mWY1C=O0U+hkdq<&`7V@qlHJ<@7=%u&U^RYIGNWRhY*u8 znC^r-3#r2y`HpL>j8MnM;|*9YqmDVoyDPw$#lH8WCDn{-f5oGsp2;JEjnn_Yj`kYP zsQTM^Uk!DREh2UJ6j`#7WBZozGY0G-F`=GckWlch1AC9;B<#{Arz{%mNhb`8h2-z) ze!IiY(TF;n>$gMXD2J%Od65Yh1`YSi?L&}V&wl`v-AtDigxCynwT=e1<Wom?Fh6xY zTZZitL89-ZkG$*Iuxs)PyC{%@Tad%o5Bl+cWK~nkPPgOqWErtw8XYuhaWrch?8+0( z_{iQ$Wd27t0~g|!xS<dEc;$~^u4&EDPlMNm!GSr~o*<Y<?$kk)NZS9*G+3l*1={uq zDS;$od6G0Vn<-dF(sBDR$8pPHdJD7k9hd_%bfu7MG380&Y(<AYh$BCay`Y&*v#T?L zJlBrLO@f}+<~_Q9i|JpcQnFKyI;=$xM52y1Pag^&FnBD96D1^o@Jb4nwM3o4D9R#Y zuUSX;yd-n+5XP#y83l21yHEInnxid!emutPCn+WSP{M$p^%bF20n+a2A@RdTznnD! z5}PzYkKT>VM#f`YRpXaCeDSF|l8$Dy`S7P$snh2b<!+`}YoAo`nW5y^i;jP#aDE1} zeo382llqvVrl*^rLjD|0kyHsE^K-@fC|zmH442b#ZTopYSFvAUASN2~i@X;fL%0%_ zf1FePOAMe?O*p;^FaP(rPs<m%`|?-(IFt{cKM9GRy#JKX3c3tT2f%b`c^V50*0^W1 z?$74m+kOB65S?<&y$ljin>#=vJ}G#|^erHI(bm5z{HzDDIdc)6D^vp&){QFC^c4Sx zF#G{M5`2DOe4mApOaEp;WoiJoCxCZ>&U!s4x(+;VqX#4~hrl^DtlmIWc77Bdn-K*Y zT>Kg+f1&?B-y4X2hxi#<O)2$+@msIQd$VD#OUXzdaIRN-j`lO)xy)JL-$Zl^mMs~M z9Gm$l=w};+pLn)5^V#|#Kc9?Ya^^V6-T%2U`sF~`*`4yG%g)c`Jb=YAPq`-<`g34a z5sO=@U^W`()Xd1YrsgCmvKR32zds%Rew{B=tP{{sAOf@#09|_834re~uSeF!{Z#=@ zX&uy~U+r4qt%re$Nqu@U1U}K}+*9o1|C*os^-uV*Gv8N~QaAN!Jv;JF9LV(SSqE%7 zqh@$?kZU@D<y5ng7Tg3Pf^=z4uJGdqy4IRe&G>$ZqT59>+2rLRpqz?dCeS`hL*sj1 z#HIwO1dw(zhOMA3qdcV2HY24aER{`1(#`4kloe4r(zNHtqwK^zK+KL&Vg@?0=gC(q zDP;L{UVlYKC`AWb&P6C>gz_-rrC^gKc723Q)>ihi5*|)hBk#FakQCv>;pay%ewK`0 z$W=37w}h}7B%cIcB+UI}SDeCgpvk+-V0}On*2}cmoY2xah3x5MZ{Euf-SR@Vtaf0I zxwVT#?n#8CJdsMLtK&YH_7Ky?IDW%TGmk*2VSEmex2%ltH|(aXJE!$FpCnHqu%5zT z5eNwkDDScw5!K2VjGm}DW=G3SPDY7dDLUpFovs<)RZ;;-8LZyv4tsqnyrx`@-^k?O ztMbh&-{(`0*Z<?v1qv&KXW7PK$TOH>_yl;q74j?i`!t2!(}0gOkBizb0`K!p(bBvp z<Fw9=Tihj(1&+Zw=T(yu)R$MC^!Z!pY(z%CpYwBL{ZxTLherRmX&Fhwu;20X2<vx! zakTY&9K=(hI1C7Q7Qz5*XL8?R0J{w=z4hAReI|r^Z*J8gMLs9));ul!0%uYwdwIU* zj<<vN<5P|XuXM_dOh@w^V;*_4N((<2)zKXz{iY9f2?`Oi4_Qw1NwqqAo`9+s?>gX7 z9vdm}d!9|pe#qe}X#aW8zKX4~q-t(Fwz0FZz41;Q_f#t`F3^hNu{BUBD7$M!gd=aE zyabNu$uZu7xd@lS8#aq^Su4T?3t-Fo<t1=IPlA>8;fr(wY#gyo@cq$eDGQEohl1Zm zCA<&rhn3)$@Q8Bo6-=_6{NN<dkgYp1??u>%4BAM1$YGblknmX=UN$tI4iB{B7e;1s z8*0ig(r8VY+BDsGD_?TL=SsGbl16@a@&$vzV%aUkKyKgc^N_avbSJr6_<2zF`<RH2 zY17le+^c!WMo2~n>-4f$L&<)E*`G>KFHk59nT89NBR-FzS$Dfl*Gqz(Kje8iISwj~ z1A|9x&s_)No4B%kTPBG|5P9G*sjBmNGLc{K{0ES)E7cT1wF@f$5n{emxqVLLG8CDc zKV}+06SHKdW_4_S)30$<q5X2k<^_)O{|PeRW`?2yUH_sVxBpYn57g=}CC`6etjCwq z@Y6oN?32p-XV~1nh=%nXZCRQ?1NFiRGf)?iz7kMYo{35&psb0?$X;xs5ZT32htK<L z8=*y7n_1z#mZv*A!M3R7FUwdKf<NDX8BXj&ooEXfSFQ!}{FP-Y&m~3Wg|eb@A<&1? z!t%md5SG6v78ar5`>M$B2?XRX-x&f@+Lo+7uv=Sj?>4M<l&;FDyn~=J)%+`*=`*KP zE5E50THUnaa}>F^A{IKW3-dRBRifSQ9^2J=Y<D@<ZiU+?MC{TFke<O%<feN|ed9_s zvM+*%$>nIXS)5^xJ_S+b*NKZH`fG??%<9VQ#=zS3Xh*r)DdXG`nUnBr>x6<DzRE33 z*5M&Q1rdhBllrNn;KZlI2EPVUcHm*Q>~5sqPb2kODqA-77F%}mt8AI|S+?xdR<_JV z`sgC~k)PcwBpkREg<29CM}XgflpRI}bsQm*hO})XM4CYeVj}Qn5h6Kj*)k95w<}Gg zAyaFnclkrxvHr%bn}e|2RUO+j!*9sM&Zdm0f1Tq)r0-wEX2_Zwe$|3Xt2%Zk9nx*t zh{*h#XJ>=H7S{M;7NQid8@>b(dO2~J{sw6umj7)Y`drg%f8W52JghHb*ywzG-4Cz` zn|bhZfw-;+Ck8&II7HIsWOn|9D4x=rSaE(tpD5O5(c%tz%UA7W7wz(77n{>-S{M6l zR3K=WXHc_S*td#nmW|yDTWjkr30g)6;=$)quzi%!bxJj-MrjWHK69<kfPAmSp3lPN zMgs8(9NFJM5dUk+H{~LgNu-kh3a098+ZgBlQw8sHx6qtxbN48w_xDj}_tCrlipZI6 z5q(LLQrzRgxhb5F&gerKdJzB!w~W$kqHc{L_dx?M?C(V0+nJ*J4Tg>B?h^Jg05d+r zff!Z!ZHG&GXexYx9)rer&2V<qN^gZ6n((3<Ad2L?UbG96Ivs)m`z8VmmZdxC9^pw5 zqOfImR<cqGPK>0ImPpj~K8{1tj=g^1ru(r7DGnFWliL@Bl9|5<8>A=Ag=|Vt7hXWX zG3>lO8Zwq>Hy{Vs61|?#c%@mNzvoyMd5c3`!tf5WIQfTt`?5HINK0vP%BV_q`j;!} zR&S!7isow~QO4CGt0IO4>VbhR?fDSdGaPI(hrI~%3(5Ph`z)JyuJGAC_mSoY`&AU? z%tr|&IS#4CnFor_id4;=%lqX{W#>o=Rz~|fLQ)ZzWHye!NIM)uq3@s&<}G!4Uhzps zrEFg>C3XH0nolK%|7t1t4TXjeowC<}q|go<d{^yJ3R1eik-QHNKAcFN`#A)|Mwqj< zn@5;Xtl(CCA%yVMUG_~-2w`<}+#}mq-a~Z%PpCx_VD-;fgNxH!zphqUj5zaimFJ&O zqz2P-FwgknwUCtk%jpc%)5+gC3XiHzJ-r6|0r<$CdcxXQuc|Bc)Kk&Hmq|d;cgn$+ zst>EY&cz?Jlb{Fo!4T-MrdqneXWI(%q32KPrrz=n*xqs7Nj@pIhZ3B$(PID*O!(%> zW77uTGKSmzxyKNK=WkKkCwrzIqsaz@CYMOk<Xg$#50)JMzaZnJpQVmFR7{IYAWbC4 z4%_dc>Cq!iu#i$(CKiFNWogSUB)R&j-8+x$1PfK@cw?P@<biMB@rCsd5@nx4%ASFl zyrk?)NZHFs*;`8b6WcunDZ_SNU4@k0gp}<?%8nsr22%D=gDra;DSHwrd+wub+1IkN zGCTx}fw>ve=aYrBHxSW(lwfa8QLL;m9rL=Mr(YiPdrhpBO_l)9LW}ND#FlH5;g&rU z{JOyRg6|e99HK%@ow<SeQp>hB>+>yLZ);XdS7#l&Ij)}Ad{4DLv`iTJhM&{vO@C2* zPomF%OZXvo;{sDdS-J?M-z8G%W0m=qJJJ{wP3lFCjM(^0>ZcBMH4B`kdb!Z5kRqOL zvn4+&!sfi-Cppsd$^TB{S%mK}g)DmXYxGoD$uM=$N$~eAUt+f9bv(GoLV6m~TkR=i zC|oGVj#0I#nr|Zvej6L(u<f*U@I{92h$zZM=jhP_2vp1eLePU{-}TF3^dtr2Z9mU* zE?wq%Io&w44pL3h0`%j4(*3>#U@k{X@NLi*D*t~_bn8XgzXRa?r-U}VP1h-@%w@F& z)4~<0wJY~#tE%&nz1+eCeYLR79RPlsPka;h10v0H`NXh3dehH{XV04Y)N;7!2gPr7 z)Al^O1FzyG_XpV1s@u{`U1E6<Tq9E%(nU$yBLy?wxg;%_#DcRvZ&RymJRqA)>({#| z>_;ZymB4wFLyOABd`2GrV$gui#>`SVgW7ELiDX2HpU9Q_d#{AQR}1{(G|Q7_c9t&7 z1Id!l2wF4#HW4x20Zn1FgsjlS$sydsis{)K9N9XTFlEY?O~Uj|z^8wOe5C5jqzSQf z*As|q)NAStgH_cI3$B}WK^n%YRprmB*ub&q_p`3eVt~rVy&QKgoQo8eO{B0=J@MQt zn48J6qr{7WTNT3Zo}wUE?YHy%XVeeuca^L6wJB{rIs;E5NDamm4*LHAKd!>AQyh+; diff --git a/R/airGR.rdx b/R/airGR.rdx deleted file mode 100644 index 413f2cb20471dbd88745f64272c0ee51ad01a3a8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 721 zcmV;?0xta@iwFP!0000027Q&!YZE~f$7l1Sv^BB6v}ipFiU`3rtwObj7(;3`X-Rr$ zFD}#UG+nycU1qn{_99qC#2-jKsNl(qB6!e)h(##Xzrdph_28wThk{qFZ#TR9W}CEu z&705nyZh$7$;@V|oe&ZsQMe*eXV?Q@Q7;~YE9v?qG6M0Wz~93hb@H4LI1TX!at!iy zd`0g0O-Rc&a^EjPTK^&+-Gm&Q$j84B(sl*8{}dq!fkz$?a<GD2+Jg85xqOF^_!jc? zGR&VsmR~}RuaK1z@IB<YZxGgy=bu7cMb=;~TFxNz8R+K*^72pM737sF@O|XFf8hB; z$g2sc_cHS1Dd5}4&tU!Iw~(JJVSWK?7k`NSdI{$Hg#7Lt#G3-I6C!OOzlYkT>&PD@ z;5W!?Zy^Z%euViVN08TJVSnQ+gfZmLQ0w75tTBv<L}H{3VqB*+X2GD--F$ViBPGkl zOd(gE$YgV}obu!YAeYkxX3rUlHA!bQhF&6N(#kxovLfX3w0&8ssWY6~s-b&Qry$9r z=QBl5?-F&xwAGqtbZ0rEHgoN9)3L1}mFry8%>~=aa@7t}33|a$m==DZw4jF*^<AJg z&1kloyJmB08d^hjZ8^>jF3gb(1o=`v=ZX76;y~lA#d4EdONBs9PUIA-YD@C?f};8> z)(Z8CU3B{_XIYIFnOgOiySLHFmj=i7a)<VGPy22%aPy`9OcQaS&_o;@Z6-F$In+!H zW>1tESDBTmRynKs+9apCHET>zPW`RYD{2j^(-m@sK6V;GFFTE(p9W)W7h`BQBj~Nm z)C?PbZyPr&A^*Jpf*77%3EuTm8rl6^71$X+LXOPUHRr5L+urexd6Tv<eQ|iWKSTo| zN{48$UK43|-y7}~${Y2M$s*;d^IGsvRy$|2j5EE0O2w#|oLLrAoTUE&Qpt<{3kLuI DtCD8N diff --git a/R/plot_OutputsModel.R b/R/plot_OutputsModel.R new file mode 100644 index 00000000..0ef583f5 --- /dev/null +++ b/R/plot_OutputsModel.R @@ -0,0 +1,395 @@ +#***************************************************************************************************************** +#' Function which creates a screen plot giving an overview of the model outputs +#' +#' Dashboard of results including various graphs (depending on the model): +#' (1) time series of total precipitation and simulated flows (and observed flows if provided) +#' (2) interannual median monthly simulated flow (and observed flows if provided) +#' (3) correlation plot between simulated and observed flows (if observed flows provided) +#' (4) cumulative frequency plot for simulated flows (and observed flows if provided) +#***************************************************************************************************************** +#' @title Default preview of model outputs +#' @author Laurent Coron (June 2014) +## @example tests/example_plot_OutputsModel.R +#' @encoding UTF-8 +#' @export +#_FunctionInputs__________________________________________________________________________________________________ +#' @param OutputsModel [object of class \emph{OutputsModel}] list of model outputs (which must at least include DatesR, Precip and Qsim) [POSIXlt, mm, mm] +#' @param Qobs (optional) [numeric] time series of observed flow (for the same time-steps than simulated) [mm] +#' @param IndPeriod_Plot (optional) [numeric] indices of the time-steps to be plotted (among the OutputsModel series) +#' @param BasinArea (optional) [numeric] basin area [km2], used to plot flow axes in m3/s +#' @param PlotChoice (optional) [character] choice of plots \cr (e.g. c("Precip","SnowPack","Flows","Regime","CumFreq","CorQQ")), default="all" +#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE +#_FunctionOutputs_________________________________________________________________________________________________ +#' @return screen plot window +#***************************************************************************************************************** +plot_OutputsModel <- function(OutputsModel,Qobs=NULL,IndPeriod_Plot=NULL,BasinArea=NULL,PlotChoice="all",quiet=FALSE){ + + + if(!inherits(OutputsModel,"GR") & !inherits(OutputsModel,"CemaNeige")){ stop(paste("OutputsModel not in the correct format for default plotting \n",sep="")); return(NULL); } + + BOOL_Dates <- FALSE; + if("DatesR" %in% names(OutputsModel)){ BOOL_Dates <- TRUE; } + BOOL_Pobs <- FALSE; + if("Precip" %in% names(OutputsModel)){ BOOL_Pobs <- TRUE; } + BOOL_Qsim <- FALSE; + if("Qsim" %in% names(OutputsModel)){ BOOL_Qsim <- TRUE; } + BOOL_Qobs <- FALSE; + if(BOOL_Qsim & length(Qobs)==length(OutputsModel$Qsim)){ if(sum(is.na(Qobs))!=length(Qobs)){ BOOL_Qobs <- TRUE; } } + BOOL_Snow <- FALSE; + if("CemaNeigeLayers" %in% names(OutputsModel)){ if("SnowPack" %in% names(OutputsModel$CemaNeigeLayers[[1]])){ BOOL_Snow <- TRUE; } } + BOOL_Psol <- FALSE; + if("CemaNeigeLayers" %in% names(OutputsModel)){ if("Psol" %in% names(OutputsModel$CemaNeigeLayers[[1]])){ BOOL_Psol <- TRUE; } } + + + if( is.null( PlotChoice)){ stop("PlotChoice must be a vector of character \n"); return(NULL); } + if(!is.vector( PlotChoice)){ stop("PlotChoice must be a vector of character \n"); return(NULL); } + if(!is.character(PlotChoice)){ stop("PlotChoice must be a vector of character \n"); return(NULL); } + if(sum(PlotChoice %in% c("all","Precip","SnowPack","Flows","Regime","CumFreq","CorQQ")==FALSE)!=0){ + cat("Incorrect element found in PlotChoice \n"); + stop("PlotChoice can only contain 'all', 'Precip', 'SnowPack', 'Flows', 'Regime', 'CumFreq' or 'CorQQ') \n"); + return(NULL); } + if("all" %in% PlotChoice){ PlotChoice <- c("Precip","SnowPack","Flows","Regime","CumFreq","CorQQ"); } + + if(!BOOL_Dates){ + stop(paste("OutputsModel must contain at least DatesR to allow plotting \n",sep="")); return(NULL); } + if(inherits(OutputsModel,"GR") & !BOOL_Qsim){ + stop(paste("OutputsModel must contain at least Qsim to allow plotting \n",sep="")); return(NULL); } + + if(BOOL_Dates){ + MyRollMean1 <- function(x,n){ + return(filter(x,rep(1/n,n),sides=2)); } + MyRollMean2 <- function(x,n){ + return(filter(c(tail(x,n%/%2),x,x[1:(n%/%2)]),rep(1/n,n),sides=2)[(n%/%2+1):(length(x)+n%/%2)]); } + BOOL_TS <- FALSE; + TimeStep <- difftime(tail(OutputsModel$DatesR,1),tail(OutputsModel$DatesR,2),units="secs")[[1]]; + if(inherits(OutputsModel,"hourly" ) & TimeStep %in% ( 60*60)){ BOOL_TS <- TRUE; NameTS <- "hour" ; plotunit <- "[mm/h]"; formatAxis <- "%m/%Y"; } + if(inherits(OutputsModel,"daily" ) & TimeStep %in% ( 24*60*60)){ BOOL_TS <- TRUE; NameTS <- "day" ; plotunit <- "[mm/d]"; formatAxis <- "%m/%Y"; } + if(inherits(OutputsModel,"monthly") & TimeStep %in% (c(28,29,30,31)*24*60*60)){ BOOL_TS <- TRUE; NameTS <- "month"; plotunit <- "[mm/month]"; formatAxis <- "%m/%Y"; } + if(inherits(OutputsModel,"yearly" ) & TimeStep %in% ( c(365,366)*24*60*60)){ BOOL_TS <- TRUE; NameTS <- "year" ; plotunit <- "[mm/y]"; formatAxis <- "%Y" ; } + if(!BOOL_TS){ stop(paste("the time step of the model inputs could not be found \n",sep="")); return(NULL); } + } + if(length(IndPeriod_Plot)==0){ IndPeriod_Plot <- 1:length(OutputsModel$DatesR); } + if(inherits(OutputsModel,"CemaNeige")){ NLayers <- length(OutputsModel$CemaNeigeLayers); } + PsolLayerMean <- NULL; if(BOOL_Psol){ + for(iLayer in 1:NLayers){ + if(iLayer==1){ PsolLayerMean <- OutputsModel$CemaNeigeLayers[[iLayer]]$Psol/NLayers; + } else { PsolLayerMean <- PsolLayerMean + OutputsModel$CemaNeigeLayers[[iLayer]]$Psol/NLayers; } } } + BOOL_QobsZero <- FALSE; if(BOOL_Qobs){ SelectQobsNotZero <- (round(Qobs[IndPeriod_Plot] ,4)!=0); BOOL_QobsZero <- sum(!SelectQobsNotZero,na.rm=TRUE)>0; } + BOOL_QsimZero <- FALSE; if(BOOL_Qsim){ SelectQsimNotZero <- (round(OutputsModel$Qsim[IndPeriod_Plot],4)!=0); BOOL_QsimZero <- sum(!SelectQsimNotZero,na.rm=TRUE)>0; } + if(BOOL_QobsZero & !quiet){ warning("\t zeroes detected in Qobs -> some plots in the log space will not be created using all time-steps \n"); } + if(BOOL_QsimZero & !quiet){ warning("\t zeroes detected in Qsim -> some plots in the log space will not be created using all time-steps \n"); } + BOOL_FilterZero <- TRUE; + + ##Plots_choices + BOOLPLOT_Precip <- ( "Precip" %in% PlotChoice & BOOL_Pobs ) + BOOLPLOT_SnowPack <- ( "SnowPack" %in% PlotChoice & BOOL_Snow ) + BOOLPLOT_Flows <- ( "Flows" %in% PlotChoice & (BOOL_Qsim | BOOL_Qobs) ) + BOOLPLOT_Regime <- ( "Regime" %in% PlotChoice & BOOL_TS & BOOL_Qsim & (NameTS %in% c("hour","day","month")) ) + BOOLPLOT_CumFreq <- ( "CumFreq" %in% PlotChoice & (BOOL_Qsim | BOOL_Qobs) & BOOL_FilterZero ) + BOOLPLOT_CorQQ <- ( "CorQQ" %in% PlotChoice & (BOOL_Qsim & BOOL_Qobs) & BOOL_FilterZero ) + + + ##Options + BLOC <- TRUE; if(BLOC){ + cexaxis <- 1.0; cexlab <- 0.9; cexleg=1.0; lwdLine=1.8; lineX=2.6; lineY=2.6; bgleg <- rgb(1,1,1,alpha=0.7); bgleg <- NA; + + matlayout <- NULL; iPlot <- 0; + Sum1 <- sum(c(BOOLPLOT_Precip,BOOLPLOT_SnowPack,BOOLPLOT_Flows)) + Sum2 <- sum(c(BOOLPLOT_Regime,BOOLPLOT_CumFreq,BOOLPLOT_CorQQ)) + if(BOOLPLOT_Precip){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+1,iPlot+1)); iPlot <- iPlot+1; } + if(BOOLPLOT_SnowPack){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+1,iPlot+1),c(iPlot+1,iPlot+1,iPlot+1)); iPlot <- iPlot+1; } + if(BOOLPLOT_Flows){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+1,iPlot+1),c(iPlot+1,iPlot+1,iPlot+1)); iPlot <- iPlot+1; } + if((Sum1>=1 & Sum2!=0) | (Sum1==0 & Sum2==3)){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+2,iPlot+3),c(iPlot+1,iPlot+2,iPlot+3)); iPlot <- iPlot+3; } + if(Sum1==0 & Sum2==2){ + matlayout <- rbind(matlayout,c(iPlot+1,iPlot+2)); iPlot <- iPlot+2; } + if(Sum1==0 & Sum2==1){ + matlayout <- rbind(matlayout,iPlot+1); iPlot <- iPlot+1; } + iPlotMax <- iPlot; + + isRStudio <- Sys.getenv("RSTUDIO") == "1"; + if(!isRStudio){ + if(Sum1==1 & Sum2==0){ width=10; height=05; } + if(Sum1==1 & Sum2!=0){ width=10; height=07; } + if(Sum1==2 & Sum2==0){ width=10; height=05; } + if(Sum1==2 & Sum2!=0){ width=10; height=07; } + if(Sum1==3 & Sum2==0){ width=10; height=07; } + if(Sum1==3 & Sum2!=0){ width=10; height=10; } + if(Sum1==0 & Sum2==1){ width=05; height=05; } + if(Sum1==0 & Sum2==2){ width=10; height=04; } + if(Sum1==0 & Sum2==3){ width=10; height=03; } + dev.new(width=width,height=height) + } + layout(matlayout); + + Xaxis <- 1:length(IndPeriod_Plot); + if(BOOL_Dates){ + if(NameTS %in% c("hour","day","month")){ + Seq1 <- which(OutputsModel$DatesR[IndPeriod_Plot]$mday==1 & OutputsModel$DatesR[IndPeriod_Plot]$mon %in% c(0,3,6,9)); + Seq2 <- which(OutputsModel$DatesR[IndPeriod_Plot]$mday==1 & OutputsModel$DatesR[IndPeriod_Plot]$mon==0); + Labels2 <- format(OutputsModel$DatesR[IndPeriod_Plot],format=formatAxis)[Seq2]; + } + if(NameTS %in% c("year")){ + Seq1 <- 1:length(OutputsModel$DatesR[IndPeriod_Plot]); + Seq2 <- 1:length(OutputsModel$DatesR[IndPeriod_Plot]); + Labels2 <- format(OutputsModel$DatesR[IndPeriod_Plot],format=formatAxis)[Seq2]; + } + } + + if(!is.null(BasinArea)){ + Factor_MMH_M3S <- BasinArea/( 60*60/1000); + Factor_MMD_M3S <- BasinArea/( 24*60*60/1000); + Factor_MMM_M3S <- BasinArea/(365.25/12*24*60*60/1000); + Factor_MMY_M3S <- BasinArea/( 365.25*24*60*60/1000); + if(NameTS=="hour" ){ Factor_UNIT_M3S <- Factor_MMH_M3S; } + if(NameTS=="day" ){ Factor_UNIT_M3S <- Factor_MMD_M3S; } + if(NameTS=="month"){ Factor_UNIT_M3S <- Factor_MMM_M3S; } + if(NameTS=="year" ){ Factor_UNIT_M3S <- Factor_MMY_M3S; } + } + } + + kPlot <- 0; + + ##Precip + if(BOOLPLOT_Precip){ + kPlot <- kPlot+1; mar <- c(3,5,1,5); + par(new=FALSE,mar=mar,las=0) + ylim1 <- range(OutputsModel$Precip[IndPeriod_Plot],na.rm=TRUE); ylim2 <- ylim1; ylim2 <- rev(ylim2); + lwdP <- 0.7; if(NameTS %in% c("month","year")){ lwdP <- 2; } + plot(Xaxis,OutputsModel$Precip[IndPeriod_Plot],type="h",ylim=ylim2,col="royalblue",lwd=lwdP,xaxt="n",yaxt="n",xlab="",ylab="",yaxs="i"); + axis(side=2,at=pretty(ylim1),labels=pretty(ylim1),cex.axis=cexaxis) + par(las=0); mtext(side=2,paste("precip. ",plotunit,sep=""),line=lineY,cex=cexlab,adj=1); par(las=0); + if(BOOL_Psol){ + par(new=TRUE); + plot(Xaxis,PsolLayerMean[IndPeriod_Plot],type="h",ylim=ylim2,col="lightblue",lwd=lwdP,xaxt="n",yaxt="n",xlab="",ylab="",yaxs="i"); + } + if(BOOL_Dates){ + axis(side=1,at=Seq1,labels=FALSE,cex.axis=cexaxis); + axis(side=1,at=Seq2,labels=Labels2,lwd.ticks=1.5,cex.axis=cexaxis); + } else { axis(side=1,at=pretty(Xaxis),labels=pretty(Xaxis),cex.axis=cexaxis); } + } + + + ##SnowPack + if(BOOLPLOT_SnowPack){ + kPlot <- kPlot+1; mar <- c(3,5,1,5); + par(new=FALSE,mar=mar,las=0) + ylim1 <- c(+99999,-99999) + for(iLayer in 1:NLayers){ + ylim1[1] <- min(ylim1[1],OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack); + ylim1[2] <- max(ylim1[2],OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack); + if(iLayer==1){ SnowPackLayerMean <- OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack/NLayers; + } else { SnowPackLayerMean <- SnowPackLayerMean + OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack/NLayers; } + } + plot(SnowPackLayerMean[IndPeriod_Plot],type="l",ylim=ylim1,lwd=lwdLine*1.2,col="royalblue",xlab="",ylab="",xaxt="n",yaxt="n") + for(iLayer in 1:NLayers){ lines(OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack[IndPeriod_Plot],lty=3,col="royalblue",lwd=lwdLine*0.8); } + axis(side=2,at=pretty(ylim1),labels=pretty(ylim1),cex.axis=cexaxis) + par(las=0); mtext(side=2,paste("snow pack ","[mm]",sep=""),line=lineY,cex=cexlab); par(las=0); + legend("topright",c(paste("mean snow pack",sep=""),paste("snow pack for each layer",sep="")),col=c("royalblue","royalblue"),lty=c(1,3),lwd=c(lwdLine*1.2,lwdLine*0.8),bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + if(BOOL_Dates){ + axis(side=1,at=Seq1,labels=FALSE,cex.axis=cexaxis); + axis(side=1,at=Seq2,labels=Labels2,lwd.ticks=1.5,cex.axis=cexaxis); + } else { axis(side=1,at=pretty(Xaxis),labels=pretty(Xaxis),cex.axis=cexaxis); } + } + + + ##Flows + if(BOOLPLOT_Flows){ + kPlot <- kPlot+1; mar <- c(3,5,1,5); + par(new=FALSE,mar=mar,las=0) + ylim1 <- range(OutputsModel$Qsim[IndPeriod_Plot],na.rm=TRUE); + if(BOOL_Qobs){ ylim1 <- range(c(ylim1,Qobs[IndPeriod_Plot]),na.rm=TRUE); } + ylim2 <- c(ylim1[1],1.2*ylim1[2]); + plot(Xaxis,rep(NA,length(Xaxis)),type="n",ylim=ylim2,xlab="",ylab="",xaxt="n",yaxt="n"); + txtleg <- NULL; colleg <- NULL; + if(BOOL_Qobs){ lines(Xaxis,Qobs[IndPeriod_Plot],lwd=lwdLine,lty=1,col="black"); txtleg <- c(txtleg,"observed"); colleg <- c(colleg,"black"); } + if(BOOL_Qsim){ lines(Xaxis,OutputsModel$Qsim[IndPeriod_Plot],lwd=lwdLine,lty=1,col="orangered"); txtleg <- c(txtleg,"simulated"); colleg <- c(colleg,"orangered"); } + axis(side=2,at=pretty(ylim1),labels=pretty(ylim1),cex.axis=cexaxis) + par(las=0); mtext(side=2,paste("flow ",plotunit,sep=""),line=lineY,cex=cexlab); par(las=0); + if(!is.null(BasinArea)){ + Factor <- Factor_UNIT_M3S; + axis(side=4,at=pretty(ylim1*Factor)/Factor,labels=pretty(ylim1*Factor),cex.axis=cexaxis); + par(las=0); mtext(side=4,paste("flow ","m3/s",sep=""),line=lineY,cex=cexlab); par(las=0); } + if(BOOL_Dates){ + axis(side=1,at=Seq1,labels=FALSE,cex.axis=cexaxis); + axis(side=1,at=Seq2,labels=Labels2,lwd.ticks=1.5,cex.axis=cexaxis); + } else { axis(side=1,at=pretty(Xaxis),labels=pretty(Xaxis),cex.axis=cexaxis); } + legend("topright",txtleg,col=colleg,lty=1,lwd=lwdLine,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + } + + + ##Regime + if(BOOLPLOT_Regime){ + kPlot <- kPlot+1; mar <- c(6,5,1,5); plotunitregime <- "[mm/month]"; + par(new=FALSE,mar=mar,las=0) + ##Data_formating_as_table + DataModel <- as.data.frame(matrix(as.numeric(NA),nrow=length(IndPeriod_Plot),ncol=5)); + DataModel[,1] <- as.numeric(format(OutputsModel$DatesR[IndPeriod_Plot],format="%Y%m%d%H")); + if(BOOL_Pobs){ DataModel[,2] <- OutputsModel$Precip[IndPeriod_Plot]; } + if(BOOL_Psol){ DataModel[,3] <- PsolLayerMean[IndPeriod_Plot]; } + if(BOOL_Qobs){ DataModel[,4] <- Qobs[IndPeriod_Plot]; } + if(BOOL_Qsim){ DataModel[,5] <- OutputsModel$Qsim[IndPeriod_Plot]; } + colnames(DataModel) <- c("Dates","Precip","Psol","Qobs","Qsim"); + TxtDatesDataModel <- formatC(DataModel$Dates,format="d",width=8,flag="0"); + ##Building_of_daily_time_series_if_needed + if(NameTS=="month"){ DataDaily <- NULL; } + if(NameTS=="day" ){ DataDaily <- DataModel; } + if(NameTS=="hour" ){ DataDaily <- as.data.frame(aggregate(DataModel[,2:5],by=list(as.numeric(substr(TxtDatesDataModel,1,8))),FUN=sum,na.rm=T)); } + if(NameTS %in% c("hour","day")){ + colnames(DataDaily) <- c("Dates","Precip","Psol","Qobs","Qsim"); + TxtDatesDataDaily <- formatC(DataDaily$Dates,format="d",width=8,flag="0"); } + ##Building_of_monthly_time_series_if_needed + if(NameTS=="month"){ DataMonthly <- DataModel; } + if(NameTS=="day" ){ DataMonthly <- as.data.frame(aggregate(DataDaily[,2:5],by=list(as.numeric(substr(TxtDatesDataDaily,1,6))),FUN=sum,na.rm=T)); } + if(NameTS=="hour" ){ DataMonthly <- as.data.frame(aggregate(DataDaily[,2:5],by=list(as.numeric(substr(TxtDatesDataDaily,1,6))),FUN=sum,na.rm=T)); } + colnames(DataMonthly) <- c("Dates","Precip","Psol","Qobs","Qsim"); + TxtDatesDataMonthly <- formatC(DataMonthly$Dates,format="d",width=6,flag="0"); + ##Computation_of_interannual_mean_series + if(!is.null(DataDaily)){ + DataDailyInterAn <- as.data.frame(aggregate(DataDaily[,2:5],by=list(as.numeric(substr(TxtDatesDataDaily ,5,8))),FUN=mean,na.rm=T)); + colnames(DataDailyInterAn) <- c("Dates","Precip","Psol","Qobs","Qsim"); } + if(!is.null(DataMonthly)){ + DataMonthlyInterAn <- as.data.frame(aggregate(DataMonthly[,2:5],by=list(as.numeric(substr(TxtDatesDataMonthly,5,6))),FUN=mean,na.rm=T)); + colnames(DataMonthlyInterAn) <- c("Dates","Precip","Psol","Qobs","Qsim"); } + ##Smoothing_of_daily_series_and_scale_conversion_to_make_them_become_a_monthly_regime + if(!is.null(DataDaily)){ + ##Smoothing + NDaysWindow <- 30; + DataDailyInterAn <- as.data.frame(cbind(DataDailyInterAn$Dates, + MyRollMean2(DataDailyInterAn$Precip,NDaysWindow), MyRollMean2(DataDailyInterAn$Psol,NDaysWindow), + MyRollMean2(DataDailyInterAn$Qobs ,NDaysWindow), MyRollMean2(DataDailyInterAn$Qsim,NDaysWindow))); + colnames(DataDailyInterAn) <- c("Dates","Precip","Psol","Qobs","Qsim"); + ##Scale_conversion_to_make_them_become_a_monthly_regime + if(plotunitregime!="[mm/month]"){ stop(paste("incorrect unit for regime plot \n",sep="")); return(NULL); } + DataDailyInterAn <- as.data.frame(cbind(DataDailyInterAn[1],DataDailyInterAn[2:5]*30)); + } + ##Plot_preparation + DataPlotP <- DataMonthlyInterAn; + if(!is.null(DataDaily)){ + DataPlotQ <- DataDailyInterAn; + SeqX1 <- c( 1, 32, 61, 92,122,153,183,214,245,275,306,336,366); + SeqX2 <- c( 15, 46, 75,106,136,167,197,228,259,289,320,350); + labX <- "30-days rolling mean"; + } else { + DataPlotQ <- DataMonthlyInterAn; + SeqX1 <- seq(from=0.5,to=12.5,by=1); + SeqX2 <- seq(from=1 ,to=12 ,by=1); + labX <- ""; + } + xLabels1 <- rep("",13); + xLabels2 <- c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec"); + ylimQ <- range(c(DataPlotQ$Qobs,DataPlotQ$Qsim),na.rm=TRUE); + if(BOOL_Pobs){ ylimP <- c(max(DataPlotP$Precip,na.rm=TRUE),0); } + txtleg <- NULL; colleg <- NULL; lwdleg <- NULL; lwdP=10; + ##Plot_forcings + if(BOOL_Pobs){ + plot(SeqX2,DataPlotP$Precip,type="h",xlim=range(SeqX1),ylim=c(3*ylimP[1],ylimP[2]),lwd=lwdP,lend=1,lty=1,col="royalblue",xlab="",ylab="",xaxt="n",yaxt="n",yaxs="i",bty="n") + txtleg <- c(txtleg,"Ptot" ); colleg <- c(colleg,"royalblue"); lwdleg <- c(lwdleg,lwdP/3); + axis(side=2,at=pretty(0.8*ylimP,n=3),labels=pretty(0.8*ylimP,n=3),cex.axis=cexaxis,col.axis="royalblue",col.ticks="royalblue"); + par(new=TRUE); } + if(BOOL_Psol){ + plot(SeqX2,DataPlotP$Psol,type="h",xlim=range(SeqX1),ylim=c(3*ylimP[1],ylimP[2]),lwd=lwdP,lend=1,lty=1,col="lightblue",xlab="",ylab="",xaxt="n",yaxt="n",yaxs="i",bty="n"); + txtleg <- c(txtleg,"Psol" ); colleg <- c(colleg,"lightblue"); lwdleg <- c(lwdleg,lwdP/3); + par(new=TRUE); } + ##Plot_flows + plot(NULL,type="n",xlim=range(SeqX1),ylim=c(ylimQ[1],2*ylimQ[2]),xlab="",ylab="",xaxt="n",yaxt="n") + if(BOOL_Qobs){ lines(1:nrow(DataPlotQ),DataPlotQ$Qobs,lwd=lwdLine,lty=1,col="black" ); txtleg <- c(txtleg,"Qobs" ); colleg <- c(colleg,"black" ); lwdleg <- c(lwdleg,lwdLine); } + if(BOOL_Qsim){ lines(1:nrow(DataPlotQ),DataPlotQ$Qsim,lwd=lwdLine,lty=1,col="orangered"); txtleg <- c(txtleg,"Qsim"); colleg <- c(colleg,"orangered"); lwdleg <- c(lwdleg,lwdLine); } + ##Axis_and_legend + axis(side=1,at=SeqX1,tick=TRUE ,labels=xLabels1,cex.axis=cexaxis) + axis(side=1,at=SeqX2,tick=FALSE,labels=xLabels2,cex.axis=cexaxis) + axis(side=2,at=pretty(ylimQ),labels=pretty(ylimQ),cex.axis=cexaxis) + par(las=0); mtext(side=1,labX,line=lineX,cex=cexlab); par(las=0); + posleg <- "topright"; txtlab <- "flow regime"; + if(BOOL_Pobs){ posleg <- "right"; txtlab <- "precip. & flow regime"; } + par(las=0); mtext(side=2,paste(txtlab," ",plotunitregime,sep=""),line=lineY,cex=cexlab); par(las=0); + if(!is.null(BasinArea)){ + Factor <- Factor_MMM_M3S; + axis(side=4,at=pretty(ylimQ*Factor)/Factor,labels=pretty(ylimQ*Factor),cex.axis=cexaxis); + par(las=0); mtext(side=4,paste("flow ","m3/s",sep=""),line=lineY,cex=cexlab); par(las=0); } + ### posleg <- "topright"; if(BOOL_Pobs){ posleg <- "right"; } + ### legend(posleg,txtleg,col=colleg,lty=1,lwd=lwdleg,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + } + + + + ##Cumulative_frequency + if(BOOLPLOT_CumFreq){ + kPlot <- kPlot+1; mar <- c(6,5,1,5); + par(new=FALSE,mar=mar,las=0) + xlim <- c(0,1); + if(BOOL_Qobs & !BOOL_Qsim){ SelectNotZero <- SelectQobsNotZero; + ylim <- range(log(Qobs[IndPeriod_Plot][SelectNotZero]),na.rm=TRUE); } + if(BOOL_Qsim & !BOOL_Qobs){ SelectNotZero <- SelectQsimNotZero; + ylim <- range(log(OutputsModel$Qsim[IndPeriod_Plot][SelectNotZero]),na.rm=TRUE); } + if(BOOL_Qobs & BOOL_Qsim){ SelectNotZero <- SelectQobsNotZero & SelectQsimNotZero; + ylim <- range(log(c(Qobs[IndPeriod_Plot][SelectNotZero],OutputsModel$Qsim[IndPeriod_Plot][SelectNotZero])),na.rm=TRUE); } + seqDATA1 <- log(c(0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000,2000,5000,10000)); seqDATA2 <- exp(seqDATA1); + plot(0,0,type="n",xlim=xlim,ylim=ylim,xaxt="n",yaxt="n",xlab="",ylab="",main=""); + ### abline(h=0,lty=2,col=grey(0.5)); + ### abline(h=1,lty=2,col=grey(0.5)); + axis(side=1,at=pretty(xlim),labels=pretty(xlim),cex.axis=cexaxis); + par(las=0); mtext(side=1,text="non-exceedance prob. [-]",line=lineY,cex=cexlab); par(las=0); + axis(side=2,at=seqDATA1,labels=seqDATA2,cex.axis=cexaxis); + par(las=0); mtext(side=2,text=paste("flow ",plotunit,"",sep=""),line=lineY,cex=cexlab); par(las=0); + txtleg <- NULL; colleg <- NULL; + if(BOOL_Qobs){ + DATA2 <- log(Qobs[IndPeriod_Plot][SelectNotZero]); + SeqQuant <- seq(0,1,by=1/(length(DATA2))); Quant <- as.numeric(quantile(DATA2,SeqQuant,na.rm=TRUE)); + Fn <- ecdf(DATA2); YY <- DATA2; YY <- YY[order( Fn(DATA2) )]; XX <- Fn(DATA2); XX <- XX[order( Fn(DATA2) )]; + lines(XX,YY,lwd=1,col="black"); + txtleg <- c(txtleg,"observed"); colleg <- c(colleg,"black"); } + if(BOOL_Qsim){ + DATA2 <- log(OutputsModel$Qsim[IndPeriod_Plot][SelectNotZero]); + SeqQuant <- seq(0,1,by=1/(length(DATA2))); Quant <- as.numeric(quantile(DATA2,SeqQuant,na.rm=TRUE)); + Fn <- ecdf(DATA2); YY <- DATA2; YY <- YY[order( Fn(DATA2) )]; XX <- Fn(DATA2); XX <- XX[order( Fn(DATA2) )]; + lines(XX,YY,lwd=1,col="orangered"); + txtleg <- c(txtleg,"simulated"); colleg <- c(colleg,"orangered"); } + if(!is.null(BasinArea)){ + Factor <- Factor_UNIT_M3S; + axis(side=4,at=seqDATA1,labels=round(seqDATA2*Factor),cex.axis=cexaxis); + par(las=0); mtext(side=4,paste("flow ","m3/s",sep=""),line=lineY,cex=cexlab); par(las=0); } + legend("topleft",txtleg,col=colleg,lty=1,lwd=lwdLine,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + legend("bottomright","log scale",lty=1,col=NA,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + } + + + ##Correlation_QQ + if(BOOLPLOT_CorQQ){ + kPlot <- kPlot+1; mar <- c(6,5,1,5); + par(new=FALSE,mar=mar,las=0) + ylim <- log(range(c(Qobs[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero],OutputsModel$Qsim[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]),na.rm=TRUE)); + plot(log(Qobs[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]),log(OutputsModel$Qsim[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]),type="p",pch=1,cex=0.9,col="black",xlim=ylim,ylim=ylim,xaxt="n",yaxt="n",xlab="",ylab="") + abline(a=0,b=1,col="royalblue"); + seqDATA1 <- log(c(0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000,2000,5000,10000)); seqDATA2 <- exp(seqDATA1); + axis(side=1,at=seqDATA1,labels=seqDATA2,cex=cexaxis); + axis(side=2,at=seqDATA1,labels=seqDATA2,cex=cexaxis); + par(las=0); mtext(side=1,paste("observed flow ",plotunit,"",sep=""),line=lineX,cex=cexlab); par(las=0); + par(las=0); mtext(side=2,paste("simulated flow ",plotunit,"",sep=""),line=lineY,cex=cexlab); par(las=0); + if(!is.null(BasinArea)){ + Factor <- Factor_UNIT_M3S; + axis(side=4,at=seqDATA1,labels=round(seqDATA2*Factor),cex.axis=cexaxis); + par(las=0); mtext(side=4,paste("flow ","m3/s",sep=""),line=lineY,cex=cexlab); par(las=0); } + legend("bottomright","log scale",lty=1,col=NA,bty="o",bg=bgleg,box.col=bgleg,cex=cexleg) + box() + } + + ##Empty_plots + while(kPlot < iPlotMax){ + kPlot <- kPlot+1; + par(new=FALSE) + plot(0,0,type="n",xlab="",ylab="",axes=FALSE) + } + + ##Restoring_layout_options + layout(1); + + +} diff --git a/help/AnIndex b/help/AnIndex deleted file mode 100644 index 31263de4..00000000 --- a/help/AnIndex +++ /dev/null @@ -1,38 +0,0 @@ -airGR airGR -BasinInfo BasinInfo -BasinObs BasinObs -Calibration Calibration -Calibration_HBAN Calibration_HBAN -Calibration_optim Calibration_optim -CreateCalibOptions CreateCalibOptions -CreateInputsCrit CreateInputsCrit -CreateInputsModel CreateInputsModel -CreateRunOptions CreateRunOptions -DataAltiExtrapolation_HBAN DataAltiExtrapolation_HBAN -ErrorCrit ErrorCrit -ErrorCrit_KGE ErrorCrit_KGE -ErrorCrit_KGE2 ErrorCrit_KGE2 -ErrorCrit_NSE ErrorCrit_NSE -ErrorCrit_RMSE ErrorCrit_RMSE -PEdaily_Oudin PEdaily_Oudin -plot_OutputsModel plot_OutputsModel -RunModel RunModel -RunModel_CemaNeige RunModel_CemaNeige -RunModel_CemaNeigeGR4J RunModel_CemaNeigeGR4J -RunModel_CemaNeigeGR5J RunModel_CemaNeigeGR5J -RunModel_CemaNeigeGR6J RunModel_CemaNeigeGR6J -RunModel_GR1A RunModel_GR1A -RunModel_GR2M RunModel_GR2M -RunModel_GR4H RunModel_GR4H -RunModel_GR4J RunModel_GR4J -RunModel_GR5J RunModel_GR5J -RunModel_GR6J RunModel_GR6J -SeriesAggreg SeriesAggreg -TransfoParam TransfoParam -TransfoParam_CemaNeige TransfoParam_CemaNeige -TransfoParam_GR1A TransfoParam_GR1A -TransfoParam_GR2M TransfoParam_GR2M -TransfoParam_GR4H TransfoParam_GR4H -TransfoParam_GR4J TransfoParam_GR4J -TransfoParam_GR5J TransfoParam_GR5J -TransfoParam_GR6J TransfoParam_GR6J diff --git a/help/airGR.rdb b/help/airGR.rdb deleted file mode 100644 index 61b7631bebb3429ffcdc2149403d869e9f75b41b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 137484 zcmb4~LzG}m(5B0_ZQDkdZM(W`+qP}nwrzB|%eL*Q{{DY6i&@Mn^PapXGa^sqdorFI z7XSdr#4W2hep_;o0cB+N&y009LjQ4{%8h~Ber`S!0!{V+T~K^+y70Pi0t)`X@x8zU z;9?QC!U}bNB+2%({mgEvQ4Ror{}?Tjd;59I*DNHr%_Bib{BtWiy61jx(CYz3XF>GQ zAK4^TrpacHon<5ClSzYa`lkhZk2;DdYsvh-Ku<afO6l1O#0SbX%9=?4^DVi)Z*O-l zu6rm$2kan~WsDF43^)fXji*@}O<L8>vffT+vELHw!SPK;fF-fNo#-$p2ven#1-HO^ zkx-v`PsCK)e5B6FVa6Q87q4HKyJuj*M49=GWd!*;eNl2oXT|IA*&am=^YG|`ABxDj z@`Y-Z?I4>~BaIE+#SMO&gyy#>Uc|Q^=v5I}N&^5OOS@%FtLw<EGoZ*wN%8wRGn8~| zE|5?J{7C`Ni}kX~2x3uY3=#%(4~I61*0D<M|9aWdckx&+A)H66_E&M3rER$#Z-0LK z%Sox3lH5|_Bqe9=cozLNamtS=ZSHmXdxXl2XKN6OIDFG4lqJqP7_<cyQJKm@YG@sz zkgXZ@5XLnwI@$XWsbua>pjmahOx3ayqKa$JK;JfrmOAmNnrYLC4y9)?#rJY*{%c&p zt_Y=tz<Sza=HraH_0G>!KNr;G@S%$B62bbb;VpNUpX8!tz6_Mi=n^i4sn4{n<#Eo| zMDmQ0qoTNsNh*Eo!O+hf>IUcH{;REglwV<zPlJ4nY|%Fumxl6v>Mu`#&5>JgJF*}f zv@mQ+ADv8$6-BC5<ZpKAcABzeT-lqOZ)F>-06VOaV{$1rq7%DN1I&IhP!9MfuYo_t zy?EZ*>k$doNlS*p%pKDJDSfhBJ5aO(R#);am;w}_Y07iOz!Sw0j4Ga}TV$etwmtu9 z?{C+HSI14K4<wmy#&r<Al?tiGE3Yp4lZH#9)e_M_h^BF#ob^z*OC{y8HF)l&q;>30 zV=qQZZj93T^TXr>cxTwvO|{?<SqpR?Q4(v%-wi`G3GW|%`qvEQY{6+_*{DnLfe))J zU#Noiq1LI9eW0}aMtdx%JrFj9Co~a7qNohP5~_gYVn3i(2`kpeEW+0?%bLMYj!?uq z-K85n{ITJ|-<Q;W*d<%dq^G@w8RNQ#LGt~Tg}8WSS2Y6q^u#(b=h}*=wup(J(ofgh zRMtpvaKRkru^T?&LB}|}qq>4bH?ridNt2>8p*k-E&s-dPgQQ|9Zr{{>3ECccJu!l5 z0v2!o$#^aVZbiP!l<@rV%Qqz35t`sTD_I;8@-We|x!tZlq6`$6%e-y@8E$22dpW?$ z@p*E~2V&A)ybMrKio{1MVB?{TU@|R2ZrZ`B20E`mU>lPRu?8A~P;7fE)b;koY1i&L zKi0#*$yq=PFUMeSK?fuva(phjLvX|0R&0PyFA#b~i@M$m?~x7HZFo1=v29(QzmGSc zeMN_kLyI5fBZH#-3e@iVy+CuVVv#OG@eyaD8}P|4D01y>jx@Ohxu2Hz1oN`pLu#ZD zdhf-@YLDq<VmM1NpjO)ft~K_m)99hg@C}adS|8TZ;Vs5~(iQadti#q~NZ*#Nb_UM} z7^g<X761Uq`2Vd|L=d?Dsa1(Wfew*G1pMy(E5ZH$w_26_uUchVJdRb5m(8UPd+1%1 z?my@&V5}<(HiKSt8b}zsh(^b`oBt^Q3Tyd%S!i8Z+6-4hNZf|0Dj6XF?zdx@HdS*p znYU?P=6am>=lvqLLKpo*3eVsTQ|LG@57%x~fpkas;;G=c9q3~eeBSEx8U^TH9`}aJ zU$WBP-)DAIS|u@N`W!iM|AGnmG+44_2D3P*C@yC)fX(%w37RTz*-U{wDTD;g%nj4r zY#`S~`VF)QXt56ffCl|ft+Z^{*-%pGC2>k8i_b%N?`SD^R@<vY5cBBm7i<LTQ8L&; z!k`1=%`*L+Atl<+zvO%tb>G<EmZOqltTf~QLN<0_67&)$Ch_@@z{9)Gv%nNuEE-iT z7iqk!npED=2cw2-AudO=hO5!n^@SO-r^OkPlu03wM<K<05Z=`m@eT*P={`iw$NfEn zl#7cF=5+}tpSwE$3>+-{{0u|`I!Ab=sgK3O7VWO^wjXu?1BxvwzAt;0rS~|^$Xbhn zF^2C^kh7<c0wVy;EYYl<P!-}L{PSTp)Vl^9&d$rnC(X)m33<dbZ2Dxquau>nIHA*_ zswbb%S1eiSN?C&1XIWRf@6p^zufTlmO+HQLNP|tDrgZ%gaa>pZ?PHN`WXI}XIsjY8 zo-)ds7`gUbmr0rhX+XIF;(6~&wE-pFkGk_$oo*$IGL#(U9)}IJkG8H=Qg!B|`q|-H zBgg8Vwfk2S-2&GR*{bnm%QAV+CHErsAwmT}O7VuIWV>Wzo&^*;OHdO_g2!oe^Rb=| zvKGPmGe}9!B5XKgI2%OGB?2HZ8*EwFQy3c35G=$Xkx@}Fklxs(|3r6ybiJ4U>OP>c zf=UoCIA_wj;go1ltAYR{n|>0?mY;Xy0V1;l$I=_yWd0BU=xRaHEhUdTO1Zp{cyV0k z<!Pc32RtZTQ{4{2Z&3ua`6>s7?5^0OWju6}u)jfBd9KP)`E!rBO!4%vmy82A-3>lG zmg651N&Ly~sckRlf?_0efADg%L>gt@k54r^%l!VT8f^r4YbE#v@&Lv<&5!tu-Khlr zd2jesZadEqV*%5LmvmWye}mg)EA)3j<D8MdT?GqjT71-#ft{2^p@L73(u#x9#c4_$ zg5}Q0rJ<^Y!deF4)^|<WK)v67gI8HzMEIk2+iH?K;Y}K-j11OeP7@SeTs3|?_6*_S z_;o&uj_hCJVEM4N=RV#qc(fRaW~!)ABY_@SV8PDH1NeT>tLll1qWcYH@l6V!q0~Mh zsAgdqxbd;|>f{49tc2+jHD<sQK&SI;O<jmqA`P!HS1csDIhBzc{d;faJ)Z|K!kr<I zjvP1VwYN&wiLA=<1@Ho%^nFW|1^6UaqqLC~;{{xl(uX~9)`DMGgtLb^UkS9c;~-e^ zyR>JaspFVlmRX%I2v8b9k&@apF+MYnse$_Vh5Fq7ca7axWL?yLtL_^D;UVko1yDK1 zrr57r#4)Y#dX$d!1Uhsp_O*w|#!om5DrutB%RBfUU*T3y4K=WEqiyVB+GF?f!@lOM zt)ni_4fp6`<R{@3)1DRg!4FF!H}Z^Ld%jg$eoK598alzyHw92n)xlw1a?JRa!vpzB zGE&Fbb0q)cR;<V^_2~&^Z>3<bQ>_7&(N@oEV5aM<fUfat@RyK!9(VLM)`J%Gu|ofg zeHtcJ_TJntu*d>H^B<Kp`=_$=|L%k#|JR+cP*EA=ccId1FvA}f$tD>R&f(CTS1$x_ z0M=6^=We7f@w;#SV-mdtV;}$!B5v`6gPQCRe(H-=Mn4R)nQiUdYng8(v{wZe5v^&` zBT4G?>7Og1857lmNPUjl`zZ^rIx5(@WLb@$w;GGG31_uPIVBY7!atSWge<M4w{0a? z6_EBZtjoaKXAFZEyI<RL7@u3Oo+(hl=iS=(y?gpiV(sRK`NqJNI5o+bDy{N!C-fz^ zxbo=A&8zzq&m_l>JDyPLeecD5uwh`zXxCXLIcWTr+I8Q+3%?GP>7K_Z8!e8DSqx%t zI%$TY%Ma5`qP>e78lZs_vaVhwz8>oZNOG~_1po+LcFQ`{vDR7`!=i(_JE~~wyn4r? zHv0{YA|TS#5!OYl4~Skg7UBXm-&8JfhW9;i_3H37xOR^|+uBGj=TVxS0>*A#GOl}W z+-92r@XUPQB~8YBX`@Gi#EH&ni+eny_3%-;oa%E<IsgY<ySj>b+I%yeRYfJ%VMV1W zkg#MZqc)Y;^)MNpz!`rhDKJhA#!S*qz^Jq0L}{39%B5rV$u5_cw9+7*+?1d}lOCeX zlr&KP>7lT)MXiyN>`*Ki;?s#3?v%6tbr-DsG?x@hJ92)yk+Z#7)B9(RnQKxb#Y=E| z_XMy9*jMdYX>(cb5G7gTp*Q}ncY@w1_?ekG(V2fPS;2U)Y(eRDJ^nix{w+R+|EyLr zGeW{QVkYOkP}Uq=9(-kTCHs5d@K1;AXSN3`?0Zx0xe|JRHvO@Z9QN2{Q3x=cAN&h> zYko?NlfVqSMW<{N`mV}N<*s!n9ftw>!P5)%%J3~sd&6!)2{42ZWH6iV%FNTiNt0Hi z3UQ|>MRA$Wj`7W8KxQ@jG!!PS<slWi0B#@kj+&QE`%Fj5`N{pNg~EB;5Fy;Q@SUma zw{~=1m7X5SOa-`Mf>@?)0W*YazpM9ET3BSs{b|${kvV)Dd=GsYHqSdmxTIs4keQK= zv}yY9N8kF4UvjUskLv^oVhsID$r<ZzY}>y`le_WY>>*B<N$ENaCPA@8c}p2pv?Y_F zuwA&Z?906jW}vFtjJ|&zP7Tbw?cPV5+RutU<-J0t_N9VgzN$Ak&lIP$PDUJ?tfb^h zN`y0i*`1zVc)VV?Sh#pw{vPD&?P+W|+HBHIGyFEc84Zxejw^B{4Ngy44PI-me*Hab z@tzlF2cZ3scP`jrG&UM7s<SCSN6#SGYtGuNW99Wim2d@%1&7#9@JR8F+;mNjNH}Pz zWuw;Zdu1tRt3Hy{lx4KND=riE1;YWsN8y37rHTCw&;{+I_CgCYi7ux-1Os^Ozm1#} zMu#H~W;p$D<-J3EBL?Krsz47vbt=uKVd>osvjMz~ytPuH=ypzI0`~&-k!;7fY%N_# zBbx?t6&Q(?rkmujoX0;Yt)UQ2=D`5V1ICZGWwv}Nu_Yo6egpDBLR0827%YUdi{J`b zeV7*}5U9m_RT-1WTTyZvVzYy4hkyMroU}jrG91L-Zwo~?TFrV3VTa_!RAwPf1m>@_ zqm*AUQglIQ2j*2Gv-Bd_j@7!j6xo-$Lmx;rLSlgSg8U*UfNF?zi_ivrbv%@;H=Oox z3D~%^mKSk**bw=5tWQJz3^#njK8zS=uTA3o34Q-eI9Y6I<MT$Z6a#(-9l50%qjhnJ zxUVmgF&qOVq!A;rp|j5~!d^<J8v>>aBQZ=ve`h#Nm<J@J9V4-a_uoTi3Y;DznF1%A zkV;g0Ftj!O2>L6z2%hu8^*NX>=(9a*V48z;?}OtG!b{wa!-fU%sQ+{SHMmNg#1QQc z%ZpPP6ceQ<fEUcwv0-;3)ZLPUfK7d)n!mZ-eC)oC6jOK_IG!Iqh)ROQ5b}=Y%?csS zc+oY&3)qK@JZZYtBC0#|7aNUAtZ+Hb9z<x{?3^ZCOCyP^VS9+!xbj$s|Avr}UZs8a zVzswv`Le&$9bu(qg-ex@5vr6=cA{cbG;Zv?0qQ&C)~<nt1*z_*OU&V+a|sT!hj$xf zV=X{zUu*zW+w3k?5ax}vx>ts<G3O8>oc+qbRhV}?vYf^6SbhB|h`T_p_JJltG*jEc zD)l5Z&~5IWGLAsulxACx_BWo-weEEXqpWZMu0*L?NBV=-(CrWgc<u0WPg{@1NzPD1 zIR*%?q?%F!FJT(DCJOjs3wi~u5FKU>gGbgv(@bJ_jGfi@1nCy+(j9envUTgmdIfvg z`EgoDQaRg;GREI3GtIIp`}F#KVW}8;1EdhYz`nH9y>f*=6aR(UGppugzYCZNe{0Ti z;e{<iOi+O;_44GW+Ws63JZEGB-Eq1K0_^zWVZiUr@x#g8Gi}V&q^#~ufI+Krqq?dh z48{JAE8fJUyOQRDEO%=B#*F5XWf6z*#S?VR@L!+57^_g!Tf#-(VP0%+e8Ev0w)@r~ ze8InYX%qwsz6J?n?84sBst@(Kg<2+c<*pQNTp{EKd~SUD`#pxh&*MwVrCSV8ha#G* zP$kH$0R-h$CCgDQJ;H1H{<uTgj$>V+u{3IOUoJh!G!2mEfz^PbdT;mJLPYKi*Ku%! zdyEpo<<l;urabN|=AcR!`WHl+6<mXcYy_)jUV0RD{T>mB=MH>(RvBi<%%Du2^9h;} zg~M;`7sJzOWji6A)&sH)+(yG2q`N;L*`s0r!$YPUG0xEzOhSMQgok$Mk)0TodDwuk zL-A^o(Pg(gW2=I^W$r`0Nha8|fog;5!75sh23+Y|8BiP*Uv&JDN9%Iv)8__Fi$&#? z$sEjfL_{tttLkwxNLl(&j-ZF*6-x(+R;V79(o>eu21P1{Q&|Ip3FpkBObeS)c3&ad zrozsJW!l~FWwYaFxwsu^g@}_=%jzc<8M!C>uzh+)m^>Y+nX6*k{$5xr{KPOD0@qSh zX}+z{PDHN2!)wst>-M%q;a(kZ$(=uX#t6R(#E6$@9Se<NW=?H@@dMx6HikPFHUanm zeTk+{yU4f{ABpYIyj0^lbjM$h6^uGA>e-$G-ZfljBckw*{k@PgY5{wJ(Q{w4frz4^ zA$!4}8E@U8A&}<5yWo6ySv1m=CHk;;*#90_b|;6<%Y@+pZvj8sw|2RjMgm?3M(Sm{ zhct@#FYFX7o3I^Q!TT}qT>ho7x9|KQF-y#WWzF|QOaqbwJ+*D@qrIsn_`D>v!}j84 zS;|qq1kek3Z)+dUweXd9QN>=@xzzG8ghld(b%Xv;m5;aggNC#XjLb!F35WSHCd&Vv zgK)!uj7(*)5Ai0xW%H)B#W#y(8=TIM9^}*!xliO~n85oAd<Utm%+=yPCt6~O$qsa5 zG~Cg*;r6^?@bBuC)yA2w>>n>!j-PW}LuTuLi-nG~1%$4LsSOk;`~YYh_^ytrDLqm| z1%?BLZ<9FN+@lk&ybVkj5IO5->ZSwK26ANx_HgA)+-H1atf0$&#EP3(fx1K0b|Mza zYaYm`!P*4op_|;juth_9CNMsf>n*?chL@G3_Rcv(SR~im<F2I0%4uoqm^?iNSsfPN z&_L;#;tdTeNwJf!9(^&%<*BCVgqDcv&3O1}Eo&=;PxyR9XV9c*IkJp|>`I0l4tcF< zIEQW-sCqra1tS9YhO79oMmVVv$yHd~`t*l)(zJbDvb^i}dLt;YJa0hUdDu&*LMDG_ z|G75{Rdxq^%<p=;1{e5s=5s3IWG^ag$=~~97&N}upVMK!e%?XYJJ<nMI!Sy_wo0a$ z#p=x#%su7l_t(Z(#bjFp9B`cw=>6U}G))-vh4Ke^V{Y+PZoBLWDCX~~s!VAU7tOUf z!?6N&jX>a&Z$V+(dUQtc)f9OQjH{h#pJ?CpcTDf<-ULZ{vZA34`$Dg``Ml<4<|ZfZ zP8{h`WMm`N-^lQIBt^moWbt8ep75FWtCBCwFS7*~HP8trmpM&QJwh)0b{9{0l8~zz zW`UbqLgqjbI4GEsfu&M%&JN{k6OP~oklFBrH}{)WuZ<eAHpMr}dXDAX+QyQ1x#0T4 zM<v<P6oQFi%GY14kcE(qJJ#Ej7Zo;8Ka-s5$(<=W8#i7`cdySM1)n|0G}gGHKOy`( zKrVBJlhxSwbC!&zYEBI%`*oGq?k$ga7sM#MC+@fLgmSEV2^(S-U2`!}XKBYGeAg(w zz}Jk<_-IHy0KSMBX&E6z;36Z7)eD@Nxq%jJPI$lA2wi8Xhk~-P`jdBd^_<5yl6mJ! zpFTZY%Q4j@+JJkIu~I!CMBpNv$|sx6|28g*&52RG>FRD#_#zZ+ez#n+eA(q@9Q@_r zS4nhEc)!7)T_*p{m=8l2iFKWo9Q^tsvFsHzkJ<0kA?R-7H_DJ9|KMi&Rt0v$%xyOa z&et7E!u|1Y`YE{7stbLJ*Mz^?4r#$Wf>%N?LE_PWEt4pyZ!`?%e4GU+$1ElqKT6}I zF+gLX5_&<FlEYcZb$Q9yW<_WE83gC?m5=cHUD!!4Ym+i98k3(Pe87Zqf|&x2^T!0@ z5kJaN`?;7UE6nHSZo3D3ZmV1Yu^?|b7FXoBtHT2eD$+x}7=~VK6F%5`wv6qND+l)b zIw$QSf;y*)4w-0Dm6)KYjreZZug)9nnL1RMm@5({8O?hf;!QnMeghM-n-UG>$Xwa* z#;rf1Vu-gv_E3(kE{fT#tlRbWKp{ga?eNikR5QA6Qa+_cl%Mvi?<@3J^4;2;VNDTh zgX^IiS#S|&))!c%(V#VheYCKP?Pq-kJ{arFG`c0toM@KEMK9(0N_blCD-GV7bs$7z zSEWU<F~@%4j37B!+6yJnw$~u!&?48YIjE>WjTS~07f`k)P_;wyecg(fDIT5`#Fi&W z#rlRSkIR^XrBPMmq2y9=-hb(qJ3x;hh0v?m2*n2yDHXdqZ){XSIKvJ<l&tX|cqtf* z0t?JIWTftasLYl$aEcf^^CxCxVver!tzN$|^psoLrkO{rLyu1A!6O?k7$S#K4$>H- zPWKQfwG+{!kF;|()GIHGY;qn;A12T6Fdv>}sK1|yZ?fuuQddQF=q+V0F|FfAR9P6y zRC0Z1Q7(r0R%;ekmwwy?ZMoFl*%uw3c6<XPaeBA^WXsn7F-h4$f}bxaX2&hM7|6MU zE@ZkiTPIc@sTew3(VYzD6e58w`hFw-n=YerrPZjB=>lv&AL6_KMnV7}fSBa<O;|HO z`l_xn6@n8+RrR*>t)+jEcF8;^LT`vqI8znvj7vv|Rj34{^Gv5W^2Lzf+T>7fCP_De z8mTB4<`lIV1P^6E=H%ka(C=4)K(Jjh{(#BnPN6~q;a&~#;A97yvEab9r4KKGrbg`Q zB~fpeJoqoj&EVa(61<Y@ft@sD^3Wt?1*Wf^Pu|M1OM9Q9^wX6#9~VFmO5DfL_dMNW zFksT~O=F3Go({dk+|et<b|3W>%jg^rbp{)WWM82`UC3*qs%9gR!g4vmk|WQa7Nmpl zmV@oJFY68ffN7<FDYK>Pf_Mg6DhmP@#3rwk?KXlx1Dv&k`3V?Mh=ibxHjp(CY_t&3 zq_Gx(lxTtw^K&*Yv+2?PS7<t~sqg4l*=I}lqh#zwLw#OxnbkC=tQvnUEvfrf#j~PH z1r;xz3W{-ULu_jIdt2MJ&{r?<2lW6i&ZyT$EzaJHkpgpcL!o<!b$NzHBko`&`=Xk& zP;DjbAQM)|r1nxJb24YlWf@nmKc|!HBx_ZMuko}!Z%MYEPMV%tW=wUX<mB&&2H)D7 z&@F1!7M|)6(%aeVZFP^XdC$`G6Szu;J+Twy34tB9gUg&;u0G!ii?okfs_#mW@4vlq z8r+VK=$=0M!tAUom%9sJ>l5Fg!9GT_a^0@UJcG>nyIZ*)X;*+2am_nD-u&G^c?q^} zX{yXN84hxWUF2VafX6Q}so`M0tY@W5K)GLh@p#8Q+M<#v%O`67?+WHY_(ESC`=}g1 zi8z4Afu{~J3<5J6j>M}MfIdL4$m6UWcXo!aABSZY=Pz#P3K24){-Xr=iQ3kol2d;! zq2RR<gPs6J31W-29YZ}VY-Y`-G`UA76#x|!i79ovGdMV<%Ndv6pdMx1Q16zK&UM3g znre%<5tC{FYlV8~%1aD00pmLe2__iMsbfthsdZ|SqTh%V-$8}r1+VtNT*G2IF={lI zwN(|y!<847S(TjAkL>U*TvJN+&K&VjrQHzkL?qtKCc&<E4msUZw})xYp6rV=rpo`y z22!IvfMBkqaDLE@+AN8)tNvCQ+*`4X>2EHTD%tg@&{4_E7`*3?MeQQvVXwJUl24Nt zrI+gJsL()-uv>JgnK#RjKFroxHqwrVa&$Iv-?aX_baTlSvDvpU7ioujS8;Ih;uFr| z5Jd+15w;=3W8z0q4wmiBzp@|}5&3LG_xM}lb0rX{K)gPtvs-6$BV)<R{Ys~EV5&>g zO5^!s!s*_^?st5qsP3b0g}3qR?%VRFC;NRpD{mMZK^OFE4T(&tO75|Ny*06ZmqM1F zZ=IJMZP_{e^~QK5y%yO0OX=Y&H+%}2;kg6E2fXuo&w;Gd<dVf_2qAc%zH&jaZ^L?) zDDKfSsIWvbNp#x#;|n~r3tr;Wdzs$Aeq3y+*m^1VAED<LrOuD6Q=hBb(N7DYKlp&N zzxasVm76EIzMx)U4{VEKPc;fPVhNZ5KhW-469yJNGkM?}Nvb^|-C*xnA*<JGlVj<* zr0-X+{(8W^fZQRUT3cf+M?x?~_TdwJ6J*2S|9Otw6D|Pof_g0{8T8aU#O2*0eqb4N zLT=KBR1efn)HU}i+X^FS1XmB$o}FNb5yu27Fbdp2TvQEX;(}Fpb!%E!iW<)#i-Y?K zvr>+8QgU4UVR|wi*w>~5r>;&axZ`uWUp)*}R?;Lh0Q7<>td4Os*vO5xevWa+U`f%V z0ajg=CAxro0Uu`S<7whkz`da#pLGe0@oi9EFt7GtiHx_NKvlnLV5l+iVWk(vz|xIL zw-L)L{3zB4Tw$6~_kJbXo7Rw%SrP(%-;?Y!ei#h+lkV%N+;Z;BB{FV0fu&6wNk4l5 z<0vw1sVLO~gyuw@mbm}V7;4(#&lnFN94{s~J7`+_&x11Plrj@v%wH(`xbYY7+uu^s zTlf?LP+xgkGcH_Y1-$^WzjETTVqCSx-FHaGQbUsC!iO|=jK@-$e|l@EJI-U~bW-kG zf?ovUW1UtP>wQQEf9e#O;?;p{1h;ThCCQN3{bmXHC-o)Ce6;$G<8tAtNqrG8%46vX zddDP}i4{x!IR^f0vrnLO2Uz76CXt@gjt79}??rNGwITJ`zhE)>hw_hg#p4R<DBER* zK&3a<Ly;^jeFZ0*N@l?$-WPILb@JY@*6Ylu$nxBBx`N@urx8%|sGsrJ;cw0jF$PpY z+=d*~Ofp4OK!pZ@EA+Bz1n^Tk@WEnkMo#E;z@cMdMP3_~o3<@la^9;J;Z$>7{Ytmz zens7vt}lJcn#}l^QU6%NQVx=sV-s?Hf*?79(idr8*A(d@9|Qza?1LZ~Vqn+C!GVsp zv?hLkSMP!`EtDmxXMV?)?a-Ae2^G5zg2raGla7jGvlOXG^}uL=-E8-zvNy}`_~|7y zS_d}mrM>4%hNZfXN*Nj7{3Z333<00S<vXjlV4l>BT9qmkS$T7Oz;C$M>p=&N-?h<q z@MGU&5o!qK-$?(~|APGq3IZLMA-xu?#G6t(`GLVWcqy0VhLbAeb++^oZ&aY?W~gV9 zS-o_84r6W=2R%nkCver11kVKnugRyo16R$-2dJ-tO^{|g6f>cg&_nOs0UL<SxJ(U3 zJEBL$Unu3QteStaG%NdQYPZSy2g?d(Njf&rJF8nXNY(vti6WBNHgm4GHWZ6#=?Boz zt!&D<T!<Y)rDR)aSITZ`sJ?Nzv99Y|w69!4OwCNRH+w}35p0CEQi|TEai^^qS8|aJ zGIVW^za%1%<vBOnfxSIkZicq5T>-few}QNwje(VkI7BY=h^eIdP{*h>API#nRDPjQ z9!NI%R!d`Nxh+&|<k8NSVJ)^6;^Df+(8=9Ci@xgcPZ#ql<{Z7amziUy9IvAk7uwA# zYj@KRut7-0DP_@L{dvcIZ#P(fVc(G|6I2bg+!sDXxnVhANwv6`7ztm*1XL)B^K84o zCc|vpo^p>;`5TBg{TpL$Zl?DMA<Vaakp6uTe^&Lfq4XA8GerP>pX!4)D&U6jAhaPX z14)s=Z@**Ft!);R8(Yh!u5q4$H5AO!ib;;UOXg@L?6^t&1sJwa_1R57FQ#a8F+!o5 zDfC^+YP1bRhhD<r3?xQCnay7-uC-wgL)b#=pSL;Fo&w~4M;lH0S>F+$zj-g9oeq7@ zP^z{|ZIvI09bVK;b^#exD;17h*O%Hd^g^5w_yTFp^V3uhHDq7_T^JJnoVQFWZDcln zCsMg1)Mi0#Ztvg<e1Fx>g1+VEs?a`3F1^Z#irlMTSkI{CG35U=D-*Tt1sk*F<5o40 z-&R8TErpTEiSHI~UI=sso!>Z4gk4~qmz%1Lo4I8ue(VI>V-fGj<$91|MC3A4nPjXT zlOThSiG*UYT<-lYFL}P=Xm<guypqAjAu+n!U%A6RQJc@mGl211&(zI>n@JPIdA>!E zD@mb#Tl!&~GNRskQBbgv-$y%P;2srtK0C<;DorL<-JrQ~wXL-=hATKninXH7nNcck zxOTNG7A%{KJ(6Jge>-a0zgUu9GcvjcWb`GYU(l7Vft+Z?|8NUv6HsOLO*un{Ew=bk z+>HczZ14MN&)Rf!O^#K?*e0dhu%DO_tgCK<v8RY*OX!oY{Kj5sH2j~&>|aAT(UiD) zV3P+ZB<)GoP#N0VFJ>h(%ilr;am&vpgAEqFl{42$Dm5d<`-vnP#xrx?G8`IQPyAW? zZ#(g}kjz)!t!yPX^B5VvV}aW3iuOhGoaf?g&vD*SGTkXe+CbbXc|qSDIMvTISD!|b znC#W#jI2M=9!6ZkXOnltQxS~u^c!!I$XwV1PjzgDS+WuT{(47D*t|0X2fN-}WSQ(! z)>~qec~9m>SL>vgztn@6t|O4>6p~PyN+l3=gSg92x(wQ0dzRSNWxj$$(A#52^Z|J- zd{}+!we@LLl{w%;Lm<_<^g*)rRy62*Zh4+(_DRxVb1Usg3%kX*fgaNnkEx5VJPseC zxRDyuleF0H4zHl1u>c4EW4obu*W>_Fs?^6EXFTmrZ|Cb~(Tp|4_%OXC!Q)GmN#wb* zvvPj=NM3desgLU5+{Wu%pa_f=7hUBP629p8qs*wpDx_hNL4lF+O;ro<@sOCYfT4KA zKT9!qGAgQY-73U|ViAXrQs!M?xHnRZKGpE2Ad^beLh9o>WRTO5h9w9O1N8W1rF*jq zPoT&j^<)ew+$A9iiw^XQj6bqUo{axDA?be;DllEt2P;rQ|GXh@BsNa1qtNi_)Ow#b zq(V(go+Y*_Vn#wr=9d|#w2_}q!h)1++Gjnst^pY>EQ$QHLHYLDkOPFf078cK!_!Qh z`;0qtLd5YHpeFPzNR^4dRK`Wka6-ipCg7r1hy@K9?yurt-;^#-hs6Gv0jY;*<JowT zP;tcx%uG>I3Rh4ONVe?lo0Eox|F|Ao8FK!L96xLnHR>l68!K#plGgnqUL^~pLW+H> zpbkmH%V(i;8-JgVZn1c&_M72CGjgxK1pA73$iYfe{(yh*QO(TLae#*`1)t0;4ss`# z@Y}tOFsbYV^hIsVcUlsHRMGdJ2ZRq%NI^0K{UP!hrP32_FdPpEk|d)3YtZ>aXC(3} z4Tyrlb+5DNg51bi<AM~FJb+W;5TsPTfF^W7NaekdY2yf7`5?a&?d%92YK~}ETQG&^ zLH?NxpZ}l92v~ecu=w0Ygh3(qUcX7=F$HrKA*`<p;04X5S0RbZ26bDwCO26(EpO$= zfysn;tm$1~MIS@f@doelCFW3mzY2keV)BF!;QRXqe3Vv!$Pqo_|6IbT-Evd{{3JNq zb|e%Wv*AM$nDBt%c-@e~74)A1$m_Wvm6NSN<n|n(D7f8b6mJ&Ky*8@vZT3qfYwxa} zF}fD2rRDpP`$FRuHqbK(NRX1n`bOi7ano?QNs!9P|IJVGr3g7du&Xb$2PAhGYo?#* zcZ*?nLKrU|1=NU+6uu;pS7Ag<f|RQCYmLyp!c$z=v}N$4aXP>|ffx9Kq?sF#MvxAU z9S<oP{AU$oTpa{%Jfw25e>3A9B@uujNrr`bx8sngnWt;^qQM4A%EtTtRlGnWRSf+} zFEll-lU=wZ_M>6B7PS+9B`JT}U)xkp1?vR6QRuv%5k0@+Rv+Rc)R}QRah-crF7N%m zK2KkRj<*en*}Kda<jpVOPu*Aqm(-lBT>sn{01ZwVYWZ5b=83In#3kiG<Q7JuwEo=H z5vpC7oJKEQ+_*@lZcL1)r;9Ckhk6vJ$P&t7(m9NEdL%8lw{Y_US86s{V9{;)I__;> zeN(W$lfG=X&~VflEEq(>{j%=)1g>4`Fj2WkDLsOb(m67zSs`zKs>)w_$(^pePchZ1 zz5hrsIi-0*8^>1w45BAwCtZKvMd}TWd6?7a)k)yayVWe1&RwmZ{?>$aP!2Ocu59fF z-@h?1O~X!nvfat~$pU5Vv9*Wti1t7+g!cgCIsDa`(!<d8KfqE%DR3aEO@k8Ekek*^ z`(_Dz*$5oD>C)Cyz7OaCUvX}j4p6o&khf1p{M88bFiYmW;j#j=j?OPTqUmg+h*j16 zR|rbo6&0y~)3?FU&I_l)vwd>xi_W95A;WS3VubMUQ`A1t*pZ+nPeb-me*&7K3UpkY zf=m_p*Y659hJ1A%4C3;69RNB(U7V8nZ1An1tUb!E+vuy*KGHGD9Mpt>d0Jq#pC!0% z)}yY>o+D+E7`6c{e#8VBX?t(k|KGh-bAw7gl;+%6^fr;dz5)Q#NCWy5nf!Yj^yq9q zFY)_UWcRVphn@iN6}hi5PDz^NmS^9!EneR3js<6y0I9IgPLLxtU0u40%>S4m7dvi# zH+!*bJN*JQZRi!r4)gAg!P*9`4Ty8N2yOeQ2dG9c#d*m4!%Vtr*{_vgdqR`t%Ui#W z4~`4#`pNim=oQ2c$RVPZHs%<kcQiW4lyGtu1~Eq9M-T>>{Gvb%4U&On1#@uXrZ2y| zhlbv?cA$)25pQT!*@3l#vkX9@Y@Lt&EaO&;G;}UX$%f9*ZrBdi6DrU2$Bm_#bvog5 z^}v@;Yj=_#$Bf>N`Is;%>9#uC7eh&9IB?Jy4o6RPF8Fx8HCe5v`3b~Uc)De;3lym{ zN{35my9mU+=2KDrj+$Mz?$%|Qa8M7Am9E5V2P?@Y8^*<s?@2bNcQP}-KL)3#uf1re z_S?DxXzyd6LtzA`wMd1lk+;>e;fi`n3=aAQ|1P#j&1L4jbJ`Y%RqfA^UzH^m3G^h| zwme>99~t57DrubiOgPJQ>hrCy%WDsDuD!^C<P&p=C3e;c^a*+<*iI}uk9e!`ea0=p zo{mv{zJIp1H5Wtf(TupJZ_Qh&wmF{)>)ik=L@<7focI*cKHDr>ibh>BCcBS?iIMq& zgFvo`Q;|5xt<gxPy#hTTqw`GnRAGPcpySx%UO9*8UkSbqpLh^9^w<mMs^?<2clBzJ z$H-03KKh>4ZD%T+nVOoOiV~|03SWGub0Xac>7tdo#v_-gcm}O`SSfl=mcM?fX@b*P z0nc;wQbPhtb5i5FH#s|%rX!u^c^3Hb7n)wgKjK$wwj0;B$N?@PGb%{BuU`8#IP%>b z5D#mQw>Nk(By}8hdVMVsMli)fkIh5S*^}l&yKZCQCwKN~W>LvAz#GDrpO=tL>1gTt z!g2n!*Mb&JjWr4v{M<4=jmTeJD;@T{?GU2gh5JqJ4j$ZCYNw$OSC_TR2lpOJmVtv- z%<a-3HI#_2WW-z#5K+R3hw?_-5i5H*s`7I$_`g4KSK3}D(DhaqX}9h^WJ^rcdaZo# zx{L<3*U+>S{QCGp_K2a$r+Ux}$lN2r3;46u8H@E-47i!+@H=7@o;1GSx;KIdy`SFe zr;I_`%0ZX-MF!OGC{RdHI=GY*Xxp5t7bIDNVpEYh$_V^JYHDud$*azBiHh6hS6T%F z*yU_K!mB|(K@Cb4A7M8zQG!XBh%t9zJ6O>v=`;jZ{&>3zV`8KVxbR!Z!^Hj=m_yGQ zLnXbi6G8iNqonh`K+BiojdTk!m{VTG&|lyCTD@R0kii#;i0AZy3Smsu-$FK@aE@9f z$BJr}qx!W5_e=fp@>_g`J7*RPP2IHfaSnT-0WXA0y6p@dsN`A922B4<FlRz<8?Uoi znu9ettsVBi>Nr}S<u`Nhkf>!+P5sM0yj%)}3qk*@hoCZ(G|DEFsjFH*U?AVM@gUar zTs~gjh24@@Iw`H=#G+sO8_(E?C%m=-@DU=oT%EEa#c6tym376i-ChN@%AJS)WSg&* zf?rk*r_)%)p?l>MnCA|i{C=O*lIOa?<TuZF*S#Z!6onHjGZL+y-;YOyhtft(UDjBt zmmiXqr{<lI$z&)5S^hkU`SR|bq{H%SegQ$>K>2?HB7z2?le<6<LnX1#5Wl2?C&-dW zr*z9;S|>u&9Lg@Fj^x8X%UCl^wq@=k33kVb7uz+flwlJeKc=1|9Tzyl2Khq`-+B!B zO>?*}>5ZYjdRdvB-7Q=yPdut4e!sJyTykS&ux@fEv#V4I%Wq)on)^2P_VZLXDlhbE zowl0>$woSQ`YicJRNHphG{pR1Hter=*AHFN?uyGj7lyP2Q<fyIfZpcVt9RcyXQQ<r z1a9*WfeT0u{S=Hbn~$cS3WCi3uG}%O`&Tg5pI<l^EdNt5#v&7PfC|6+$`gk7ONJ|) zO9zrJ;p2POb3C<38bJ_4#ARn}T!%Z_SGCD-6k^!y=;Lzwb?bxvcRIeYTG4{EU`<oP znqZ|E7#Xp)9?E(9U%BH`0TqlBteQ8VH=TK;^h4nrP2?R(RSVEAnMkmFv-NDp|9&Je zK#jPy#h?mf!~=V`YiQHeO+o3}Jfl^AWX$9HB7Z~>O-KPvtA{USmgvr6l292u6uNoV zW?0$(oYGClB)FUae`&v6y#5Lm4aAm?DzQmrh5W+#QgOp;72A8C|F1ZAAwx>+r#M&B zDL+68!tcl#oQ8yveR5Eq8pYdy_Z58$+GY{}Adlcb0`9pWiss^%q}>K0>94366dov) zjlGM-zyjGWARdr77sLVEz$**VU`&HK@fG<Azxf&YZr$lvq;|VnpWncm@<a(g;b|3p z`8<_18O6f<_bgJFXq0I5)&7D5J=S;fJ8RDt(ZwF8?pC-cb^ocV!ZN+V!dz5A;nBOW zN&_79aKS%?R~|}Jf!d6W8TH(cvPzq6LNWzi-<V2=v3ak@d!$KuGAn~gGDTJXF4-WZ zhZc#`Uiu~9R<WH|YV$bZ<({1FsD<rJD&x>9{gCr^;Q>kv{)YCT)j5}IoIiQRX=M0Y zILkLwZ!7}8wB%~pJCD1vvP5I__@<Tk+Zpand?oj>_)m(-yxjbnq3<%|CD4z`mu}qh z_lj1(k6kY|ny&^O2a#<wuIE8sBG(=(GQ*1J=A8lS26&D0|AB3HDvh+rSAfm=RgI_{ z;>CHvx(Zu(0d|V#E5XhvD67euS$7KL1OMtduCm(Q&d7h4r_rp^-4#M1QtGp#F=k4t zre&Lf+9(<mT0<7p;RhTC?p4#C(~)t0cCT(J^ua+)0Jkk3VT#|Jg(r#{Yq2Tpjr@Zh z$BsK<S$3UxvT51#A29wgQVG_}HJGqPB|v)+4Ly4nEgr>v$=xz~B4@#0IErJu+dFUy z&gj$1Ocmn}P_9G{$z|Dw1)(~mq<U;nGnk#!s49xYq^$3{o2I(WIHJwSe4!uODJk}) z(CYfj{_#?xsbVHa=*waz1&|`x#)T0TC!(rLs9IW=__7GE@(ME6M#0_<FVM${gN3@y zU7*u8<MR!KsY<6f%<gW~D%`DN15CFsm|=rzzC2%Q*?HWooo`k(fKq4cj}T!(5#Cie zr>euL5ycV4JuD8=aunr~_DeM~%=sMTChff>DDQ@$rbp~*Pr5aHQf{iv;L*R@fZRnA zDhwm09od?jb{V$BWooNtYpEoRjUC-N`=@mc(R^9?ySw<<FEmnhZ(4n!@6sONOok5- z%fb;61Np*BeA+kN<g&+=fc9>FNH#h4W5_!w_p|sr%310S&Vl3Ce9NiJO02I-)D(A0 zGYWC-YN0_f=pS^yz&LQySdPC{`?>zEgxkq{JI29(1dy2+cX-F1NrKC5T~HJ2RW+aa zZWs?nku+Ox=enkpBb!&2rT%4~f7UfuBCa#z(m{LtKSa4O`8KRkhQo!C+JN1~5_Yo{ z@4W2N3{xsjO`vJhz^;V0Qhzu$hL)LN3A7u)D*=rV4pA}WPhHr7Y+;Lb(!9A@O6+@u zj!bOT>E49I4uBDUEyTFQsOim5X&S-y5AR*C+|%ll7)ul|HY8$%=mLI~Eo)$8?1at= z;91JI;@L6UZ^`fge8IXq&-+2wX<%PauPgt0ZXg>0U8n;_(jP7UoMY{I3AdP|!q!G{ z8tQkr@e|PhESM>1(Y`Qas?j~a9n%!=`{o~a1JILRtvA|GMcoDh%ZVzVBVfoHPn*~P z1xt!rw>SgU-x*JXk^u&m8&N(%WSIIHvikQRO9(EM8dWZ>+b2)D?^s5Q&Yd157tXH5 zbH|5ouXyvS$+>Zw7UlyUB@iPaJ9??=0OW>$_nC*p6psPK=l4ON44IzB3&Q7rahw!Q zPkL}KD`?YLuLrOYw;)h#M8pWb5!{8X`~$G%{CfqyXoD!zUoHW+1$@wzCHbx~%A>Cd zd*P*i0CtBT$AAFbm3LUS^f)==em}8s$FT>J8`hn9ZlgW#(j%@b)IyEJ4W}BLlc8QA zB|m6~l3MmQifQ3{A<On)Phe|nT*p0+f;Z<R)EU&m6J|I6M!;X-K9~b(c{o?V62Y|K zEZ9gH<npY4>s)a!rbK2twc)v*#fZ(I?-~aUcoUW5wNkige+EQxxn>qFIO*uqKRS5R z5q9Zn<ldi|6zy~Fpc&zZ4sC5*5Wxi5VK>A+Kdd(z5j~3j!r3Kog={`FAm6OgOG7`7 ze=>GkISlKPP<V9u#$><X>#BgK4p`t!uP#bi0^0X6rBc<P&FC6bw>xU>AVrQyX)S#q z%A`ik0H{irj8A<ZLzzy8iZbtEbp&%KY&O7r_#xP5x$bH#wWu03!IGT-AHa9`0_|0G zN#u9*W8YAbKM>pZzn}<0<-v7bv+?{}AvU14lNa<E_fE=fDeANw_4`Enum{TjT{Ffr zLBw%sHz~9{;a#&`kd#3vbwg`cquERy@{YT?Kuf~&j}3IQ9hliKwt%}H>N@NJqyt5D zm@IK`1ccDVj5Ddq!%s<n)M`=alQ#tsesQPvUY_J$jpq5_K0ZKuadRc-!9FUuM9#== zANo_UlweGEBc>wZ;RA_i(hO43oQ;X8@sN~!qv$;`)s`+Q{s2|Nr1}|E9&WL}OQoL* z#`}Jwa9{kUDCu=*9)t59(UPjpPhA7XD3XXX0y&8nD7>c`mbzk9u#s>@?ZThUKC^W8 ztb0{Yb_z#(De1U6%+)%<UkRx95!4-Qc4<0M5hCoS?t*J-kyz<n7F6y+E75XCNotoq z!p+DtzjES>bZYm$?#1uO5r{8>H`epFCKxx*4{maAWP;EM^lsWKkt|m#!Z%0(?Sm>e zYxApXC9Iy`p7@x}#Ma!SUEdXH8SwzVAYR2zahu54m&1hdZ^*~^B`o$0X;qRvDO4Vs z?TM#3ifLIFf)<>22#oksah8TWuHd;vwsdGL*L3O&2f<-PLx}iATqaL3Q5|h!DX6Qm zZSzMA`*@7_kExsL+A_;7fLX^h)khG7&$53)7nL|U3>h7g8=d$xq867(%ZLX6hDQ`B zoKOG7pa`jaL`(pVMHDIa{MQ=eorcU$$p9-MxnzPa;|`z^Ke}Nv0%>>zm=`=JOY25> z5?$Vu))lST_&Fju6Os#^WK9yaNF(eBa9>{`N&E?L2)$$nFB>~mFrlO_I^3GVorFx% zfnbO$u{(hi9sL@cnV#H)%EZ-h5ZfNHITEl5foVW=tS~9GQJfI7RGRo9=n!Jf3q~{t zV|-m>_ZTYQg?aKV0K?6TILVveZe;Ax8J2u_5HX+VE@Du_{yxa?=mjADZ&UZ#crkIN zb}-ywi`j-?s2D(YLR&Cwr0@yLpW~-dDZ>*gOw>$E5MviSgpEiJgXF?SGQ+UoQGJHG z473lZzw^VH9smdbaVFM0BuFuF61o-t2BAGOnbdf2!NRGFZ~@7X`RdX^@t63Ey5zsn zfJ$*n{UbsJ4R9Ml7p7r0)IYFk1!xaKjRz-+gE3BCkjHAQI8?j1pfXx>5tb?t@l^?x zr<Ef94E^UgOuUhO)@QK9Yz&kfMF5gcKUvgHJn5^^J-u1#u^!aWRVFi0Yfe-tl$1{| zB!5D|d$x{}lV#czu0}m;DW7QN7t~7HoF$q!8{lF@Zy3O%Y(Ua5{e3g&w3b<ceFJ$| zckOM;tI=EiwMcB;QDcYY2H6nHKAq`Qmr+$jj707~plmX3^wURPE*4+I?I~$ZmDe<D zrT+Jgc8<^y8{xT9Co5go+}{(&4Zq=|xI?e5o#F=22tW1AqqV*AhpypEHgeVy#;D5x z;tM=E9=q$kIdP8aTPJajSRY`NTB=?(|N0<efa1hTQag~3lg9`I|3Ntg@Fy<O#?eIG zVg?4Nz;FV1XL0@6$folx7EXzM8e@$DSep<xm<Ogmt;`ON5k5KEyS~$XALtk~E>j0{ zGc=i&eh;8B;X4QMX6JA<0COC(faV4f1GL6+f!X!Ao;sxUb{t3u^(*u{r8CcKYd0`^ zd=CUpz=a{v?GYvnD5R}m4`z}n!cWNKIPkF4r>VmN+Y0n7)#s~wVoxI-zxTP1-3$EP z0I>sXh?SV`oc@H-4(h_l_~AAwezSy=9$pHQ^BmV0RngfoBbPRB;=PWHirLCOjC<!# zrdv3~u>nCsafhZMWHAEx7r<LV7ltNg%oq#o!~TPDq1;A}m)Dk}y-x6L02)3Z9|23z z!03eU7=Ybco3uMf2c#OR$L^?9-V2U9&|~x@YASMnjii@k3ITJY46~p9B5Sxxi+-Qs zCYHdT69t~3&mD6|uwK+`wB?_KSj?8pR;WJtEjLkfE-CUZ<opUog2Dz9&-ZSb;!|#7 zimcRhCp`RgH*4*Wm0z9IhEuDUez|)Yx*Wf~g}l}#@3(CL*6zkW$7OJsw@pQw9cimi znTSH0Yv%@s7?d1dTU%-bbM4QV>$bi+j;YyOQ;EOcM?4%`<%qfTNoda8<lQfxQg#q! zZQipO!Ew^{^ex%_`ER-n%3UR)26|%Ut2$Xjm0G1)Q>qGcc|%OatuojYcPmsk2s-Yw z3v4x~mj{3t{Ri6&e2Qc}Y8Hg+at<4DH9n)?NPiJRAXCMmN*uVRM6~n%!!~5^2(7u8 zxUNsY;Vaw$_byCWlhMOahV|B@EgYzxn7FcJh5N{cAKycRq5BgrFN-g3POF{k(gJD& zt#R8Ee>!I*G?zRRsJ$~Ed``|TH<N>o&7@Y=JE?iWeoW~2vopV_)ZMmdaU>DIlFx7~ z8v(@WfAxE>yk~{v8X}#NlFu{s{U`%hdQ2$sM)~^b5kwLhioHz8Ku@lJOeFp3v58I@ zUv@IPf}LA)LcZH;q2lxt$lIrUNy(&iv_xy=IRAO?>ZyD@16MTjZ;q)>X+D1bh3sr) zt&@8NUMdQn-si+v+7jPvrC`5|Pv@4m1sE1mPrwHi3m+@ADBTaQ$uDHo>H=G;IOhSj z9v~d^k+njY?WrO3I^o&tlp$)pR9={rVjd@!Q+T#f8h|r+ih8UG>(V&ivbMmB(oQm0 zGPT@qGOZc#6MobGTB>ODPO}DRxn0x}?9zy`#wp>k?1X@YG#)K@tc7C_Zc49;fSgZH z*n_@)qZ1Gta2`8Pc+h$8=+O&<5&Kj9oOgo*g;XP;3oRq>2KZwg43w#xJVUdfh%GG{ zO(0(WjkqMGa^cKK0uM%5zrY5>H1lU_o-{@<PO`8sb`?B*-cnl2sGSLQcGI^<>ldn- zB*rS<oy;2KruOObH*M<|6Ek&(v7+mF;Rv7m5%m!K?HZ-x3tfuS;9q1|O1d8L2zsx} zbZAWZsVG9mbQFwsiUlLG_VGF|-ARk8v`-p17d7R3eWPvzV`ti2(}|7WgtKoDuWDVv zMC9nu#2ddt+OXyAh>7^oOM8|t<M>B5gCa7UU8qGiQP~yt?nGpuN3dNfGe?lGE1(8x z8IQ#kShH2C-6U9P(PF7045#OV^1gT3=)x(oDY26c=yZLzwq^<JO*s%{&<i0GlN07u zYk0q*j3HeK-(OzZ*a{EPek^3xjA4&Xp?9io<8P3s)Ue>rS3K!mO@!;ffsrZms^2jz z^8yBi{07T+0H;C%L#J|wo`6p_FB5xdg-RB5OG2c=PB@im++GrtFpYM3cMTk~MWmdM zm;9+&ba4Maq`hTOCC#=i+CbyhIE}lzTSL=8<L>V6?(XjH&cfYY8i&T+-QDdizP<N3 z_uRN~--~$vs)AaXGiT16WX&35q@=N9_EK6VR^N!X`_{*z+LFs4jr~{_!|v-EHohkV zS4}cgg_socDd<ukGI#@r)2`c+3DrWt4&%ev7B@M}m|Ph%(b;rtE7Mv%U!v-RBDwu< zrycuHMaK$&`a^cmMdYJ$6YHv5hWNqlB8B@M_uITJ)dL?qp)5GCU}OD%XZWQMM6g66 zTgJy`YzaJi@P_dEq&bAPYC&s}Jbh%_$I%b-fP4Xs#U-(`TabFoMsqqn<cA|Zu&$hZ z_~Q+2eUpD0R>_i_LS13NHg_DG52R6J47h3in?|jn_z#UbFPCYQwRp&0E!?hFFt<Q7 z9EM=o2{N;@vwba71)T9ovd_#cqL`2uM}oX=lvBXENiAH-)1f;0BXkWY{jdd6bkTPx z!9*Xd!K4WN^zF5yq~+wwE1>tD*fNQiU^21T>p^?=WK~Cp#lGzyHg#R^P4f@r4a9V} zd`1~WaY9@Gw6)2UIhw{Vqy`G*q5sLImdLhx_yY2U5LmIvv{YVEY8*sE7W=i_{j*3^ zz*<%Ws)$3!Mjg3GLc}IZ1P)r%Z6!#9$^t~pFjS05lq-{W+{}GpEEA({-oq!AHS-1S zqU~rd>AiRGj}-M5@kK)r+FnyE{Oe@j`b$PW@l&6ckZfy0-}{u~B0D1D^GC;VHWA+S z68>d~-PpmI5U|AG*Qnqwf7j^f2m~=kCgO7KmEQl6@7M)Iy{pdI+}0j1H9T-^MO!LW z$Xyx<aZZ!IZYwK|o@6!dsc&a<Utc~4BVunHaghpd+y-|3-q_-RS@-v>+A4N?&0c1a zSY!W?hVHue%C$P181GoP1Y0AOw_k(!;qI;er0nuH8s`~srD>kEHI<#G+~#E_;|A4^ z_~P~0*~j;mQGf2~T`Vg(Lxv5NCV_!n8hB2Ouc6&BFL;Mk%6G|fI&&t!rXc>1R;ZY! zxP_#EeFeX0U0u~{<uGbh!n>?BN86fPrEITW!ud7J*Ymd>t`nb|%g%P8(wx%G4OcE| zbd<km^$UseN)788)skV~vKisww?)LZu5s3dIT;{aQGb3}@q>f#oA8QYSk=0z`mdA- z^)d4j?`_;gXA<Wq<%N+}b-Rch58Bc!2O2+)<z>EBZ_|%MElmwd4ePu(&_`Kcjsl06 zmbV&a`<<z4H`~G(#bK3pw}*RHN3B!Tlcq{d&51vB^RfyYwg~qb1$rG-5Zm~bTAE%q z`UA;buZQPr<zl4et1~ziwa&*uR~qySnPHmM`V<nE!Ma`a03Bt;JKsvq!ZXG3<>|E! zJ)TRJ!7_T)vsul)JLKd_4ANt?*Mri6=?(x)DQu_N;G)mv)nae70L_);qP3Xxv7+*d z85_f~ub(oSYp(HO4&aCtDk3C*?MdF04fKeAF_iM@>+$_pgNFc%<lQ1Ue4eQ3Z4}2B zp`{v0_fZPdBDI>))|O=Exd`4CRzRgv1yQDUSIhH+T;u&&p4L>7qrQ0Y%?@<f8lqMA zdJOL&J5R^-uQ9^vuWclhg8k<+B&9UpAQ5dnODaN`@_tbVb2lch>xZ2Or{4*<L{HD_ zddt_)GdVGEO^w+qUUtSYD9nw~t}wQriRFWxW4F#`=5DBepDZ=>lrKwL_t<GeQJDDh zD7@%>nxGG3Pp~Il{n1}|G2{L&On`v5?G?BjmQtjThY?iCXo%R23rWyHUZAk>DsI03 zXTOCIx$7Y9tTAWLGP+iuDfTwTRED)Ri~6Kp(fY11Yoj>oy-`_-rF3~5rSv?DuQ~^R z^2TloOtadDkf1l<Pu03ddtVcskYADRqciQ6Kpfb%`E)<x!<A!7KF~t^gE?-;e-s_n zb~L0KO3aaO6_O{m_EXL2(@yELTdd5oZs<DS#Tj$g%LK?*Ubq`>)baE!%Vk?)7g|nb zQY(7Pwd9uZzq1S(Gmmb4tv5)Y3)?fAGo8C#V?6(RPojX*74+r^tZ|ZXAzxuHZrB`M zksPc0a=3)Nu$ocpm7c4p&xHb>9h)~#C|mQ%Tk{nw4x?n3?FVV~lUJkVHY<&k9Fvty z-wcdjya4f*OY;M1i07Opx94n}dnbRTUh(c9GVMkdrZPkLy5D`pyU1lfXg_DISVkRb z#$iNxAaFFLHSi>D8?&jxYH2R#!B)QM7BW5RO2a{%TqE@ErYPUsk$By+lO5$TYsHTC z#&F<+)ugXc-mFo1Y?Hc3uQhBL_P)pJ0gHb>XZ;ewO}^jv{=SsUmVCCgDn%@Cw0ql3 zU7g!!T5Kk**s}ibEF?mAlA^ot+#tRbpQw_xe~ylG`+87!lTH_D&AJit{0f5$$UQj3 z9UDX^{EKDiU6QnlHOeO3>34{`B*+c_x2ys;?jqi-j0_1C+qzA(MP*EdRnTTAcUifC zj%{a-9nm;7YM&<E4Jp7pLRDf0dR$U>TlIzA_xHGxyq`G8DDOK*r|~4v-XhTPJh9@v z<g}hSuK^d{dvSBvbb)oEj{?1fd|PG514jmTY;bm>j|GNs3E7wN4^7Z9pHI8Wc=am3 z1!OaHkNasL^O~xD*(3L0Wlt5CGY5|m?IouaCuj?h&I<#T7kOkJM((T@h?M+yC)tyG z$X|7)*`R=}TIUTS&4@grKm(h=hG-%2m}Y_~in%O~zyD7^F_yjLwsi!_0n%#d-KfZ3 zyk5QJhX1pRm5j@DGfuINGBdMrD(Y6qbG~jiZ5#8_;yuTi8NU>|MNJL0C_!9wU<fxi z0q0wOZA_+(l&HvT<miV^7m+cufU^JcMu!Ene@BbA|F7z`$vVYkF@RO-eUMS9l?|ZT z%KairKl#>fZYurs82;h%kL9c`s_&!mqPG-4HeORvG4WE2N_Jjx4s1j4*EYo0>yA=4 zHj5M=jeQN{sd{6yPG!Z(ys~dCV=WUwn(PD%Wu*m{n7d2|M6~+<x&i&?#x>?lQ4yIP z)-KgPHVHiDKv7Xn=}YQZi^vG_kky0`(3yMmwPccy#9}GCp`T7a0^1{hJrWErFR=W! z8+R!>`i+8bOM6VRGrfF0h@TERyFS9#R6{W{6&PSB|G4m)U`0sjvy0CO1(DE=b#$}i z60Jb{Nd}!=K;wIg%o|Dtb9zfuRvG|!#aWyZn%Cu*z&NF&qZQ6WfHi0sa>HvtV;mQn zN4b+84Fz~8Kw~I}_QGdcY9^nU$-M53T1f-cO&lE&N6XV41XA@A=v&|M|I)Vl7Y-m( zqZ`AQIo*g|n!lp-oax)HB$@4_J}NJIO9Cw8D;lO<Dlifn=H1S6=mb7}sA-PtFM!e_ z(edYRy*|uF!#txy;^71&f_#;UJX!3C8ue$u0RI}`|9PGE1$ZqYj%Uy|FSc#OPbW`5 zUHj!)!<-ZtE5ozlpJOZ1A}OU{2!yYAZ>AUB9-+{UBmZ<mA)>?<LXx=XyqYNXxs_4; zryEm7)J`mF-To^gYv<E+BGc+6eLlTD>~FE4Cb~*9M7kB91kRAyFu#bcCaMZz0Gt8f zOwnz{m*jOjAbZ7qUuZ@qb0zu=-RGZ`7|Nn61poYoFy>@Har!^2YS+y+@xNO};SEg( z|6B(^>)V^fMqmiy1El4WemX&C3!;GomqyJdT9e_1QZI@0=ZuTvr}V<{!I3~8|0@E- zZ!^H3p!r-o;Qcj_J7ac%Yb*4`67-)(@eI;0|J&@q0BN-3ocaH)eda#p3i6sa-CzHe z6?9;ry~&2*vg_fg8py%yL>{LE!b1RKmp8-5z!;9Z%s1bW{gwEmFI&on(%=_IGtl%H z$R#q5{|d6*mICSjZ5U2&FSp>N5__uE`76c3;EbBpZO!#Kp<FaEbN5H#!2hGBR@v`! zozZ6zlwNYs&XOq7J-l<gSH6eD@Oj>k1KcG8!iqR1h<8!v2@a#o5*>|+YLYUF#@$^# z@9M^Vw4zVkkBEyOo7)&9$HKlGa#!I7>XXF@Hf@};^Yb^(h-wuiRzC?gDh^tzbwTY? z8~6X#a|T|_-{7>u#E#Y{*2DQ;7gr27X2mz^#(dsK_-Zr(Z=nCV+2wCkpZs*A;j)+- z`p+!j4RGq2EJ;5zo+&kO`AFzya$)jI4_Ymml1f|)elEk?f3?8>PwEuVp*op`o>v!L zVfZH;7-LT6?Wfs5K7)}Iu~xH~>_7SLXV%GVLHQRZ(MJ+PXoKWSQ3Y8YHQ;nO^=8Zd zR{#t-o^YCCfBlRZWY4sy*MO?hQRVo#e>Z+ubjE`G-Uj`m?jV~6Ox(Dx|0AI)Aiqm| z{-cmU<`q>1T_W{BRzyuv>YW^vdUXA7<0(mA1-Yk0R&wNCcvKL8;}OJH9c115^pALN zbXEwmWqwlTW&FH){Y|)d?<6eb3NZBp7a{OT8Xo}3>qFeE+W%Z0QWt{ha=i-g2#Zsh zCh`AEj$Yi)G?8q$tu&ob0@mKMRs^TaOY)re>NPjrgAvs%QNOu?Z^uj*;q%!!4k~7w zCJCqa^Q7NL1K9Cst1y&dmb(A7FP(Gpv&Q?^4peBZT#a;DY`=89aUYPDUzT(R2vTG! zGwe9UwiWlp9p`_=ydR7c>o~ML`P>&NtW3{|&D|+{jHea91Wv&VH)N}Bk+WBv1{l_} zXC0GvB^1V;CA_&YX-oW}U57^vZH8)#bOi{ZQlDfQrHu3Bet~Bvb^A5R|HJn;ukfd_ z<WfJ_;1}GH8yY$QNfP6Zb18AgvdR7O)ho@y^<_&Coyr3fX+JO2#m-VetOFA=#&1U^ zoM0J?6PMp2iqTx_0td~88$B+d*aqczD9p2pxSov_`=I$wC5v78^87wGuYhGm>*C{< zE?Ia!0~00G3qNOz<swtQ8}Aj3RV%zT;1Ch+ov$HYhS?~zei@VD`Foa+<EH;+80T_P zK3xMOU#5qU>o&dUE-d*6u_HT+5g=%td40F^RMl%^Z+z%>g)vIhDf6<Md)ri9H0DN| z7ZIfA0Cg9X<8~%3Ew$ftT|D6C2`8t`*MV^QEf+~UgM1NWnciv?iVqql?|>+{L}A+V z__)+4yIi?uzZK*^2(JmxyE>DjPLDkM&e06(-c(lxLbCV$5%eCG&Rz`puH`3AyWV~V z@*hz>H^!UK7Y2L+qlqog{-{9-<SE$e@YI51oFP)9xFlH_r!fx^#=0y2_@;<86Pn1j zkyrlueZ(;F9)e{h+Lcxn*o2pJ4e`GaJDV8QU56ICB$Qo{U4Cz9$wQ)foxm-D^6qOS z@^5iHx7Zv0OVRbRw1z$BzJSt~o+x3dfBMS!r!TvI`r2*Rz~HpSulmNBS&j0%BQ3lj zVOx@#lQ+l@-#EW?DI&+#&2-9?d?}LW0NlC;4n8C@kRZ#$MY}(YlPj+wI`Qztg=ocS zyO1az{G{88t&i}l?b{g~he)Eux8IDW)I3f<PBOKAoSKHeb_o~8B{2!Ly;NV^aANa{ zOW^a_=t*jj!r}IcE4cvQ-bCX&NMtZV=0@T>(#MVmoI`Ts@rer357B$YmD&>|KZ>gT z?r|XBw|veS|7yvAz?7O2pRnP7O14jOYz{O|Xkvp(x1Pj_$d1fiZ^rtHS8tG*JoFI! zNk~f05n&gZQ*@Mqg4@pPvM!c+3ak;izL(>X^pu_(n_F~5d6T`mYYUlMbhZi9_A)F} zIe|e7nY4eRNKLEJKk**>_E+>Nd{B*gf*>wNh=7@4M=koJ6AJ4^ZVUQP(Mf6^l|;`d zFSIKa_ZQ{NW@cwrzH-&9RugWooKYG@TFuO1$u5+anR)NvW0EZ2wLdE!X=X>NGr;w` zHb%)C96(Rf=<vX=p7y7r19auAWs0JF$>j7=kG5wZK{EA}^%C`z&C0=y5sn%DWCmT& zt$U_gS{y^Zc65AuH2Ki9pIxVm&|D%#5s32qZUc2MBer&SXf{VRT{QYNjd>IG6d-lq zfW!dFy)fK)PsRc7o+iFbF3SvRD}qPd(ps5XxkfY{$Lv)&Bn~;#RX^RT49q$U=_T!j z0bm6omUuLC#_#qAKnmYT&%DbxwdIT?TTkWDVy$)luTW$;@61zPi=zpXAbb0UJ&MA@ zdD25-;7h}fz12yBoTbtEev$EY%c_G%g>%k@6pY%A^L(2OYRwuQX(!jQ^E|F_@vu7s z;ls<RWq9K`MxW<vk0f4=xJ-bV-YwjttSG4p(p{&wtR~#K46>AwP4c`)0>y%LWoKOi z?c;@=@<EkprEY~q^FiN59WZG`Tq7y#REbcXNZuWEo^!elF9H&eweGXdG&kk~<QH~c z!euHuuyd_yuaezmP-Tm{N;<n{X?2dGbdwd8+3z-ayB4=E1Q=ukE5wjL9vc<49y)wh z`{(#ZzqZvgr#H$^wM*m^2NWL&{~ndkPXtUw&rYe^=MThQJw3&)-X?rlKVR=<q>Ya6 z*%9wttr?*il6rx@ps4Oy*~As>O}qqV<=SaSjo@x1;^mYh%25FEhd>@X60n;6^adEb zNWW`}`$N}F972{Ayf!iCdNo%|;7ortJJB%2{mUo~!{Wo^N$VT1qJ6LhxO!QDq+qFm z<G$<Ar=5EvM-@s~>Z)W3IF8eIQRtc1&~M6r3(%FPdA<-`zT*{i4N=z7j^#dt-erq$ zJ=FMnhpueRm(g|3(I^0vo5I(yUV6|=z9UYErf~mj|6v@&!y27lmAdqDAEb_bvs$H) zxBEcSDGlAU6#kSJD*YoUFNDeSxc5C}Z5QNAO?WlLQa@}py$DrrK39+X1aX!nQp*G0 zH3NP5W#vYzlOv~BvYVeAa$v?lf%qH7r>TX{$9)bK6(@g%6MiHwDD}Q9``;rzOG&yE zDcV@#Wt;W5bsGIa?9Zlf7Z}occqT0DXj?e>!%ZLFoA)smzG0xfE%Cyva0>GchSsy) z{>TvR@5EuXuiv-8189a&1X7AH3TCd1%Y1)xg;Jy1O@dn}%IG9iZCq&Q_ZM0I2;>9* zI(9g5W@Y`+1;W(Nv>*4XF4NHzgZ^Yb){Wj4lTLwog?_3IaJTs@antjGntq(G=z+NY zi@#CD?UD^RfTJG&PDt)nb=DurK~Zf%?=+2CU|6Be5Ml{CklaOQ72y*xNL{HIU8W~A zJCrc@EZ}@08-~1rK)1C?tY0ua?-$83Ih5W0%4nuHKffP<RID<<N>6Wf^SqF(8P(5& z6Wjvnmm9H{PN{G<Xw~8e3GFp&N$9P7A9MH-_|zImgdFH-L^+@t755`a?^umt#v@^a zDXX8pG;$j$kXlwQtW{~ceJpC<&CRGE{}Qspm4rIsgXgWOT=Di4s$+Xmu`I*X;|*+? zKgH9Shr8A&(m>PG*o$PC>lpz?9F=TFB5%(axIT>P#~LD%oF)2}TV3i}cT6Fn6A@s3 zj`d71!X!FdH8Lu+QV?8i5Gc4&5Y^b{PFwRo<<^F6BYjl-+M|OJ-^HNH=9d*r&1LFr zJ&?K8h-xj;i>f%9Y#50Gu)E_~vM{?4O3R$h&0QDi9>eq9Ol_~CvNb`vuN0qi-pjAq z7yCu(Z+)D!42#FloRn26(_%Ya22HPXQ>C#scu#rSHLU(JP`({mPbEfMn=yOQ^>?O* zzc>Q!D(tYm6s4Ewet6X6FTkiPw@fXtKX!<{P&G-dOkHAyNsY=?ZCOtVbbZ`?fI{=l z{)fo_f0n(2@XME94P>bOl)d|H_b+kL=Pzc{q{nWgF0s2G-V>soBsX8bKnXg<e4-dX ziTpMBkc<%-KqCJJ_6KSEcyz7!vI!ldvf8jk=^U|eylgIg*j@Xg^x#oX9>Ze7zl!2T z{}jc^?dEcZ8@lT$K=Le|$Bs@$SJpxmfdZp6<#~Tx(6{?~Zq3+InQxuS8cgPdA)g<! z|7v22n&as_^F~aN+}I6~$`{5U_H2ZQwc%X|Q&{j#yX}EpYq%XdfAIfH4!LPGEx^O6 zi;5?Dh4|{N8o-VPc4tFbK+L)YPwQ6bCr*)vJ__;Qa>$`TIponWD}gUxQaL_Bj3?Sa z<vRo@*jen>%G$PLqcWUPE8jc<jI%67!FHP|n01P9!pz1g7Jw*BtM<c6*3CzjwXyX2 zEp+C*5<BV4ehFXjL80X6%|v^0>hRdEt3+IZ)=`MMTXgewY}Fe6;A%3Iy9UmEwKSHU zt?86rSbl1d#lB(j(C*9cmhHvxr2V1&bMqpu+JSW?mhe4;!P`oeTAG<_x*=t_L|$`o zIc@rfLTy7k?kG7M(s$`QOPU`WChgOW3gLU2af3(f3H+NdyNN;4@XgsH=3MpzA0l(! zklI5L9f5&ML5R0yt$Hi)9tiJ^w;N`;(YLR2E{gM0IM4F8Ru|gv67D`_G0J5NxKAhY zv(J2w+>sV(Yzx&38s+mMv?>ojG)GpgdRwB+5M9u(mo7Qj_olO16Xfb(P6Y~)viv>h zw$T<5<4++EdTcnG82E)2P}{)M@iw7$k$PAcyIO!K_DaQuIgj=zih<nx?)VsKn99an z8fFFN;_rdz0d79P@6rO5E$cyPC!yfw4c^UrUxO)fV|O<+5lE3FzA9e99A^R947ECa z97*Gh>J9ZwvR1NZ{lp-G&~t22ubL}|lQfkZs%E`$za9vJDSk!l=<3f(tgdOSsE(~} zi1bP+jpNM3+ZE}RyU&@C?+xx(zT7mL9%n@s>@|!hCK~AcfSdviKqTZtEjVCRb)p%l zz9|xC$0Ogf<L+V}HE5jFHZoM7(PRg_^P;O{6CMJ!B!(6OjAOzoP}BA{K^Q`y>+fRw z{_u~W4{``XbE}AtPp{=zAAxY<3+y3h`QYfCT8-STC*g-Q8UF53b;{4^qX|2H=eF~c zL?tt;aVM{PHlQ4S>%2EGEr-{X2FVuiqH9+^GE*|+FM@moy@ut#BB~}u0VLz(3Hq<v z&L%|@>G4yubB`3p`qXn?T+>+Rgyp)ad4sLVs~@7YWRhB2P&V;D!vP5}qkit^!Jj}w z<{0AucMj^raN3~=&`*Vfq0r9dB+Ea`rfaI3l0)p^^;UICyaNw&%a$iE-54<fa5=Qg zY6}tUv_mwY+P@GObs7nF5U|r7lR^Zsn!#PgW43VPZ>-)Y7=@=C+9J`%Kw)EG*G2}( zOWBTfk?a_$D5FJ8|FKsTXm94&V9l}!9f5hP(U+m&DXGD}N4;M07<y=_!Qis(Y@Y>! zaJ*lQV}Bf`3^!SJk3<ahTa6%^zqsZKEMeY^2b&!mZpsfyw<Sg#<*9cY$7DNFf1eQo z^2rH<IS%1yzt6DJ`v5_PR;2n?rRsVystVV*n(+tUNU?UMavMEP4VcdJ0kb|H(&BTo z;+Xz8u$=Jh*AiCW6Orp!5_{_l8Pl(8#4}ahX~+*))M=@ddOTgr6qc<7vUj>UhwRtv z@@E*n^a3FnvNZ}s4c&xdEJHmO2-WdcEQcH6P(x2}tAp89NBs)t7tk{&^c2r2?F}c_ zMqxFy0x_`5Sw^Vs={8YHdbMZOwUSMH3QfVednu&mK@XK?Nh4^*Zrb#@hg{w*dNs>; zZ5L~|Ny=2M%=5p`GC<#<pC+w1_rIs0ZgmlSP*XKZ7rc*ucJArFd|eYC#p#o71wv^L ztJ3bkAS0CP_2l;;E@m8d%wVowL`wIbX>X#Rh<Y9byCxa2Voe(?!w&m3t>&P^thEZl zv8}E-sv3&3-!xIj${8I(poBkaj0Gmv?Vt8-PqMhqoobfX&V0&+H!X?dnmMx&t*oxI zoc~VFMr0Hzai@8);Zzkhy%E`?;8?B8SKe^vSssS9Ew01eF36D^<*0LDH4TlX`<}=4 zkN<>hG$cyg`<#qUA<L)5sn;M@Vh~Di$Vnp9#0{(k!ZnLy!}m0dreMHs`<?b|a)B(M z9Fy~@rXtaRmcA)>g8@jTW>CIo>40==Im;1dVeY2c{Wi|MSWX?Q0%9ewj=pO?XgHn( zKNG7-H}S$|cE-MGK167=p|f?<Rx0H32yvZWB1l10XdgmUU!<oxK-H{e#W9|QfiHyS zNgo=X>g`TwP-cc5Uy7o^n+Ih&qn>Vs(R-#w5wsK8CE23KyrfO2qz-X%FN8XH;t;c9 z5>%>eM{@wfpZEgZAmsvkO)EPh3t3uTVx0gQFOIent9Y>v?pV$u&h`*VX6}ck$V#iG zU(towe*a)haa)JEmuB~UY<_&(TSv5?kn-;;B!c<*LE*8S3ce8C%a5i)^Ts+_{OkQ= z@L5tq_I0GR1O4pvtt+HPj878Vky08tGI96U-GH3=^}MB@3+!;-W{kxgVrzNcjm3v( zf?rz%#lsEiwq<^7#H_{SPzB+iv{PRfRi?k3H_?7&y@tK~-OEStK`3%Yxb%S$vn!Os zwDoN_7a@|u?JlRRm2Nv73MjOJa;>vHqU(<x%RNXaR=@lPS$~HJy7JbiJKDn==5&Yv z)`Fz$y!|~k1O%vA(UAjjZdq130S2U>e6t%BtKcxiHEaSe1`2Hueo&PB!E2uQHa%X% zX2y%)0meDzyEJI_E~3<+CNu2|VL(i!FGOT$7lK^zlTv(cQ)IE_=h3)WgSa#1;@wYC z620z2a4|hcJj}$Oq8fCdLXab<;3HqmHJ1S!9G~duHTYmbQm|E@cBDibkpebO!B8cR zSJ~2_pS=@-0^WS)>JGuanutKW9Yll{2Z_>wuPk)11{5kD0y8RtfF|6O6l}jQn?YL} zNPG!L_m3fWS?Cl&vuuF`6Y#NS1^BptOxP654g825uHH&W2_hu0-}E}jWjEa=UnREf zWJ?2)VnJ?{G(T!0S!vD`nzfzG7snq(P!$OLaZ)Rw1gR#0&fDH01z@27(T@0U4Fr}` zxDZZ1c#%Uf8QiX7RWc!elky@bhyR?qvTdc~4O8_LbnEv`kLkl<4q9y^NK@6pvkO6@ zY<}PYM<)nw?rE=_keaRFH7iaG?}phGb4J0JT>|U$f2E@ejTY$u<~y~}i&_OqrvOl7 zZFxF>RCMar>2e`T)IZ(Ax5x$Ev|<HOcECkY+c`2V=4;gEG@0M>+t)8?3$Jp-VKFgU zU~5?!x8*`9A#4CnSc`==4c}FUF~x(Gm38gfphc-%yaWi02C`m)@P??+icQ$;VQ^95 zd})6;EG8Ab7%?LB-LFRD!ZV}*FwZh3<&#QBd!Q$OBG{4&hiCl^Ck6@W|8j{vv;jpv zvn}GoG!_xF5=T-bpPjH`(q!L_G(?1Of@Vj78jA-$@e|$q%c5`uP|DA7h!F1!`s!gP z_{6WQ$b_kJkORWt7J1FxCG!3!IvW(b5aRkxwg>7<N`ouN8jt>c^iPeE@PzRnkexm_ z`_LKqbuBZB>FNp&mQ9{zqhJq&!7k<`&2t@~o&Gr6DvZFZubsg(W)_&u<iZ7B2j7G) zQ~nxBOj*_mO~yUrTa((ZZD_w+6*llhxM`FkKzYKs+NkhNw>XH-OOhU(5zF8-h^$1l z3+?-wO6UB728VMzHp%XXc?`%?9ZlUl@Rat$Cv?us#;jCG4^5n%oihi_D%ey~UWz;V znA_-Qf)eBRIZ?i^F)pZ#qEk~V#Rn6WD>d=DwCRDG+oFv@1LcdLr}Z)q-0d~qbx=1m zce+}=$j_pMoRgSm5aXOz%T6Vp8}-cpJXd<QJiA}ky|mn%6$0^5eh!*Re0LYI0}2%y zGsm*mu}3s#l&j+6J)TBbZb&dLeglM_Mi3Dms7K7im6IxH0(3K>H=IjGTsMsZ5M-XX zg3v-d^FiLu;paom^U~+Kbxomfc}3_bbKv5kzadLHGoqsR$%Mt@^XYe|++p*}u4){( zveMEVKBUJdi+2^w2ouAi!JU&;55*o~uBm0+*g1sT+_dczJH^~4U)&&_b2$&W7C<`u z+rBw>r`uqNu}E__5IVG}8iVvhza1=xEQ_S<9O98=E}PTZAtWbGzcL$Ye0c1Fqh3$5 zw6iuxuK7#{Z~{Z4&s7Aw4f;24SbYsjW#p0?AdlJ-{D9@~2{QLVWE)S6^?t}P0Qq}t zT1p4o4@P@WI?k-LlyoW5V!0a>d%)A~Z2zkT_K!8~?hF|R`qOnc$M{oz_A&NXLF)7> zPVqGNJUJcG59k4?3;s@Wk>Qs4H9E7t`UmEtR<Di~Nb45uTqwe14x;U$rtTr(*eH*2 zM}wqE^U^<Xcb;dee6ZJPdKiP*3OI@j*REvrxEiP`*(-m2Wx8id(;}7HH7nu$6I+d= z3QzEqW|?fi&O0JKBZc8r@Vxh{6uN%RVU=#^8QGB=zUZ)me8}hi8w1RD3=f!B7nOvd z&ywm3KA~zT#pZf(h-s$p$(yBg{6BhGhs^yH#!Ia}TFMs@#QP0fTJ^cJc5k~R_~sLk z#s3`Pj+SG#2=2T{n?4EJxzT)|#JVaNA31X2#yx41Ndoc#O62qW2F0xEX?T<>zeXq4 zu6)do_dfO@peM!Ow6<77DkY3|tn+LBnC@YY6i~iR=-L`}WVSY!)M<R^iHYI9d#!_e zLd?O>J&dUez`2e$IbvaOaoNNxrlgEXoMZ;Kv3f8p^iiY`$Lv7uW)&il_o+2MXH<>N z%o{k(103x3uPmibZH{+?V-O;SA8d4Z*(gPv7^72@voWQMi)MZYFHSL8cgJZXgj700 znkCpZvIs1>omMt2qx?v>rgk97o=7W8mXI8qAb~gRr78r_{b>Xkov*98);bVZFKcKo zwSlb@hq?zCH_hlnJR6c+9m&FT|9B>gzYpBhdilx)q~^{|GV@#g{LxEK#c%aXwfB&8 zs90w=f9PwfSt<ekahfcqc4Y$Y9z(q7WX>1Drda~2+?y@CklY*2TjJMO^7v**OJ`fA zVauOazHy^Z+DbXQS?mNnGE7oe<cVuWX*-5;>sEz7DzB)zc|G6_a#`=S-0XOn0Dk5u zTYz8iDO9_fMd>f_U;x1Ep^9bP*_p2Kl9&HPK;Fe=7B7bq;LNlUSB7Lai~Qk(hsXn* z6{?Mg=yflixEG+HLj23>SmH4xCUB(!`snu!T|F7<o66Lgw1bmh1Qa4);7BA)Ao&2D zvqy8vv!SC0NBH|MZe9&zazET`P|PQa+8vY(O{9phSc78USaeaRs-D9JOee`<IKw6G zLWTJ^6gA#OdI6I45Ml*)_W02@+?1e69(9eB{#cOpP>}d&nj2R8Q&DSovAY8)Gd(Lk zGje_I#0(=hj1oxY1XTUnniYoF;f9>WlP>#9G3`*!Fo)`wi8eK}=AvvVpL*<0GXmpM z?2FOzA~Vgo=MM{yDpakxd0XuA%BsSHFK+4wN7lHxC-0EF-<;?FL(Kd?l{A<XAj0zH z5C7jv8bbfA<p2Ds<Ui$)`FmnxJ>w!0sN^4?e;UV@CZ0h7#QDwq8|U}*Z=7E&w#9!P z?j*@lJX8!UX|%|ZR!z5m1<Ltze#-ef|0Cz$R~?46qZ@(<S$FbOuXA{&WIk0Ijc|9x z2WVr6o9F4i^~B5+-QSB5FA^if_v^wybN;ao1Vwul+>Jo)w%mRaGu<+=;UbJaiJ4EQ z{~>1T%3HHQ9B;{q{6oyV6$74{B1oGA|0(A`hA3cJxQJps-1Q|{$}0cMmpEUSj5$s7 zf0&t|rXtOOzc8k)09a5Q179IQNlfd&e?cY06p+cZie@R)Bnnp0d>5T4RL*It>Nq{H zs#>vHDSlyYm3GcPM>KhGK5aUih}Bxs*9Wm<Nt&1bb5TRfeUZU=G4|b*WX(jH1bIAE zvYf?QZ@*~m)D+u2ygF1j*gqY`5>8lHLa0#@$j=fQ)>0}Ecgr<VSB}WY6aCXWDmI@a zv1cU9nwVjLJwcY5ckb1xGFx}6NgcbmI`(!bkh<DVOV1eop`2bUY%QT|ZJMeouWCTj zG((+0+iknJqqt#axS^)N8kqVa+8jNNNcBAO_wUa+47J)c3sprAu@CMm?WVuVX<lXP zX7fsx&&s!^H`a<0={~@6v2D}J?aEt8!zxhZZfVw{Qd7#FQiJ&E@4AO4i+v@;(fBU! zrq-f+AF*b<_-HxZfw`*<bNlaR#QV->_iAwdCD3X0UeYs^fZC#wB*b(w9r9DD9y*H_ zHqWg?pX`+pswx7pA5%)3Qj6T+Z55VEQ+2<k=8`?2SV4dXg#?_o>{Cs$HbCC0(Nl8+ zD+ZAyA4e(_0{qs0sqp+Spa*rLp%Ef1>o^BS(#(7*UYavq3VbPY|NPm9jEqbg8`^!E z!lD6OtoIUz#cX1Bm90o<HM22#8(w>eaZU18Gf|q3DAbzy=ITaQ4uPAhq&2hgX2lgH zdTfOeovdT~Qn!KwaS`1$gW!s{?Yq~CcVh3?YDahYn)C@;+8XpK5cYl=&fqIDl)+z4 zZ~Um5wd2VC>^Tk;z+^~>O8gBQAA>a>tctq-TC|SP8t|fffx(M|PU{L#`aJ~$p$-o7 zFdXT0ykeGIEu1A-QPYN23NPZy?a|gTjSy}pS*mQ@&TlBCrZt%wWJCi{RgJ$!BaTW? za7%U*C!Ts$Df(zpc-jkzOD0Ek6wQ5bKQ3{Cv;n#IyR=YkNNh(;CDTE7Qj#G@;wXZ) z$I0vWUqx^k6+r6n%ihGZ6CU)5aQ>wqu%Z*ZC^T!}W@%)0eO!p0_Jh2lT4R!d5^)Ua zC9IzQgalOTo;}GI-S7u_V!-bUG*%(GOxfC~Fn3b*KPIS6C^fYxAZw__Ib?D$!4y{n zgOVj!RUGVy@Ix*b3XNsHVQtL$7&l=6qXQE4aq74Miz2o(ukUQwhcHq?3M-k3q;<8K zniJHmw8PY4!^k;!rexXK;;b@RZQpDH@Vnm$s9eu~=^%MQz4SFx_=tG+6N>Q+{eZJ} zT@-O`)N{j(xwbNitCszK7*@p#8#L}v!W2nWP8DQ1(yAyk9tqPxCwczIDd3{li=9fc zHxi)}@};9W;76<*@U6uqW(DlC9Z9Pzr>U>IuTTLZ&0tO;ZRF;5tZ_kgD^l|*rLVWC z#cPtaW@0pAuo8YwQwjyC8MQ3iRlPR9MeGLXHr1;)!o(t@38J8^dpgmQeaPjSfNxch zEgL=Rcx(;<{Rl%o2`zoD@YsYEkjVMRRReyys>gnfbZE5veyibUP#4{uD2W6QL<vwE zL2phPdRZbJeV-$=9SkN$E@(%Ou_G5;{LalkVvYn;i?ZVQhd*YO@#Yb_7KP}RLCMbp zb^W?J*RP+j*(U+t9}3?*hoB+N&me8OfYecFE*Zy=^QkniW|+kL%lcaE-f3qp-jKYF z9lt6|ia{bP+XW3~+6``+-o)HiG{UBNwRX5zXf$CEly>l&n}%PeNJr17DQ|edK4Qfz zsBvErM4oLAqhq+22^GTm=4SPtbcD5ACuNIR1v$;dT8FjjkS_N(bMpDI*p`&`I=Bsc z_7z6i<^uC>^!9t4?+Qp9WvAiQM<~NfCmNGT!|$LiOlUtE&06#sXFOcLR`#tRf_eMC zi7SYC<1mUnQlDz?5RnnxStH19^GB)cOg%DUl>G*k^8#HavzSeJagxj|YptN6B;z}+ zokT|!el~0|JzvJ0uF_kQaAp<;8%jM=p)<R`9Ohb`1$l*X3JHewgT93hK;Igy=8Fo4 z2${|108SMr^ylzEEp3(Tz)4<7NJN{_?v;A3H8%HJbTF~Ry$(n)B}6$B;cG}_=Oq2b zsXZ4(OwdhXY1D|1L@g8yz)VzKC%789+N;4#y4mvNHsV9DdqGcsX@F*ktnGdiDk)wz zHnazbd{?eOyIk4Kqw|ehsh4fKBV9#{!~3kCFfY(xbt@UJAt7N`t2|Tau4%jGvc)G^ zh%==N%e@1RRVz~TchXBCD^_edGB4pynf;EPqMrTzGCYNfGG&BD_aXEX;djg2Dilxb z*vwNLuzVWvTwI@_XG4JJ_u2b_d5u~~)fg(4p#hKX0G<r8s?Lse4vBoOXNf3ODY3zw zUo*Uru`tiVpC8{*;FEyZn;fvJ^(^zI_T!tCr%zqXIlnU>12i|KN59;4pdmifi_ed0 z_phuE5ecjgWC&}cTlV#rS<;iLL{(@VU)RPbBJ(7pywv1WgSU1urK}H(FoKG{mz^#I z`Tgcpe4yOqt`<7WvW#yR{u#FxV%W>JXbC?elHQP`yB4WUv<l`fJ#=)K8hLLeXhjc9 zCT0%;CMN=*D;=#J_?(AyPDxaFj^8f6;01Uxlx9VW)PuF@I>VYB@3(5~CH5J@HAJF# zWf)ny_5{l#yL`Pz;>UB(5K8{YyW`481=R}htl^(nWl3lCq|gM_3i9NnW9BDfogfrz zckAhcZaN^g(4Y_5al$?VN7U!;9dhR<nnH-srXRZVs5t@;6-K6L#b_7o(7_}}p51vw z{TpN{yrPesNMwU{Z>HfULDcZ)v!yYE-ZN5Y>_z?Uge&;l6j2LdOxI{pl4akk6UL6$ zv6I~Gzxre?M6HAEZdG`76Y|{0CVr@wK$!RM6=&qcCLo|SxCO6my`&k;1H&ogpi$vm zosPCw21C4Uw5E6{?hn%&hJ2j6-IL0G!Hvg=E3a2z6n~`Q^Ta&L*9#EufH(bH{!8ag z>1uCeR-gHuDsP(*<c6+y=-2P}leVH9A+ue;kXP=Vinob}>-|HDGohAL>Z*p@&+QXS zjw6_di`f<6uYwEuhji=EmjOzM949})ra2gJxRjcrXo#E0%wmi*4IvL#ssf|pqZ!iJ zL_)>xi*7*;VXFhCtQ(%jgx6^tCd=EA7nP(12K?F`f2jUE**&S_jh@WoC*le8_3ZmI z=p))`)pnflH$WHAx+<P+KtMY8H#UxF3eC+*t8LuS>)c(D8>oN0kH=q*0I~yoHkm}m z0guskgC}o4^uoCig=3)#;iA~*q<SI$j4gDetb0K>*mYW_1LO+g68N$9LmL`gwhR6h z>waOX>6X3QTGtypIRIz^us{bi0q+s)6n{HT255pU(1d_(kzPq6DC`Uw4Til_MFDwx zN6nE_s7B%lo?HUtv+hSy)c)gd40O=o$%0VQ6m%Qxxz!YKHST%JY6iZh59^sSIPh7L zGIMg>Xp7WS_o;%0Xw3+1vd|M9d0UE`*wsRrt~3<s1jp8(T>)=~x3q6)m*$JQWE|Kd zWFfQcz^eaQRTpTNKdzBqU9JVtNMIqXy*5;#cbotU+yI5O#R7P$UCD5R+AMasJoJ?@ z3AmLkQA45tYVL%aNzw#%iKFZjm`P>+PkwSot1-iw5NgDg-pDE#yXdG<q4@cq5twAS z6)u$})YDfE+FciCV6Q6L{@l<lup>~Ghx4i}CiK`1f{gGm3*e2n^O23Wu+YjCctI5! z)>?8mzhc)N@4)OjV{Ini$ydR+`){~Bib&E*yS4?2(1tX7<QP(E?9+i84FcyWe#V>p zZc(n9W!P0ncWr;Y3jKc0hIpY>1K+k$4TAHvZm-2R**~i&-SO4ZzrWjOcFR{w4^Zt( zfkEmZvas#1-Y^MEupaKAhTKrtVBI?;Fh0;+Vx5`;e?oA{b$U`0)`H=au@;l!z8Kkp zq$-bbd~t-j33K|*x$tXrtLrA!>9+-W;1!0id9@I2OBMa`yl+*nR|CK71BGVYS-DYJ z{;T5G1Ntm(Zdqa4bx1Fmml=xu3${z<MZ!vMXgtp<5We6ySB?Ee!DCni*{>Hd)u^qV zSzF8%xw{Vo0nIH7?~smZ7iZ@b&MPCjL+)f$q;8u&1>fx|uk-vJI{drqrF(J%K=+r> z>Ycas;6znf2bp><C|s~!p<1{ZLbt@$C8CO7qOwJbU;ONGzjXOR*udkJ`|IrLF2-&1 zo$2<dF(mp~tRLXj`kFI--4FQ8vvYcJ2QOo?ru`R{#eInn*bY_h3?5RA3Z8a7y^i1f zHlS`zXQOS9?+bETqeLIvn}xGS8`8wKcsj1t9akA|zt4utbi;eIm!#@4T+0*~-7}8= z1wVrc17L9u%drf!uqo?Idw-Gb^{nn&mF)B8vKO5kuRA1nRT&xIJ+4jDl%m5j(rS#K z1GU+}J3pSlJ(<8i@sd66<e2p=EHid#re1T7c)No~C@OStqsTlzhNeq4mR0Ue*6AWC zU02*LX<8>&DU6oyfb4LCO#b_Q_D%xq7+2$$anF!IEV9@<p3?|7{0Xk(gf9o7vs8VI z*e*wFA%F2})?`Xwq*!0Z`1+(ICoT-Y0n-c~PoKDiMc076>(+2^ja1zw;!KCp2=J80 zErcN9h<Xcj@l@DwZ&Av(YgECd-6NE@4svPuf~X>Q$mbbA=dI4gPdA3S1#XwtD2WHq z6qK-u-Xij~lZM1;2Kvi*FGg+jQJW<R&IwGXEdOX)4Kq0|I?V0L)i9W1Px<P!X~cCm z3|Wv~mQx3deh=sf9#qQxwFG-gCD}S!EDj|FLso{3gYMXvwyoT6ofxobx|274BG>dm zPZ)rMNbs_ZbiQn$z|peCWlT#%m}Vthc1pk)2c|0plYvxqj4V3FTzTo?k|U*gDO+UK za|{ci`lxUf`dN7q9UaxQiD`cKU5g*rH@oBvG`VcR^%gC_El%8;>*<fk{`Bo-i76IY z2P>bg<1G6Yl*SUYLW~W}eL~KNkw=>nj~ODaE>&py5IIvdvtKE<?|ZkY#(X0hZ3<1( z6>z*y_vAfgBMoF5Bfm<y(hX6n{4AElYQ^JLP0qz^@AyQdQS7ut9jC~PWM}P%k0+~U z@~RZPrAy6~F2q#DbeqevzAxRB&}`wHwk+NzY0QQm(wfJarYp|xdhpAeX%0M-h-jb* zm%N&iHI<l&%{f~|z~S~Wu^FSS)KJd2sMb{IPiUDxxMmqnba>u;AEnz@=vyLCUnZhI z89ZP9v6w#mWMgs9OW6UWtpC-FZ_l@%m=7(rRC7S@RGO1+*pE29b>pX8Xy|QP*N5l= zeu-&9TWxH<u?i#$Ub*UGn{xU9dso0~`oBXuK2I|I{|)J&{{IT;2>&gmM3KN^Dhn#O za-K4?klfUUQbs`5rK%znc}3G7?0;n7#A*DW^2hBJU+(|c@`wNbTK@3*w=UKHt^5Hz z&G6slkIghI=`UXn?>@^P>NYroj<`Mr{C-5>%c!CqCG*G$=<}c|m!!x<7IFlS$WT78 zenij=n>vlYxb{v)tjw@bVK|gdG#G~5iD7TC&2b)!l{_O-d&D22igHgw+<<;5&b{`G z17Y4c1w4E}*o^c3*tt%NxGBU;3L{WUsD`_Z<E^>L+Ii!=bFPd+tf^MA;N0@p>OJGt zhW<8bFP*O^o|Uo_bUTBU{oEXFyz1y!g^f~a`V6aEkM8_*aq~V?dY9~irIt}88jtNb zmAyahg5<cnoNS|WaOVwi;dNeFB^2dra^pryvt$09=-|9XCk@AW?naCgsJ8#B+Gw#` ze{qtdKkSt^>PPWa;Hm~L?vI&kU);1@E-BdTKO0K#lhU`bmH73%4V%YwZ<KCLFOakn zZ9efa<ZlO!Z=3!lXD){q^|hwz>YiGbS4OywIvsEOf=6>~8BOv>Ac#MCV{i@{HJoTt z%o;R7tb}us@B%y-cEFp#B<&zME+mrdgUL#;T8|xcX25yAKE>=JuQEFCY;PV(4b0D8 z!3z$<ok8#-JlPHpG@ARSrzy^lCn5kvt2|>~km*{^lj2T}BUQ|ZiO%2&<@8AUF0>@_ z@G-;E`t&K>dc$Mr#jG%*X%kxVms*os5DKMuqQGL2EwQ+HEoK&Fv9dcErh-US&oc=H z<EGh))FX}Fw^wJk8;)SXod(M1GzZNgZpB@LR$3LcJTx21>{;3V6z!9d_gRNrPzX+( zNX>$7vFw_Py5j2lRq&pKy>b!0yM=Pcdn955l~PaW_B?GhSp61=4lFS2cHRt!^yBQD zLRl#$j}`eji?M!J{xst;S2NE;IDx>R-=G+mL|tU9Ogk7?9sN7X%(if=cFJ>4q#ck< zpdFVm=otZxJ)p^dzx_146zV%<;p|Vi#XIy;;C$&QtZ8~cbm!BfAI1YbFw>|F@Ph!8 zKyKO-Fg<~N<VzYR;z~c_L~ru&n1Z_3s9=2H?{!UAR-SA*TCL<Di5YzyB$crD^mjxi z-(Is_fy=hx@2g{m@*HJlm5rMx!SBWwAMu#vg0_#=(K6g22N2ewG?KP&EkIo%JE&No zEWT}mk`Gh)FY>?@+~X_a>2v=)q;vm_98<+*PNkRqt#+8I`Sh<kj3O71_X6k1JpIcC z-@Cr@KtB~Yz#q)16@sPacgx2}i^}CiuNop8*qS{U{-aPfYt^Q<e&9ZrUUov=y%J+B zUS%%8e&I~Oi~!V>igIAm^VpcM%nSbGa}#qw%Gy4-SZi3v<gB=M$dP^<f~E1L@~4() z86SeAKLy%QV!4CsZ3N!00*e^fNR-BQzH@V22jSg!*@24?XwosLracc*Yu6j7QpWE6 zaW}=k3+GI0G&k&k>`K?AT-74diDLwMcdXycQk})^WY?T3RW(mNZH!DWBr<{JMTOS* zLgIuPei=E;oh@XN1@+&E4E=GI6~LP0HtsD_M#Drr_)snQI@<?@0V8Z!0)3~g-v!zz zlp%d)Vo)-Q!izLtrs$xI2__8+K~MlEgn}awE#xw4AXbG=XJ%s^ze#Y9TibPQqvH-i z<<)D8SDf_A^y(=SL`_nyjw{zwHf&!h_nypHOSNRP{LY_XcBxH|=0NJ9ddp&}j0%r{ z$}Yb`65#D}NzZ8)$_9I>F_B#H{kU-D*j&Qp6wBTT70p%I`&}FYm$Iy6$(8CV?AEeH z6vvtBDq6)6Ikx?`LthyiOR*dYX>FY&?c>op27g27-8w4}NPofq=@pZt6_oUm_(0f| zomeDY(E07t#qP+3Xq!nBMM3CD#M53dr6LsOY>w)%Ys1xQW@vLttjR0z0~%Axq6<UO z^{*a`@j#$n$E<>YcI_L7KjzaKB2c;{#fFs<m%~#1?<qpUIY=_WC{|BqUu#U#q^9$& znUzk?W@1T?;-Doedq*ve*5-CY(sh*VD%PcWOczi-&K<@~^wDuhdot{eKyCwyP>yZr zN8~gN1KJK-nKIC#-&gQhTT0)XlzHoI^M6w0>h@NGyI~N!zxc|>6i+u83L0X$;MSHC z9)%Xsw*8D!r&PX-R3j9QrC=^~+NiTO>@1&$cOHXP2$k(8-8>-hrlWnigJX%l{4sQ4 zI3V~9Fd6)f5_>mG$P~P}P~H=pD4z(Kul!Nzq`KBo-qX1k-D0>lz*=YB@ZFr{so1=f z9aF8$M)!}!d<dzo)Ice=VH!N@Z)t5bF;%NleDHvQp*N5m@Fg+v7liz^Z}S8TwbR|9 zv)KQH$-zHia)0Jd0m?|^3Q<AK1I5`R^VV44{VaQfPKfx6b)0J)E{tZ{A*gl4GI2JB zY1B;1%5edoZ0c`lnOflY<JP}R?M8}$qx||*E2Tj@)~TIi5~HLIbCOzkIe<S~cO~&y z3To0IUC>YIrlxcP>BO(-yViz6oFTJSLH~?W7&ywrw6;Fjo=6c6NO;m!c-JNaOHH#C z?O#yNDXm?kc}RHx?seo;E28BTqsP?0^0{8)Rx_|aqhw*+ebIMkpT}{Q;dS?)C4s79 zP$=i@D|SbkGG}PIvyx3~M&&;!@`#ZY&o7O_&jPj~w;@AFj7Q8Swi^596=vj#7V-*> zf_%>QiwJYoN=Fsa-8+)4%zkGU!8tOUtxM(og`VW+C8xAL7{;6J|C!i&X0~RVx-WDS zoB7w$s3O&pO$Lx=v{X+xt`glYe~ii`=z@3sR8FxoN`R^}Ey?$Kj&u>+xce6-=3Hk6 zOKjPlnd)sO$Ahb&L%3G1(fB9D&s4**4U+($!?RIk6kOtkj;VZ18m_zx6tfBlPrMl# zdsS_Ke$d7>o*&;x(tL-M!r~WhyAyn&KhTatZc1i{Xy0IDjNogq(Y8E7ybVWpEfkf7 zQkOIIL$)GnLslpK=n3Vq)}7LrV+HqIH<5;>>lvk7?|{KIbuGr#AK%>h6(^8~Y7KB& zP3|Lt1KtVxgeKasq8TFJ!H;F0H+vk3dn33@_l2C0+~teVt=rqzORQb<)Y1h?AYzWh z`5QT|y#S9jsN&EySR%e`12a&ATD-Q@i9%}5teXk=!12Io4~Gr7o!<%<+d;)QfEZM4 zK}<ULMh_4QBSC!HJTP;6pq3FNK7;waH#*{!JLrCn8hBDotsHjtm)tLg&rxqru^>($ zcT?+K_>m(Y@tYEhh@7I{Ch~#q2mzo8jKp=;btI+?8`!-C#s+wXU0hOc9bwZ%aJWoB z3HaAJbit8&L@AAjFWJ7Y5^A_yv4<eMuurO@4cu#oAUNl4H$JNl$Ee|DOpF1z8V99o zi&Kiue&9^XRoDE3d#r=%2s?Y5k(hg4m_SuGlBPsSOC+K^giG9^i-IMY(r#zMF6!}{ za5K)(xo9vxuqWoY#SUp^{nGvE(u$sOw5ILs_(JZ;Kk9SJRR0fMZyi)e_e25W1b25Q zxJ$4EcY?dSJ>1>h-GjTkdvFNu@Nn1Qx-Z{vx3;!+_rF&)RWp6Nd*<D9yZf9PZhEzP zo3!~{AU=0@DE+sUhSLgJT~!wm-8rO9U2~6l^gM?y>MQ8tsF}nn{Lp6cdQ&rFx*9c_ z`+Ap4L{X+<hu#p+^!C1M1X9dj(ZpI2YtM52Uknew^+sTCL{2k5AVMc>Kzc*mVp!s_ zlg~mX*UfwEp|`bGQi@v=K?x!~pCBqIq0SK6quv^1Hoqd;f4Pk>T6@>GldV|Nt)vrI z$YfbL>sOLA))*d(4Qp92dd)j+FbcTg=G1c{=p-lZHn*%Uu*SM#=IZT|)pu@i#|+~< z<(gl}tcU=ZexZkA46+JSU1Td&m?hCUc<4B`Rdb%d>nJ@yRUAj2I1}-vb@v<$VqF`p zi_;}}G#!wAJsom^a-U9vQ?_2#Wd@&lbxf;r*{*CdTCSPn=4txDAq#voVCSutia2aB zxps7>32}U+yGH2QNCCotv|L<0-+MpQIw4I0u^yr#342YH<uMXYk^g<AL*(6)^&Eqq zjUjEin9fa_S>u|s7bcfX<7o(kvkk6V+Ld}Bgu%zJvu12kDQ!`%kPNBKTJ%IL(afgX z{i>n;aLro6&xj39*|kLrU}?R~Cawbw10hv{uZ|YlN|;|2ne?v9?6;~~d`x}i+~_;- zGEZ({9yu0Om2H`y7ztMeP(2i*Z~btez;1&WmAa9mj6@H7fH-7+tn?4bl0IL9C6z{} zP}s86RbK@O@HWLn{42zEg4CMnJn7|J+LSFgNTwQwQGb~|&r24>C@#c3g%4Ve`1e~p zaPW)Zv##e`(|0-DO6n!s*l}_4NsFfW?>54}v+^+-i%??wV^;Yn+>}@sb7TtIfgNk& z`(2qt2Udb_qm5ymG$vZVtcFbo3Gt1JM-J~EkKQQL7@GhEfXkTM-fu>koS#hb4~3t> zlAy`Oa!T?CBp@>dRl7rpu8UB&L$aic&)Y)zY*N7htkIuOPT*DK-5L42VP?uZec!h7 zn~$I$WqCtkSTAbjHta`$q#wgvUeWrz!b|f3+3d4&!UqGrz<ZItAkv$YkQAAEuT3@R z?C8ZQ?NCBxuwG-zk<e!hxR8b5_LB!pwS;YuO&vy;X+Lbxkb!yQn?2k{q!r-$YlsXG zcI*#k5%IH5igo1n6~+?TGP~d*X^kCZFPP?ov!cZ7cS^MY{a}WP`iqF=SBz$6@Lt5{ ziNv!fo6ar$353!#Pbf8a4U0Ay1}ncG&o6Y>>+!ugW?oP5*L?B46y*XoQGy(lT7KYf zO#4?Q>xQT)y->a=w~q~ThM*Hpc(O!HM{dy0%eb)f+Z|rh=Q@yydnxGo!Id4+8Vf+4 zO>N{`irI@o+6DfcYNCB3%BQUu{llABa*&lZUe1vRd+G~n1TSe!CxCt{T_$lJw^<IO zlG|UHtlQU*lO7(YV@GC8R(2FI9Muf4=3WBLPJ|&$`3R;Q2S<i3&?oyl7_~mAk0dl5 zbvFaDgcx)!7koSxj`!hs(LYQfF!sDnkts9)#1t>H>_9<B_cJIvLmMJog*TY3_S%!5 zzqD2&HnF|tNdVr^zFa*pEQHFsFJd2@w3>bv?nir*%G)<$N^kia1*PO>&8NH|TN!BP z7HbimG&iWBM4a*FiZp`8yV6LT)jE}Bp~uavV#|#J85yCE1K%`hnp)4C!Q#2{%Gz+0 zZs+qo<s|2gq`${;c5R4ts2^DRxSk<B8GuprJSSVj3c^Z&b@nWh^bSFE0SayTaYmf( zotK}o`h0_oXfZ4;@!1;VTyE7$@!5wt#QEA84M=!si{%$bh8EM=R#U<8FY-C2XRe_^ zAjj%agH>U;39_VN7&C3e!`rNliap}j9hsl0hMLCx!r7jTU}MG@gMbbQzD8o|8-DP& zqFs_Twp_DCWbm1<9|DIsl&TkT&wL_;Gwu7n$!1R<L8MFjv$I1#CU1%pw*%mW?h0Dr z)SXRAe)HW+C!k>Gqw}J?Aq}HIeK3wqot7g#I(yAe4d?HL?EV=m!x$fWar5`9eu|3U zR%lFkr@pomeX&jW&{LwQ42cay5@%aVyhfZ{;^XdGDcKt?)WgXCd53~ErDuRSGjI~G z38+G;=b1XS^EoFU*&~6XZqLvTY(DLP#-u2$fd)+^T(7i~xup0TQ7*VBQ)+5|#w9iq z64oAbLgABWm(*`rXw8mDiDpBRgcn66o20AF2}&+2fcuFT)rQ|WS*pFi_T^!n(1^Ww zNU8d@*8|W9-&1HhficN}XKuvsHh*Wl?U$>56-M?X%6YufU0;d5Kqq{#PE_yd`+ri; z^+w+1S+>MpL4N8M`JtcmQZ~n$6To^tiGPn4J<}RS@QxOIpd9$zG3Jgb{LnTCbW<M2 z^FmJ<33z?0J(jok^>U(zrt0;EI2Qz#Hcgxve^->>gcb8-qc^@!)E5MI6*{0P*Lo@Q zk?N1}YV4D}kReyv1R-f14FbT{R^Jg6JgvrXYJL1l<En6>h?8q5s+4pLaW=Q}NH+nY z1pS-a)X$vJ)@4F5O?1$Sz)we^^>uzZZkYAKJ{+>%bTtVXN@VcA@qZJoymF^E3KF#K zog>|##Ed^Qo^-OaSqZhGPi%B7?%>53thUIGw;U!vOoGJzqU^4dUlkXgBZCPc@Qxk- zMIy#S@Fh?52A9jQ$Jy6~<F;mtxX5&CMZ16L#Q~9?zLH%j#8yB06lQS(L@y0MkXH4I zxu8ZrS>vkuzWXZQzZAFV)gO^fW}*TuLJ#;iJ}*sWYP0^78<rn}cZ_O4;<;-bN5`cc zveef=GF8dw2rtS3+8b4YN64L9KHw+-Yg9^}eHhmS6^rN}iE!1^l;}7JleAQs=-n_< z7{aS1x?&DfY{HsIkE<n0-a#~)Q$?sEr(@Ae>Aa+ruqIeijTmW4bwJaGhD?SjwMSTL zNfz`4WbifO3P?hl=4ukI3nSC^s8VhSBSf4W$;DqnvQe2LNKtwQtTx6E(ZNnehEOuS ze_zFJ7$xqRtMk~H{%z00tive&d>BwG;wzwAD5(Mfzxv*jgjFb6bSM&@%vkv3Fw7ks ztZj*zWk|{@^$4Dk*q}&>-raYOCkB%AFdL>tPxJj{Q>fwDq=-0T{#>sf7dsufBcsIh zw-3}zdXgzuaEpCyJ8EY>Y=d5|0NSx?oBgF4=1vLLHsdONZ~q*2n6=+ayj0F)ttrox zBcDZ>%w45a<26v5q;@!g1%#|F&{b4hF|}SbgswQMw%{;{7uqt&{6mTss5RxGJ;C&* zMhoAG)6p8GRJI_@rvG~iOOjdRucwkk`-!Q;D!mxF4wTX4<SFWeV`#G(8}v#-7J9R! zwmV4Etf@wlX`4jLA{XDwHs?4f8}sOfX%OM8)a6CAA!&p(UK^qZFFj16WOXpea2Us* zH!<Wpsd%GGo7tSz&DKUh<Lh)#M#xI7en*ecGk8EWv6%2NL!<;*KF$@76C9w^zz|e< z2ofi`Mv+(UR(#M3@iH&xY#9!9?JR4e5u*yiE1dk>_Zpw1qaABV8xaZ4K?V}cOBNl6 z2c-q#LHsU(!~i3E^0H{7fZeoKs9tV;d&#oV{{k!WUtrmj{|jvXe}N5kte@&K9raR? zO9FhWbX@FI`cXVzGNz?8e;1pzWZiKV*J;Txty(>R_^r-g%{O$JLcvHW^>5!JX>VE$ z5*1w@>_19tdah*2ZW0iDU;Se^+?o}PZeyX%#3$8y8oE{^uK&}Uo}+5CJ<dp(Q@Y4C z3{}d?(8r{IJ!Uyn&OXHsjn?=~^wBJ8Qmhl+UcKSMdT;4gsu|!kZ@QPt7_IkVwYh(; z;jlmSU1ces-L<>Wslz*2YgPckYO`A7A{it&q#D85ZQaP(UGlVs|0_Dnq~n{rDc|t* zVrK{i`4KnPrw!l0dpri>pDSQAUWZ37WCk%1BmRJ-L&6-vg%osX2&TD|?=?FkLZ${A z5JpO}R?yO7w{d9n1;68k3g-F0`LUAK<6OwxKySJ!@kh#Q(@|#girE~P+yHO0D12T0 zw%M5V4uYUpF(BbSRNQ{}*5Ncbh;uc=EQ<iT2bp&)yk)AjUHjiLl$~PMYuWbUZ_9VC ztrmHsZbY4+u2i$iPFTdTljaUSQ2tBR*w~FHQ7GAkpi14Q|Jli&rZ@p=y5|2fY3~ga zvdO=ojZx4~w-`*EJiSDv=I7bqnd5Z~#!J<DXbG#VQ7fOT3wuD8DDlC7mZmi<YrKI{ zv$2`3?C>dHa8OxFI6DJM;1c$~v@z7EWIm7Wj@IuD?@Bt?wDw&sVcW-SY1joR`m@cH z;iASY_Hxuaywl6+hZ0&4x}x&pxb<b*gWdWU>BxpX=MtHq#6aBQ9F<_#%IV`G{4R*v zLi53)t!UzSs5m`7yi1(F`qT^0UIv~D4g5KIRl4<z@c9$hdpA3|C~NrJkw$Itj||4F ziy8PcIpU^bHd;<Qf;jm2LWYR2xy3gALksT)P><iyWKIa8AUKSahF1x>m(Oq5Mu-0B zn)}uoOSf|W<d$J^s+G?F^H$^1!sE%p<>}bg_3rj~*1A2QzFx<{MB|Ns*QsPQa(LE= zl^a!87dt_Hz$^Z0Y}_r%acJt%A>qV0`HKBVPhsUx+S<9lM7kj=Ebu=|;1AZ__@>yc zb|1dUkjmq(IWSUT9H4HBm(F`vi{xRPru-ImG#pgBV70Km<0>JW4>lcbK)#6E`Yjw? z)LP$N5X0-)3@EFQW``9R=#DqdVH0Gbz|21-X?wlB!4RQQ$YDan4wKKL#TJh=50%H6 z!4waj?jjtV*M)HsUe#Mcg1Y6}sQa~Z#Mk^>(h$u#9H@?Ky!AQznu=wT$imZl9$JKm z!`ES8t19Gqp&Ac9U_e!$j%T{m4?0g6e`CFEZ&T*hxoWvo&8ZbTeEn)qIh3tckQN-g z-L1pU;Ko{o`h3l7yrU1lTuoJalBHj(25Ei)xTAI=!K3Ixe0DU;j0Oh<!iH@`ENN$A zqNBt~S=&6bx^tm7v(QG`g)XSkMV<Zbz;v1#A4P0h0n3AwANjeh=xve%2Up{aG)?dB zE#_t}g}@l2#dh^>Zg=5aR3ePR(M--H-X7*Qx@a<0&?0`l=S)&5iNPd+#n~+^8Pv&0 z?4Ck@>MDYCnB~I1go!|OA$3=^6fZFF=RQTLq2pIXfV!NEPVNlrVe6p|S@Ngvi=A}! zt#IsCeRYTCbZd`a(k=j=1_r(znqA%A-If8zT=W5kO$Ikpcr?7Zsh_qlxY|^ktrPnx zi%vIw?ehByZ@m3JnpKZB9rGEC-SgzxUg2Ok<t;=+sJYFV@`g)jx2E;yr`QfJN(@6P zVXNK};}v-Iji@STn6`wKNU<Yq<Yqr#jCzZDdnFgnL04%?s<~@As7r=Xe^I%miQtTL zYw|R-0Lj-EbGwpKy@{ah;x246Tin3wy0vB2=@TUZd0`Y(Rdf5l70)%-+pBSY4;|Gl z4n++UR6Bi0MKk44gA~tk#e$SHfE<5`yah=_Nxp|5FWiq0Apl={vLS^GuqlEeFf-AD z)c{%LuZ;za?B8gGA<yjW<lRF3;BJmdyN8+!AjFlV66BM;i+(9jE@<{-Ms1p;pJTO$ zc9=ALCEdot!ajk6$#yW<GymyM#tTC&=HQ#HOXU&qv&|A^Qcr*DGB#RR@j5HgzN)zp zUS}msM}gT4Dtps{0r!4(K<JIemp~jC>6u=GFj!A2|4>faV6xl)>h-%Eq<juGc?Vg8 z&GaR;xX{;4f6;RDS1DF~XO(2&%tPt(QN7nt4N3J`v$(=$9=oAbGf4S-y4Z~s=BJGw z<h|6;o%8mxqg1Yi$Op8ItHU@Lm?PbP-Nowb;`rFDFc9s@#g<uICzR{9h@1nIlyWO2 zaNzSg7Q$^gl<8Awb1O?~snJXv-p9QA$wEon2_((inK|m7!KQUtDfKptM~E}lUN%C1 zr@b=prbe0NWfB+Y?<3~cX@+`wBm5|KzYY)w9QmB5g+fhF;niGvW&-G7_Uv@D%e6vx zPgBRL$Sc=CV&@$M{Q2qlP9DYMw!`-}(}aMtjfA3)tx;IthJtR_l*IS~{rTQhzk1iE z65~oPX81t!W3+M7e@d+qTQ1UFm1P7v;hzbCy@P3O?R<QEIefRV;EO*AkG|v&GN*kY z!gm)R4bEyo=M%m#c{V=|qE!g=NyL*t-@gcYC$IO_Gk=pVH8j`N`Kc4~je+E%Y#D`Q zQowf3|0CvYJP79QH3B{Uhna2BcKqb`eigcy<W&@CbiDxYgHMSJNR~zLKO{En@6;vb zxE;G3`SXxn@XuCrYlIs5+Sy&3vJRYAwZ_u3mbmW7x9vq(+$z8ls|bH}tAR4uf2W+T zXEl%Em!9$?3+rvP<`m&`f~m9WDA)qZ_j{jqrn-z0iBN9o+J~Ttwt{sebZB}luK7Eo zg!K()JnkpJHMYp=UdtdG)@3SV43=%>02gM^x|gP_0Cx^S+8&(+gs#Lt=@837{I3=p ziniU-F;;WdqWfN?(q6WeSANaa0V&Vs2+uGaU$GFyQK|6u#<@`jGN2pkQW&%!F6bwg zg2mnkurLw<4V~vFFLO#<t{AZSJ_G#w-b!+B5zyW#++_L>rwN+(Iy4i+m#RcjD)FWY zY2M7E4MYk@HDw(<txcIEahok<O(UOHqe4`9(fkr$Ii)X3zwbCFihnLjLDEs>CVVMq z5;&KMQ97at$R8=<hd78`n6NF}h(ArsnwU`|>1NqrY?)A1A97-q`V;Ppa6SWG`=clI z?MWF&vm7pq*Z{_ny4)RgohM?^9ZFGY;1cl;%ZMC#Yr!RO12ySZvu$EkzGFH`ZoV?y zA--c+r`wT-`u1Id`yt)B-3UfcD0RFnvNDyPLrckZ*q~x)WYw&=VNuv?23%j*ca_te z4}pTr8~Rz*YBEE^7UU$V^XVV@WUdRVFoWP4vU5i}Mn`A5%$jal@8O-QqI|Ja%3Pd! znQ>>jDo4sd<I%XzL)`?a$~&mrq=gmcMa@W3Y3UUoc%P6J#j9^2QgX7>h4!=q?C~>{ z7di-d6M6e|p`#KcH|*VV0Io>SV9;oP=b>343(CI{p>kFeqh{hC$;ov=Vnjwb8?qi4 zNq=#5tQo2SC0&+rSuy!r8gv^rh=;7H(%b|=)*<Ok+^>i)@b!&=P^y~rZ05dZCg-`S z<V?F&oymUbml{CoTd}QQvW9jU_NDj?Op?4`aaMuUadd{QUQ_V)qOMpmoVE^0m%nGQ z>gZz4GZ1<Oc?WqvXF-FvzJVe<5#2RU<ew{G!;sa}j2k{6awXi69r>6iI89z_GjWzu zu}huidlbGka>P$I5Z$aauT1Cg^*kyrVKiG+QgW&<I*&Bp+s^o*ZbO%!6n;l&SmeZc zgD4Tv2-%qSw`ZfEQR71sm4fSJ&aXw~%Yt!GrJ+8Gvi~*^TiowG1@1C`Kn0Ls&v&=Y zdKL6I@2H+~<G*avG0sYIct0mUMXUJ%I09qN&C?C`L9G#ypYe~?uoe9mzn;Jz;q$UQ zq$eCXW3~_cTrnO*4<1YA_1Ni?7RCuwib+P8A3V7wQ8wc8rLe|RMs3f+II)L{NIIl7 z8u;eqGMTAarufWsxjS3;wRo++LL0v$I6f+EF0&8~+!cQ_YR2eyE$s+3k;lR8+@F0a znFZ7u(w-<K`f__J4VxAlAbby}9dkZQdYi=*v$P(;aN-+jjEWr3AV0L+#lRfb+Bf6) zQ$@w4xajN>bm+{w&Kp5YDr@rGT@C4D)DGbd-JX-So7vWr&YqT4rwIWNmOr1<wwur4 z^ee7{ut&I6Q@ZPUeAHV0t=r7HbYttpx=uF805@1|u}x!Jz=#|ivF8G`9c}G2`!z(4 z@J|&;3HuK>QzLd0C&C-rZQR8r=%p&}3AEzgamH~+x$R!qcQSGj3ZxyYqi51;krv^T z6SYcxK5kic5RwsVS+|;WI)10po^{4Y7Hu7GkhRt}EiEF2Ld7P-NmA<f44t4_wd=dx z%+8)TFk3M*b@ZIrCg`%Dr#>*thp(uowwl~Xzo|7|@%FX)mR1RcMM7Uv`sWg8ITCY4 z&D)g7lAx)F01(#U@&{?nOU7iOR;Gb6B6PF3xgq^b^hh9=Le|e~W+sd^L!r<QZV>IZ zxF~6}^zX+gTN}h}RC*~MW8DWf52QzlwPl=!4$Kxvi@bb`MDYB1#aHeP1hz$bwoQAf znVkN~Hk9938#SZ;NH)2!sr%)iJ{u#Rv|5GPcI@)Cf9$+ZYEc}S1-D;RL9&a(dBn8B z6h0?o$I52&*RK{FQe34`mms)|2-0z^W^d<1)YirAUqWB>h2<IG5bLj*sbyfyK)McL zYqme8Qpvnx+7fbilD>dOM4J<8J_A;h@cHXs`2%UCOu?3{j`V+oVT7I;UFgi(re6rX zF6FHmDfhvp$AP*s-*lJR1nY6Z^^%YkEGe7N=Mx*)`W#00a-{Fxq19Ib!d4JGa2{-5 zbE?@|q&y6xo>v1NiaFM>T=zKwNFL4<(6c9(O@M;??@Vzm;S<_GlK4-_DT^o#BG7B$ zqIg$<DJnl8FEM)^{^M*?B49JFV8{q6eSlWFiLGxzRFRw=Tvi6t)?H;^gXNxky=4K8 z&0b$x0+Wi#F5o1pVCa-I&@!gLFD-CXY9)oXB8$dA5dPd3lM0)n4^v#RAO*aHIubnt z&cLd`A}HwlRG<ZY4k_egv9l<MEFU|)hgP}@nLK@o_NDrt88xDc2UGu6-AN)AG5m!k zL^0XI)W1BUK-3H(J(G3~n62JfK-;Vgb18EYUNCgP$l{}z3|a_Fwc;I#5-KkoACVZ2 zt(a~zqOSFc8qttD=E^&*G=sSR*XROKdPrG0Oe!{vz9vz{u=AU1D@{d>GI|n}!X)kL zmrTTsv^g}fhzV_jmjc@QZ{Y@7g~x9H-4a(!ADWK_j}OmDbQ)7s(TD{?))13Q3lFp; z+Jp=+SIS5(o@mXTOg%Tk%$D6}K7_#0=QKY?=fMBhEejNz4leMPi%0?JAPp1gZ|F#g z${wL}Wy)fZZ-cbUMaYD*5u4>hRy?5huHr0dpvK5O25{(sCxE?0!CKDlOQXDow4xR+ zV%t*x%@so?@@RY7eXD_yeInHb5XJipsm(kK-aTnNv+s<tm$7mrXZFirVDvpY>Ecxx zde~_~jY6Rv9GN@m{B0-6RnYc@9|M&3-#(u+%_~#SZW*)_8f~O<-!#plQZMGZ;km4K zjXfNBz4z^=5pq}lAO&S@tRFOa2t5wE&-3ANTVJ3Y!www9=g}-`A^ymFMo{=bQ=7#e zUU71!>0*ym#;OfJI=k#aB{nVKq@O6s%UEefWcC!n8fo&aq&uxW=N`s_gzMQmA%}vi zjjW7Y{{x;6xhf@1!VKvX&g8<d!?D4&>J(?^#5r*oV#Lu=-e_vwF;0AG*<z|u+|AJG zz~^MlKT)HgV4h)ivfFuZHs1=6%P`H5{XTtgIkffU4a-O+YhrGO5Ja_m3+ffuk(AS; zQqx8gwdCfrB=K#`$GzH~4M^d|J92I~$C2^+oc@zzz@Xc_-CKFF=tw<mz1|^{dhi8- zKGIuO!dP~jc}0M0;x@FwcC~GFjB}<4awpe)YTq+rWO0O{%8YB5`+^@*uM~y&3CV5s z)s18B%No$V#XgpBU5!wJn~3$Qj%c_jtB5%bhgSM$`q&q9`bg)>)DVax>6YfIm5#>W ziw$MsM%ZEDMz4Q_X03#gHP0GQ(9+235cP@|o>1%OC^V3z+0K2<ZG2n+f-`LMZh$TH zoL)L5agG|bO17-_8<EuN3DA#5dM_hUHKbVIqp3uI<7ZXXC)plm+Gax?t}1inb=R+} z)7Z<nt)ai6qw1OulZRBE;$3792^}PcLczTv9|9){>-Iku^7WT~4rbMp5a6K2bt(lG zwqoQ}JxRfv8IZO3aA7mmQ#sn4<zhy2!!d*YYz-T!Cu~9iA8Wx=UxB8hX-VdV@WY&j z^N?>ax7<=<QCkew`DeJ-pvIUSwk`zv+>`b7GY?R+j1t7Bhv}gMg4`Dc%^4BEkz(W1 zQW`kZclkGqReh~(RS=hgk<b%5-zi$<@RtJ0ZrVfpj>g<YO2nj~t+YfbY?aD~)5y^6 zzfnCB8F@JabCJCbY|S>>pNBQ<#m5gb^!=a9yw5HC@1Dc?+ssXG@TZ0`kw)^IpAKXm zV%EYf+}_1Ywpj9RYH+&CwTwjN?B9EB-0rwx6f9FaTGS7k#g{F4-@N>1Qr5~2zBvY| zW~pOkMTHW5$ilw&t>%3~M;^|qf*`2b|F3{W$(O)l<(2<)u$7W`IPCh_8`TGl^90?c z8@)^N_EYGHu!l10Kd!C>5LZ_xlAruay)_uC>_4uq^{fvnhFj2JYfGlgWQrOaeUm59 zf{pIZqkSvw^@Kw}BNb*{x~#_EN1a2(jJ-N#8bs4o1y*3o{dsqPaPcri7d~e9MNQe5 zAL?eOtSwWY0oSv0QM2i^P{Qj?VNEc)2nmHnghZTutc%cTOoeLS=i05{ux8{H4t_nZ z$>SE>qlW*!^E2be6%0jTMpgqgS>C%4{LG#iWe*A0y}0o&;@V*6BI>Suv07DoII#tz zMRF7=hRHXUg{4S=+t@dRQw?i7FfhyY|Iu`<i(_L!L3nVlZUVM*T!fdK23Ee0Q#f=W zk%34_VZXqYsAw4fq>~X(OqwcfdF|d5a_i-+q$kPfZ|0)c4%(#d9X(n}+}X(BbGqWE zY?+~toU6^giThv|6!=T?c@X%CW|$Xu1;z6#`|nK@^hiCCnj>NyU#M+;rnLs_B;S73 z=?XJq&RLaCqjavHydum?NNq0Tu~)7uko^W0*@nT!jzb@$OA(gl^EK_5DAo`N^&~pq z8v16Jf|T@nCnWu@zlYhXHwhwAl-tH-$jCh7g0p&aJXn7Dp?~7F>8(1;&i|t8-16y? zv>*tid@_0OV6WXSv%Ti-Ez^{ru;Rs0nds7|NArYj!G?F!E+Zm^?xP2)qpPedO&ZM3 z(N&KFzz#V7JPG>?Xt@U25B<;)%C1}cGBPhK;zY532VNVfpQ7s?ltu73Vpafu*=C#f zQ@VQ+8i-|oBJWl+TAf(^+N~N~Aoz=8<jjt)v*$1C#D(r>8v|+VzDlGy&Q&3SIWtPk z92xy;iq+H}(>%lPtiV2*K|UKINHz!CH+tzjdo*vw7CRk=(~bM7a^kS+ZA^YR50vmi znM+oUbp6iOKf=^5TZ0h0@p~lC;;k9J7SFjm=&Gw)Q-$30Ez@!-o7*~@S<L(!KUWo} zfW#AxulmeFdblyRYb??^EGW5Y+sjKj7r#`0;Rgmgu@UVWmA(%@zo1x>#tv<&Sz_T$ zlX!{AuHyXc!?AylPqZ;793`?z^l};5@|%_+Zk%9{M9?ItNZ_Sk?ysFd?#;ovJ?fLX zrkr00ABt122t%_1fR*-@n%wJ{yJbvx@ZEc1@W2Yv6#8l}{^k3Nyv)C)Xv+-I+Sj_j z++wM*Em8K2{{;0G;mzs$uw21RgVpN44qR{Wz9Of8%}AOSm}1%FqPzL}6L$FkCo6AX zm3-k2oR=p})uvvAq?`^Ryij66SJWefmOjr0FP%B^tCs9eut=XZa5)iqN<=EmY@ioR zqEEsk>`*>R6Iwn<!Htmz!xttSJny6$D9Z!dd;1<W1^z7-o`SdXu&Zaemm?TY^H=Co zAj1|HH5-5ia=9ngv*?*nzrjCYzLhhK5E%Fx019t&!QJ}Z6ecdVY}+>ZYb`1_c!0Jq z+fG0fppf(8r!z1PDCD~M*#rFn^`Xpc779{u{y_Y2T4o!RaWO}_#<|w_q<$oSYxU>x z6x}pURu3=D#6u37cVQJnK#&NyCZk&QI7u}kIS+Q4?Ci~mL!PPQm?1RLFfMVdt-E#q zfwfgDsE2DixKi0?d#(H>0nPRT-aGjEYg-d4-g=hQB0IRlUHCV{{G+?|H3JqhV&xlE z4kls4R26{8y25&YN4QyRLypfnSNkD1FRGbFhvFRn8k9kD5a%!PJ$9YLg=2Wx5A`=% z8L3oLuL_dmajmJl+kVgQ1jF`t7D4N})`0_Bl}gaH579|U6%^nOql}e*#in@6RND@k zwaNtJggdAkH*+qUfX88o2(&J&jIGA_HLVlJDJeD+3J}%y`f`N=tM_ow%{kz=d5Y7) zyw@9+F)B=Xh<&z_y^uN(`loAOLR2Qf()!anxrE8EF#52rQ}po3lIm1}6xR}^T&zyy zv(_Tdt$jzpna)$!^}ehA-m8jrEPv{@uM-zc5s-Ur-8^5b!1M!p6LkURQOq2TOBFz1 zaX+H-BX^=G7C!GXFUaijEtJ&e%sq2>n=Mz1p$ECCT^sVOtjG;YbSiD!Pg)XxKhn;c zut=>bzNVaTBTA$h6E)YrMpEbFTZ*T6n&CXYC>cK#%N6!86?f9)3kN7VkBz#yAl^{l z25Veq#drvJB!DDiR)g<!)`h2nFuo8UV^`$Nq{I4PrTq$qwwHc9n_ui<_{W;tpX49E z+GBgSv}Oa4-4Wi@aIyiG^+cs!U>jiD#})IN(11WY*ToY6WNTm2#`=P$JC&*e)DT%~ zRcI8`QRc}S+D&d?e+@Y+ef!@}Z0-Hf?Z=cCO!IIa%7b6awe0gtcLre*hbhRGr;#U_ zrNc{%l(|ZYe=s^~dEUy*c=)UFrj5uxYEDte;(uyL#Z#t^vv+4t$;p~Ewm%t#Fo^f8 zJR!fbQii0vccRb4z94J6xT`ufy(}2`oObsJajanWoqClRW!=CPVZ;W;jk6icVS0N- zM|A20q0Bdtw>P*l`x!;Wc+T{WGwxqmfhc(|I=N4;7FT}z!b8F>_br>?b&hV`*=_Dn z6?)n%b#wr{5STf33b_C|1}xD(e-m*MwPf}FPzqOCpYrnU%;zkptHwB+JfKE7Tr#ed z|MAt(UHy+&gUS_u)15#s^iK?jXT@)AWc0c%Igy9OSp+}c_q?q{Nl410<M>S}P!7e_ zlnS4{=|JD_&m%MQMux1M2{Yxwo2*F}T$v}LC$~97J1f!)e8CfKfghnWp`jyo;@k%3 zG4m|^zU=q`MX1GGh0bT!d!5Hxbt>mA1U`a6jsqO-TB%qazgp3}V}+u^1%#c)5jH+` z^ie#qtjax_R-OP4ZW?lBK{V}Sy&~KgbYeYOx(}O^oOGPZ)|GMCb2twADMisXn|6p; zw}ncco{n@*e<$!<7_u@l#w*&-ZOo|oDi7Hj=WX}9^F&^b#=n}FpbY7rnaCZ#ozV6Q z0a%`m@r7!<!6&|u_zT6G9>_Ywi#MmE=&AO;=h?j8oXLk!1+xR^TBb+rri|k;3l^66 zPg>3Nm<XtXw2Re8I`0oxDh`Qb1!_E~=4sP-wJmfo*MA{KlP2F@$6y!YWX@R=cR{s^ zg>`=YOH-0X0V!!?JYq<ie>Xc($Q`Y#<pvpd?(^t=eOsmkr@XrPWcw8X1CAtsrX%G$ ze`lmGOVtL3D(%K~F3zP7PUm#j6LnAZ0CtYSgs48z!HO2c^QyC|lR&OKE4Id@QpHa& z?qkq+vOTAmIbo;S$;shg?WX-|`Iw6Gf)piPy{XbQsYV(DMnfL4jAKTuocna)Qu5vr zo!D(-HX#D;iy+pSS%x%m(K`m@d0)JC2lBbOuNo3<h`IaXrAe(%KbSe2lWT>rv@hi( zDU)ySvh+@$dxHal=e&FwcXIW`bdLgVUc)WZWy=Dr{r*Ujn#9;?Ql^JA2MgfB9g=<> z%8i0r>v<1kkMRgYc0;jMHa{sm$)dQS-^H$?&;d_t8M~Y4Y_Scso!VKv6E}4F!P)Kt zBr4H1Pb_TJu*m`pA`9nprx?#S{wc{xh1n3SuuL@v@g4eDak2X-H#bEqk0~2QUn<Q) zJ<4rF+O}Sw7ya(xuyosZ=9AqD09iR`^7VuT@0*+;<&E~GI!k69l-^4a%(!2l;6N+= zPhTW!I4_o;TOpt%g&DUo`K7~#bY@^vuXf)gZ<c;&2%gVEG0RSLJZBV0bS!`?`Gh^m z!q_J|z%<SBtV-M42~zO-vR!kjv;s-i+qoZj5NG{bEjuz|(oJA0SOX{BchU7F7&;X= zrr{&aog0hw^@@x#gqG7N*+?9*Wk&ARbiR!)jR;R5*OTwm`SOAQSB};P?MaL0ap_}! z9i0O`)a{=7S)&dRjT*u`Qxk`J)#VVJK0(bXj4A$fD-q7W3PqFOY(Yjm?$@+)Nidho zLoqa6susea;A?;G2;YSKx|Gt&2#ub&-pUD0*Jm?8EE_;90{Sc{|9ZORBDE~!KCl&@ zGqW3C4=iGoy49-SRp0+ypi@n1^`xA5{dpr=P_WksP2^W9@izVPw!s5{M!AF{(RVvP z+He{P^3p!7^;(^jrEXQX@6H6Q^g|c_#=@Gyw-b$*{So(Pi6qz3o9*XLZVAWb8bXa) zW({6Zug3gaX<(>xXVXo^c$_W2V%biwz?%+LzpwxqpsfcdElfeaNMGD<Y=8L^!i3_@ z5Cl-H{(k|=DQZXzV1Ow&u~@OdmR#z8WWs;Jou$&s&QgG4iJzamG|!0)6ky*`(*q#r zQKl9?HFx@=iGx`hJ^&6b93L`mk~4|g8<OKLbVa~1*+`lS)xeDG{q=U9*pVBl1p3Wn z*(T`y&Vt|kV?~&3DY7`+Net66{s!B*4$mJgJ-saO!gmD0DjHv519f=P<&KtR3UW5B ztGP}aMZ7;0c9{@IIPY0}aA5Fg<dMJ96qvltzQU?0uJ64`vd`B#yzfHXX?;6IdF1=Y zB`l5JIgtwG<MKHs6t_v?_+D4(hA(h$Kio#8`hkSxN!1lqx0G0oFXw~K#wm2)oI*O& zM70f;JY!Q124(<4DN{Pu+Mvo9Rx21aj-$0(5*J?NeEJYB-x!QA*JkNY;TlRAbO-{C z+<yG;nwpN384T}pu0qavE$eqjm#t<;DY5nEE1S~pHa8|bu-dM%TN%86r!9&WlS?eS zwelFceG(sXQhQ^^K!n1Su`esNNHUWQAQjZQ0%P|9R+}hW2lZoFbUXFBuqXtZbysPu zBx@}{yJIJb)O)$OD@p8+mX9NZ${B(<=bQqHmf~3BJDhP;dwB1P9p#`~<@M07l<&3J zZ-iY`Ro$zr1I?idh?sJh9Y}%5A5Is`zy3&gZgCSgU*ZwJ>x0OHUt!7x`uN=id1|iS zKNq>K`~4PZOD%H<|DKuXsg0FX`D16ks$-`fWzt^KVD-%dOV`WV%F_c}qS7*lYe`rs z_#u6%XKx6;2NC-3=5x^lX2IGm?OQ{#iGiBejTMkQ*SpV~V;O1zmG?K_icL5v`Y?br zDzE@|T@5j9?y4N@NKgMlVBtlquARuarxM!U189>g0;+(e?6?hYMylS89&KOZ59_Km z$s9z|==^4+_C1p98;{j(Iq9zUY0>!Vl?@l?z&^sZeEY18(O!nu=HEev2^4mj;O(eE zP|vl=D3~qKk{lHyl}^K->AQVPs>RM6rSu|!CyUHnV%IgV%6Lt+;bVHwFjb%<e!p2+ z3du0FqYJe`cU#$HCK1q15BF9Q3FqG7cxv)QscG{rT_xrE0yjvPHE?a{6Wq{KNG59O z6||TcgIlhp9Zu^71y0<56Qt!Ox0c5DhxBou-s`NH)^l>p%y(_ns7w%v5SBz;fPn<W z3hfU9FqI1MV&z@y!gBcTkZ+-MGv6Beb;x!XuJZgFfsJ&ht(pRH(|mzmyFZ(|zvzJL zE9$S87`_*VWHJXZ_v=@vQ#1~k>B-XpAl3WTRhzpDli65x-8Wb^aZ}o07W!T84U@+7 z%R@4We??+m*n<Ge8Zw!*@B)!oS4A0JlFc_35+oWkv=9tr2!((=tH(e5E0_5h*9_O_ zPgIK{e+>t-L5PKZ##I}6Iyeu~yw5z5lLuo9!WaBQtQ6+Rcmivp_F!uGfB?ma*6)iq z+*Uw+-SDVv8<-BX-H`^aEeNzA*duw%sSci*I~v3)diX&C{Oz18R(+iRoF9rsFvA&3 z4B7bA25kHL%`ZNbLiR#`wp3nRUG-h{^~xBTNj@<HXMjR(jO_f_9BL%n0lhM^mts#c zUlh>`E_rrUhhxn`AwS4<MTeW}gvu7NpXwdwx034=Pt<-ts9U!4_UqZMwtQ`C?*E={ zcp{$Q71}%)ZR=O<+1c^iwr#Tf51K|i!&t7uZ@X1JHP;?nJ=Si%4}8;T7DCuHpzCr6 z5RQXrfX$tkH6~l78;&e;O`~|Jy;1oq+=R8OB4Y@tDl`1o6Swy;B*LIMx`MLurHfbW zy$-<B`|rkgUzJYGrje=0(Iqz~zVw^XEmaQs27L#$#LY3<tWbLmvxe_P7gmN4IGJsh zYj&GuWVj*+sDL2)td-vU`O3CHvs@Q*X%SA%u(8Mujut}s+Ub{(WFqa_(J{K}x$2+s zHT*TuKh_j{a7}euq3H2a71?z1C1QS?hxeHuiwW3Xf`+8qGSJ#{2rF}@b1I>Q&?n;Z z7)=Ii6<}(a1+>F`PwWUwf4F13l~_69YSqeg2_8FBl2^~+<1<T$wuB~W**jE4O4q(j zb+aKYuN&NDVcE)rP8ZC!loPB>Be#}0uwRaw?L5A$mX*4}2he0g<|(^)4pzNjC{ih5 zA*o++=#ZbwJ}g;_>zaKdqBFNz*;=@GG1TVr85<!JmC{%YYhf#|d_iGCC`J*_SSgSQ z!0BhMP|(t@Vo!|3jJJf%h|P?=jKZmA1@gGB*Irvyi&lGiSB8{vT(doys{W9f_|@HD zf_{NJ9776SRU+P;Of9a$-WLW$;lo<&xi6R(o~Hn!KPef3hTu-6K<Q!@o?ji2!!<;u zhkhdlDks>57m-7oXx$<vILClv7>83*BdGww(?(IFIyZL2PJ9WXANWbu(4;(Ip1!;( zrV%AH@xus$s~_?v5GAMxAdyKA5Z+KQ+W#0p{<hmVzVsvY_&2%${CN+>f98)liOzAt z$VO8nrgQvkr!W(gMcb^P=t!xSY9o)sSVg>sbJs?q4gH#!TH0rNeK3?xUhau4oE)67 zJECO}9Gt@~HjcUJ4)V$-x0q4_1RJAAiDbub{|Htw^duNM?%@b(OCxQagavbdh5q%- zry+Z>xm$H0yS-@-#wwQ7;$PGP%1NxxU(oWBD?4L<v+XPCBUwd3tG<f-->P-~TlHS# zzg1sGws)u~YUN*inW1$|vW4rYQSqzhmG@@v!vQjP*u)f>Lbt)!oT~+mE=g7_35O@L zSicowuaFtSR<k;z36&fx8a!4fs1*6j%H(n;*035FRV54+1&miK);5X{-VPyO5SL$A zdv($m8Gb`Th=IB2o`u%6s@>|!$w%TwKMA?8EwuPj*`|=?K)t&l4fBNYq@c^CGIvV? z<h$Ot;iOXS4gPteHop?;DUTovDtU)`ZqIQut`F|P+~NM`A(j7mC{+4C52^g;p@k_J zkrZ*QtN<@@DcO!(+RpvTScB$Qn|Y@eTXZ-sXjtu#jA;RRvx&zx!&^pnM@Q+SY;a$c z51+K|<fb=*C&(w1h#MuPdt*@Q92Orn_X)wNx?3u<iY)ZgQQN7NFCZ(S7I}}@?@Lpu zQjm!%64X$feRwxSWG9u?EBIFcdU$mHuvuuU5(1nEDwW+X(Q0`HZdbZ4MxogM{xX7d zWdwCN-l8#8n<$X}3eHa!vDHPX`5W14&3%T4XVF&B&=5!1(ok#FpChd*s;IpB_oFbY z;ao4adcWa3|EoFvoqB3Do>_z+qyG4;5a8sT)oou?baWZp=^SwXLt(Y-C{1i1?x_Dr zHD_B3c%ly{{mquUtr48}djx>caa*O0!d#($Awu3sD)!lQ=Z{lOn<{_0^^K-$uL{@u zYPzjhPlO@5xpW&$jZLvBGmrIJyj}8mY`4VUkxidXkb>)oKH%?_$rrlU09^-$=fvo7 z0m6nn)8*1q_K-1a3{9@2ye`#IwoNWGgl8Qx{WjkFZ;#)eS_nA<bbP7PX7p$3!^y_T z5QDvdUb@ralAsEt;FGTrjDpg=%NNB3{L|46e({pg24;><^<6qEfV8qjMa)cCIAMDi zHl?ttjhE7$cB?H(tpIDxWmW`j_b+H;upM6egF=gm^=5=0womTFZ(W|8jDTgPU;Sum z%54fNF3VdCQHm~k5X}Di$10Tw0$?s*)e1Y|vtjZstqMD#vcc_+_9P3qJEHoufvt&) z$7TVo{dR8sr^HN5I#Fcr#MjX7e9S;GI~OO=K@c+kj|*<C&Afkqz|_?2WU7^*4Csd6 zh3}VJ2CxF>E$ro#(^KCrBYY;pvJ;bHg6lRX$nL!oe~-M=Fh=+}@+R@FH2eNBMFH$b zd*kO(3<T$E_O6|h=#4~h$jC7N7&aBVSCClT(p|bqf4Mf#otcq0WE|F)&hR{4sSP=j zcNo;vLH4yfbYgEGIBYmmbsl^`p(Q3HI|6-!eKWO}w2#lKdz8=0sdjEMWnLw$kwy@o zI_L0vtbVpe%{)#NxaPV9RDW#rJzCi!+T^t5H&Bdoa4%cUq~(XXf4&Hzc0&IX9kKrZ z!U;D<?uAOHsL&Ee1~|fFbF{Nu36%d=A)~cOX5n7?ntbf@Gdsy!3L6cK^vmS;fRtCW z)6c3pb8!@5Tuq_gPJY}^s_fFzF(d%x!8a_WYZJO*j77SBS^3*39m3yxPi3Pi0BPzq zh+ADn<6ILZ_zdZis52>7!Xv8hb=D~D?tZUrLfjyrko6BJNc;l|ThlezqI{k6TDA-7 zu+Qgtqq?}U)~ALqOo(jq*@Q~+qGL~mk0@0IEhEnfW+nQ2FT>Es&CUyXmtOxEDv~K( z(~#h_T!hB|PoPlU`VT0K{Xc*LBf)<_f$!#jKtUf8Wyxj(49qwU1Qc|y+~&oxRfXp$ zVWiiTI@a}NrD^3I2>GDU=WHK2$ciw(EPN-GY2Y=s&JItZDkL$SXSRJ5d35e9_Pg}8 zcFT1pn)tm{jTu)>Nd2gpn!{(ewc(MO5K4n5Hy_%J(SVp2e+be!shz(?-H9I>1CwZi zi(t2oHRh|@#m%)xTsJbkgwK&0T*o<ocv+)TYtG5EbCe^%i}k*4PV70m5wH~N1?=yv zC52s>cgPQ;sY>m0bPMCbVjJMB335^ksdCDaO?_JI%*<*JeACcl(zARWvKZd4Sr<P( zj<fC!4H0C!(|*-l2kC5Y7r2G_Sr>kTVi;fwJ<55y_;e)jIY4QiKUtxzg^g*TTQ^Z} z>GQ^!qsX!@PC-tV2#2|5IBygv+DMo@ZW*@DA>@H5MFVN;UO4mFW0LX0kM9YTY*0b{ zLkkEwWI*1PBNZ?EyV=34Mwv~*<?{nZSt(n2h?zdY!Zins^?{0&4#Nu<Lk_6yV1ZTZ zZKT#`04>J69m&s8anxcrhQcc~yBD=#igLetJCz5`;hIGsg|=vI*|)8J|3#usz<kz$ zi0gXtwE2MX#$@BUcRr6$QruY}$}CT?>Wb=OzLS+UPED0<&c<x9ZuqDN>9~J^c~g_; z)o(4>Ov>v$G*LwiL7D2g%x=@MV}}!$*v-EJo({_(uwXpnBl3I5{QMBdjks!RsAiFe zP`(YyOR5|Gm1+BoBQ_>rAb4COou?-8=cyZAAgw^0M)iDpg5_^v*)^ISU=oj?>{+!e zth2=WanH>HlMn`0+^Q;eQ7i-aS*t&ef&Nbc7Lu8<Jh0lno&rH;%;pzg9Ip93=oN$t z(X(cvL->RupIV4CL*`10ZTSoS_R}wy5ys6A-|R6SN?w*y%lo!F>YgE<a375CZA|o5 zq$VPUOZ#Z*^2#E+m6O^3hZdk>+MpK<&rUa~=X<qqxJ15#YnM4{pXbMEsQ%aBRSK+y zsgS1PL!K-xh|rYX4L0uMHtbzJ%lD{S7Gd96?~AHqt{?`ryB!kRqdn~Q!I%%k1<2HS zWq3Ur*i&~QzY#thz2j$tngZ!94mR)S2Grrww_yZBH^b`dCP07z#v7tD&DgLjA>(?c zk8wr20>UnMEP(gN-aCku#H&=_(Cw1;Tum&-?u)SkWpuCkKl(JjKTq=k+x;JaUpJ5H zz{k2?1!E9kKmpFw`4MZFxqm}k0@EMx&B)w{x=#C2P!zm*cC8Ninu!++ljO{bH^1<a zzLdQ?GAU=LJm6Y#P(>s=@8}dNz_|VoFbo>749>;CKUxs4mBBPFF8*d{-C-LkWoIGN zOcKZo-frm5KKE9=%-S;VCp3lN?m})dT!%ahG)Mgw?6Pvd0L5GHN&Ew|xo6zQ$$X|3 zZsM$|Dm5Spe?nOLWpmVlXr!+xfYvIr*>l23XF2BAw!7<}xXh>@up4(`HO)?|J6Lh& zx>)mR?~#p}=kns49KnMPjbf)3X;JJNR=XvZz4m(@2JkT=Wk!}|!_YJ3o;~!(<Bi27 z94bl9=~V-Ah3EF)Ita6s-E20~a4I=uTBYP)_5t&7O1@f~wC`HjRc0FEQ}!Xm%LF9- zkR<syNcU|t&F*_zYWt73Rhl_7OgNAV$(Mo}6Jl{Qp(EVHRm1wPo&Hv+dO<#N%{<X| zt(1DT&fmyctCjHA(kP5%1_`v<c$U5wPx#U+$PM1R;=Y?<ttZwrS~Ojh!L&4vFv0_V z>*8VmsMU|v?&jWc9{`ckRa9{I;|sBBlB>?vd6pVR)CsMw*WtNko>WWnt`BXM0Mug% zR_~~;Ks`yOa(>uTK5C}(y$uW;J{;qe)B<q)D6d^FMa>iZ6!oKE8Lr7EWtPVnV_lrk zU0|I@^j%uqO6$bTZe*NDT~M!ybft1Kr2@_W@Ip!s3$#s<_*61=fO=!!dY#?lL?ulN zy*!S*n?FGvx02JdXw{_{=$V1I?cI&rfo=WP<h&<RKp=F2h6!kkn@5UX`_;e-Dq&O> zG6i8*41H)^(9K<}VjH<|JvXj8e25=Z(0iTs$4Y41fZhtKmUS|sC$H}y0d;GBHQIN* z@TJ>@?DbBj>WGk3fPk$HA0me|(R#s5aF+vDE({kn!!Of8Ypg8^2Z*5Q_VOdB?o07! zf$p=Z3@%L?IdmXc2i2L3uSlteLLQ#Trsyq!5E5VaSs<BFkQIGLX@6ZH$-wr#q*wtn zVi}W#vp~|MBw$?3p+qEe1w)ncK@;e+A|U6DUPkT!DtUsnux&<EM-H7Dg4$(EBK`gd zQ&FD(9sV0>Prx1t_n&!@|1(eJf96I0XCBsH#`1z>;dQiJ#T{yT1TA$dU2FN>ZH8;K za|y^)@!bYEZwT$xLYVsE1P$ANo}7D<U`!Sn5R^7HK@%eT=S$F)|9r{upD&C4^QBDT z7I{qQL4-huSCNPQdXx_t^t@%31;_Cgf$kqAuf3ZKhE02l1Z0&;@nKZ8gLuI245>Lf z&40v__;tU~)BGUy2jpj}ONLI<zR-0qa@7CosSF{PUXl3GZF<s~dSN&SE&%>tAXEPL z@L&H6WXgYmJOyO^k|wj&1K|a^$&TEz&LR+Am^!j4RkvBEr0Dv})1{hzvav_m^5#!K z&74)Aq+H>I{g1K{rmA@8Ag_<a@G~8skxK0o)Ym%>DgrSsC<tR|ttCwIxUg*R=isO8 zl0piPU*X1XmJOYnKq)SCoHbtnJsTi%xc?YkL8=OPJMfp9qG=;#A3H=h*Lgi6KN1;w z*etr51ZKRCw?btxW8!oGcIILp5DBGmrFa)w?pL@TyL~#9XGQ}DY3K;NcH3fnG!gPt ztVkm>f9vT!o)OQ~Gyk<=&qHu?EKuidF-_<Eh~ZBz_1l<R)x8`=KqHH*K3bhJC@meh z&(PU;IRJVLsIF92oVH?Fy&(OND!m9*;39=Bn++1VbjstqJ^k9{TwnzlW$k4mTsw}` zPARlz?3n~Co|@TnnrYXQ7^REJ!L=IDXIb)ov6kcBCur_4Ci!!}_mO|OQqqkh+X}6~ z798`Qa>19%PuYD-CC@uqPahSvx_ka68_S4gR*T~#+ZuCVM5fPxSvw^#A%xJ&s6ZCa z%y57ZLhpe+Pvy}Ta1Hj*@6S%Ydkf+I<&}jqh^GF9I*@k!(2By*e!lj+lh>6yIq-EO z%?_G*@O{guvX2noyM_~WK_w*YJ%3-@wOLw$IXI4Ic0uYFl&`L<yK9iPujZdzx7#|q z6Y^}~dL6|=Z=sdQfiedL=>fsk2Ph}{f!$cc|AVe~jE*eo+C^h^%#J&@ZQD-Awrx8d z+a25LuwvVG$F_5--|w6|?mO<e|7wgHwQJ5*d+nNQKA0W#*7|}muv|7Z6_5Ji%~u=K zSch0<SckQTEAP#rt1p9tm-t<rc?{@(0Y>LX-o$SuP%^<HL=}_Z@^<6S2Prwp*Ya`C zI#6+*a)$IX-PKa(hzwsk@c@pxqc$Jof|B_VITJKBuMHY<*R}aG)@$9Bu_QoE2Rv;^ zHOh{6-L}ef$v8duHyF;op_JjbiuNyuSTc)tqyWOc&pLf2_jYVo+{mCy=6`>@g29)> z4zMk^__SZ<Gda+D;l6yjLap%c=)m3@O#AwoRM4f&j>t+^CxFy%rW%B>_wp~X$NTR$ zGzT;{;Ny~a>sq>sKmu9pVIzkIf<w1s+(RL_S53}P{kEgDu-$G_M%axxs4I8Cx-03j zFVw)F@y4CL77&-)%z0Wb5l1*&Gc<h7XlPO+ZF{F+Q%IcCFc)p$D5dl^|8vq^hWj%( z^w^xBnts|4iZLA|yW?tQI^<{yc${Gf1-O5EDfV$}J@D!VA|J3Rg)CMZnbw;m-1>7J z$ar?0^XC<8yEi4$(B{^*N57yrR9bu&)9o|}2$sZvGM!x8ciKJgW&*F4&<&4G6xU4U zxy*Iq*~>e?CzfBWyV!rj9*s@T+6<!CTs9b;-?z$=se_I!D9(i`f8vm>ktb&Fi9Gx8 zNAL&GpCq3Azh)>#!w`ii89*UcZE(zAn~Qmy!7E0PFKtgUAeQ*U9-T-z$!QHj6ake% z6UjbCztQ>@O}lf)`#o?7Q`*8>_8Mq@XGMiYkg7;ms5(;GN6}8vgaqk&552st4}WAR zQ4RovEaaNpeyoHRuG%^_|K2&5H}5U0CAc{eh<sxVVx8!R*Zpo1#LZ<EG!_*taYg7c zX%lycwo^hVdAA4luElk#@Wd0mg&?k_)G?k3;s5l1U=Iszdp57ro5XK26(6`b_gY?9 zC?JDrbc}f+I#|QqEvfezt_L)=0ycj@K-8W7p&pj*XcCyV_8$EPEhbRpim|rwLaAiN zolGIYd|`DNc;G|ux6jEPGHyK8cC+8$^Aab*Cq_+#{VsjJsVKBJXbBTr{v>OjrrNeH zH{JAlI9)u`^0JnkZ?dbFNWCPG@}3&eC%FZB=tUNaoi9R>kuT{iJ7!#Fc00%on{{lU zK_v}rW7&M1;EZ$G@z?z+d2kEocem+Zxp~Po+5K92v#~w<d6AM^*+ER<`fEm?61)fd zIwMozVO-&_tc>KVK=r-zb86i-Era=?75{9h_QstR1ioL}qjvd>L_7b2Udn@9UU&4? z#it@k^S5*;g|wQpm+OwTSN_)mEiTt}lcE*!$_6Pn6L8j<jgGdKdSwYmhH{WxP=R^j zLD#{1Q`_8HbAaB;uWQ=pRn7HUB*azdL2x?tjULc8Q>WU%Z2BFpYv&4tm8bXB&67d# zu*&-z>SA=Out17lg$ni!1ND`5<Mc;8a53E;rR!Ps^_q?$H(e2w3pb%uG$4wQGj`o^ zxY@Jh8+B*@B<GuVBHxYt3_Pxw?IFcNRPAs>hHtI=4llK}PSZD*2G(ku(Nky=H#WuR zN{co3>Cf<okpC%P^Nuw~*d2w#8X-o=3=8oA6+MXuf3U6Me_7YU&p_XU7LF(w3dXDm zvfk^a`xq`1NII9=nJ0|H7txe@<Yo+=wyW=OC*ae~iqa_uUCD9)^%3&LL*(t&u>Wxu z9wL-d!|1V~DV(u=gIv(GVc6_dIHWj;MLb3j78vg63s_nc)J<O3AbDD#F@F*~=680g zO6P7MSIq;B4UVe>o)F9qDtpd$mKQ0)i1k<Of17~;sad7eX87x7xyX}ER|q@I&ka$J z)yq?bl{GuvoXXbQ;6Un0g}v=~6TtTOA>uXU^S1{p6EjVQ)TF4a9=dBfwQl$9IdU_Y zysXq^QIc*5oSiVQ#!(2yZ9zFK#ei>WX3@O&2^BgpN=87;;9N~yEyH9p@Wq3ZDVj37 zju2>u>rxqh_^FOG8FCbmw3Ad3epr~v1*-$1k$b_8mkrARj@65`4}?AFK>=W26}rK9 zBjN^F+MY*SLmR>5$pR4FAol&5D+VUyI^cGJtxmMR*qPC`pt>Ra%g1iKGVs!~EII+; zt-Y=5f8Fx%+czsl?pzHoBgsFmK>l$(@E-)gpZT7j@E-vFApRg<M6nq}yMO>dz}H;; zghSCmm6#9GCqH`|)^074Xk=tNTAc>=dM5TG2E_?6b;;<5Up4b+Tt?PXNk}tro|wF2 zYO1!%`C`q!X3+XNd`L!%;pqm)1)ter)ZJp+EpO`y6UT2FMxu-~zC19%#k17vixY3% zyY?X082N+)*l_@Gl28!EE_VpzwXjV#5cNPLiqg_XFm3C=Itaa3*4D%gN*MblBK@j+ zrG(&)B0U~aQ1a9H$#w{#pY{=Vo9eM}%xMPK4wCriW?S|gKJXaRjxpjl_*2h~qR}9u z&ouG`-nGd(gNl~jaolOkOG(ZFHbx{JT*J-yE3*R2Bj}R1(h7)rgd#?tY%sg)%Gc6k z)l&V5MH$Ib%Pa;~V!FOMOhNDhi)P7gn;5kAYi3*bAt;MD@R$b2V!CvfQff=-3K0u> zQEC;=XIdo|kuk#x%Za<or82d(0=m)N_Z(qX$Wy`7m57Mos}%!hh4K=_-Ky9)R%s-} z;bAITmX1}wq%}U&^?sHd*|WS(x(uh5G+H)Q<09a>$E_c1{PLcoi|X>@vU-s3zYd|< z`FDyL852NJ`+rU`e5=~67_ONovSr!T2G%OAqlI4VA4$_95vYwNNVew6%lCwI-{kOO zndPDhAoaiiMf{ewjMI|TVFB>j<yObJhgED)c+mDQK$AvE)up2j1W`GV+5mke(<WHU zCXE)^0$r7D`r?4U3uTFOtcHsa*F?|#Za<qTDmxHZ`M_#|YljaXBUSleiKHjMj4Zs3 zI>7h1r=t&nkOvPTveY1QyyeZeh$3tF?^ywoM&tow;CrNyqP}?@I%%`^S+m_oBod;^ zxgh*t{tLSil3E1dc>y%hTnQw^<*(!+luXePd6vbLk}HQ1e~3GsGFL)?&Hp3do8N&D zg&)d4P{9}tMQQ><(Nk1btvG@ik-O$vE=Su&W5z`20m6voQ4S<8Sm4URf|L%pbsbFK zhKa+)l^>Xam;M%$XI<<dxiU2KJu|~r`JS@wE<ZsP9y9|JF!K-ls0YqiF#{{(WyMj; zpKbE3myiKV860bU6NZv)CHH2v6dFWk_1EH0N&2mZ9(gZJZ+==*_u$^t$Gj+8Ng5y! z{I#(gAg%TJ%?F7f?*qK(bQzg?Q((qL@FPhbt{}t~zU;}?c-YM+n}j7383^R~2$Erl z2$l>o{Qd`N*nm+-W`Iy5mGQ8FszE95rq}~~Sr|(A^wD{vDr*c<`q9v6VvSL#F77EW zz6_wAxFEGZ!?G~9n~5n(RgWO9C9Vm1@MNUM0f7R6z;WH0(iNX*!pZ4_a{|`I&r)T? zsY@6vg7~y`9$n&O0^fsv{9P9$=AbUe`M3L=@y9W*D9%Q>LNR%e&d<v?#l<_|x2g9H zqJ68RH(w-p9YQY})rM1G&Gv*0zOiRbO|bE%txG;)e7~0-={Ztsb@fk${_Iw%HP;CX z3mF^YcUu_Bos(Wy__ufKYiBavNxkE>WJcd03!T{W^wxpwRX=7c{F=UYjmj=TIefdc zy~nT@@h$wnv`2Kd45-{s?{hV1%dn5fCy*`laDF}2b6d1=7=O+hWe?~imlX;7)^}Rf z7B7CQw(?9c^6_1F?k#2D(flc?&VrQjXvoR#X*R7s7}p1|=nOkOZjt>Y&-ufjV$vAh zINvC9Ldt^Y%#|c>I+yX1;o{}y#?1m?O^dhfNY3qYH1^^jB+ev?tUx0OAavo(Bcj^| zyW4qLf%h#M1FqDX17~*1@(6?mw}01#wTeZXrJSK;6<-6^suNXp@=$X9U#iJc`MK;e z-hrSNX7ObC=_(x1Txbn`D0W^U78R=)Vm%PRZ#}tSG*%V|&b}EI-36EBOH%8ClWq__ z2*3(`?Ki%()7>t!>`NR6&`tyjQGs2Tq#m(r^<3nbOP90&nH`xMr*_jFx$7)^7}vQI zv#j_}wregAnzZc#?@c%dv`z%1=I4;*4~%E9&J<|RIQH(uifZJ7vRvT9WGD5A_4~CY ztE4sDe4>Dl_SSWq3Tr(#UZ1*xnd)d34j}`9AJ*4_XU0pKIWtnn`R>;1$YOdxDC{`w zZu03N;Y0!P!`z%>S-R@Nr;FO(O$2ZSBn1D%)ze#eGvO#SB9`qxQ-RlA*mmtt?9u@D zx$;3(GxPpC@P3yltmANvgEpYl_`Pu<Y*tX;{Ut|QVe(s^MuE$XRrO&e|C)mO8}htg z|7>0tO@uUGCA{`$#^BeYmc<ISBRHhS2(FD1KhU&7d|Lhe;)}Iuee3@ZKDhn|A5_3Z z6>k22;RD_Oo>@K)1A+`;_Pb}ymjwYhvz)~kgh;kZf8syoHWsklj?tEClMhAb&5*j0 zY?fwBN_#P*N7}daQ9YDy#X!>qeW|fvRA8nGl_i@u^;0o%)B}a+c#OYmU48;i|M?*b zkdll^aUvc0pL&~gZ8c}gs*vA%r1VSlvfp7t5sAgcFy3+RAl-?WdWf(SV9wUeH>JSJ z@`1xKO)tohQuyhx&2qeHP()haVIw)C@m2VKx57ufjI{1mIja(<@k?9z@Ak~^<-QIW zYr55n#RUo?mBISjYDmul{1+U9U0XO15GAR91-C5_J-|`ZlSQQv3=qW98Z+4s0GG1R zg0u8GCP+l!N=EkT^ep6@%#hp{t)j*5>UmUI|Cr(1v^$yJv^RYiS+2LCeUzMC8RJUw zHXgrOWSQRZ<R$UssHKz!Fz>W}g61LWT>HnoAfY_Ia1!kNX5QOBsIb*$SFzp1XtB#U z58x3t=68&Ppy7L2uPA_j4A*n0D7xr)pE2L{XZh3C-m&UeWL()&_6#OJuW!-cL+nw1 zp(gTKN!?E5^QvF`>HMC|s82^n=d<+~m2KrPY>DRbemF+>AkJ{&z3!*Fx~S{L;MMYF zn*~%tz(31={0VIR($K!l;jl`ZuV<Np$f@6Z8uVkiy^0{%(4(VskLQ(S4nW&MqmsU) zB-dc~Y*qn*Mq%xX-oa|b@4-`Mh92#wl8KcRvOC_0jGu?@gz%GcgK*Z)LOQ}M1Y5@Y zOD8>QDjsOwJ3WTDA^9`CqWI*{5GaM%;e7U3t3R`k*45`X+u$!sMj+DiqVAu*<h_?& zB#ZX<Evl4|ZLVOO#z5RBN4v^`uo-vysrDSs#lUCx4NtcSg`I`)DO*6;9{DohYGf*< zzJVO?>)y)c69r#LxCU(2E1AA+ZfqV<;}$O!%a13_%JtH)a#}nnQIbcG_`x@x>qY-@ zGcXszG_L2>?y&0nc-`Bchf+Un^&ON#2SPvDz9Y9EiAPRHB%YC&1xsAs3SV_UCKQ?O z;g=e>94heM9!Tbk0*TvuCL+_-M?5%OJIM96!|z0{7_Wl+W+j#?_yD<s{+xWC@oXa0 z4f_uN&hirayKE_zcmX}Yz2|C#xmv}00)<%W%MTIAZcm&A<h*+N3}S9zP@G<{?XW+$ zyl=6)++Cqq5rDY&6f0b{HR!{*-8w1XkU3!aXsBPt)JN%KTK4^I-z7aBFc(D7Ng`wi zY*mVvoq)qR5YgDwm+~vC!4heSFT@b(Atb9wyJe>j_l5raj~3!?=V(4RGkh*L6P5w2 zw71k$VUhyjj`o`1xhq$0Dr7k@ddG5Ui%NDXL?7f|jjf$@camrh1?*C&x8J#f{f!Ic z+0jk^Mq*~xr?x}yk?CyMnUQhL&||(cZ9=y7<BsAGBIk+D0m-LU+tU4n^Fm!T#UAEE zk#qup)kE0he{A__*+bate{T8d3;hoJUP`MDltVy#LVapaQ}@q5m>^suJZDWT=!F2n zk?BZIr+(-moLiZuf5SX6qAqEECn|0$iA%|Hk?C_Qh8CmIEcrVG@9k&sGi>LO0Nk*> z{Dj)w^)CJ-#lW+DPIGAq-^|+u0+Y1zbA)1_gU)@4&<EoZ`|`sehFR$Q6bPL|rMbv8 zt#WuBl-{^(Vp2sKk!TWbrBB9sxSm?NU8!#qZ_vUDbRzR5lmgD5xcsI-3#azx+Yu9; z`Fn$nKkAIJnH>VPe|95RmwHVX1#X@TW!QNAbsW_n!jtrX53R<%4KRcz?QbkA+IwM! zU2c0}J2>3obzt-t!5=c*eA6iRqm6%MEi1^+7}LiPK6(!CkCh!{CtFyjzv`qbUDnZy zvJ^6ft}ja2e);JjK~$cW=q=*s55_==KztWh(jOx!C&O`%Hu`kPWm7o%tPcHw+VsGJ z>*rJR`7EB;1(3>y+SR@8XqYtov!U$K#d0h;kY}nT^5!OLW6fE*z%h(N>AG(J(w5J2 zNl>^g+bk>KLO$7ozuD7()Fw4L`DedWjPW#WFL%omBG&=i=jYN%Ox=)zYzn0s`uP^s z3h}x8!;<}gu30;>6`GuEt4kKYrP;i|%a0HX?6X%`m#2`48h>-`G6&vqQcOO?PAES) zzge96DM{*EL8vJc*L%SR3pudT9+mA~wF1!;T|Z=^3Xo1vKN0mAIKP?PEI$<6vs1k; z2%BW_$wYD?)##q#owyE+#lQwD2@5S~AbHK?a38JQ3rD!=7q-!{*OVRZ9#n1ALBVif z7l){F0yHz3cbH^5d0+;UD5?sGG{=A?v*<&_y3WI<ecY_;6os3pvK|DmOn+KIks3$a zQE{-$MO#OaTI3)S9Zx3-tC_xRA))_PszgqX%!hd11*8-4##62SqZ7eS{G$_rDYlbL zwI)Y&BWblbxTfHq3(gn`oq-u8K4S)I?`ZS2h|e`3Y(S>DeQ4TPld4S%N2D@YzYCVH z6Bz=@R87oTiuas#PfP#Sqr_wyM{1drk!4BJ2u|>1sjOME(5`(iz6ByPE2TCr#6I0k z`=M+;EQ;LXqsb9XKEX}NrwE!FLw7N>+)sgrmPN{|80H=0eVG84+VTbI8o|S@hVX|P zAYAeE0X!1nK|y*`6t=^nEKb&TyGdt*y@c#PDdqo9N-V1XNh$w7Ddk_bVprG~^;!D7 zyFFB-JL@Ppk7(HTW^yQ?r_zo8PzKBu`h7sp{}~^(d7-Jneea3T&7R}J3j9~r8#9p6 z0kutFpE72h$*Lbbz&qh?Zd`g(0M^vQQi7?UwTCy@{Zw@<m={6{08i>xnpiQ5Tri5T zT<&!3*$|xVd|Xe{v$fTNi_vs8QVkVblx<9RT2tjbjaf3TPP@*)7_IMJVvy(8;6QQP zy+OIkfjono52By2xh!IO*(RZ0n&60!6UEHa@$s3wlEYWHFl+;^LI}9(($4oBe-uBj z#5<v%o$ndnN&Bl|fua$;UF9wwpwUxou79w&$B|$k5_1Ljthj`HnP&>yeo3;Uc3sIQ z**<J7l~^--$zC5Wr2(=9e%06Y^Gd2c4)~;;yPT9xb<qb&>*;Wtzt2c5dSeZ|XWJov zHdAQ41a<hvI~jWQ{PT&-0hf1jeN=(HE3qO6m~YK8KGC0DO_V#nNvPIj+T`B}+x5cH zFoi_29S-&h94u@Y8^=_iy_IbH9`o-WBLw;qIB%?Q5e`BLchxrdi@%Z`iF0ax<OW4q zN_{9uu;tNNK3jEOTeqmE+7+H6MSZSsuPlAr<!)`Wt4%otJPBmzXX~#paMhHas5=CB z`G}@uwQ2*-&AW@lV9xD%=kY4kc5h4Mpe1N*hYybTA|Gpyap!1V@7^*kaxG*`a0Q&7 z0n$+kwkRArjbbtD1&+?dUD&?%D}-O*2mZ9||J~4?o}04mLhe1P%h?&c7B`he35l@_ z)`cOHDHNR-O+>%J23kFt@CRhNM7Ha}>XCkY&EHYzC#r#gz!38&9vtN7v<v8S))j&? z!Ds8!)5nSXQ_&BVt|HW6V3^USps&h~LR-0nWwejAIy1>ioH!;}tE9=YBOG)T_OY{2 zG3_%9E_`BH>Vb*A*~LY-E>B*xsUa6`{|GUz=7YH%+_K>Y=%MUi=o!bT5z_57`lGfQ zLey9UoV*&bq701lV~DO9Z$kSIbGl+*L5Hn&_AVwd{63mf0lY1rG|A7*NBvQ2Aw6#V zkl*#%z=@phui1iyI{nOqm8j^)*K(l`mZ@Wks<svpAv5#xL-lGSjcX$M0=rDI*#rS0 z_68Q1TGr0<;^-;(S)H)Rl)il}rco@$Gz}swtY{_R@?fTkk&e0}vJ)X<TI*S}{hKMm zAJzV)fI@+a?cW`9u2tV*#Ru01ShAe)tE(E#ue!Y5FM_$`=5N=MEncV$<>{gY?)LOi zoxy5DG-u2p*-vxlk$lcorp5H2f2Oa255N|Nj6eBKQ`9Kb$Be*Y+JATR%xft7!aaSO z@iS0*qL;vr;|h#ntB#NJ{VXnVJ=m|Q+f$%xYC+Q4=i_3*K7r|uzQu3C?!htueDAQ< z+E~nIM>!PGy65f^-AIawIelHh7n>i-jzi)0{qx9fb(^};aieFO_j>#D*6MTf`y$>B z=nAwFpxmACue#5b(7p@mkzIW~zWlNhCnQz&x9QfbIMnZ0q~Cf>>(VGjI1^;+FN`Rp z0ALp6H{2`B3{8Gw4kN^jxfzW6=+Fb~gS?^gh}Tdn9ID?m->aKd+VaRZD2JvQQ>ZKn z9AMAM7W*b!BCWlQQah-AIRW>0H?!r%t?}C5L*`TRoO37me7RWD_tP!;olK?JE2YNp z35OJ98Q~^=))u9n(Dae31j9WE{6nr;tAL2Oy6QsZNk%`N*~VDbL%<rrigyK{Nxm(L z9rIdRp?rcq>I*#b8W)#T{m<>~HTmCE^Ut#I`Q<mLF64o!xppZ^(VQR5YlD7h+B6xf z(*bp;C@Ye_$_Sj7<kiyif`;mUv#0&6jN<=p2?L|rU}-KQ`|;&ML$c|K?DknzD*wxl zc(NnhZYQE($tTk1G+r~%8!rN55yR6q0Fj2_t6wv$np=2L4E-T8sgE356TG8@`jMrh z+@u*(!~!d16YQ8xRPBUsmggI@wHawAOg@Pt;yKr%VN(K*xRUM;GKzFMGbvt^!T>#! z0R+BQk@hss&*=IVmOkgGDzR&r$hclVA44CFy`=BL9Y4<LgY`t-^-0c@RU=J`Iw5XI z9YN2fYRV#231f`Lhxi}BqepsBi3Y{cxdt9gi}BSrZjOVHc}-TvaExW@m%i_E4X&U* zhYgq;2y`&&(f(vJhLNjQceb5q56pfoqWi*&VBKiQy^1B3`%|f<dWfKO5?1t?@Ng1b znh_q`Xw@~r-EIB5bAWrr^+7uo%?4UZJGD~K@I{zsa9OLV9EX^dP2SNOD_WFl&V19@ zC{spzfON{bPjRxWrub56zRVxIK)Mt1k#6yhZ*wSc`%W_|x$Qd^8Jgbv0xY0f?C&UY zzMNNIv%ud)ja^4k?2A*=rouvskQ_zSWF=h*?}c*|9#-5Crq#2ySb}!Uw>O4~wiVd0 zR^H@refGW@GVe>Tz~B!0z`H7^rCySB%*fgve&xRx5TUhLyY-vUclfSvLaHhTCeQ^1 zb;$h-7Y6G!bv+N<1<%*CMqizQIO#8C>Xx4NjE$UqKQW#$#px0P<W#A8NFX^~U)f=g z;$65GikKmN6yqJ5@_$5fuPj`o&Z;mN)cnz}qEdjuytAq0897JU4unGGTG2@%$Vwov z9?~k;YHL*%Z_fKQmRYYSo+`mn5vIphaaK9}>d1f>N1y$kYqzl+v*vYJxPE2Gh|1Bs zrJ93(v|fOOLbXLI<vM4(<0zq$PV_C$$H`kIdP+PDMlMEymg&}85SuD;@^#<rF?elS zNFuVnPZwd;y3d>Le1EP+sk$0loQ-FjA)s(TbFd`LUi;eC<FjRi(W3Eoi|7S>;$i5s z7J#?ncY<=bu<1W}Wn-9keK?jA7z%CbiFdzquUv^|Yee|{_2Zo63ssz^9>Go9RdlLl zlu)x|yU3#xmbP0NJ+5K-*lIo~4|?Fra*;zlpBg^8ZxQM)HgZ~{-y!0Y0JiPnR4FMs zhx4Hi@z4?pI@){hu7aZ)-S1^LMd{WhB2GfTJglp^o?q-m?B%%@y@YPs2I19&b&91A zQD30v$O;Yp5xy;hpTu_};`_?UZ2J4{{RKe4Ow<<mmuLEqk|`t&&V(MO&!VzEB@8jW z`zt7VPrSGcMtZzS7)w|xiE>t!SPBYh_k~xIFMvIR+{&En&p&U8E52^hJ9rReQoH<t zabI9lP=3X^5}XRY6Og4#0RM#=D?u@cP{WqwR@9U@C|XHjCKuS&P0jJP$4Gc65k0q( z>9mL*e-#BcUQqS7x<K}T3{ukV<N5BXb@3xZCB9%AUev%C3>?nTo;g=<IugOHw0^04 z8uR=_z;K-rRfD$AMI>EE64fM6s(>;rZdSmd*GJ(Rd|VeWxF`cNLxZqDxNFQ^jeGx# z+;1!l!nYYf$sd=O5bC$Gq#cvc4mg-g%6tw()Ga$^wy8cGUu#G&+K`Piu2wwAU^}pW z@v?db0g>|u`WfncXwPe6B1-<%HgGjxRC=-lEj6H`BfPDDbZjC%B_UM7mI%K!khHTj zn=2uwssT(+Onr3%VzQFD^DX6;<<@0*ctf6SamKu-_?~i|?d?2Rh^3SPE~8wp3|#kf zYDdFm&QW#Ky;4}vMTXEStI|LZ)^o7NZ`mnw`?4x+V{n9O^D{9jatW^Ltg1DQKE*{V znM#R8fqvW2I#U(HEk37=U&DxaHeFm6opa0>Nk{lX`}c6e$PV~EUAwJNIoo5_-0sKz z!1nZucBe~ATZWePb4*0Rc<SPh<M%ije^sQ{lx~F>jlVXNB>=IjM}MpMHE5tjyG+mh zWFD(ojQ>p}#t979e8e&v-^mZH4ZOCsAr5>1F&<<G<C+E^9hZ_kk!E!8$1*~XZV0f; z(skMn)5i!_FM^M`PI_*ln^aBi^!g74EAYj7`P@0_^I{oZ^m5Bl#<3I+MBC}Z=g8hC z8&qtbvqTf~6*TNVv%l8emXrkelBvCwg>!P3&V5}zs=)7^iwLQ}RZUEG8e-Csvy3|y zOffBG1xodfgGAP`e<EyAY(Q;e;^P`~rD#W$r&vp!u?#20p9$jW!o^9lH$Iur2$IKa zitrB*k@Kf^DzQ9vs@ANej_*%!bsV+NMm74bCPzCy-oI_`=X6mx=U-q4Rl=tAqzxd| zVaV_!NXrMuGtx4{4XxpmidPUi#d2~JR4OZSe}5PhmfS47X52-8R)u!$@FGF*Dn*P* z%KKx)LNdLf9N+x=6~_U}N8Dx3c7FURpmL{jZ=6q$7AvzX19A%*z+lzW?lV9;rER&x zwgY|*O^m}?mS4(Do@TqH=PUr-4e3wQ-R25}pwZZ{|Jg4@Y3!@|3iWf9OM)ZyB8fq6 ze|L_eC~?wWa;Xdzp8!?pRT%7$YxJy-%;Yx!?ffxjo8L%SKIik#P$H&RpCGD&1l;*f zvYPc9Rh9!XC+ybfYC`$~Z!8iykhYGQlezAE%L_arw^?UoI6(aY>z>mFzQFhc+wG~8 z;n|Rxv2Jx?yJLO5tSd7S5*Hv4@HNvsAp5MagL}=<m7Wf}4W{PMY#r&@iBm%F<gmq3 z9>;hkg2z{I3HSbYH<bJ^qC*~4nW;JpQM&m-MK*^gD+xDc3NMvf%+6{Ig~wUBao#ce zKt~sfHVI+l&}>DX6|@ztq(?>fOtd=-Q8+bw?VE~n^ZCCkPPIDt-Q-vxSN<YmdsEMR zH?3K*yFZ=LCJ=blcUSoNi$Wf4Lff1VNaOB|Sk^Q1P}=&tMpb&}Ot%8$`GE?YXw_y3 zHz8B+NKX&2l`H#3h*Z^zJ2iNo!ncs|9P4evWZz>Y=w3K=#1<l9-{#M}p%jL<o2}AK zlGgMFZwb?<a?qQRGwCe@v=#kyx%J)LJSo!h`sGM!h=^g$d(Au8V}4*5_jK&Ii-~Q6 zI7j7U;#}eG@IJqbg>Gu}dKN*VEd>CH{%&la%02kkIW<Gud^_~dHD%AZPYTBUvGYX^ zNFFd-qbb*dOli*M4SKLncztTGm831PHVkdE<V}Wzd&u*h9QtDz^W~75LyYB&K1x)M zEy=RgtX<_>vMu%^nJz#X)^Q8L#3)9GLAu<ABo4b6`=digjGT-j3ID(iMH%vO?qAMp zsOOlPn3*CYWDhhQk9#)!e8L}FFaW48Emf?`xJJy(OU!Hb=L-Q1U%|PfK%`zmH?~)^ zfbAgv^~K{3a36@zvetqtCPwhwwz6Yu?|ty{E$D7=|K-IVZ_wo4zco->XgjbT6w7|x z$R2QtkXHvz(KByeq_2Gcyh7S>+y%h>A-|d{9ftz}fnVgbm%>-P<UhZlJ`q1VEX)!9 z(oUIfGH0Uas3sPX1s31re6_OLwacVcj41*0XGO`(HESoTysSZ9RflU59#dUS6*+sH z^b45?IdxG;fA<w*@swSfxUhMyp6R|-od{-fH5$#UPa9pBb7IbbV|c`b*lLHV-vxhU zC-q#p@%!uVJ_WndFnaP>=B+RssqLlMr?Fah%3nHTwh`#k$92u6WOn`nDWGYPw`k6^ z;V-kiUE{T<V`@4dXDUN;k)z47xO_7+^ob9JdKq{X$?TTpdt$wP5T#y|(M-6_abC@` z>TX5j126>IKMXW7*gj_Y3nqpOzfHQ9ZqF2onc7)}jnURPKb2TmEGkiw-REw%(Mvz< z-X(g;#*K384(weSUlyt`dD%&~7{}!N_Tt9RQNuEij&8JHJ#U;`%{kWL#+NI>%(+?^ z5>F&c${ICsq4!D42&)gd>e+^6>C6vqvU+YXen7?U-o+;9#+~e0$%tm;_2I}2B}EE# zE7Wv&EuXa4n&fxS&t`-oKr;<Jo%hc5u{z2;AkcS{e#=vGem(BysZdmqD;y3(YP2_C z%ZJ;V^|bOfJhVo?F?1V*Ws#v#cWEnTTGQx$Zry{e7}>aRLzj@YvGpXY_wwiKj+d>f zCEYJS5I5p$Ls1}OU(zb`J|gnfYY&JzH>fpQPB9UhHeMR^t?n=KRj_Q|lGGqvgtxun z)0FZ6@%u5hXEN_ZTlW=i58$NzAsa;DT`IxwZwbBc)hYmg)Mjm?QAaX{1VS*g10;p7 zN-ouug7Q*a`}rT;qtd^`*1m{8a~zEpr5~=M#A+RQ;0W2G>waBhKR0eg;^_Z~j>|Nq zu=3!qrNUvLBFr$dVmDozBVSLc?(3_Jsy^1@pI%*h5z9xA?uF?ybui2_c&Y@q7-9-x zoAN#>()KcGm`0k@F0o8^IrVs2RG(iXX=?748@ZJG)lD5$&;C~IY3~4cVq$;WT$T(u z9o68D6&$qQDSx)qY*@84c7hYbfv?)P-VXK#<K7#3fjmYvC0j+S%^oL)T?ysFdg<H) z|FM!1%}Y@1E?cOqY#eh1DB<I|Non(7)rcCR)03Cb&M2tv)9NF+F5JRqxe`eX&mmv| zUxYt;1{@guJQBk7vlkr96clTAZ>0W=QQt&0Fmpy(kKfRhjD9P*L2IoRbC>FPy;~_S zL@VE~GSyI>bYM`Ns-+w&7ONGOF<B&^d+l<cnubSjqg%dQZqtxKSQb4dlxF)RsTEpO zMC4EPoE+fJ^U_DUX;X&w)uON~;|4!smATKIEBIo)ANB`@uV?B4)|>YK>dkHGen#}6 z|K`l0WAq9Xs-*u&rsayY$dXLl6FL8HFEd}lBT@iqBLt8$X969Yz0sobWiF=ecCYwL zd}@0u`|{Tp>egTARY*&8m?Rl8F?OX}lwVUY8s>vm^zQSH?HZVCtiQ%v0{k=<L`}p< z=*faBCi2NOda&X#;qxu#@m=2AeL4gh;0B*L5UL}Va-rTF7~67lr^{~K3Y&*2;t(Hq z1?oE(gBFktUip8?Lp(Ua1W6AK5<f%h1)kmbnf$rnDDry*^)t+U-Sk(gbq)?xU$|%> z?#<hr26~!30tZBDEnCL~dT}20C7fP|VRj|<k_~(xJc<d7AJ9>F60s#aL2EkDKXtbQ zfPf@N{>MjK8*LerKuL9vPHVk_k8e|~DL)js=i3j;D6IRkBFQfFD*PmbU-D*i8Ij3I ze*=*onvMwXDem3xC35U9R;>^5nL~cLC7zoQ5`?)YWb||_>Ah{Ht*+j&7F%kiwP@h! zdWW_>f#2*$ctkqH^)$u3H4y}M-C;ymV{cL4sdHuRl6??ysB=2gdB>!j8x0<0w$#$x z#(vxlV&!%dR~>J!wmO`h2w$Yss5m?~7&wIZ^*bW3Aawu^b)g43QW0KT*ZiAztl!XE zw`67E;}$y$I}A>1v_&l5@~r)#pu0?`^_w;5Jj1ZsR~|GF7WsM@4E?cnTAym4oX)l$ z;;c><=wi?cSP53d?7COzBfsyx5o~7yl)@kR3&40G-&DU@E|bl7nVb}R32lV;pyY=6 zYJL20BVp?hdNYW&94;!b!)eDAF-N+FKWAwuT=|&nyXdX|)1zknhFC(%5gssXK$wL8 zCzs3)<GjGIdVp~aT()1nmD^31t$sa8`g`l$9w&|vUbQhcpZAs9Ahkyros0h>WmN;S zd#Y{e0dr0paRj+}tOeSD44a&=634`YMSr~9=^+*+NS}Az)u?=2zl_)=CSIW|{qR6; zgh>D=cQVoD9g8!E{bIh9upeU(=RwiPu^sH>M)MfP^n*UW!QOi|p`v@hUsnl+2MV|2 zA4YPVaNerjBkDT7#d<2PAn0BuB|-{~!a}+o{U`&ow<e3HY_Q?PRPpgoM55`}oag&= z2N!o2HM`zEvwkm8SiEKoEP&_{90Om}73dBHxBhjLWB{06h_900QC!+sC6mn*C_`^I zsZ9N&fI0n94EnX{4(YiRHl$AN@3?7BohJ|HL0_zA_(ztPL0g=qv+wLI|5P$Gc`?T? zi%HH#OprPuU6eF0h;LoR#809~qqe`1(*kJfG!DWiuRW;3CJBJ^>eYT4%51!%(2xXi zq8qw@zkyRymuRqC&#rhJL7gM#1(EHy`wJr_KkozKpZ-tV)sS^~81zo&fZlRHWoI)k zy8_(_@)o2;$FeK7192Yd);w|Y+tjY2=?a9f-*2NnEaRH{8upw5-#Q((79_9FufnKb z_8DF?ME6{?--lFEg%C)xmYtXQgC~R+RmT(M5xTMz*0!EUAT^SHD34^Z$fXLOqrFbP zJSFAZZJ{Q;!2~zGiaX019Yun3grZLVxv?Lc#d<l6?A%9tZqu>1WlD}OKg&k7L$pGN z^qOy$#1$hLM(JAdEb03Abiybza?e?TV<_6KrTwmjS5Btjk1cXa$!IhVyUo@@Zq#~; zy#z<I;^VnW`F-Q|U3@f8g5fN5nRWa!*(Iqh_t?2^u=j}e-Rj2<MS$nZiyNfRm2z+7 z?mgQ-Da2S4{D2h^@V3z?NhmV)2E#ZGkxn^*pjJ$GNu*IpsO8K?!hCR5-z#Y?l%`9S z7TJ5BP^{PTb@O9GzP?s0X3i0W<jyxS<qm{HH>#vj(Pf6FVxuY1W6-f&KyyLT+Paci z3KqaLoQLd?$><|d_a=!Dv8z&+X>TNc%}&*@UloB9;-)HpZa<ZiB}3E^NDqq;k+0Y5 zqVqx=#|UqS->pksP4zGAM&HONZo_<4dq=r+sO-_bN%Zd!xVd;8X`r~EKCf)h$?^`j zHcXA6PgJ4uz>wf9))q6<3^PA2***Pqg5v2U+3fL|*SL;zKz!7xOp;sjK}*mB>kj+S z>Yf>#;6RBU7DQ{I%9ES$L8~7Dm#LF!Nc=<Nh)<%0ITL0(ZqMp28+kFuBK-*}S8#f1 zukI?a5EM#6B(00!Y^)^t>nVFyVfLg+^q3ZBE`gOU+`9ZcO5({e<D%*~b@!HdUYBWx zMb3LNNAh$_0)}@NVTHq_ZF$}T>&2Ln<UDY*@bZ0X_*o`|!Z6R~;eAS{G2_GWL!`by zAaswPtnt`7y0i4E#DZ+|C2XZ65JlT98r}IR=6g{<sbQ;&lFPk~{e;Dzn?R;ne(+AP zH|bJy;)n^-Yn*fIIj>zCCV{8pOO^RT?W|ZLufj)W8fCj~fi;9dZ=7ee^E_@|6d|Bj zbygim3idc^Wi`y6qO34UUbsbGNXc6Z1<}>n*@hJN9B0fKj6m?m&*5a&f?S;7NfV5F zit5U_fhXr3j1~MeMPe3MoA40v*9Bp|O6Pq;32qj=Y+C2=jO5A>Ip8;yMTMZIA?%ct zWQP3vjtZ*$1SFAW1!0zE)b>9X&qH@dzMk{X`Pk-jJ>zu@?y_2uVsM;L-m>ao=eD$3 z`)h7j^Q}De`J!g1D~Pb0dbLUyp-~W3-^JA3JbEe3gV&8*uOirxuPlF4qe}nFCesR4 zx~he^tR%#*0J1@<EG(qGW%U<}rNI$dvSv{LwKU}o4m35%e=bM_ivj!Gir$pqp#ZLy zpt#ony0M^|q-fNPA;d;@PpI`HD@0oIm}FdUe15C}Dn|;OharD}7*bV9IC7a&5gV3_ zIjKip>iBU_oG8!nTLaF-)c-Avihp5*gwR7+I}yIfIN>^wBb;}JphlxBioufU?F*Wc zCXdL10dr(K>$glfyBi`)*2#pbAkH5!1^-iCPM$wtMH6HteJs!{$PSwlKf{AqJ!ZX; z!CH5RDov{_h(VU@5d)r*@b8B>j}IXR$8rwtzd8+ONB_SrO3D93b7*@7>N``c1YGth z8OnM|P_<;mJvKyDapA}b(mD}TtrkAJSsd^4H;GkEcgbzR&eA~OL}tfT5Id_1Da!h_ zsNb2WV@>}PP=z1+p)AgdCoCDJ=1x&j2x_h4Z)Q|!6Y@a(M8&QhwXNE`nE&gYkY^oe zgGx=5-&A(et_Gjn1p436)Y#TStBL%dfEvqADmCS7e{9VQs*xuDu>s*=TO>^einkQy zU@sQIR!MELLLTp5+@tM&4nhI<O3s%HDlo4vB!L{!rfHCr7Z=oo3<&A8nRO-Dhj%2h zliaVLYIYb>avz(Z)JvlGmJGeF!eXnQm>ULGKQ8Bc@(jN=45|M4g#&s%#jvT!)B)ni z;YP|{>fa8M6vL92$nI+7bdT@qsE`x8x5f8_$<)J%BSa88#@zDF-Z%Nv&EHZw&R6Vz z5i^KCfz(%;KlEAWoObFu!e!64z<!3AJUneV)YnTs*JrOB@eYU;AxVj72I?l{2)?Cl z9h((zxgiq<^>O`(T{>0OXtZRFUc)p}h_>EDbj#aXra`=@VK(L|m|=NxsVv|*vmxd1 zA#!xw7L$b~sq{L)d<rD%+N)lBI55J*>l>bwq`JyA8-LT+s;ktF;MCIHS|iWF_pQqE zf4{6ksykZ+edHV;*x7p7ci(hH*t~sO%ouIpb;lDS4bFoAm-=XnlSB)fcEe6h0jU2D z>{`}6#3^nVwLFSxpxf}II#0uh``Hq%B7X&;t&Q<P)NhKB#-Jff-no!L;nlw}YiXU| zo5p>yC1gA<)TLNQlM3)JB!QTzdu}eu_W*f<rCUj@QtU(!PFTi|LueFIDwHwZWYSs7 zGx-^^Gi)%@xlX5lDKYF+_1imC&0nGh)J>rYIrY0)bn8?N7XEsZhUgr+t+5ej8vYc5 zK8{z4Z}Vy1sB*4}^WNK@M=BZotVl@cHQjkD{w2>p{hfa(UA23vCPT!cKk(Oz)zdMN z?KTp9+_-)6+AeH%3w|#_-<Q(HAVGS%yHNbKO&rBUjJ}W3s?*Q1^?j?IQgc(s9f1Rn zb<Sh9f*;?dwXzy5p?(0@(l<sD<rC_SV--J6L}roRO}0^<_mC|zCk}iv3ig6DGs<9G zLiK9x^|EkNA+v+Ue^*Z!%c63Yq(^V1>$Y^ph`mP}MtX3#u}=HNCh<Ev6YdV(j~f`0 zU?wi7Ikp}g%68|TySnLCnzu|p2&{Sn$f=&(6N^0rF#Epl)!BhJFpqDKbj_$&?AM6r zJQvcPX72C5&TFeMDpq<sy<uqk?D`9pw-VeN1rfE^3Y8PDo~4>n18M4t1+Fi4635%@ z+TCQ|6k_@~G6(d=G63r`k-mDgk*oPI(m7gu&X2S#wwnO`2H+G>x~=<x&PEtZ^`!gz z%i~pJ#IJlKPToS?shpPsq`&xJLVXVXx9a>o-V{Hh%n$wSJWN>AaHZtgp@Z7o;^lJd z`hTMvji0IA+W;h28v0KR`Fh=&dgJNl8V!5Vo=`iOz)nLx>fTJ->XFHKxklU`rkPs- zp3i%|8<XXm`(c3w?la}M?be#k47%r-I6N3AXO0J!3$t5|cyZ?2-q5^P4BqAKDTJCk z#kb%!+KbDWiQb-|xhP?c2aOG#@1I?Iez@pPJ9E0$tCv~23>__$BEC0!*LQ&z+o!q- z8*dJ=k=NcU+vB%>J6&4>@amg#y0SGvX+61&8%^GV_!yn=(nQi~y(+?xIZ<NXP&jT0 zZ5!|ezVYb~-_ucZgEq(5xOg-fwwj|DLUI#!+TOz_)+&@VCu!H^rJk6ZtuQ-z7rkpZ zU20feF0pwycpNW<?7tRNf$e)qAEdarBTagagz<+Vh5jLKenj)(btMK&Yb&9`*f_Xa ziIJO|nVW+}3$Q8qrhedyV>rrC%4QtXQ+M);!bR~n)FcD>^uU~izk`J^+ZQ#W56$im zq{R5K<q<iZ+;Y8AeGb`V7m;#lTk|6@8KZA~l140$vr>90HGN2ZlKX|ya&1t++^VT0 z#N-@flm{1Zt;|Y#;}~y~m8D_|zetrU;6i2TdHgI*3`lvL40%1lbf8s)Ph$4noqPKV zFNk_CPctJcYZk}&)!3ll8D(DtlHUBlKT-Xl-*{XT{h^YDlQZ85744%tFy@`h+dPb~ zn+HPdgGddZvs;i%PzY$VTAqkA6*G<*RA%)PONZ!YfWw>l%H*v!po)>Tb8uW&?`dxc zUE5>yt{yGE7xAECt4&W~r6D9OcOI=y3?QchUMjc4fG5c)@5^`rf6RBEgz;F@aQ%r6 zy<&@%Psq><8tHbnChdfVyTR{?y1N+{8jmS|N;T}!o;9r5mR+>HB8C4rFKW-y(^jQ< zF0SIwA^>uCuB_;OT_QR`2iFjnW_*!6o8Le82z)^gmSz3xJ2?NR?;zj*1AS=P;;2RM zJ6c}98+nIjr_%g!!OirXWy3eQeoA_aZ%`IKFnQC^v(Sq9!6#m(dyv<@`cr{~jBy|! zLIzN9RU2$7Pv)WcEZoR_J+JFo^IbRkeQ)<a+IpIcbV`Nca%GD>inPemN2OXa?+kfk zpYCK&+6@Y*ew;<Y-H}$l6jNGcls5HgB-5Rc;^qwh1Vy%4?~mQq+rEnZ6@>gjPE4jg zhC+n(ShC#M$Td4<$EJ?^uqq6k;pK%Jw*Q|QUcqSc+2<<qqP@>^K&wJ!pjDyZKdZur zbFh15PM}qxT+R}L*FUSmC?Mt~F!8?~NXj{I_+0&a|F;7P)qkuC>8$?aK!W?SrW{YP z7Vi&k9d5q{0`iUzY(C^zyU(k)4~zW>O;?5wk<D@|!;w8hr&wuAWTi?&{(&Ch_=kNo zKdKA=o5^U(LHfbsPisxnNuS{EyvD<cw>yMGksS9@bAh?-79*P=^zpT%&|7aKnq2_H zw7<Qr?mI8JlyaU+vc0c_r^h|sms=D-l(!Gt-9r{<2X9=>wXI~0Y?YqLGcqM5Tz1pU z-AU!?V9u_WmDN~#k|tA!9Zoi>$k;bm|C3b1!;)s5_x5wtI4&(uz;1J%`Hq~%iK+CM z!iJ)UYCwe!;F|rVuC(|a=}W^2fMd_(YwpL-vV4pC;VD;Ng((#CrSmG_UZ~G?D{-cW z+hR5U1%$vpW{DqQIAc84Hm{Bep{>sRuLP`8=35NIJo<TmbNjc|Dse{$Ji2hXH^$r> zlS044-Dv10Z>h_Eh1Ddls~s?@65LEje7#>OC43wge8l?|jL-47NQtRnR0e00>_84+ z_0^1iQpDNE>0YQhPF8J~CgUBGdf?og)X~@(1fO^o{ytsDN5==<kJ#U=>F7>v=Rv*u zY2TS!Jk2|>#Fw(=-q>2{wWW^0kDk2XBUQuLXpwFzqizzdQ7~kZgoO59{82cN&LWGB zuC|`iY}M8Wcge_f*;?mp0cC{g$bK$=dm<kA(^I8dv6rU_1U3V@UTi_()mf&pHFbT2 zR7PNzsKtSM%*LBVuI4zU!j|i*$fSF^LZw_?dWyP4nczXU46V$5k9KeM`l7{(YW)JL zW<Q=0*-Ya*XO-zp=amXly=zy$^aWISQZD_D%9GRr;|=^CQ2KCjd|^N9ZMM1MHF(=% zgKla*M+vRS2Sbib(MJ%3^m9C|*K%Mpd(bT%uED8zL1>c90qRCpv*uy6#D)p82uQ$& z9QbC)>d+C!-)O=-XclgLiE$0NhqcSmT5?*;Q}z?gU;N$q+3FduE+;1`O3VTO#!EBj zO2vFj)qp*Z{3j@mBlw1RC%#{EIXjKJqB8_75q+qdZMTGga<Ny09I|U(LH8-VHS?;Q zO)Q(a3BM^?T(IN7Ca*f2xdnfyfNW>Pv(bvk-7fWuw*%^pi3te{6R12<E~>Q&xqR?l z#E~}}^YCWEi(<7ev`^Htr3pC84b(IIP2&g@P;0s4JTNVWmmbN`1GXn@0)9u;n#FAr zkpY~KP=8FsF0|kq_FB<c3hoSO<lR$YsxBZ%%d9Ntbh*4t-)N_Qm~7XhV^Nv3ALH?{ zIE?IvKEiGje$AMa9k=hw6VE{#Mu~f>*m`3HgsU_u!1G4_IZOF`FywK@!}w`l7Cls& zy|{gZz4~%neh;r4b6j70$qrbMS_rGQaYcT>K91}!@3wXtWQ9|6U)|ip9z5t&R=Ta| zqNz<A&$<QG2c>?eO&8mkBzr_sf1Zu$TosxpaX`4qWF!GE_c|wPQB1NVR$R{&1Ixjn z%9tV!Jk6m$Fj02phx?1cqfgDUnYx<gBQ@LVDUV&Hsd`7<H8OuHoo{OdS$6$OF3p_t z?{m!m`P{h}vmBI__5>ErHyB~kc`nkKwk^^mOI2I7ZA4~T$ja-+-@xfsh_Ej5BPQJ8 z5EYGBqpTQZw$KTJ!Ng?qKTs{|I7U?$)z-UG?bcPP$yU|JS!qvFt7p;|`~=}LWrHPu z3k4=xBEzy$nlK{(<AmqPz)6#v2~1KbK1vWg5|b{ull*<xB~^k`+mXn^?n&X+6mNba zE_VpNXx%P8N=t)7*oB@odS;v@lyt(2dfX{E>OuhPq6ds74j7I3DC=&kZFsz(2rwFC zREsiTGzRPB#>SAQ8uToaeqWlAwhXSE2Df>#B9gy}fT6&^vXTNrAqqS_cVlkGa1LrW zQ&U+})4=n*rKnrC{%Z^A%6sOxR#<}Mn8z3+Q4#AELATK!WlMSJmVzm`rprnoLgq`L zeD~1IlX2Ct=NB-?T^~AMC9rkK5^l6uL?!Z}`rGDs%5=)~$x5ADKu+LRpij2sC}U9H zN!`|0|FAPan&LC!dAKgB<u$Ni(Hl08IAgI>m(4RDz3WHiyP}vH>!NbDnq{FMhJAqZ zeKaMZBgTzYE04D3(XrG$)HBY_*>y}!KbM#C4f+DI^={>fLu{_9NiXxBlV;AJY4_L! zT6|Vy++C#1H+m9}>FN06-L^}LaMw)+(kG)gZjr9&okQ-{@7^jUS52sWmGY$`+zlm0 zAM)shR`boZ4Tg3!?N;?cRhsXD3iH1**{)hW`pZ1_<OVqUska1YsBY5~#qk7rXD(`l zRf;dO(Y{dqBRL~H>Y|-;1fB)LFII~#6$p&bs!jmH&i)u?^R4VJf_s>RWYs!9njNp5 z2lB!Nh+Y2}C8!ScFd+M*sDB#<BLqq6G`uF>tI<!Pe$jFK!32BFGq4@XPL{IVSZPf& z&6Y*~#;V4D#v0`m__`yJt<HT92a&=Ad--E4(gQN6X`x4Vpra3OAhCiEsUG$)Cs%va z`y}UQzuuM-wa~&)?{Qa>>VRNiSJDAOaGwW7q*OrH_0$kXy4;oO$tPo*(aO6)F5#c? zU+$9q>=>IBWhLIo+q(s6APDggVmI=0%HV@{^2*Ie`RQApLQWrvD>7HCKlQ31lyRX8 zpX8NMz#$*y6FK1F_H#(dLB&sVS`3}Ht2jTDnguK}!Yu<xDWlvIQ*r(mduRO+Ww-Tx z0RchjZt3n00Y$pIq&o!Z1`(x0ItP$u=<bq|mhSExQX1ZC^gQRe&$;jCKX`xQhv8bY z_u4VnUf=aun=aiA+P?1d;WFxJ){s{h3fbsN?}@{g1f|7aV9y9jFR{^uyTv3u#gBGt zb=&{c<C;W6n?Xw}At~Yxviyi3^(o7p)~e8d&4adZ?o3Gz68GE8`7qId|KvaQ5yK-t zrmm<JbrNm-iL??ngo>G4NeDuv?nN593tE;cHNf=ZhnSiRXU_5Ax46ZG;?tG8#WWi! z;X|m{k=Vc<w2*+ntwuABrZio`S3kJ|cttU>y9K3XQLsk@r6<#aj6Ju5H*Tma5|@&n z7xSP>KtMSZ2*?K@DtmnF9zkh2*zg~MRSn$-ofQXjW~W0@HA9*I;810#L&YH8TzFc4 zamFiO`bf8!uTWns`NVvCt`e4_92*<8CG0sxPyiE?Nw*}eW1Z=~Bn|#0ggq{Z6|<k% zrSEA`p3g~LPR8yDp~7KTGK5fhbgGPlKOYZ&wg?*(q!n69Mj8<;wEdei5~-jAaz0E9 zsfPKRE4Qgl5!fjp3y&}JdZd31!qCnJaR1#Cb<h@&dTyVldei?O4s{ZbC|YCI(C8&p z{Jdc78o{n-C&V;n4T?sv{QDe%{HsYsY$H#s*A35?q#2Ae+n1zI17908kFO^x8)Tou zjL4a@C|2_)p#A*&0895>$QrXw3kHBJ6pclU|6(9_YZsZkxvKR+^D^#7)NCqaMgyFt zFdUbt4;C=IVt*Olf<MFS!C3x}Q-lJ-R6yf%oUxuHK29e{8x@x|G`RJS>w0HubsMDC z^S5~qflk<#a|KyuM74ihIvXGbvU4ZxZ6m^$NTF+>oLq#^ZBUN&h!}gzStYbB7E1(* zT<L4R2D4^)%aS$vJ-%IK7=9$lU!b#BHe#Nu(`qNXBjt+dIBTN5jZWwHOm>EN(|M5z z_rI^YCWpPCjili`O2rZ0pD0j_bR7~X43;hrttYH-iAf+iMp@(it_3Ww3-naOspOb< zO;o=I1!7C48d^&QI=0LyiVE9E^Vl3d;GWo;Cde=tuc&uv!dC+P1LDKStDpkr_%5c8 z)941zi^l9~K#`}YTI$c;E63dHAn)@(=^;LTx?;s3qPOyR{t$S@YZM-*)^Y}Xk%RzE z!<IC5rxdf8pq$Z~;kg80IWt&7rg2LY_$R<51_3?fqp&xZREYtiIJ?T&DK7Sil=P$^ zS~u62Lm#(d7P>@Z9#IXGkB~w8_pXkeh&W)o!-$A;9`gT=PamTFB%5QbhxV=S1R?=q z!Nq<iorH|e(x){7`a(}&Q<Lx%cN~hP`y4IoDzfA}bnQI;<V#4vC=q>Ous;PM{cZ}} z7j_lQswWb5Im~1=vSj$4JCZ}H9i;(T_|U$DTIA&Hfr5+)t#tmFS#lt4!f$4CVDqG; z2A1JlN@_i)Og0G_W8C)OaO_tfUcE{{TJ?2jm~m0Urle-Je|_@X6H0QFLsF$4m|xh& zij71vN6^r8l7NjV8alLD(J`g`O8Au2?9UC~O6)aE$8O~f=g;~X=5mStgHMqD_+-v` z)bO8sVwzKba+dv$OY0vVmj3gwOrpr*&*!BX2y}A59xVmkqerErr-|vpqhpfb*(fOA zH{9)>!VD8;PL=()CwAjDQfMnIBm};G7^Y_4|MGhU*Re*2;^W^O%2MhXlu*uguAl`| z@<RO@XqS_%Pgw&}{Gw?q&`rhJBAPDqO?z@XK<&__{Bu2ag>DQkj(5aW&9k8re*|O7 z;;r-qdGm;Y<$kw}dPN@R^v;^((}ie%{dR+`rUqI(I4&RfJHfTK=ReOM;UC~mL_QPH zNl*HD1<RNFJL)(hN*d$Cnd!3A(!B?#0J*kpaSIq0gk3aJ*)iZ)Qsd{6dNrd3(ydsW zX7eA4n~Vtst^ILKx7G8ut@0MUHT&8$=(Z!k$rg@FbZiYjmRU698~Z=zx0MtuP`&`U z)+N2$^0K^0t(CZ+`td>lr6ROG)eX=J&iZ;Hv(&YT_zgtAGX<A42~WBKnPbl@ONRYf zEEa`b@QxVOmt<`{`q*~YTkR@@80}Be*`kN#ZtU#g<7JvZUcH$)^zjxeoTJVL8Qj65 z=o;}{Sp>a57Ft&D2rijNVY#Pm5sWs=E8O#jWm8DK6CFx)4`lQ{y>x!p`VDW;?_RZn zNqrS$L;*@CmcM3JfWeV3W__^uzSnkDFdNTtO`09F#s9o`VMk7unW)iPjX4SbI?XIq zj$Tkvc-3BW5v}1&?@gczMj{4lkop@T+e1<}TfNaVi+c#JoET@Vo9b!T!8;C49&VY@ z^O>&6hPZcZ6W4N{Lb1bx@3dv}X=!>mIGt3bmtxL4&u0$m531_Lv7?j3(!$(5CEHpN zgkRsiO-g=p|1BRF0NU()v+KgF`~3_W2pX@uN?jg%E{~!!FND63Q}rR%lju;PSn)Y+ zC)j@R@RX95sedfA$Fw_!5rK6WH>wU?TTH~W#38x0sS`r>9h~s4Mymqc*BlpWTjlsA zIdn*}u7bIH4U0ktn^^VKBO5Fj73oAq-dlQI5{enBIDxTmq~2|Br*4Wfp1^sEPnI{Z zFsBw4HR&8taMPo=@7<;a+~s|0J$J@6s)mSlBG6NGqDj3Ca@eC?w|cPm9Ii7dD8OB_ z4{mCdA!uip8W21#3w~q>H~9)~^9Vj%o?+MjwrCKtgFoWAhhL_AH{J3feEC%*dk2Y0 z#BPFhks!EbfJkH1m3b0eb~Z}!^@s(w#x43N`NyO~TTR}#yx=y<hgSyyA+bb5>szR* zE@R3GZ-g?h&dbf;_%Ll5O(#n4(ellKcJTYvFA%v_eP^|dn`2X3x2v92vw0#DzZSxD zUB9%q1V1zeq^z%qcP)BnDI#)L3yr@X!uWX>?Y252Z6JgC(>bx-9>b5w3X+O6c1zRI z6bzA=yX|Sm>0*rj)e33%3WkJC-ul8qC|j3{mfXOjw?`X!pPU=<UWyG;96H-%ZW{`I zSGarvJ@)G7p9!wS6a$s|G&*DOuACLR4=Yd+(cN5(uEh!+%==73hcui8qE|Mgo?M8n z)CD*37hlOnA-hs}3S-k`oxj9k|9RGdkmb(NM+o00dFN9mpuceFzL2cRSUtCYIh#o3 ziQ61;<(hNP0=M+qn|93Cji5QKKJ_f;{(krpgQ`yl210(crIuTgghhmF5^7FBf;#xa z#V`JikawKOuj2}lx@u3GhKNC%7_ZaDVI@UVG=pY3o4~bqUK3j8U!RATTuu3qsLK#b z2oWb7jnmxLfK!+X3${S-dR22tx|cqRu32^Ei($!LBsXUa%gN=9V?A^)eQr-}LEmrd zWO=Ou(i>rfG-Wq;YRG9Qr`?8L+~}lOm{StzmT4{h(hJx9sz59*M5w`@?gh^p-Uk^P ziK)vF^1e2_m@;k>+bi@c)ODWKvOCE$F1*=Gi2vYs#OHRTWj#Wmw#&b^Z4~c$-_9sg zHQc>1WNfDT`;A|Sl{ufZ%5f7$^?b`F>K^Zo2U+%=WHYHohaZ3Wib&IY2(FblD`7}e z6VAZO5V%;;f=4wXWA1RZ?c7btc#SpK52@(95Ki{-XG@Ej!(1Ex(ihLHZG!Hsq;+Jf zNdhpx@9@xQ@!q+X{UqHF-0^x0$HeoJ8`3yT5y^$2fu+l)@1gqceeWZ^e;T*Z*idsD z$l#(>70>i(1UMP!6E~>UI~ICxjy=B~TfCM<laRo}lN?KCyfZMjV`0u8KifT*+8#G2 zdH#Tfe5=ZOnl*_Ufa@KT==lj*Sd+E>k*hK4`w~RF<34{BP72I9!6j3hVZw!G9H78X z`i6h>>?C?MZY^2T-Xw6;`!EwJ(1N9MC*(eVf&p2^JMc<d>q|PnVdknvtjl2Z3k!^% zbrIc4I>b?@<Py5s(`PYzFSvDu*JsC?(?;qvM!4TQv*%;^;U-KKGL7tV<cbON$F~Xy z3kt@k;AbSKNSo1cu48ek77n@xwk42eq$aOG<m85~A;dOx@S{$3x_s1gIxc0X_QcZF zirc37&US>~jXCA`C#!e7FAW}g={OyppCs`0ojiqpFaPjpc(}IuP_3oZtg`k{-AX>X zbQd8bJ8_2_V~SDRxhpv5GDsYPRw&t%Fe&uROO0hZ-!b*UE5gF^cz9QQmpk2L{n%@W z3c~$6+%bOE<hZ2vp0N7d<NBL%e9sivRbMqsoQ9Rx^;9ntkM8N{*@u7+$Z;;r79n_V z?evZ^@j!h)RO~iS)+((CX<E)tSLYlrX~;#gKffJWAyKe$LL@n=<z2KhkF^k|Oe^YX zfe3%5=NlT(bu%EMNiAufd7(-o-|eT(t0bId5lEt-&3k$`Q=Fy6BOCdna{im7N;<OC z&$=L)<XnjzlJSDQFQ)sqio2wR6BCx!reb8$+QpT8m>Zezv2qs|$imi=A7P|jT<1CG z!2~mg_SlVM)r&Zvr!&{gf<sdvTgc+-Cd_SB4P1Wkbw2!VK6-sAJ&fkMnrWN_N0*7a zCq?VYiTnelxN4oV<jXVJ#XFjFil;qJUr^uN?m@Wp`8CXI$Aql*514BX#>>v^Y-{cc z*WoE2-Rr)mz%OZbUa&s*)7&#gfnd3PfAz+~IeVP`&O*|v?GaHZ)*X5?>hGxjC^VZe z@ZZ3ux)M-<51S-(e3bs+4ZSv@WVJk%^a(k@Yj(Z*H?Mj9nBf$|+Q$U@<f%UaUAg1D z++qe!?ck2+Gq`<w`(f8WKP1R_=LY6<j3Wq{-kl?QE!sNXkVbOWdf08<s5#L>W*Qz# z9;gUXz@}K45+(k6KqwcdHOuz3<ZOp{8qSlByjKSshZpxpGjz{J?I~1@bBQq=jqDv? zy~@BiJdiM{Q6^(P&-TlzGvX^P2-<CA<J;`&6W)A_9nRY9XGjec20?=s2GN8T2Kkb$ z-)O&AZTC|(W=2l~%554wcpQ*M?+3ZGOzjljI`uFYp4waflwH;PT$5m{Z?hNswQ#q! zj2S2lf^v=bUdDd@2@EU*8r0Wy8=q<n6#w`}j(%&w+--E$P$!?SXW0Mi*Eq3f`S4wQ z#HmW)nehtIgm==B(xt!f!<2jG9y2d(qG~+b9$))Sw9YS{#p?IUSi`9>*_6JB+YT%F z>_*z^rXa0)TJ<@L4z6Fn0_6Z_b!mNV-sl9=A<A%UQ`k)DL-h=smZ}qYu+Wib#AXk! zwB$s$yRWIZQMp!b@!hx#c-Y!Jc|Ww$zWs6_1ABm##6|w?gGd8p^m~=0;AM45OgH13 zL8BX_`PUy{Pr4$P1z!3VW$nKE{8;2}plk17;$v>kRJYFiE75tf*6rEc%}D&?8P84p zE5CyUo9<EKo3@=re-T%yMK}eD^z&cyx4nophmYfa)v5};f&A2jTf&pq1Mefo#P3>Z zpLg$*<UlC-R}zEU4!)g78viQ8w=Pi?KN8!-fS#KkNpTv;^qfU<$POybS@cvUxhIb( zEYRE$PLd0393R&uc_mq0it1gb>{Vq@ou3JPx{{i};jRB35u-g7Uc(al>!Wm6pZ@e> zdt~E$>@zL<apT)TN!u3HUB9{yRYq~dL)c=k)fv^bLAp5O;8{7d+Jd(rPT3b&Yq^Kn zT?K-2aq9BRhMw6P+h+DjKM<G?UZnVIiM|VNjP-6**>de0+fzGcVHSPE5-?-DM|&G~ z7RHM!01fKzP}W)s^s8BL$}h9;q4c^g_pw!sWa$>V2I8p6mP9;dnRq?H>wtWscJ4Y~ zK3SsxHw`0&A707$;%JJ)a_O=#YQ}TPC|)6;liUFBS-~y3b&@;w$tdZb>&4OXx67T% zhMUktVsnioK`T>owTvgK!K%t=9ZkiXXDd`|`oqRea_}A{`iEIt#O@d;-39OVWAO&J zgyi59{i}j4vMpB>P<))1*1(-^(+h6x+rb%<%L|R>%|}`0q<1hUXro0KPVEY=3JhEA zW?ciyF0G1-9;(TL#wn&jmR&eNG+O6;GLOG`N_>bEdWKf7fhWC}ir=E-k)H4gy|HEo z_nG!q@Q<cP!^g=BJ)yz4Jk_F4`F73rz;?p4R;7$K)Ks(qX?N&auZS4z!shdLe^VNr z%!f4mGJSXYN7}i>mR`*-=3}Ha+6t7xE}IqAE=3cfq>#i8i{OktJ~ph30JE;m8HBA) zeO{M73@58VVdHK|+n9pe7Z;Pp28dhtN4wD<LwA|>U~+wUaDs+gNMha66K_0cEhp-8 z<Mqp3*tx>GFapl7i(-9`J`AAhKqQs6yO`E&+xC1!(LDLYZ>ieFg1z*23m09ts2D1{ zr4$LtTt^;+2RJVoGsm)}xU)uDJ?HOac$FC=8|TC)EHYUm^KMGZ8_g1kmaN=#O|dPg zYf2NiECQIPtyyOfTi>W%v6p|W|5=8-+@w<3XzBTkg<L<z-1Mb-ly?`d6-UGu>v<EY zOcM_3ads-DqH*ywxfF7VZ!vpuU~W6U@HTpNbrboGxIRXllAO^n51HcUo2Z32S>JV2 znfjbxAUVtRn+gOzwXPuR<01vWXE&G;@P8@JK_UrD0#W49Ht!q_uVL#{sYez;=#P=> zjTY_AmCIX~%EY~mmc#ls_v<O<&S$wkXILcXERntmHm+V>**f#W3kIiZLKNA+!vbSD zog*&dFN%3sQkhto)Z<80KauETcb{Swbo)|`n-<i*3VA9(ugU>>3ky0><nS5fvJYpD za#aAM<M_UaqfS<!@K=yYmZOapWtK>l)3y1!!}L}(H~*_>zNt)}s#K=xy>wn)K@(VT z^ei6@gj0u7)z?)F;by+7vIeu{eFAsZQELSMX*~3y969JixVH&%Ca>pzabfOM1C1v{ za&8pqQ`@q^-Oe_137D)uvX!O3tcEj4g}5J)%W;4tU_l9V$qJPI3bM&^`9M>C2_y@I z@=NJeeJcWi8AF7wi4QKm<VSvL)PDnrLYyDnMN@hx)xCVWaNp}uYpB_jydED^a5JP* zk~Vld;SC4U=y_UNuTA$JLzipl=3buNsep?qg`>K(h;#e{grLAfw$rKt@t*GCSzW#I zTCICu%Tvs&bbo#|ffKK;Wl8nw?n~^FN!c#!KI^!&Kx*V%LNkYgEdCU*P3@lk8oRFS zni!M&NxY)=+vb`5Vcf}2c$h7)trB+vp4t1AD__)vU|hO9&#fDo+{tm^%LD6i)oDqe zrI}C-Jdy7*KM&Zd<>vQ0<=nf|jC-bc8N1kc^mT2qVazzEZsVN+F7A4>;W<cwF%-<X z^EI-#aICRpz?QH2Yg+PDinS#VE9WFGqGzKW&tY<A_br;5(22m>zA}zI+X42qEFC2( z1?ho{=C?u>d)y@N5I{@zzj}+d+30ud=Q>{{y=X;NAw6~8>J^r4a|4nWPHH5VkZ!`4 zd5?KVe6l?nC8d|}7!&&R3Vw|>%X;<g4xC{O@6&Ygg){0UnRZT8DjIm-u&enWc{#QX z<@L_n$wxm4t!1&Q6so@WParOPy)KjlaK3OWsNOhe@lr|_YeBS`eCRb(;oLb!s_Bx4 z#K~REj3k69Y504i4q7%3QV%pj4I=}MP(O=<MyQbwg52zwE$qDVC3tl!8+U^PJRDYr z>vz89nG^=<O*27Wwhr7>prd?6Fau<Ov8S6*8DKX%ZRt9G?V7qGW6A0yMguMPpDc$@ z3X+Utv}(KEW^Xl5bGVH^u~NbXLh$lR!axW<Rk(i_BnNFDaKF|7`6Nxp6(CViiH1NW z3jZ;vMB&fwv7K=QH+C&Bt$m~IX=}RC5>_h4B}y0vjlpBZL1XZFQI4M5)1ljmUBaH* zHD7*O#~R)Nfnv<eE@+@w)T%kQE2llFS(O<`mJZr$viitH7Y0ZXG;|q&6d_Nxc|L5^ zeI{!xvJF~b_@b8jbRAGLqMuMh)r_YyP&EU-hZ}<J^K;@=og5x+=ouv$*U<6bz2Tt& z?TI3UDNy4tHZlzQ0TWd4JsY4eYwuP&ERA-BuD5#U%x4g!0xAJ1!|Ky1RLVG4R)EOS zryF42?tswp#fs!Vop{j}N`1uiqU|G6nbV;D;+E&FE4Sov>yVC{qv2fDH-?rk0_Xr> zn6XSIKnF<4^agYQ9-p{z!I9r~c0sG8F0QDz82{Cu?XLt~GtEwe+o0>6=GgwEzl~}H zbX233w6Q@vIdfF_ZGb59l&%60MaY#1flx9%8x3UPL9MDJ?BE*hohjP%-^X;B;ZH}N z+sjOT{o8PiZzophG0y4W*q^2FG+r!}s2_3h^Uh3BHXMLB$NpiSC2I(^QT-YfEb9;w zEBG(RBr@h44^LgUCFFP2OYFW%Pae)7+yB5smIb4e3b=*vFK&^<9$^i+7g{Db61aW# zi}LU5AZ{(G#b>MPs)I9wobV+|KQ#7^)DMllk4y5moC*G(B`s$XmNn9BzJR!bq+|?; zD`J^kOVY+FhH^{VQ%pD5^3&{$3EEDqq=h&^x`z#xH>(kgfZP)Pw~4=v18vT^f^O0O zG3hoyc4RLqi=BA?KG%|!p&l6$j4dq5uU}T>t;ac6E+IIOgeHSjXww1nMsBvT`&CNd z5>aVL8^Q>K?xlIpK6ENe9D&f19#?@%FY{y+KRwqh1t2ZjcvT9Zn+>Uv;@Hq61fpOf zc3oO4ZN%l5zLXIzF<=y612YF@hgu|dwQ5^<=DV=4+SnbhiGwq3L?C%=(jS2LHd{ak zz+9p3N~D7704Vwr-u!m5)a+F&I9-}q;A$e0{Ol|^o@$Qt;<&?$mP57jqLpRzM`m+q z<h#QF{gEOfItJ_}Y#ci%RTXNH{+2&{g6Copn+B=JJ_p#X`Ym&EYzX6eq@)L#@MEJx zQSsX)J11_`m2iKD&aZ!m&XpA?TQc3Zq~pFzCBCTA&WzfAuAKzTUm$k=lr9^Hom(jp z0<rTd!*>#m7f8`$7lkY2*7po_VbL)Ob(!80GT^0ay8P%Z>=B_575rUF$hv&uf+8=9 z@;@3mkZ4@bcHM;&bGt9_V3_$^Q-&DRJuq|G#&nNN@H+ASkB(#^vTRG7VJx62!Z#uJ z8|UO~GSg-J_C&u`jtSHe^x@Tp0++jIot?P<hmD(~i=2kSTdQ9XepSM(sj^R%zXgf@ z--1MxBjIlSS~9INGUfXw%lhwB9an%XLM2K7$RhFqV}LA@3~$1rvT${+%tBcD4-bF- z^KkB_;&gcBc0M_B?9+8#6<~if<5B?zTE--Y${aVmPs)wSPv8;80!4XW^R;$(Ty-=2 zCMR&;+^{5ngtN-YVC)PpC5c?abPR5|<1=9SJj^FbiNl89{mNZU&j54)u@$qf3L<E0 zD0#;)+M)%H^1m0M>KPj^(8cDfSaOFav#ERG6jPM;93<q3!x>QeGK)FwXNJs#gBxg* zyAPRe0~dV{Ud{gWL7ff@heW<OhdrsB8EUG>&)VHz5kY?x`;_-+f1DBgNIxVh4Sv|9 z<mp4`4-4hx!_3B~69is-tj2#%Dn#7mu0`<Sy|#_vVki{Y08T9v+_i+<%&u#=PIA+Y z`w0!D@gB(yWscczIX8bbS?|`!@Z0kgV_HyG4Qh)w>se`4_lxGVWm|uzlnZdJ<1YgA z)G2vg%GWlg$e_R((S-rQ3W3mTQ!~9uqUL}!a;f^K#``6TD8QxXg+FR>5xvq}<|jZ6 z`8;n~9cG%XMtgl0SE%)Mab6iQC6b{nEEN@~tr2utWZ6OB7_B=CQ$Tlbz67eoq4?U? zp|C_gi|Z6N-ggOLe3XXFUGg>ATO*8=BWfp*4s5bSm?pV9sMow7GTdLNR39b#%szus zl!ctAW&dosyzAWGwsSQhH}u|Is}tQmnb2a>esT`dwwn^7IK%XOpwLP7N=Bag5lM%P zm|46ULsxkcaTw);@)|;w@1y)AcT>+I$1}+7y@3FZguSJA_1&#~QA%g2sn$2o&Kk)f z^Ic>QTXnV7_3!r{CkfV8u7Qiy1smG9<r_G030JTuXzYqPJJWto{V?Y%^W|gM>pn5r zpGew=<&`n9Ygo=qHiC;3)Q8HAH3qY*ieIX{;au>xrk&1aYGVC`scIKgxb|aDIzf-K zf1=}UN+E)ozOYCPlFkzMIr19jnz34m@`d9%A!Dk1cA<`$L$M*Zj6$bl#-+_nN_L6O za3EbK*j`B>c)fQ|VwS_jNuDtTw6Gf>Uxij8!HG5OT*bd9?D1pD8U-Ro1E={02foZM zD!cIWCru=`?r`b2vHN0_xDS+_G^f|jzRq$vkKJL}s(74PdDY3@EU6=#torWpKAY+i z33CFesl!`6w6I>E0%0+q2R~=`g0=GaeemhQlA5F>s}NsDiVc6Ie6j3T_13<g=FZR} zUG>P`<8$f-R!7wX&Kzh)z>A+$-G@j&h^*CIHFB!EyeyRbCw8|skQdWw6u7&>Y~vot zT?FoYd&Fz2Z?z*Ar(%X$7DDimA?;ICXvh~n;%};_+17=oJTERgB9`EYuj4b-PYAnd z34<dFz-xGA3|*N=<w8U_u^T!d1b6nnZ#Z*vL=c(IjId48*AWK&*Xf(7yT;^tBqkK8 zSdTRMaDsu6*5nVL>hq_cz2QT!@<4nbIa$tic%gD(AZ&cg>l#it*FuwRB6L_}a`leF zv-fIp8{gzRdqU%2%#P^`&?oL@)pC$tjvI|5JyG?P+ywTCW>=ep51pT7uFn*Bz@KBc zfDwaq*soES^IH2vL9TY@EH<uWAPmI9na;oye#^D%+u-u)QNv-)uASl;qT9$D^dJm0 z$;GQ%P3Ix^Me!k+W2QBIVa1{_LIM6cag<@HE0JPeLP3Hb<>>NmsCNh_ycNG%!;Cza z`P_+44z;|N>D&=dK)~O+6}>LE%{?DKcnEpxblH-dd(q`0gF@i0^T_MSq~5vRgm&aL znPSk9aDAXVbE5*Db33)Rx{_G2I5q2e_rz4P?b^$=4&U6KQID`9)Hai!W<tD@Zwf@< zeFN$fJ7vnx%PS~HFCARja}j|b>((gKnC@8Vsb^OtYml4ClNkM8tl?&@e5aPz8A7sI z`R%E}_C0fu(-r2fI^#pP?T-0iFMh?jB?v6p>zHDomS|T?8rT`z=|lI{yUF)e1O5aJ zrP*)YuYL&sI(G1L@IC2ygP5#|W4|jE7R^FQAmEj-o3~ebH!m>M-Ve@3nDRkUm$5CW z#t)Ub#0Yy__{o&6!M(3hvH#{vsd1SYKo_i0Mu+6y$Sn_S_Vze6RIC_plYeL>GY)W@ zA^JLDJaX3mcoe)-?h-bw&cxH+z_mOWm|Rrm-iP!q9A1hx@+D~q7=PsMlZE7L#+Joy zY7|*>bDO(K={Wht#^NA~PPKMgQ|VkvMZI-?b4JrJs3`$R&ifsySIgCZSn)ji<i#l2 zr1eFv!x?u<eOdN-vShPH+lYGh{ap46eA}1rn1CQDseYUxtaVJ*TzeVn+*^=TI8Wp< zk39rtQQR^xt@YijmOLI?mIw(EA%CC;k68$7-5@RvnK{LF44t4(VEK@hz6=92jvQP{ z?%t6v{5mKB8U|M8$+Pe9B<S98l<&2@p+9lzYH8jzZDL$t?`Qoo6pc1_x9wa7jt5)0 zT_?pZS$$X<aO&Ld#~YqxN%I;WUQFkA^K&<~v*Sx_d-<@LpYOz!nA*1)*kr)7uXF50 zchKUy(XAl(LigA~d5@jp%DHHzV|+&#*{h8V9xYu0?PX!N)HvOuN93q*Fp6Ne)@R2o zNI+ROeYa}H5>OcGwgyd}&D$xO-+)*s7nzRkgnlhw8RupV5rNQ%8-AL&@57d%P)F4! zdH?J4MQU={T5NK_VAUpPH1lD%w|`Bo20NyR*qyeT4lCYUg=snxncceyXC4t@5JB$# zR>Po{osbv3NOGUWnJQLt#X;9ZE|As#iko_^urOrBX9ELStU0_s|B~=#Sx@iWZgfT< zb0=+b*G_x!*Ovy@BnKOt;d|2NyC`MzHHI~H562B8sv3N&NaFkuf;yr`lkp#wr6=Zw z9l{W`58!zGh?RMlMQ8mRLG`)E&a}s%K{2OEJF>7>#gjUmjd&ei5fJ<dzpoUsWge)~ z%o1}pJ>q4n@u3=H^~!UG)Ur;N2OQ=zaFeBxEZk`^rRof6%(jQv^`at~=x>*^Q?lrl zI;zq<l+kO?iV<6OhNZW{+(?I*wGymGWm(CXn9uE4)&ze>nX}hCF0KVddJ3l6u~u2Z zn^E1+z>mgV!pL>J*B@=1pJQ9J+XT9{Yt7IxFxO}lxFh&3IIozI+96m&^L<c$5W$(i z`G+1&82X!Eq9rGTY%M0qD9}^#16HFlJ12V#fj)a6Cr{Z3N)W&6Ek^FWgBSCUwPaRc zSoFQjCAk9_?;>QLD+n@EH6!DQh!+&x+f}?9b#7gE(;pmp*WQwNRFa5?oNyf~_zV8> zQ{d&j8H*Qvs-Jc>NJ5))kwiw<YeH@P&9=0Dt=18RbLPeH6yvS+g7W;d-C|2T$?XB} zTi#l?yFxg#s&mWi;d%Hajn0xXmpi@OAns=Qh1U>KP@P?R&Z8~s;pJn`%?GsqOW{B# z`2PyWUla~|6#IoIFepG}%1IDV`dkB0I9|fb!N9?c$;nO{7N`=NY{%zF6A{9GhA~cy zOQazN&&>Zz;t&Sa1gcLBitJqS+YH}DaEk1C3%<IIwwsqJm(JCiN@t4O4=MTV)h2Yg zH0OD8mP94(Gp5{nL9)3z`uuL*>H+iQnZ?2?`!3bCWozDm%OuNyYjR&$ah8zz9&S@& zhUd#fx6r(A1iIF*M>j&1O;e~y_RsE4X|LB9b!XS2FBM63bv;{a{S*h7l8U>!)ABOP zK~HGW6%TGp*6-?Mz&-9)Z85i#-eJ4*RaGXlK5e50KLMD6w%|HL_Ho<poKezuxotYI zWbWK=w8^Ip66^Ui?XA%6k=ywtT+M~wG1*}vfGx0`1bV!6d9YT@c1HI**j0H5;u(vI zCWfZKx+#0=vfmRms#s}8_bPdG0g13D{|B}J93!FF0@?IY<kFs+LrL*+Hh?W)yW^hB zmNOo0AdEkkP@b$4pc8=Y!RT$$bMv{~JCYi-Xc;;=3=f)V%pbe8JF=5!odI_QeX7)< z8&Ee-cu{5C7ixPVGm&I_YV@hC+AR*>B`_o_%UZBfqexAAl!Ru?_qkw{`O7Wz?e9la z8Ftvo>THt?IL%_uzkY>?+G1S9KHRPKgK~K|`o<L9gPGGJITn}XVh22H%yowa>60N< zYii*57^l!eH3@ILy{CJr0M#Mj-BhC8uhHbc&qtN^qKYw1=)bT9)!*0xJ%B9`uQ~n3 z7MAlb7aA+BQ*dl&>H3Cqlu<K1pUAyb`26ZAS!II#$5<d)BJ7Y2$28u$At1$O1$(Wq z98fqCE4#J6BBUd1qmO(UZ9gQuS;*?cP9-UANbJB1Hu$`}kOFSo%{0fjLpo7hEn0PI zcZDh(9WGt_Mu5Tr@=%SQ^-eK`x9mds@ccyMYBF!GcnnAnDG#qF)~LCLDja*i(E&i= zU@Pu3ov+}ZN{PM(6b{rL47W2a`m}G?T!6yCuvTP*HWXB}VGmU}q5*~DDOBMo{;hCO zq#sWHAa;}7607<3>KOO|iv|>q`4!Ht5eh)zSpGDEA%f>%NYnZxEI17KD1Xsz?<=|a z_ZL20F+np=mE907CJhx4w|p%;y7G;6#9y)0Xs9~uEG)8nJT^{f?t7Mem#aBeS=tig zR3sMWTaGEp$(S9izMHz$p5SMX;9D&6gpA*jDvS!VA7ihTYTo?#jV;U?La_x9fGueM z#ukYG6I*aacR@JsT2))Vbe!Z0<^C78@JU4-8Qelyrpds%3D*j%cICkqRG%t)Kvr^` zO$1*RkVm@${0<sPAgI)A{l*rU0Bk`L7K8_23zYtZ|AQ^yU^gk1vH{q_{2T4jI(GnD zP*Zu%(2|tf)u?S7s{_N(ToDo@2PFo+$U%t#1g~hhb^kfsvoBk)pV0f9VUV1^@%EV# za_dgkeR?6=!Eh%;C&Qs93af|Ck<9YapAgD9Jhh&Oq5Anzs*mgAQ^Fm2j!EZ9*RtGs zj(BVB+DT*-*+w%)Z#f-%USfE~Jm^1){{Bb60K!*MlwTCdG;lSC;#5Dyqhod{Fn5gY zV|JtD&U!X3Mt@1;WPTqB$f6pDeoP(<d|c3>Pc^QVS=;jYX(N>ihu#}ly*+sjkJ!Me z@7lT6ke|&_EhU5ke(LI6gD~@^Y9EnB&_ZM662FQjewNFV1v=O%pSK0?Q=PM|x@$)D z(+v1d4$K`#`<TMv{n7(s?n6aJS>8Pkk<XrDnj<MVwE5Ux_6h*raR$XT2#}n$f0#Cg zKea9g0Ew--|H3s)b!kk1+E<dLY(q=2D#L`N^E$RoU-77t5df+K_BYj`^uv_!EiCuU zp{X_F)>D_El)UPqQohp-&hmK+hk4{Zcj1R(NqMq0VI#sQHIfT--Fg?Cd8NS;LXxVQ zCJ=p~3?Xvi_061~`Bu|fYtR@16p>h7+~f>W83GWAbqbu>pCF<S3`ah=&YRfxKOUcP zChHsG`t|W=?A#)x!2{|D6ai4Lj*r4F8I`@l?kmPQNa=f?yCd$qP&PIiY)wCWt&;8F zC;hRg*Dl+;3&_n{JhC;?dnJ*@+s+%j{Mp`_q?D8rNAWdE1#W8!s%BJlD6!V-cSuE8 zm)FDWF}VRiD&^g4rxAENvMU0Y2eKS=KpyFAJj$TD<S9oGYiT<Sa<OCoC7awjPWY-! z0ED{xBSj{{iz*^T-p%YsU_<T>xI47c_yq2iJm=n2@$#BaWa#6<IJ(GZ_2$^u`9IQ| zY8Ew|XBU5C67Nbb;2$s@o}7r{Z3+PT2r5(`F#}+QsdLSr3!2|;0pZA(!yzatMnm}P z93Q|_u-#!4cGjE&DfPaAS5@UYe7ILnk^pf)6T|J^7pZSM6b`@`3@9H2s_6@x({;7= zd`oAY#Xc3DYUeA*giRodc)He(YeKPs`QSQAegButE*}t2BH0ita;&GtY(IHyC;mxU zw-_!@tc|xuuK^Nv|D884mdOT$b}<cEo2xwRMF#}c8=bUE33(JKIhM##=GB~wz$r(s zy@SHofwb{IQ~=3uDxegg0`i#}e5DU^-BOA(HQ)*(0!D#wey~3*G@K9n<wOB9_6g;M z!hCsyy$0x^V2-S2u=DRWwl$%ROZUuIeo^orXu-38qXi=Mg$gF~a<Q=^u_lz1WGw;Y zqHt8Nm78O$Ctja4$EqEA(&f3K%0e-R9Z+2&Y|%fq<WwQoaN3&$OqTaAs$lOoRp9yx zpbE-l{)dqu|7%LW=bZ{Mgo^yHh(ukS0Wtqy5Q+bFhQ*sdz{nt?#($)|Q`Hp9JcG!& z*9JFpCT5JhA{{DOdbxa;T}x2?4-Jw2(+frOzxQI;=En=;w@V(6y-a#vb;iOQ)4Vy( zf-FG(|C2+H`a6ey8k$4j_$QyA;Gn^Oy5g^x#QzMp=@S3e$*?WJRhY^B!A$~w<0cmX zZgQvdhtwE6Qy}_JZUr6SRy^-G7$6I`!R=epzYhM&Nc_bWDt`>T^VFsLF93k5MnUu0 zDk$QjEinJBLurABdUH3!p5+<2YwBPrXWqcj_PqA3MGg#MW<>~~O?>;`J~_SpW3(CN z>_z53&Xg;{+$eW*4lk49p$hMRV>Ey1m&6|n-k1kMx4bh^e_>(B|FAGh!6v_^`Yj&X z<469D1R?%Lg7%?EkQnrNRmdQM`hSe@(|_?m8z3@a%=z^UvR5wHnSUQ!)qjB_WAoNZ z|Fi^wg*Yo@z{Sl0+>=?GJF~}gdpx2158WV+e+LL7j!Pc2{|RgSs}F1dtO2HBoT=m- zXG)gnZm^W5pB=O<@u$gH;J@>v1z@V*z{USMmXrC<D%P>4{_Et2YGHo>Aqt4|O=iY? z2<rdPMJ~VTq9!O^#QPgfIvaM+y54<_7EfY+b07RMbtdYHdX1H`N(n%w%nGly8b1); zSeDZ~AU88`XXIm-{Dz+z-Gmcb&|0=@XK#+dJ+Viz+LuEN87|fnw33bHAhj+kEwOiD zGXl~BJXg3Ux<<voLU#|AXWJi?D%HdEG6(hD|DiPo5<}AR9vqVZ9>S_?JX)Ip*n{fO zmoa~+NKe1GVqUY)u2sY2MD&fix-DloRG8nTgM8$!38wYTYr2=CW|)D!!t3%2nURtP zQka3*9I^>OIkW)pUYujaKyttG3(A@ohiv~z7r;O{2~I=_ptL#M&GG2Vn${<wP-TOJ zE*(%dE=fZHWh2HW{VjR8vpVk{|Bcqp$A30pmNTSCBeIe{)Q(j5HxujsGEp)(7@Acw z7kYR*ZrBT5&Htt?IDgX?TkSt0CR}f`Z23VBAmM_CpJWbi;dP(<=0{L}^CMnRe&k=Q zgy)FIg4^+b!XqD{@JKQoC5Os+`^BIo&*yD6<qlj?WvIvj*9{dpmc-Zrk>d~cvGw8> zWBj1~pL=AQlWr0IbD{c8%Lyf8E{wGg40bovwMs&i)anpmvz5xHnidLqgKsq;9)LrG zDghP05JI8i7Xmg^{36DWj$ZSp^!p(mFnI$@7YZm>Zkg^-<;sgLFIqwNH#nlwc(+@t z?|jcCYGjxWi%(DgFM#EL2j-T=uhHRS6+*!U{BQUKBKjLXxdh;o7HWXPIY^F9m*d-x zNjNut0<6ZH`9z^3{D(u?&fm-iG(Q{4Y;Yn1%m$@CWiF{zU#NV3l4%}ZpDI0<&5i9> zu-=n_-~o&#YAfXq;4LKh=K`VSOP=r6N7A#V8ak~k%a5ZzZ$6#fO()WikPz&^-<h?h zdO5O-j%#)RsqIZq<R1-wi#AFAF>3d9z<eX3v!HVOKo!WYR12W0V|jV>hlCf;`$!zj zMQuMpwVF);8=sg=iAdQHWLK?4>1`~^t0=+MR(91l^Yl0GFL8_iPV~ib2`GF_gBMN_ zD|>ecynz+HaKD)k?SJ+Cr<Ge+A5Lq~RK1l=mwm)w);PLNaFYkEhAw-Ctu3QYL{0P= zt<)86*OXqyo}eu+1I0X{(ClXMeD+blSZ<G32s0}ojnCi#iH2dk{1R3V$E?Hh;gC{c z7h`bQ=f$O7-nbM!p1Esr3_=+I*+}jLR_(Ha*Z&|Jw^W){{p#YX2bD1~XI8>kQUm<v zDd6-Nvi!{;IbYKP0ogtqt80wqFhxRJ?Nz7Fe5>nPeXhp~#qLVAFPAt=;+2&2ZMn?Z zB*BWnQFU+0Y?{J;Ks>v28mH=qg`jzf;k4Yg^mSwI++M9U<QSG=E;3i32ze8fWo6lu zptB;#k6;<?2gW(ops|tgnecE8&DF3z>gBvGeToCGd8r}A7ys3XaTVs$TVG~d6|D3f z6ekotL{pV*LP_soZSCyI&}}0F8ZsZ7m2=(O+CR6c;~1Nm+8vY=;1rHd@WK7XjeIrt ze)p)({p0Sc&ABi%AZTQcnPWX9X1mJwJ%>p|z1r`7e4}NR=Q7~lL!n{${2A>&?VZIv zQMF)&gH^Y?)<sDZiSJddIKR$hQn8lf<VyGK#)<h*f=g$Q?$&YfJJvHX!}MG3uz2f~ zLD|9|JVk2Bg&*<_vr|L6Y1OI=_`ul667p`O9tXlVNj{J|1}^N30?MgQaHs)reJy<+ zv&E*e@Sr9*v{1*pINwHYvhGM{H>lfj>*IPIM|%EBzJQjLWN(s`#Z_A$!E&VX>l$=F z@r6nC;U|%=b(RAB#P2kXhy&E_fet<PM6ODsoDi>TE0T1Io<!*L_1Kg4;;%<m%o!!T z4T`M}&S?shI@HVYqH$zAteXNC&;y)^-}76;jR}eU`le2`4CgzFFYcnJyGBEw=QFCR z#|)<vwFzmZ=0J1}ab>$vmSgwehPNK9A}8$@819>by~<riU7bd}zK?-<d-eha{HXc> zFi#8Xq9isTNHReTgB6TrH2VkWm~P(>E|Z+Qr3pB1bvPDYy9GcF<qrfWjyWw5n`4+Y zMB|HAkpMIdkpp#z;NpSL<*DjxfyL**p*z~OQ5}k5S><~@wIg3bE*rll`5>)9V9SJ5 zXw>)ITi}PQS8*p0i)duKubAMgvjl1+3<!XNKR8l-ypdgT=~^V#xXTTSAPGrF8;zuU zB_;mi+#9`^E?urtqTL?dZ@efH&rOijZ7ZIk<l@H1l_n$|0YcGAWYsqC=@NZ8ta^Fz z354=!OUTN;?ab$?bY(&ZA`tjcw_@Dt3hYkG(v}E<<4hAnfgCG8WCumvUw6j~%Dy*c zkvZyvAc(!f5O%%*7ZZd!9jZ7bzh+^mUDLfJQKNTwcA})!IFfRZm||U-la+FLN}^cf zirw_ozpE;EB#<UykMo)>mV{`;wC66Y<+;C`7x|Q5Pz$0oitDSgW=P~QsxG&-y2Fv| z6p@WpdUAxVZL2x_yc_$Gn1I966Dh53_ahu3UIsrl5!t2tlanGzMz^hb5*5W)Qj6aP zhELB#=n}wXwmL|c+mTM&k-7R3(jh?11FdLcA5lL##fe429)~fppWxS6?V5)beN7L; zq@>)aZdu7S>lGY!LVcwBtKv_O-i951j`K^*W0m?Gn3rzggpO2o?To=zIc`7ex}e9g zM*?b^hw!WIa+wT)^7E+0d6O;L`_y%@0$NYuF?nn!@2Aozf!2`$3&cYy3Q_Qy5m~nE z5k%x}(#v2nF?t7d2VU0H<$dG<&l8+F{?pfC_c6tZlW+L7IR-<GX)lS=Zcp!yYu1Kr z;!~&fe@q{Z=zDPqafpbd^(}2YR&sI@@W&<(nFb1G@a$_H<6yhy;(1goLwSz0M9*+! z;c+^E=ji`d-k^`Y;77<^>SE3Ihv%q9h4LJyN(yomsPA)E0Gz`qaMbe;&cOlsPn<*G zH_qV%#W_f!ILDL{YSuQck8<Uvq!eJ!mcO$q*M&X9zC`g`6f{}7yqaahT|twM1i8=F zmEo0x4O6_dqB%$5ZpHcel{-T!DN*VQYlQr=OoYYQ`dzM^r@5y<_i}pr>9VpAiN20# zGrGnukLCj7P^u)(p{n34eU0uG+cL7MLi~{6@_pj6lN9-TiY07XWqnbVfNwPY@F^hn zqP$sL6xMl$qFdZMthbmIOENDckMF_eGiA*nhTVIkrCYJRkP53B)F0_;3=vj~vX3o2 zPC{F+nDBC^ZJ}m<r8q3vXcgw*s^#IiZhR`7<NCN;b!yVh5LG&L@F_1rMo!=QXroD# zRry)gwo&COHr=+)Fa>LHv)^ujzB3I?*!5=3HT5``oagT3`eg2rywn36HI-*x%W52t z-_LLMUgL-6JS}esLedE=`8IuCsD4OEtUF5Qk*n45XvN7BNC|zcd|={6(`!boSdDYZ zZjTxVhniJwlruGvc=Bx)ethcVRjj6EowURrk)khm<o8IwXb(^_(kS*jo%CVq+d%=u z?eugdmAo0^CvqbzWT6(d>Q0UUE$TbqaaT<&mN(+$Z^cX8&bnj36+Ufejt;+Q?8u#t zUN$9jMobUZ+6h>2FF?vTc6E0Tiki))L&2*DN|r~;%IB$vv>v<O6#+k6djy9xBh`~i zsuflQyku{G?M{2}*8aLLTo=zSuT?cGfrS*V_Gps)0Xr}NutUefxp&U$Utq_tY?o6& z_OOPQYx*y+!v%U1SMN`9x=6e4ET3a?m9wlUq(jkG&#qtIJZa34&D)P(5s!I%<fpxk zVZwSMiazU4L5p@caj(7F9*Nq;_Tj<K!Gr5YwmvD%e7askEh$7z#gvmeqhOT4+&aa6 zYmJX2x07Nzk0sd_`A2QmcZvZU2TIxgFe_o=d=Dh_!zRuih&|cmw#Msl-vIQ;nqMz} z1hvc_-dRhB*Lg*7YxvXzk32{(1Y*=@!Q}0C?z}-~y;Vck<~YH>gIk}ta2H`4{6+Mx z<?2aGLi)}4qe8w*K)OcPVI}$N<wL)J)rdaW1NDe58nCZQxwwmk4V!&H;*qFOe{U&e zoVQK;EkX8Fj_8#8C84dwlP9+9&>GRYZdj6-q(nsJ4FqXV$Y*UO`NCd&#{)9L(4P{` z8e!Rz3r3O*^ya^^md4u38tm@znCtcVfi~NGkg+0ps9UMW$(@q$vpq7W*4#zmmeERL zt!Qr#+$vx7s+6w3+%Yt9RrQ?^ci&^$HW>`6L)tNLo6tI+`l*~_PJ_$Z6oEGLkO=j~ zdg%LI4SCf<g%?HNoy7?Va9f=k)n?tSB4pQCBW!VNdFLU{wv*=S!>h2(osPICsQqqp ztuBFnMd01=ut()jnrE1tXn1&#MVs560<dbY73IWTZ@kDSSObEas{7K)qK0Gpj>%P# z`2tk(Eu~@jOVG_(%Ywx6P0-w~b8*!3W?}u0LzmxJjQOH$ab#pk@S~nQ?~;zAz5P*7 znLJu49ii}x=yfWL@5fWb!rEmzfekti;dzT5c2p^s2myBIKy;C}*J85>#P>!{n@5@s zfnjs*&sCpsZlkk)^Omk%?dcy>D+x89GR8+CSI86^wVy|+o3*nP`nD*%xtaA*>!w$w zxv_CA8C;|-v^33Kqd+)Vs#Cj)E<<eh7KD+y4f~)Rha5>zb77L@B@v+h=^b0FT5ns{ z1&pS$e*7WP_5jXSLG9ENACnhoZ=X>lz%=w)T6x@Se}j{MwqgO_MbRr_uJgv?SHtY_ zyWYo_l2^Gd%LxjR*oE>DyIqZG;+$~9nL?Bz^`59DF8vA?U%w~Gq2cdyi;8L<H3N-1 z%9qJk`=Ic_|8w)mw=XcP+1?FN%|5N!@4Z<eI*1~ilhhjVS0r!7;P=tc^Oe$LKp(uS zPf5BE=|sLRFPlhYlXh-7b+IZvywNBZXptoDX)Ih}#UT53CnW*z2HqJM;K^p$FKNu6 zJj!gQY-@BG^2X^jCpe*v^NSe?yu1?l;$#>txghSLnQ#WW^peKeQjvFSEa>7eM%hg9 zuCij`G@f}uKBZhbz@fW#fLP20Q<3v|(W6>3xbo&JiPM?;1f{GL(eaD5r~UWD1bxy& zc*j97_F3MluGU9GKk6_b+1`GJ$pjye9bh)UIGdTbBL;`jv8Jn;r$6IxQmknSt^aa5 z)sD#tARA=L4-SSQ1jjaA@8jymlagTE&>8785fYMEpW5wFiY4dLT)=3+cg0}3;*IK) zr&}76UgS$+as={^bINeJg^F!IY;FA7Ef{f?A2F=WJBk)dPx0tn?ep;G`Y7U*d`MMu zOI^*s@}mDfZPg=xG3X+vlfK@9_=LFMhxcYzALIdxLXb5<zxMp081hT#!~iK-zb6lY z?sM6LMjNIi_+TsmUj+{XUOV!-6hU=E8H=JRuwpubr0nI=o9ij**%LMG8WTP<4Et<v z;KFz^twjv<u!RX9T%qA{D_W;7j0&3A`~-B`25T|x=J=bd6KbU80@N>Y8)^wzRhxRM zGIm{c+({%U<z>LFs|sQpU4geRk^_Uq6>5a_SMLMB7ELZw2ZmS!=ZVM>h7r#se2x<y zpH(Fnas>Hpu=3I9a}H*X!jNU(X(d?iLzI}$G1uyA^BdEL;<L=ZSmte6t4$N{u@>m8 z&S~LME~gfdtqAn*KeAF9ywsEM{&HI6AK~rajhhu&DO?`ST24nnNJmte=FaCp1gArj z^`(+p#H#ki@N%fd%AIOxSHZlK-@6$+DnDsotHdCDx2Sf5EFBtNP+>B+2$y>2B5}g@ z_fX7=143@@AoXW1Qj=pY`#-eh!0F{9Qrd4kq!T<%sJy97J#dm?BEJbGEJbgr-{ltV z@W#scUB+LFTv?T+qa2hX1yh@;`=J!wrVN7Z%T6l_EretRa!Y3vUg}F;H{OL~SD`*( z>cJ3sb4{tuEu`RCxJDGrt9*2;6BYA;0_KMt`O=$)vTVnbJ;GV$QhTB0DLpN@3ht%- zYH$v$uvDYFi_s%fR!}AH3evL`$KWf%&FMmdPS_$7V1hF_>uY}cfaLz^Ta{(Q7qPjW zK<2;!?9U2@Y>`Q8KatMuUgps_!zR<e-TmeSdOJX<yfa}qj$@_8LN;*bAZWBe&ODu$ zH~#a$@I{*qe$_>bz6tG4lDN>@>ksV}SoOr@q}fc&0@RV9_B~DLx4HV}JUziYrZUMN zQY#t7nMdmC=v5%s&*OK6tsx373;~InBRgbPjMuy)<t1tru|5(MGiSy5DlR8`@RUU| zcsJ~~p>YC1d%D-nPlY;WuE$2hS!NaJlzFYoE3mY}8I=uXtPYyV<0iTkUb27T%beN0 zUAg^kDq;+6*Wb*DXnb-<qN8+mr8+AuL17aViu{~YCO})NX6T|I%H%lXF(fl|W3$v8 zwNW<6WxKCb1R!0QcH)|aH=$Gb4oo8&1peJ(e$&?5IF^Ws)1B(+GutfdOs7Z!D49Wy zBD7}$G5mVMIgQg+%3MOvR#<}re2#gBE%#^U-VpCQ71<bFo?K2;8AWwenw`mvv}V@o z&|YqBkx`W%Q0P<_RKG=Si1*2pdsS!Wf{eTB8<@yp)3i;!7=vl6^#UU-Z7$v0$V0Bo z#?&Ox6f!ilm@!Pf+2o(_^hF)r#aR;CM$sKy=>zWDdS-LME>4eT@Hp=yLiL`#FJhgU zkn!tq&ofp~Z$sdb)q&mS5Ck!$&A6m8aNxp4O1=)Y;4($jN(r%b<5alp5k)sUZ?}Uq z3mwH=;N8nXYLPQOD-}HxS7WjFSq@M9#I7?c8GcC{78u_rlhtttnR3S#i{6zfZc7=x zuTj(Li#9X=N%)9!I^oQG#@7qUT#(_U`erARDg04U$(LgVmF&Ycf&<cK?!-CD$H~f% zS{n$xPMZZ-=vbbaTea9BFpf8VHSZ2)QC3YB$z={T7VAA?cW_ItMvzrBOKypd876W= zJRVWxk?98C{8;trGjDTG8LCwKf4rS#R9xBCu7d=EI|L6wLxMX52^!oXcyM?35Zn{o z3JLD+8YDn)cXut^<?f=-Io;>${_g#E|1lV2?^=7VRaLB)xt^y|Rk9bYr_LW1s)Mfa z{=IN+?7L}}+xz*u=39IF)81aA@1HLydZ?VIO|!7|mgZtz*oKJXavOwFU*F$<Qf}8) z%*<d}G8LbwL8dpoVM2yF`bezGGOg8Z7~Wa1AnN$+lxE8?zou3kjs5FP*z);yN$I#0 zPO420y}TI96dKVyNwj$jgQy-ECI|U(_DB~7v$LF58*j{ImSZ1>D^BsJnhy&(yZEgH zEWyD@-QD6l@wMoW2I0ijHt?%HbCkwjcr(z5LgHNg#_{(m>m@EmW9w$@Yc8Txf!-*h z(jL+C-hTRlF={c!hHvaG1Cu>ODv2-s4I3PF66*tXsHy1CaX4Cg$?l1-BBs~5c9sXm z2*A~o6$7EyIWeIrbfm%Mpz}{6TXI}&V7UjGxF3YzWN%AT;p;f(`X1@i?+KbKu1c74 zFUQ1*Q#)JL7uc3=*j+Um0}-Jl@Y8}+#S>Ho4eRDYQd1J{Jq?gQ%28EJ4|PB#$*?5K z=uacr(V{ttXd^aRoV1@B;rUoYDSt9KZ>Tz(BzcvMo_#Ty<7!>3%i<zB)^$iA)rZ*4 z{C&A7s?*HFXB^5OHIImGQlx!ecad9@w(+E6_967#_&QGi-p)sLW6s?wIQAYB2R7zp zI?BcI-1BEBETQ3vAUt+0u_!4{RBdvp9FqXPvFgRN70GMhwQ7?0nikriGEhk5ixF)T zNZ!xKC!D`#evVy}^;@_3ZoX*01AnS1m~%hA$otH+W_RnjHh|%0_jUgkPvVXTAIsy> ziYAqp8@tNSQu#M+#x(rVIiEFzKIScV^gEmw9lwZmbHGHTvc_%C`{Y&G<0L~pf)%@9 z6y4oJB$r_MJyS$vc}|LI#F(jGxQE^KxbD;9W{6kJm$>+D+=Tf7KdVgd*F)b%m#|#j z94f89DFi7j?7wzq5o37|a>B7sd(AJf;zGowS$ZY54BI?ipIC~!8KruUX$OmpCSUhD z6g=owR<pP-*+t?vzq%oR+Jn?he%r9s_@3MqU-|j`hx#;XkBjYN!J>HZarE%g=ZM@! zRM=^uaAHa-O@XK{n5q)Kg-h%XeG7P=Z{D`_hFaS(6vI$63<ezPCCp16vc1j2U#_L` zP9`bE;2u0_-sHO^P$@Pm_$76okXN%QNX3lTOW?Tc%<*1zqS`F>yWnX~Cn5qnE;Zsh zjS{lpAhW7pRpjZi5I-A3e5&;(QjO)z(a6KBC>c8k_2dPY*^5uY^)!-mqqo0YLB3Y} z8e>cHVr@3AH58IdY{-aS=O?q4`5hKYeb*oRyWnEi8xY5eeiQsQuW+C%^bj6RkLatw z7laNRT!)2``kBUNR;CFDIP{EFDh{S<KkKVm>2k-vNlr}ZAh?#|5J~{cYY6N}iudYo zA^~srR(&Hec6~$5+WjiUmD3*HET)i>INB>xf#9VXP3@GfX1fQK`k5b=_x+m2lR7qN z4~M6yTm5%ly|&FEM%Ns913buPgEeOdMiQ|vy*gH6H>t_t>`l+ge7tK%ord!GqvtLZ zjcMZ=T<1T3Po)b$(V4qylpsZ!6FjtFlrm(DK^)rh?WlRUVj!@?d;6aqCIko^@Fx(M zfC1Nf{9QvrU7Z8VjK6pX4MEITC<4;<t<w)@P)gfv_1cLpP<H@3U>PP3;n}O8eSz=M zw@$lOD$|uus^?ZMO_Hz&O!{BcGi-mVp2f@n)pOGNUj56Q%(Jqd>U>G6Watw`dEM_D z)d|0&PV}NkrN^3JgPa!dx2#LS&c^?}!yI_pVe&wBm^DGNkN>p8M8D(xbBD=$`>Z)8 z^`_&`9VXQWo&W4GE%u84*BxdzWQQqCcw)_dZsG9kS!o>Lde*XZA5%%f^}*I#M6Q}+ z2hB{tRw~1F2MeY9=bMr-F^omQQp?fw8e!jZ;>J=&Qgl<;4`|-n^7o_7c+K$tjGVQe z<BfEf<6~l13W@Zz(>l5T6a~6<9kf3@rIKV&NXn5mp}uCfjY_62J&L#Yz*|9x*g=;y zRU~4`&dIDTO3#63%i(`V$2VdQk26%gz*}fB>$XtLs4*rZ{UYr;PiY3BpVumQ$-%7h zO0V)#YU!<e(QmGlT<7V*XQdr2i>LWxcZ$k=M)P+%bT@lMdV>!jo=^@qJ|?vq=_N4P z`1RK8qX?nrdS_{~vE_3WfydAYnY&q`b67?s9zu}w$rPGhvd0$b`RI-Y$(F0@`-}vz zoEq}7$F6I+Lo3>vVkflA^NUzA=0iy%yFRA9`&DN|Ci1(N7u^!w)|d!f2)~R2`dtK| zlWGiaV7619c|qS|%|NAi)Lef)-233OH+f7hC2lkb&CuRL!(*eU(f<a3!ORf0ZNoC6 z@bK<WOP_Tf3ey_Re}rOq5oGD|t}8Q=gcW4>xn2`&u2P@Fk)Z0>+)$d_Fyw2(van_e zwKQRgxLblXz7MltHAz^6$p%+nCxbYf&-?ZMqmy0ATmfV2z8Z?1i@<tt4-xuY!ij!G zRa1?^zECvwUD%iDb&8LNK~4mbAW@d14q`PBsXCJWj`6wU7|UK|xhIz|Bi82Ut@T3l zF^<a{Hrd<{x)MfkQpBocc?`}n0v19;ip4q_HYy)|5}JlyxBJC^)**Ne{suNcTaqlD zUzjQ)+O|?gbN6$Do+O1~DPyV7nAaD*=02j@Pd?%CC|b-z`D~8@VdJamosZNUvczS5 zX@&NJxh2GZK3|&7K<D0%JbfH;%XCD!AAb@$SCf(kU#1540DDV)ZQ&AMnwEkU3VnpL zuUZiW)|{3uC~K>-;Qv5o1$Fru+>4fsQ+D%=o%##gG@F`k=mH=lk`%BADdP!rsg_qE zt+1X;*}dq|1B65<QXM3l!yf@55s8kJ3(ke|jP&X8*E_LgKnC+`k{QeBi)2~+xLG2C zH8i-bg{2^li@3VKoAw~EZL2ITvRId@3H}b_B2pjl5k10sK;8O>ps=h+etzy`Xn}Hi zO(QL2P?pFnO{%L5dHKdKF4eYKD5nOTyqM8U(n+b44bizTxzTE+4?z((9dC2hj8l~t zCof&c`ro2jr^KJZ9UDWP-qqQ*1|<M<fo31D)ohzqwuYL!oq~PzZa)M5e%}_NB&w0$ zB|5&gnY|RzMtjs_ZuTn>rRkZn3DqGKHhatH4F9d+8MX!2ipDTus)ng(<vw4jyc9z+ zN~Ohf_?tpEPYv+BB>GBU8z8a@r){UM{k`~1<`QrasK%Hg1}V!6SSXke>HVl^4kNHv z%bvBzXUhROM41nzZn1+TLY=#KLCtTbq>Lk{Ud1aHs?6xg2*jH3X~xXTyj;1+kvOP_ zT-N(^S$IbYuV-&chNi`=QL9b1Jkv1LOSd6<ZPNQ6ZAQ=+e$4)2MKXv%(twCaBd508 zJyvEI91?*2b-aa0SfabhdH0RevfbxdQ470}^Fx?La0z>J`Y&!6RnR4g2}%n|ar3AJ zV)KSh`}@t9#35&Y&#-Cp<I@-1D_YaehV?ZUBvZ3$?e5|vU<Nkc!<Zc<hrV*?zACyU z<Xbr__W`b-VWZG@<eI+C?E41MY?;DYwO{x<9@JWfQ4-`|;|}?-TWIhlL$OG7>Jfhm z)QXSo#46u=Ib!#P-a^$Y)74;fkC-=eeaIYB`7(2@fL?3GNmL*|zG2?Gi;`-3awpcA zk(h+L+wMZpw4jC|+AbNYczm~{)|fkPh_+#8PkE|lA<mn+#QpJW8`ff=r%s%^qBwj) z+E@G)?EN>6#x{Ii92j26?g@An0Xo~n9F_bBt#4G$(lYA!qt(uuMfhUXR*JK9Bs$qq zuq|fjM!%f1>3xItLcO(DqfC)_?<sti<D;sJ2An(z<?0eJV21eD-n?}xyeT}d4)12z z|APC5H}sNwp+Gx>$ivv`kmHUrs1?eh-73Nr`fJ@j%u<_IX8+5$PsA^Rq?vZ^G(*>; zZ2U&+58=8zE5G|$5^#F$V6Q6}?ogPG2^eNY_ZWN`&9;{Y)8jd1kNpV6KMx>0Dt}K} zyB9{CMd*^V#_^7Upkpk>@?ct$bUhPlKCqeJ=zxNrZW+qLbQfELCwL;`%QW`bpefy` zWV^gsZuf5$a*VmE$pevaRi0oGi9N*VAG2I^7QaoXzxO=rE&%xu+ALW3U7I`y$M&yb ze}PgG;R%*R%1d>^EEIy87$0P)`pAGFRsgc1B%5QkxtkRS{5<~Er$`iJ8O*cdKs}gD zw|J&zrY+KD8jjmPrGO5+i=|JX8NU>mP}`b9O^nItIntyj&0h0BMucIu)vTviW4e4* z9Sx|95Y4GalHq7GLBdopMA1%38|nDwd0r|1aJBo>^IY&Gs><}RqY$+^L1aU^2NZ5V z)v6#>TibO$A#ynQNEd#tXX<+4`y;XG8FD)9thlDSz<E{lCt}3B9H)mu+#Sjln(E4! z1W4r%C~)7Tx6g_LQw*s`@3ZbK&|Y@?&F=ioFUQe=CE8?hq_$@TKR}(?&y{4KYHMb; z)oS`(8#6+VCv8!t{~w2<KRPHjbmG8kHsPevaC~-QedtI<`wS*8#0fJVSC039LM0Ho zARpB5$5>cqWP=@3#QteCIiS$5PMaI1)Ym4@lt*M%N1+RHL7lsD0&LZ%XzE$<e&pkW zn6k5e7GrJ4=G1^02xn5}2M3ChC{M5y94FPmnG5PDTBaNB%qi(716h@4aB?`1wUX{O zD_(^9TuG6~_-S(UKwTUg>Vp3~D^u$7TLms@6UFs|DAG=9!+QNAeMWL6{<RX@2j8h^ z{{C31)sO{~2fBQfiU2r^)~00izC+U%fxc=N0P{=%Lv+d}0UnVe_x3Cw`o#AE>ZO2k zRdij|mt9lpa&Bxn>4Sa~NPX>ESZ280;kK&1U+`)}CaU;$PEe$}^8OT5qx2>Ngs-cp z*S`q5e&=bk$?^|(Y043C6X%pT&=mjsB%KnN!L1}zRqDB(#e~Q)6{c#S;YIfEekY6~ zkX4OX0#lHp{B7kl{xMr)wYvy2e|ailYl6HmC(J}-8>w0R&Ce-)+>wfZuXF48>t+g~ z3@0mCqqYzkN~piQlcKk)t?M(woDkjK=<sj|A0W5$3?+VWS(D#X`Y76=!OKCsaFmc1 z8aID$;R0ncrR^84d<E<O`5BrnnlcLJHnr_F;Ssp(u_Vk3v(Ovz8FSBC^^pa^aNAgi z8QiG#n5#}99KimSC%>CsNzYM5z`|~tjmQ7@o?|Q;H4I154$9C%Ep5^3#f60f61G16 zWRISmM(I+i$o9OlBLo1LS#Y=(cYMHuhvp%AnI6>t+Vn+oS)i-$?-m2T*;$SQqgFys zZ)iksSUtiL8EGPpa4$hi^R@AB<_j23I(MJhc^j-BD)vTX<<b(g>vI_B*R6li@2dvU zWY|!X)%$z8^;y8N)uw&AgGJR~mUQ2(%Wf_fiQF<JXXncH+z6gCa2gopuxlu<E3?sO zCyWPszl!qPe!xUcF1<)|I7|E9&TE`n%0XPB%65A2h~7|L+bTE9T=FSP-uiKFlY6Qx z88^AG>E3V(5!|kA6#nIQZ_mA^(VTs0yNXRJjSu_C%lZmoh?zK7e5lJrAH>DS;efkc zS}(($W68wel<tI1)b8E>z@Ya0))G7Kd{!cFF0Pa?E|dS&ed&PF`RZ<m!tn<c9V18k zNbgXuAq35>SA9c_t}%9QQcDle-Y;7H?++4qJUTacmOZC0V|NJA3k{*ld-K_scDQNX z;-(z5_qpzal}qHU?Cn9WB(kV(+`mtWhWtV<FYv}LUD;l+t*CfNGk%ArYUew1K#%ky z&At(BBcSV}hFXTftHt2E^QS)>_KoA2a^1`#;alkA8_o>;a*)JM`99STYidaAO7x0% zA8dFX?ElCwhKT)exSqaRU(?vVcMyIzCF*4rtZJ#PXCHc<U8HSW%yaFp=|$#k{@{4% zNcWzr8*QndZvHpjdb}RLOBOO70>mOncvh*g5V7}VGs;DYH8}hxzO}kWHZE>TCB)N& z-c0_oHC!POdQ7!+x5hlc_kQqP$^pxbg&j=z;teq2T3k&GZu_Ouefj~Wu4s}lx5+TQ z^gge2Z%0h=vcG4$5b(cS$FqL-ZhbAf8R093*avp6_C@GycGPC=U@`EC-^N0v=VCEZ zTBzd03}NMBnOZ{C2)C(!q!60P^epaCTR|mPTA`Q4Qp;C<KWE*g*p0c1occx#I$dG! zrG9_yje_yl_?Oa4c9Tw??{g{UTw52}LbdEG&H0L_){GaXY~su4Ky#zNqLQ0}Nb0l~ zkhx2S{5CkTlCLbkQN}POycfK?EG%;L<G~PH?8^0mcR=vxN$$<yYbBb@T>db&)7fOv ze>HF;g<I-q#O;E`@ACi)|H41;UVL{}o-1e~kO!-|zP3A%&RultbB4ZQ<8#&RB$!4g z7~*@lK@17-oTY~e)age-+=!+=C&{K^wzYT*C>czvw#9E7Ws7m;HNH&-UF{JA+QY|3 z-7VCwfiv`Ao1F`uS>8|yTyf4)^*xWbCzjFHnmJfXEV}3mu0`6~pv9lg>EojL&Aw`j zJSHw-0X9$#@T`va35Ql-{@~3_XPrtr^to{NbQu~c={{S1X^MU<BQB3Gxn*N6M;4A- zy|WS-;|}e_JZE)aix_49#Rx$QV{pd@!8eg_aU%KdzNPPsz%U~Udc#K&?jF+qD&^?2 z2|FU&58NG3#*s729Ctg#FXgBjoLdgrRdGn084>c-ucZI_CgTX3pR0(J--(u|3HVYv zp3w<c8K9jCGn*c79@B_$!ZRwF*eY#KNu<Lz!aX^?o~y+(f|FH8aX5w2B#&8K<v+|v zWm@QGh)S+CHd<4~$WZTbX7R#tg_W?3Q5Ok&ke0m6|1GW&*Zo<BrYNcJ_{Zy`1J-v7 zo-ngG85?h2urKMTq2c(N=|WXAc_rQBYh%?=Z_(~%C4Rd;8QX`JWmziV$h^JzwRr<` zg`xe$^TX`=3b%Bu81HPC28TV84xQ0yy??g<)te(&O@wS&k`~R-67lV`(g=e_CYrg% ziL7C^N?l~c6?2bT)fL(m$!Ug(UXKhgHUDX;9I4;6G|!Q^$tB%nh_nka1p;LWqnH>e zn+3--hJ7#k5_TuYOzvTc4m$O^_6PdfHRAzA7g3rjp8|vMvPE)!0BBOAJ5iuqlc2~q z+?R?Y7rH(_qAK0WUOR&PyGFT~xp|uFO^r}Hc3|CavhIxYk9KkO<Zj^UNT&elGrOH* zql|6W60t@n6^;;?x$WsitM-n8%yaRG+HAD&`<u{1M)NV2t1GGKN+s9MCFLN&Pfbk@ zkuez~bQ^+G{ixWnS1o*j-hP5}<lR%n%%o|oQv9EPg_VdQ@J8c6f6Itht{kjjap<&9 zmg(B&eMq72>7ySoGOkHUEE*#4Poxk^BweA)IGYH&O1g%QndP(?*zYqkLozqMSLws6 zmT?v)$UGcT$TpiP+G0uWbKbNK*L4YAxog;JG4kOjrN0p^<w2@1wZ8^Mk+QyxBTSV$ zOp)gRU6Xq@YUVS4SrWeeXgrk9jU-ikDinTXQM{GXYvWYARVbr6f3o?(*YW;6=JbUQ z&Qc)?Q<+!~C^(=nEI?`Nct~c{^%2cVBO&X5NxW2|wcah}sW~K>Xf`D7w`b{M1A_Bs z;s0u?up0Jh_%rds{Y&EYP*i3t2Cw&$)0?A}^W{BdN@QfEx#nBi{!g@TD)OUb$G4GL z*m^naZ4)9!GymOF;Vj}W5;wIf8W)2X?ctKRNhwgZH^}MkeOt$0ji`4<=x0+@4gY~} zU)tJO6-lpY!L+D+w@}36M0S-utPKZ+QHxY`>#NI5?$@5E;O=G8m$@a~w?4WxOUt`m z@Y~gA<7p4h+{J`vRj;k$Q4rLtAK$!>oFhNJFDtGkfN}Kh^&_8HL80T0|4BLhvMa7S zgDf~P6-9_Hem#+W-JGf1!uHv-%3UDw0(q*=snq<!!Ax3a4Tdqu(ao`E>ogTveFis5 zC1pyzLT5l=gDf2_h)ce&U!($%GJhddZkF6y8Z}IMgnH%OE*<b{xcT{;Q^y{a%S>Xn zhFdOkG2C)7C}hRsi^vDWoZh|U9_l#Nzw5&R&W{oqPi{Ro^kY#qQ#b27GAmHk-*q!x z308O4u(cTDWBuKbKY4)2g0s;sw{FZwqkO@8|4nRU$wAlnd_!i7S}S+IjCRV#zoo+# zp(*srs#{iTonM(v>Q~33@>g$aYo<LDTU)D)HR^!AoWlm<uQCsHC*D6l@Y@~656T|6 z28elwE)w5l3+-|-MskvR9Nsa2C)n=_`N!Ynn!9VR92|%3dZf+%2;4+sP?3ymq-hbL zZDZ=x_f(o!?mtS+o@$&}dOnVCOLSZ}e$Ekw%7xq&e^XQ^20tz><m}$V1-~fZA>{BJ z)w{CN3H+fn#C+@OO|}6`{7>_s(%_Q1@4QB_2O+w|7jh1${jUcv8V>`wcMmnGjG7nL zx+h-Pp2-@XEu2^9C|@8a-+B(vOpU|Y7t|;^D{DErQYJ|`UVUoQ2|<4DG{&@4U{tyI zIrj6rgb0marsI6J#K#TWEypX`{`H34CUUOsO79U8p=`6pc>^T-G~O0!8ASQ$grEl| zJTQ6w=B`F5968f`^l$pTG<&i)I#4LGFtVpu-e-p};j!b8hHhCRt;)a8&aLI=hw+{F z^Li272gQ0c^3IV<uL1``M0&9X0jY&}`HoJYwewQGw$!;!2z;(}yX>xVq10G#gC)r3 zvun#3$Vu(i#;Z@a^c=u-GkCRh?}n?RvDN+@LieWnUBu^7+z>`-x;*p~ID<>}!>5t$ z?A$PLhlEGN-ug=^dMoDAe2(t@u+RWAgiz60xWdw61soTRgBWLia4!WuyvuKYzreTv z8(s%b@|q7@$1<RMmv=k`#yrUUM*-c%wpc;f3)_!B4u!^5Kg!$pl<3>%@REnVNp`{L ze|@<1`(yvG$Me<%7o=ml5uwu=+G|wKNEg29?}-U8c<2m0Y|L0--_RgDcs6EZ-|yE_ z#m%TK0(Y;geG;!;+~FSA<^#t@TfZ=1w8lVAi$cE*dJFtU^{drxG?~#Ta9Y&NkCQ^) z8Rs0wE*<8ytd$p2k?9~&TWQuk_Y?P}v(({y#La2RL=j6jO{+@e)o?#nAle|3neQ1( zB$w5^TWbI}wG8>;7U~eso@Y;3W6F;qgSNh)TkRc=!P&&hyq<4@wLzs<jV%mF1&<6l zqkA9O^g3H^03s%XynCwGu+X?NBW7rROX+xkzG~7>s>VK+kbJ}DjCd4qaf3!_tIE<T z!w3J!uOgjYAC#}In=8hI#_Vkfk84-~$<=Hydf>1@lH_<z=ErpT#3)m21Z*enpS=#- z)6#{bt1R|nhStB?7P!|D3@gnhXbAgHXmX9rnk#5O_y-2Q>tzjrC5UBC6#Xth2LD~^ zG#GMHG#Ul=O_V7z0xNrh!D{_F{-kb{?i)2=02LHtFELF3dM1Gov_FwBGaZH5Tu=7< z6N)iTOcM{r-tj7AhB}$U;SoZ%36@<}X0?*sv9fV{DGAM$%yi(jB47#PnG=5juXPKO z((2OuQ8L4NZZ#1rlIo{wd+sjwdU0{IIw*;(Q)rZxB%hm<47J=bc4iFJVFZ$;ZPW^i z|3G;!BX^48$YY4vxN4NaN`cBWaI=wgkT;RDHZk2BQ21N5*<t4sZ=F%lAoOtUT|8r; zn&IY2{9U!}zIhK~p2I4@&Ba!(Dt5-E+o$v(*f?_Z8e8!nEe<g|g8Dfu-7#@r-Ab(e zHg;L6hv>K1ykOG=c#vvW>P7G(jJLp@uS@2hEtQ{A6Tpnjabe>f^!pa_`jeO@-b8Sq z-qy?B3IW1$I<MjPjuo4#UZNmxZH(;((v%5D?^4)!)&Oj`;LSBHE2c&B*p^X`XjPC% zC}5N_b8%$Q*&e|WEjS?Bja#V*DQGmCV3%&(p#Md;C<Yj%^gAO(aI7hIu&=3NFvQR! z&l(GdmGb$GNvu{mFd%L<`I1K@Q02vb^7aIo?Z?S8ER#co@6t;%>*Vz~d=d@W!e*7r zVnO_v{IAdJ=>3!oAh4JavlS^o9x1$DH(}JkgG%ul-YeuvQQomO{}8vfhC@4vL`!q+ zrN^YH>ICBX&!sX~=Sh?ov_Ih3F*p<#zr3OoTPEzZ&Qj}$DyYR+{npR@m=5bCPL%G5 zYiWJ{(V9X&`T1Ba07-<RtQq777^vChz<EX(e~qoU*_QrnOAwrvUn#pqWa-9rgO*{F z&}?d^hE<2nS2mBx=uiX#0hma1((HWzuJ^n}<Xt~V4>%dg9f2Nbuy`#-c_g{|s(DP; zF!TFIOI)cXzzPKy1F=HE(u4yCqlgj;oZV`=Ju6o(#X8(`4O6qBSf7BBbWcFZZVUh@ zN&41D2NQl5<V2Y<`!1mcpcf)P(F+lt=!IO2l;FFG^9(8;y_|yP@y(o^MOP-7uW-Wx zYQUMvDuHX@%p|cGO|J8UIKo{NrvTWaD(TZdjwH%?*RT}dJl`wsA1;o^yrQ)Ib}F+O zgH<r_bq9FDo+p%J^0REn*-x0UB<B-8lVl$av#yEJlW})x7FQUPCyt}~6UQ-v9N;)A z|51%fKwbS$rHFFIm6YrnaPK;3Tu*MDV2@`10{6r$d=6n2?s5tO%)%jw<@io0x2@B_ z;0dFjX8>N);0doO{RM*8?Dcu$x)p7W2+7o{Gzu>6R;*JUsmz|CJkd3gp6HskegIuF z>*;Y86ZdgnMqd#zc>*V7@t@#_SWoanyU%8eTzJQWUpc{9%x3@dF|6M}CS)5#xoG;= zVi<QaYyh>0f>Asf9CL2u<m%OS84|xRKuPy`;$r$hxR~4#ax&olf8C(a`ggUTS>@*& zfbPi*&^_@Vz@Xs*fd8nu{&7!pq*wWvzL4-z=CH}JtqE5@PJOc3ZlG0Ja4U@U!{3W* z{j^NBL6M(R5yt;#X|^l@+tr47%;HL-`pThZe6`0vtPrmsuwLRs>t4ncr$9riedph+ zt57sE$CH+QdFVl9^7o?VLgwa!+m?i0wHo7}C0!xr$T}Vj(#hEX;dEr=zP*l6bKGz6 zKKWRh+F)OE;jyuQDnpz0KWAD|5xSKEb(BXdGga;{tEEHZ$}bm!$h3K6IE%q<8Uy>< z((k>Ogz*c6&@unA*m7gq7=mHW1}$YTrwf$D)7g=7AfQ;7Cr~W(6DSrH`w%oI4?er& z8QMwpUXwRc?h(BQqBJ^X`ve~16g%hBhv(@BE~rd{?bIf)C}DMi1rOrt4^R(S$NbsH zvI^%*kPj1nFpZBfrpT4CDigRt%iBcQIR<K8oYx5u@AP4;qGy)4j^@2DE%e~pneocu zAiC|zE0Z`oJaoF%YQFOwj87?9aQJ;@5Qcb~)<1J!vP*A;Pr6v|LTeR1FOo~fj&XSk z7pv9fQRbYLJYdCf^T127{(<QJJU^q-DHF4TZvA6g<zY-iaOruD(B*(m4e<>_o^0}_ zhND$Y8G2)Jt$apjPqTMd&3PAZ^UlP+mA3rX0OIfAo-0M+_u-iDi>QI`q;Su*#KFp& zAXisMWA%wmBV(}a#u}}cPXk3jq;&m=ch~R7;l@XVcZaUgL()B=UJtds_eHwwC{Cp( zr?T(?xg<#!K8qfi>~-14YRI*m@pB2g$F9YNCnXt#sEVx$s$LJlvNrpozSoh#%V2_t zWBur%sO^9QN4L6yl@sK=vWq3#YwL9^YCc@szPoGc*^*P_F=Rf+^u`k1`dtir&4&iU z#@DSP05ab9O6NzC7kOTfo@Ez@Q-?BJhr*P}mpti>iHU*p(cL6BSuG>S`)`i~%I*fP zHRo}ys^i4IvY1muAT+A-H0>iyN^+}Li|Cd}@t3oiI+0oA#HGUO9od!Y9nKPrKM`gw zdj}g+IRIa3RqDueYpb@p3xVQw3Fb@uW2#lJ5@Pov1NZk9eoC6K)aXd032uBA26*@3 zFYAXY6N*SfEF~!RBA2^^_~Wc}D*{8v5f`R+;s~bV@5PQSh8Nhi_{A{u9*M6IR%I0= zBY8c(z2rJiRB-zig8Xu(1uvFFoO=-)LTmfr*i^{}6C&)5T0*8RS-phQ1~5$WFB%({ zu{ve_&KsvIX`-s3_(blM?qtIH5&(gDWG_Pfp}EL1_U_sew?6?ropo`M)A!!T)K(NM zh3&Zh&SH%M)4hkBy<W%cGe&gYn#0>Xg&#p(XKxm!h%WS_OQTp@0BqK|=G7(kEj}z} zhu9}=Ea0q=;;mZ^BL_bZ52?=n7W&ootIl8GGPGB343<u5Zw|4+Whj9ovm7o0YBm+G zm@DNEe8Flnp;}>q-(*q*-%}R6)R6zFbHrw`btk29Yh?d8Gx=M=LH?A2^gXTFPWj-} zu?9Rn3Gsye@A=BIP?}frJ-%d_;F8wMb>}0RuTJG5uJ5O_??=t<ny!%$MK#6dhgNRF zTu+}<_+uw=kRCT>u$ZB2zH}0COvHcB$5yjTNkb`0vP~^|ei)!UvxP74X0?K}S_RnW zR23YIJId}!eO=zj?wyNGoI6jPD;=Mc#kJ;7PEl7+N}=oT9~|l*7^KgutPHKJjBdU} zcgMYx#E!di?)1h}If{T4S3kOLm(q<ue0cTF<&O0R(f{5I{dr`XsJDOCH^H%wdwh3Q zQyk)AX<~9RVVeBZIoPp5i_t%G@6{vAshPRyMD!lqvbP%%4R<k_*}XX2!xXT9Kk82$ zDh)p(zNt#q+F0mk+Z|Y@FD$Pv5g>&?X4;JmL{gC*cf|}39yE0u<PwIKl9RnYxqM4| z`#vER<e8w8K;M7P$1_#=vhbS>HXpfrHBJg6Ut$z!_fEZZaA`0p+bQ9)(4hB`pmo}u zhL&mm(3?{BwXl)GDwb|o4qd-xQmSN&yFr<X#ZTE+Q9-=4KVJTnCCE8A5W9`Sy*GMu zBmGeCxm;shH?((d({jq~RXQWk%PtfDDNg$oJ4z7ofbFzts_f}cblO(szKE5PXNGhI z$qgEfwF_szbL5Me9naT=%8|}Eu)n_KQ})nS@(J<Tcz60W57Z~(HbPn+FG<KFSs0<u zb2j?0d0{q0#^Yq#DvA&+(kUXJP1kH)KfT~^n<zabC#vV7EGn+#%At$sb$T+%I}xDX z7#lyU+mf5#$*@QDyVjK(S8=kLS*MNFVM>2Cs{oGJjhQt63z6r{_})8yaWJRTSb+%$ z+?rmPeS)NT-OFpv46gV!Y7iAGZLqawpn6sPJ{4b_l`M5ed7y{HJ#&iCXsQq$7s$W` zL=K!KV+(XEBGP8mv{QaQ|NL;S!y?lCkm`CE)`~^sv5*GxV$_;usMoI4n|^@*O`Vpv zH`$+Gzu=HRDzqebHQ4(WZ?}JJZmZ!=_APN5evJ#*k;iMID@1G2b?)<lU24Jf(Gs6m z>1cNdFXf>^nVVr%d&5_Lr&PYnM-I*0SO1TsY2^QZ(iHoDOPb>Ue<w|BY!>#<p4Fv3 zB~9*Qq7A<wl64NDQLA1nuG!D(&r>>`Fi%Evc+oLmXkf0%5fD`7mvxt`Yn({fX;w@f zR_hq^cYEdCgU`0VTg`-+3sJfktq5N8mV<1D`s|0oSU<ueh)4a(Ivr$kT0|I<<<=?T zX22NYl4@vrCCw>?lhiOjx?f<Sns}F0b|zKQ@-|s?fOAs9OuB^7P$fDGN#6%(tCHiZ zn9!$2e8@p!s72Lw@*ZWDq$=bjC>eF;r1!bRSOVYVhYrdrR}t8^KT0g7U1&)0tLY5U zIp24><mafX#HU~I)8D5#4@ailR^KX$XjJYj{c!H~I*4*Zl_HmMPvd#qgRc&M+$7zN z8w1W7aUUF~?A`^<{)pT}Dy>0`bbAV##5<#fl;#!tUF22wns>p_yJ4LEE)v@}gkph2 zfvb{2D)YH81#HsQH$c$j6?Ub+h{O4?(05Qj;e|8Rd(0xyYeermg`u;hWs4<}6CYNQ zLwYIifGYJ`2DS0<R|60<y*6kb;Oee^W{WIqc(ibEkfU9})^U7Wpi=M~#YhFY(yF(> zf-Clue#K7M^Fc{aMtYH1wX<EZnsr$P2X=oT-RgVVw7PJYWap_mg?B8424*O<R%ve3 zWJs?f65P67bnU^%Drkx8OYzX1KXcvt(`;o7#jIH^`#j0$c&rcV9Zj=0n#>B$XNC>y z{mfb%YGjXqM%`?ZOM(=7!FJdo5=N#x{$Z&@i7%W1i?Z3;<UcnA@LuHKG6U`vnB#CV zz`YXTywhxJ(sUmjYcZ48bLb%#k?w{lMJ97hVhvxkal6dCYWOh5t75Hmn^%v-Cvf*A zUd{7NwB}{#XxrOm)u7hZk+x=nn_oG-O35gb^E}Juou$_t&eCJvhnYrL5cA621SeLD zHV`ziw+VFyHgPZEI7cZN)v)kXyk^zIcrWVF-#W{hJaL=H1+Rjk>Z+`<Jrb#83bl$Z zynr(vFRN|eld5n3gM}Ok5;RG@CfRHc8XES%0fHv@W8y`j)6cOUXqv)JFXwusq<kcU z;yVcvgZq}bSI_0c`^BvdNb;)FAn8|#<!35BScrDc0??{U9z8qu2?Bm#`y{FvVfndb z*HJMZnF-5in_LCDlPsvgJdYuboH(I-VT_y%XY9>bsKVCxo4COa;^;<MvHNQ|>&e9Y z*u@^|!Qp+12o_F;UX;-x3nO*iy?gH66d?CXFm_qg0P9zm^}V@~f^G_P*^YfUP6u%X zhn)4EBOfbYW`RGbI6e9)xxwU%B2Q1*B<t)_7nl@U-v%|n!Rhf$T!zmxhTDztbX#!& zLiMOwImx7Z8NQ;ar5@5Ntc-T+udbcf@<7t0*Snv&^Smz7MJM6Ak5V%-I{cKuZxOS( z<d5mefJR)J;@i>=Cv|iVPo|uBwd4f%m}TO<LP5bzd9)&2p;A?pC<C`?wcKIiCk)zo zeqr$($aR8Lkn4uzDaQ1&YPvi!JfS}X86*iqOGi*8N@bdw-`K|JzESsIf)x?Z5vLf= z`qs-D412;AVxS%}UgHCLze+KNjcH=W+B-hZHaAD*Y*7$iU}5e^5a-aRVk))E`$|MQ z=MBYh48SDwhfTs{PR#ixz!wOT;(dynit?Kw?vi5;Ta?={;W~TCDHyX~=#dCxE?K)C zUpTKOm4D<VbxS81UCai?3s8Et=U@MF(_%)@vc;!45B8O<^lG+Du*)``Ri5Nqq2(#m zp5;=xyg(jNes(i?P1$eY7OXZXc{s~?MpE&P7Iek7TIz~p3FZ|!bq{6<X9fXjlLKP* zuAy=MkC`O(v3C<%w}cPc`7cxj?Erl_+VNr;4`JzBGKz*5z<F%r2hpi5i5K}U&nMBR zt_pYTDgBhze{!#Km&&}y<?j9%he{BH^5DCf7|Paq446woF~z3tP2{HTeb+5b&w3q0 zH#3F0_4YZKJ+rTK6dk$gc6*X&A2zj(GsJkp3_9McI07<2wQ7L;Scp$&&TDbZC(?yQ zO6JvB=z=Am+f$n!27vhVrnUTYBs%I(Y>--mfe*NZ$APwc|IKvXTU@tlS)#9O_pC|o zNycN&9M{6T<t!5F{vXYvmve*oH-NZl22T)x{sT;6muj2WC(th3HuF1-i-5D_^>Z(u zD<msLg=@yv+E#nHN>lsre6C8F%-8YxXb%z5&M;{{>CCjt2&>TvLjvF8aIa90d315h zvvyephyW%RDJ7srAU_*y(zOQVh12}UAkhXSL=J*KAW$xaWtyhS=ArC05WzuvJYm4W zyG@XPV}A;&>2ywk2Fk!0?y)C5ov6vP=TEk7q$e(y=@-D(okjuNJo8K@I<`ub;y)$_ zh$egN3HPP&xoFXpux2e8rIz39!ky0k8=RZ~1gKRd00C-&-~gbO7nLip_0M-E*a-T| z;KWaI04?<&wvkf~LSgfLzX^j4f!=|^7H19_zrWvRF%Hl;L=5wgT8aF}8S-RNM|q+q zL8KvOy;cG01!$ws5TE?%xKIA{v1fok{qZ~GV!OrOeg)xwd<@M~nOrmiwjsLMI~85~ z3*Q|4W+?0@13KLkqbL^&U=&rXUsKw~EUE<+{oCL2<Sr+80*oPs_41thhu<A)dOh-8 zZ-T1_@=(&hKm_cjPXcys6bKQk5^@W_#cMsfivQ?BAP#lYCqxoN7vgcF6~~^XVkRo7 zqFr=<sAin?_gV~o1e_saJD`z6A12?Se@RRJs~DT0`Y+B#*RIsD@=ziW6Ad(kKIKS| z4$!B>PJpmZ5d4l4#Qx(igMj-3QU)2rd-ulB3z3U`c=`%4^S`YMV~Ia*Fn^P+6rT5& zQapGs9T!6wWzQq(N^q*3yEKYQ2CBi0=W#Q1zZ~j4CFu*@MF}$gURdXUt>Hk%p%;H! zBd7GtzAsNnvM*h7qMFn8%Htx3|31M(kUL}ozLEp(+btk<`$IYMmxY>+ZhkSCIMfb5 z<nd1n9WM${;>f#gt@ZrZ>)&Zuy;uW5wTAWa^d*T$s@f4(>Jd0zu6|c9Pn<~%rDY&N z;{#`%ym_+At3PqzWMBXe98T}4<SI?`*yt|Ce@s0-&10?pk>2%!FTiI*kJqV~zRnGv zjQur(9|+p`g@HL5{&SAF-a_6p8P11u1p_r_cCi1nW?wmj=h5794;I~Isuy@7nVY59 zcNh2S^ZP=2i(J7`jj>J~Uz}En^fdh=hhHGRwDJFRA6<1vd<Vbk{bDUGYc~z}?gs)U z@l<0>*DGULCUB!ptF`cD7RI~;uLC4tf?8e9ESa%VqAq<qXgA6}FJ+zZD_F&7WBFhq zd=T(C7*D9#sf&)i8_8t)-S5e244x~{s55Tz-dmk1W3wX#91g<s>kB@7w5fU3Mx{KS zk5HJSuOe1%#;4O4^1fJ{axtwJ@njxe)S8WD5pG!%P~GE=cNcZ;T7y!*^%>v^)n4+^ z#saK)%f$oF@;vr~f{{K3#NneTV_%(@RX<y!o2W0YI+^z2;vYo7n<xFOY`k>VgJWd; zQxeM59Xq-RrJEapZZmg7zz%X$DVJrPIk9WTVS2SmP~_J6Dwngb@NxBmn#b{kcasnL zYstmvm;z`bGs9eT>}&A%A+?&`@dkJHLD$Be`|iDA$~%(m*8t09RasE;na3t)P08f^ z{npu+%p}`8db%x@$(a55(RU(!_Vp9hRhsNo=N3kM$-R7^riTpd>g)G?t0}uo#czyU zttij1UZBc#`U;5RxB&kd)-!tNBj#x~U7!fayn_{!BDJ54AJ;H4yzsUk_=bDiI1 zQu}Whlf{xsq@rP1laXwmln&`t4Z#R~>=LmdIA--`^CWp`7xW;CJYSF~dlQ+x@k08N z`iP}7t!re5M0m&H5;$s2+Bv(Uu#C7G`-x}4(gx?a;1kFS1yJ1b706tQH;!3WG&J;8 z>5IxLgvt3)f5xz7nq0g@_wc=vE@}o#LVV1>OE3M2jm0N1uE<wO{dqtNXALEiB)N)< z$>bdD3)Dde!@OVVIMiO}J;Fj%UFF$g7^D<%>=vCdB!H3zj-ES2Z;-+qw<+*yF^_vO zJ+g#+<n1#1>cOX5EtOqlbhSvPi^f}suCM;QaTrM~sv3q*=q}9JP>WVQET64!yOM-_ z%9Gqylg;bGT{V2of1tTrgV%swe6d$QO;eUacB!6x3VEVgX?zhyc8F0yXir--787RZ zaW(U{q4!~OTq-9o={jrpQpr%K9PQP&ZGP8FZjN%LwBNOf7FJBry#aWQ&^~W7(Ft2R zN(7^ZGPabD7SwV(*rg`rY@^jQSCRWI4Au^0iwpwke-UJ18Dk8c(EievJ5sejvEDTP zec{|FHgrj14I4KuIW)S6b;wSVAD07eu0HB)Y*E~7@z)ZA3f4?DCiJ-Mg|FRrL6h6T zew+4dEsvYQ(tjwKL7s6HtFwcs1inAH^i?nQRMYi%FX1fw@aG((7{kzsrd+;2m1d~y z&Nlmx*Li&NBYk2raB?A^_N^rf0j9o07vo+*u>-Zw<;k!9g_HJ$oA!mNlZD(p=d_`I zD~o=E3Z%iM{aJO<L4!$_#KZ?Y_8Z(gb0C5O=CU5A>FtLfxE>>K93v20Hu2tj5P15w zd$ELk4V2A%^ruME9Q(M#d*?98AupB|C?|uwf3u+&VkcnjezemxX}pgRCPU~m?b@8; ztmV(_2!l`9lFTcZA8goZXxlJDMRC18J5a*4P-Gv>Ts7G}EY=ioMZi$3vko%IQ{<<8 zQ@;^=J-=$k%>$Nl8Y?Uu<mlU(_n@yNXyJz~DTaGQ!$=csT0CX1uc9_EZfF@T-E+1x z%EZc9K%B8@4Pdxn50N-4wQj+sMu9%1c`#)ZkH$4(Gp`XTasN@SV)9d#EGmdaNto|z z8oOD5C-%Oi#8GniGRF?yFO5Q$R!{lT+e#3}iu(YnM2&q-=Z~`_<8SNH=A~*5ZYYpH z*?*ml^3)rcv7^Y|G&B{ePt@P%Xcd^oB1YHFk|JuQx2B_aigboHA;w(3Gah>rG~fIw z3vc1rt+MRYPQQ;8C0d(%c429k=W`(aK`jj#QzYk5VU<4`9j<%wA!FqZ*YA((<y#w4 zuFkrMR;S#>?l~y2GH<ON+8uNh5p*WCVyrJM`g4oAqAER1^Wp|#@YOE3&!o8J0Azke z;iQ^d06>n((N<|#@)qHFKPFkZllX%#y5^I<KGp9ADx1YjPZ^g4JT>^Uet{ph$Ni~h zR3ZC#)r)!O^G?;UI1HS$yG<H2s#OGgH;M7ddq~q&yN7C8J;}dh`)hFLPumu!GW+j# zJudP-&kR%;)sfOv^UJHA`?J_LUJKSowlF<{E+FBP3Xf{TysV^F8vYb$(cJOAAk;AP z>_p4g@waP^-aWtARr4tN+l#O|$;H{&k(*uGhw{_2`bYTBWtcAiNuT~f3XDt~vf4wn zFG!<CKsielm34*AmxlHOtt`<YxIr61o8n(m;P+6^V80X7*x60V08(J5{cQncm@Tjo zo_j~DU*(9cleAfvAHF!H2)q1AFg^&Q<d+NY*6j`>Z%;Y9<4;3Hf!4RQubDMN3DwG& zN!Kz9vGJab)bOnB-yf_!jMD~<Sfi_B7W2M10c^lL%_)j&2P*pE%6+)Uz5Ky*j9-=B zwK;gc1R?DjrXkQG(UbUkFH_p{E}|jV-Ulc#@ClUq=RTaZj+ri`=i)dv7KslR+{>=G z&XWX#1ErfsUgq5*(G%sPTAPeW;%f?q$$Q8X;zlLx?daywQF<ByHemKE$jQF8AODp; zy@U?%qj#(&vSbv2>MlQp6Hj&`V`#D<`-Om=G@Slv?bCQ%QxsABe)SeNsqrn>O~#;i zt})3@O>q|ctFDRwq>anZJS(a3TdDY_ubU-4MzK<WHoJ#SNm5DHbVRQuI~7yJ<BhX0 z1|7<Ed!!fgdu053(LzsU*MGYYFc)sNXe$)j4UB(Mjv7S1ZrQ5*QL~qK`~KuHi$%k{ zv?juPv_=B=tvyQS83WN)8&43J=(eQtuJN~9?D3H|C0O>B&WPw8-M~Ad+lUnf<>~|d zud|Q!XWok+mh5&T*V1Nf9ReR1+?=-~^%Z1&@H_Fr_PLK&c{MBi_hQ`}4wjMfizKr7 zgU<PMZYF%EcEwlep{p!e&_qJ-C&jw7x{$$u{a522^Z^9v1VGaA?%4j;A?Hyt6yok6 zP+d^ygvOQIRv1(&s^!zcP&1i(cwSH^6G193!ER5|<aeb2xPL1;!lLqbetDsZ<hD_) z8no_NZGTz-Nx&A>zT>CA3Ci@Qy$6?+a)d=?CeMT4y5+x~N>pYqPNFNU7<gO$+aNUZ z`Cay)TzbCSd9$YF_^#Axz*mdm*D{$W!FxednTG^;POL`p@0w-04&=cU6!5D-`Oe6A zs_ZIL4LuZ(d|TuZCJka2LH4wf;cgw}3wX@T-sT;}l04*ifcIA#j=qme>6A<7+&J@c zGNAa-nJ{Hgu>E5U(B+i%Aix5IMyuQI{ILz;uv?y5uhI`s^K@4YJL7Nj<|cSNq`(`N z_F&?-Tor0@3)ksHg6EtGqA3w>O}x5vOHf-FLt^|3`qggPfl0~B(5wD={kxSM6$76V z;98I%Mok)mIt?Km?ec`(vS_wT{Uf&3sSyrmWe%^M45Q}|DE>&{3f3Q8PCqR>=K$?5 z(jkSoK582A3>kqf{JdBbsb}>LYT>z@Jz~+T5@BUaA2EJ~?AstAbVocn9Xe6Az<q9Z zYHpT_FBQSYKPgtd=)->CCy5>V26Lb<1p)J|M!5tBeChsTXT};^CR*hx7d2XaU+3py zDo1WVN|-1+K8yA<K1k;mJ0sBj#Q*w%sRrnGLb*abev1Kbv}z8>hPv1pBi$CpDTVs| z@Na?)No`;JIDEZZ*yV%T-|>g_H)cmI-+mWca_b?Yw;M>GEayzd6SCtMd*D4xHiJ9h zw_NLGZW24*@t8F02!gOYsoCKb!9o-1Ptnu+$U1OrDz~Yz%#YU^VQ0w4dG4c^%Gyqk zuu5+D`J!hts@_2KL}}J7f9V#~@Zx6GqyX$*Z<VOt0Yp!yVS0Ar#f6j$t_;>wX4dPG zcL?$;s%_A#?di04XEMFJ89Q8c!7hrB=*jXrh<wx_31Ol}^_zgIutd(=kLfD8p`3{h zzLA2I6K|Bw`fUs@%=3Q`+`iA1Qla0Y1Znpx>PeexDZCZ-uSJ!Q+CjwJ4*AyW@El=$ z^;MK9yV9Iq%P^nMD`DnvGM`^?(Nb|UHV*py{bkrC?WJD;Ks}_<31GVmL05AE`4rMb zP0LgE^sh!IMu+Y>s#@#(^N{^*Hi9_hIr-~^ss&3<#55^D6m07gWlDs=N^ig%PVS=) zG)fHwnrSSR(A!4s&|+@yevaBv%yDHoxlp>yLIj>!02m(d`vPEiI0)l<t<m{~3HIY` zgv!+#j+Ec2(|qswnx~ZIhOnyRJ<I~o(Vo((sz}Zs#f6;_W(OQJiH(+K(&<qTnDRhx zRO7?Ty44f8+1C*!N#~7@V^Mu5efeb<6G$_x^Ogy0)-WVm3Yp#~r0wsFViE>)>||M= zFMi|lm7w+tylTt~sX6xfQSFAH6a6VXYOKs9LrG{2=Ii0MnR2c2rEt>Btjo*Qiq&^O zZ<IjO2pI6}8j4^x!#sSwir)?|={6KmIK~7de4?c}ke}tB0quSAj;k4MT%r}o!@?G# z{3ayzC)d>cnS=b)BHImVpmE1i@x_N_T=E6*-RESDuv5{T(khoVW#eId%!(X4^W3Hx z8<WOV3-#NA41i*;tU;eVQ7}^#{}mUE1bB7<A|>G2rP#;jdT!W>(Mf)PNXx3cJ7m}t zGu|?~Nq_Y#>)~NA;ufYj`ocot5)XI-OrGidsBaCc*oox0{^%AP8Rf(jGfUxua$LPF zmPL|W1Xu^}ppWt7fyC+z`byG4a22J~bLk`X^Y?24dZUmq>veL}?>YbQf$q`*)B~kT z2fjVlz6yXzgf-}wc7+TJgb!%wq@5mcU#nPuUIr~8RR&Qi2l4^?PM$|v$PPE%8CS~q zK%h8K{@)r{NQx2v2lO2deg$+OtxpUd-%(XxZ`e8NdaqO07v}tNtX!$1WG}8Z2y7e6 zCk#XLwEIqa+I^#X0=w_lC?M?t`a9@UM)xwt|82_k0Zh5s0#BLK&ri)`OvH!Dj<x)| zgYa~x6#q_YzCzgL+-LGq;3j&=`0|{S)Ia{$=KIZ4P-6;&BzI$0d$c^CmDOCc`=w;O zY|J%+{*~0Qet?8u#5X|r^$-sUe7-EYdec??C2NUl!UhQFQ3<Rsqn!&Vb1_Wvy`uhp z@oz{d@nMiBQ5iA+FEI-R!}F)e3*{FZc-?cj$jvGrdotv0G$|XP+WlAL^yh=zB|}E= zZBY%m_#f{9aqZfz%qZ!eqF!(2LR`ClBzS*$2pLG+1T-ZL;r;2_g~0hGecB=3VPC*I zoQdZ;`%S$hNm|Xd<*K)GQ10&oX(EGEG|M@lF{2;FBjR7K+%o5zKXNBiMs{$@v8yp3 zH_#VF`#-023{naxH{<Wlvwuo*+W=>=f<kwJ-_c+dIH;E=a*-#;^E>b3_t5<n0)anr zFW9HtYdaIjy%Zs_l>k`twpt0{@Ac&Pj^Fu5YBg7sBU=r&s_0Ik(hrz#IS%&p5GDBW zuhdHVDGm(e1L8m($v?_+shdjnkE<-<lE$-*CH4-KNN;|P{tp$Qgj8hxdeCNS#(KrR z^ADr*zt<_C{?#j*;W6e5CFMQE|A*HP`D0@13Dhky!yw&%(AYrtpSHxVW(j&bkH*%c zIwWH<YY-WtwI{B$NMwWLR!#{MKyEdpDht@eJOXK+tiJ%fzu@VOLk&sMd;!gF>7Sb2 zzrG>$Ph@J*;ASRW|6#E{<+G^6JRHOmy5<46g8wxp#HWaqAZ(t8<9>0ct~OPX_;N6_ zf4E0<!JU@_S*<()bWUGChwltyLY?{{tni48-~*H=OTklQg>=WU>Wu`6tXe%g$r8L5 zzrP=%5M4<FI+wP+?qe1ZUWDAK?D`PKDuFIB#8`I;4n#LxwKn_2yB%1XtrFoIez86t zEDS&*E4)|+F3U>Y*zNk41omn6bN4m7?1%VE4UWeK!vwwQW9Wd;SKc{&$O(1aEOQRj zQu?7CJ1Dc2kIiA!sw&vR+%{`S%~^QioOC=ugkw;LiS7nxTv<i0ns*V)$nJWk?V#CT zf>K+|gLn6WuQ8K7C1hrRfjwhIBnBmw)6};$hI{Ci<bdej%4WxVTk95{il5EV*Kplf zO)ar^<51ej;9)h@Y_5Tfl(8>|TGm#-j8H{wgWh&Ho%;F&A9^OB<DKM2nnn~MoOj=N zV$p(vdF!Lfg!KIRhqX9GW8BNwB#8&CDn2h^Nes(Q6{T~ZY|1rCtDZ@4>&X9M@2$e} z=+>>x;BEl|!QCyvJvan+myqD@?(Xiv-Q7JvaCdiicjzK}?QeZ+|7)-AqwbSFdbuuM zshU+a>ZyB<`HU_i;~`qG+qTtL`P^R$*c>Sn?yqLj4qK;;)|piY3)$v_Uz51%eifey zt?$Enh}YWkWUJK!xufhl{o0u|-K>Eg!A?X%YVMG$7vC2r$@&t-ixluZZo&;82I6Tj zu<Ucoloa!`^tW_bh|7O$gG$3JTV58%XsD~+Q@*05D{_9kl_jCCzHk%B#`}FK!Ax;| zao;a72HGxMPf&NnQbo?C*s|3?Z=yeGSQJ0w-WJ>pGhAUO!kb~hTja0iCVk&Ai+$2{ zR0KSNY~Wk(BC$yFUSUZ}CTcLJ$e-+6s+TjjaN>iP`KEI;5-K7CDavo5qtbV=K?xJj z5XiA-Zo+AUyKzrb@T0GOeud3&AGPEk<aiQ>cQ4>3PpeK_2KwaG4QxW@myR@a<mZGz zf*`v65+%KAxS)DmM&?+ovwOU_433_p41O<vkIau>j3W9Otifh9Jf0DAR(T3ng2cUL zSTo0v7Oj26Lo>n+Q}8p?1MLaaig#4`n$2Zq6GkLwgC>#xXRwxJ1Ub%g=!@_bcLH&; zDegcYVe(1&+XQcL_9U(EzHNOcL^oWeeG`)-#`!Wp>+H_(He7V=nuIK2&L=WBmUoY( z>VFv@Fy@^yI$xOt5^;e$AfI+GJf8SiAm7@gBDdVS5!cRwm9iDBVA%d76>DBo@3zQ} z#&~!-Et|E|6t;S~^<lSm>T%mz|K3#CcuXb^eVy*}mI_mMHP-_b)VAFCkDN_h{j5aB z{$y|q;x_JraEA#4v*^9%w+UZ>+2Oec-hBgRClK$T&$Ig;G}nNCmh`@v$g;{xY&coI z1HNsSlHNYM)vqXJSnUr}ikp^Jdf)9zLx!CCn-`{abClcUSk3zs<?YJN9MZ1K3d6Bf zZb6G;_gs|pn40KSkJ1sAb%Tr4kwUo3ORvyeFhGM!Mf|jbC1|GeF9hg#fu&j7J|V48 zUbm2hERF%1zBwNr)0AHv$ejX8fmw%*2k4t0cls<<jkn=(KRbF<ylpo~Hu?*KE7vie zj$@zl?~|%tHs((z!>09Cqn%&Ge!GzDUVu%{goSZqN9-N3>z%01S;&0RB|%!dX@5M+ zc7bmt=dlY`>|48cN==yY-W{%|z&t11a7UaaA4<^^HU2cw()jz*pM`EZDK{nAw7Tdv z@u8!r-A7K>1nCQ}!wjx$>+{^0y%T`#=8n?8R%azp1-pEjk_~^Ob{E}}W)J#i4?8CJ zJK4D@(&S_b3FOxIMlY=G4T&)}jky};S+})WX%Me?exz-23-UpMu<kT`zdpFeCpi1V zw#`vFo-sXe!am;ep>a84Ee8P6oRY-3k7tvrtG>8ycwgAZZ>hD$WBD)l&5(FfXPra2 z+s2LNF)n9oy$`8k3kUn=)|O2na><MXnE`A^^%g(L+T7Qyx*Kh-Q)&WWyTChL1+{!w zu8+o35nl&}mR#*WdC<p<?&zQBf3TU?crn)}OVMsg=-1oT-}Sx?w(BFWt4o#?QjDF& zURi0msW}n_rD%Ph5yL*1%CM<4SoO&4Sm`#2{z?ZS8@-P5_Isa0$EW<}!-~Gg+~Vz( zd{jC69!Rpmh5iYvGvYvTa{l_3wC6QK@0IuS=rDIP<Di>XaqSM5h4*bTImLWTwj{~d z@_VSa?<r5(ZuO5FbQUuZ-fz{YvJHTw{4VC6w-8r2>@Qz*u>Cn^7QlBJ8Tc~L8#Ej9 z1+WTdGzNYcf;??M0DLFwl6&W9;xt?(5u&x=R@XRVGl!_LkWWEa>Dhp+XcU64{@I>& z*<F8<F*Zs?P$RUcWmE^icYt$j!vAZ2Tmt8}y!=9N`r=a@&-SJ9SiAggj8Asc_KBYf z2eksy`tGO*B(>8Dnd6f(9B8V)84jG^YES&W8e00HuiKm0H&@ceg`#h_dDwr<*zL0# zJukmvBWhf^`o}zm_^4PqU98EfJ?tPy_*p2`Aw*5Jyz2XEb!`<>SnJJ+(&N6jUfcI@ z?&CCso3@jks@tmj<*Z{Sre#}R8Do#EJgiBP9sBvL8NfSs2;e&d;~`nj*=7LW_3|*9 zo~@YRKgt>~SJzy(jc{yp$yJu}y4*F&;ZxrPHrTAd#*b5(puNr;JuJO~*?2L7|8My2 zE%EaI$9MM_Y|W;2@7@j4{lRx06DkY6-)oJ}VNC4eQmv}d4dilbu4FkUlcpDxT17%? zHuuo-h1p`+A}how>K^Bxj~3@=t=bD7+fzA}FTmu$nY{$0c=J}pGmcNWG}>*VaoEar zqe;R<$y2{?<)EguY`8YBaS3v*Gn`z+GVL%V6(3p)R1a2Z>R;%a?-y$D&?F1@%+10Y z3zcCBDMjVT6St+ar&6EHAGD#~drTIlUMq8^me&k<_kRudhr8m%G3aa#JhgwC`na19 z*cjN?U&U6G4=MBTOG<`l9iF-kGqco`0y1Xs6J8E+uZYQC_FRG9N2U+zS4VyLK+Aql z%5KV2JM!1NlDhGT7n%H@Wye;XMiB-IyDn27xS7(O8`E6ogw84DK(zQ=^*n={gFg-* z8rK5!jz1LzNY#Ya^vK?e%$9Mr@AyOSvI>=u*va4M-9=f)c)9~i-YG!u?8EWp0eXiB z(7X4i!PtY0tvYDTZtVeCs5&@Su48tr6S5BEx*&(Nn>ZM5-JjUvUJO`S4xBq@;CoL8 z)iP;j6M?q;MWn@5+X}jV{dtTZ*pO-iyt9fF5x2j#s(lx-pb&+k-M|5yV_uFv4zq0O z^q-4$jG3v-BLL^vB|&(gbFZPf+2Ob|2H+esaC>u(<wUUOUkH{@1I{r5Qch{JH|N+^ ziE+_%VTT@jh%s3nO8&iz$+FySGlG->!M9KYpaJwOz9E^ziU<zaX}(;2)Y{K-IPfVq zL}rPW(7TIwcFoQroL5>a%qy)15b7*nt2psv1q#yM#RSH*^e*z4+|xA#I!3+PMktzW z;~AU#0LCoGr0IQDAkZ=qQVSCBVR1)5p3ICT%t`>El<hn2pl!lW$sRV!OwYG?#xot- zD6a$BVT|jC`nx&0=u1K^gT<Gr4&-7&`kd9o)Plr2oo?NaPsNhes<i>hs5&35l9X#9 z-U2Omh!OdwQbpXD`%Mt%?M%aK4Ss;=p^kc5b^CCA+F)eT?w}`I;dc$W9b3{S{V&7_ zu)7$5E<(JqJE8_}M?Do{n<ea|N8@A3Gt!NOw>(QIpbM-=kf{!tJ5(G0)7NeQ;$hJc z(FwCKXrDC|iu)(RFkYdE0{}sAS!hZ*MgTWaWO<Mn1bvcpl2Pt)f>J6Kij&MiEBxWG zOso8}JatPH($CC!F&qO+t!R@!ftKDgkECybmX49ijy$TT#Bmw<@>j{2j)><S)X((K z_B(7;Rbpkzf%FX+ZrXZ3ZmBaS21S{(M%y44pXBIeoz&fC1*U|?FfI$*@VAqV&<<Ca z?FaiQ$S|go)y9qloa)uwh&^@y(iY*P+CBeG@vh&s^C%N=j)gg@zu~*%yFee4&%=Jk zi&i9K4M419IJmJr$4Gz9{s@JF%rSrCfUUYdKCGVNs)O}_PHwc)*j^_*>5N3BxUpZs z*$&~?H;(oj2(+{!k%{RN&AXQ|3%Tb%1bqv%gn+TtV*>&$?bIi4yWqvwsa$c;NR!G4 zyvm@HBmi0{iAbFEfxouYf;57ypUDe68B^->wB7JceE)HZaVgEBTAV-Wa+RWi#KJKP zj-PZM49S=;;2i_r2;^Ck{p0fjz~>bc*xvY@tsPtc73pLPyOTqciyW|dRx+_anu5Wb zsD6Cb6ar;t5B;GAJ6$&$`DGU1lqRAXCS77=9us4=mP)1b0Zgag@s0gYxQYtVhd`Qt zC<MadLjgv&x3>YtIA&n?e5CTqbVuZ7OO&U~r_n{yo?vjUYA?#XomZ|Kw&WST9R(AA z6DyJfS6+RYuG92V`DEXmnV%zkoNcQ7WteSq5`M$Rhm0CA9M|OQ0EFI~uXdAk)ib4E z=Es(qhZQZDsh899UOC!*lO*UF2A%p^jj<i=E{OoI8rTNDBf8lks*uUe``)Et=gzVe zsZ52|y`eIu3)f+}<>Cop8+406mn(6=ss?vHlL1)OT&_qs0Ke9q17KC##N#e>gi%6P z2CQmU5oroPI;l3O0IS-2wtrgHD)qqe?|~Fay`b#Fw3Aso3(*zbN3zB?r?vI6@1Jh4 zfe^_!<opBMWcz65xMT~?PX{ceZgB`U+SAM-=z7!E`h{`9;}uHYALzY;$$12yB9+g7 z|B{M&h1cr_)_wcD!9T1a?sMKvRzOjaE)XnF=${<gxl^W|`$gWoYRZNu<&G?F1~Cz& z`0Uv^ad1GB6X3};^)+zndk+y1eFl*Cwdr4#W8@tq^dKwzTxW`favju&BxEqalz=*5 zSaV`+u6^E8?8(zh&)XT|2#eOp;kkpTk9%nQDWa#)0oDzLq78&dBAg+gXEKljhP6K6 zhn;q3-%t*rv%yToEYg%3=D#G^!Th0XVwRXI^J-r6H&S6M_++#2*cc{BlW!rCcEx!~ zD`Kt@r1XUU&3E4Y;X7M@@g0d%CRM&-Ke@jL>m|JNds|2d{wG8dceSMPS+<(jDCwEW z6ZB7n9mreWA+U8o-XZ<l#$~>RNEZG*8jv334{?JL2BP^|?J|EMst74*QQFAMr)!Y^ zg@zFRpdpbrH1x+Q7PxY+!(Fq$_P2OI@ITa#1T)H^2%;HpPoXvaziHbazZ~xU8!}XU z<5WXV<cx5H)4x0SfOUx7U*4b)=^uDW(pj*RDuvHPm8MQLf4#IYWgyAu`VR(*^@o9m zy8;aK56bDf8qqNPcLNM$`wi_VRgdOZFFN$IwokEivHYK75&y=QfSuTI|ND1b-RH8c zi1A132(H}U?ZVTF(kh1fm$Wpz_WX_ddH&(37XU|<_zFO>fc?~Uo>a=9S(NNsDIm)4 z4^xU<P$KnpAafG|A|!V&N8ou+bE^K!NcFefuy|u^0eh+J`IG(%|MQrREdE!J<&#gM z8tXh`dSgFc**`Gd-;TxV8@&X+;t(HpJJNVl=L%R6shjb}4&VRrFh=Vr+y<)^Z_p}D z=c(hPUxm*j0A{soN`56^G30;K<-cuGd)ymc9_PgG;1VeKdqSwV=P$?nQTlAH>?@d2 zh0hMVO+N<%{@YXu_QzBi6#;~u61`Eso$C?H+j;bs@V}iMzEf?QguV_e<*&@#q!%_f zH*up&2Ia2)hMqfw!4A>>kbew~#Q1=rk@C%8CezA@s$_-}x&p92_&@9q^bcoyAKJ&s z`?4mR?%{qhBl{PX{^uzM5VSwLFv~mjtLT630zh=Ve>oZ)x{psx#g^=uYS-3+-JF+Z z{{=Ard2n0)*wl7fE@l6IhLAY@<1&6rkTfPUV>=#U63>&h!=NoBO-VX7$ruO`dDi}m z^8RgT<=?KpZ_fF-iUR+3vrwG!7omJwQVaggWh3>EGi9;PxZ182lmFk1%NDRE)BUt& zIf6^c>=yMjNs9#A?iRD~uuAtc^>J#GI^}Jc$lIDssdWJ+Z_tMmZ^47~oNfFyUX)jP z%vTb{*9(*YotLC|fInWGjh5;1)JmhdO}WE+H(0ErHpq%iv*TNx$tqhg7sbqy?%KY2 z=E{?Pdnx@8dadIZepIbJYd-i1c;=RA#&-OLcFf0S+&J;!T+o^8hZ14ch#B{ox&cq~ zDWWZhM~2eDvVCGB2uw9Wc;~~EX#4UWX;o=|C5XZDCp%UTxkECuxf=b%t8wxO6)(kA zcJ6QHER6UKtsZ>2?=6Vh`kPxvx2BskS(@&9#0?#Lsyn4`7uU*3E%N)wtl*nEb3G=j z>8tFDHRP#_G?nD7=~AO-C#>U>^78Vxc8%`I$#@x=QggRbYo3Oj;uz^GmbqKB^0uLz z$DdYT3*vJNrL?V@MD?lAYiioFa0BU)4V>&ws|=!$wz9^@u!~ep%_MfpR%U32XAljc ztQD211LAkm9GcXrltbN0*IN3Rzl1!=7f08BZq#MUTRwCe**98#?91qgs|fK%1=0{( zs0a@gf64b=rph&){uG2klE2_5%l?tKn<sZMF>!SvH&94vM#`8nGNd1`zmmV|5*L+M zCpEevJvu_4v+e0OobBmUo(r|QL6{fdbj6e9h;18Pgo__g#kbq&>M}6am0PgAB8t;` z<=W1Co3b?wn}Tx(e=gq)rqwrnZLo#mlG5mx4-yBMBQH@c2=KOG93m!P@zlYhgBf)| zt-RZlfxk~O+fm$HlFs{QqGEBf_S*oM`DBNdYW_(gzZr~<P%F4*lC)E=dk{#2OIhRY zzU@A+z3l`tr@IbpXVp^8!xX1?B^C{844earfNbUNdr_BFurq`WRv>2Xv||<d^>_I# z1g^oYYwscpM6>7h%wZFqlSaqGk8lkwn_F0S{$?)~^D18%4}>SkbJnQbUiFs9Jr{8u z!F@hJ-cHSE|Ij<oQ-U_elJMD6vS||MkHADF3J?<KnG(oKeC*)R*&B#&bLim3T1ciU z-H{)deo<CZ?G*B<R`(<K2mtRCgEmz+XSJPY*pk&3ooiNv$c9fx?)$DM+%{%t8+8j# zh8t%dwT$ZJm@EFQ`m~@n=4ql&Iy$u*{t;Z1l+u`n5#SQ6>GfrUv^$|8DEC3ZJ$ZO& zcyvVHJLDM=v>n@jZVmUwMby}O&1u`ieqg_XIc8eHl-w(2pbf}}YjGKcwO`XM;peb| zJx43oHNA)M;HC9o;+1D{cW=8jJsdAOjdk8P8dw~3zRol@dYIvab5Xzj`T3US2#JCK zD9k>T|1x*CkBY5V)NNLoM`KAd<E_EtvTzsd3`_}xV%NA$V)gLJA#2<jwj;MN+!hK; zN|ueKRr+=^qvWN?>nXQk*X^T$Wh-%gg4)`!`{P}1V9!e#(|}rLNi2MI(ZW}Q_l`*A zQY&;LOJyTV?zF4!E!L0oTT=%ITc-NI?-Lq5Je1N>HIq_PkKD=&3_9_%D!S_fSFNcX zMZA4!?^@&!*s1QG^*ep?$FX3WSwg*`q_agLr$}a*<eHFpk1tayvPU^$QQgw1JM+<m z(pP5ICf!SV=QgoZmE0;X9X}m50gFDVKC?KoE`BL|Tia;Wlw|R4eRY_QW4XjloVDVQ z<1X-yh`#hvmHcDTR0Qn6(k~5Xb1Qb{6s=@!DcX^I48}pq-OM5G-AunmzbSrar*rqS zwsUYlf)V1hUB!%9^_BP8Gh0V0SQM=j8L7O*#|+y_BSnwgj+N<I1>HN`qq7@1-LGHd zVl?D8U?p`D70c&7u%CJT#`1!A1&<QcC?&c;d1_Glbj0nUE%)@Qdi_d%4cuL7cbn*o zrgw&RCC{`j;YnTWmtX|<nMVl=#mZXsSN54p6eeJ?CgB3CJEu&simuS_8;#@g>ksWS zv*Lj0Hj7pYOE1@5>8D}JL)DRFdE~~+?kGIl-jmv;nAB;zx7aqr)B79e(N0cFqiTw8 zH;zO3HI1XGYyi9C)0el=#QYS%)?3^%`VZ?}2|}Dbb$MNvg0wu0mXh}UlhHta$-TD? zmApJ{3S~^yk=<T@Y&mH3)p4VmUZI%tZ>9rh*?rd+($aECT8Uh;%ZDEWy0z2&47+TL z6ttC%MTU{A8jn{)xWK7B_6F}%(%fW<YroEts@!I57=#BejP3-Jmj2>!*EcZJgB15) zM(<)&opc;EHTm62cI392BDpGVaAO^>NpI}`=*@qKuBe#K&QdSF8_azb#*}WvZCx~A zTI)7D=vF&*o-Dh(->TGG&LPhP%Nf8tL$_NQZ03%B=8_Adbo9x}p!HHkcvlVMtXFE{ z@C6?=ot+tgcSipvw@vX(*D?Eh0kn6v;+!8t6;r%nim0{!pB7^$AX7QwQ`cY5i27e& zf5y0q?ZCW44m=|G(^dcVt;ZOWE+)H&gNqfzi@1t}bd^cdgvN$~5ovXjQUs2quwUB{ z>*WRmZoWv!(pnK(5v|TDIzpUkXYHE4oMN)Fkrt?6^GRU;;^E_Sk|J`<Do#n>Z%4$9 zuFj*phGfPo`}|tNX%VQqtMm>{OfhUcod=%K5z<TRK2rJINX0XxtR0}k7z*rSM2*u8 zh!Z9E^@4{~xs8w4_z;lVMwq^A@sHHDKRxxiHDLEeC4tm7t>U%!!390meq1D#3_Vr_ zrRXjjwD%Z-7^dOx-m&!p=uX|tVUY>VUc0Kz)I@|8(zGSe^gE@vJgc6J^WOaYSGY|y zmZqw>nAog^uezc~1k^t6?_SW`LGL(SzwZsqRz{O~E*40R%BEwhi>0}g_BJ(H+vn2` zV%7fsfsGrpGpBbijfV|^6Xhtj-oQ+H{^GpGYru5{nhuUm)B;INxQPcB1Py%+Ci`6j zR|^`#BpRnwiM?1Zb7gH7X_wZ-RpGJ2X7QvgL(ynoo3X9BvUzfuaSPD^UF?jg<rhoP z9pys0eX9w7Tk*zp64Pr{R{IU*4zIQ*ZJBK=@#d5frag+WN8`1_)EX@@eUnR^ANgAI z+R<JJT@i60(zrY3HMYxn`qF2Swt^I?(Ga`!pr+5a)1-R>PEY&4Z+!54d%eIna29O9 zNS0zG@{T5j%g@5T_q`jJ?^s9Bh79-)2_ub|Xqmn)a)^iUIQEgR#rp<*@_f*>wz{!m zg5EOd7iZ!x+&!)hnuY2-FjhtVHq?eR?c**(AOdM20TQ>_Mzaz-N$O+$Vb!o<pqVAj zb@d^68U(D-vkNXUQbYJn6XomIQHtAbLxSRH+NhDpIgp*`4ANv;l$~iSWjxp*RLhZM zuT$?w%R5g+Zf!Syf+;V1nu&*J$Ol*z{^lP8r(eU-iy-7+8f=G(@rjQ21{TCaZZ34k z>rUS<YSo%m38zguhZLSj&XZe4+^CKrp(iMxx{K~i`magaVpn+E_b5Oci$P;~(Hr}~ z{JIG8Is3qYs3Op;PX#?q0v!-~(b=8RP-Td*KK9rf2Ex}4Qf#O!If{TWKnI6=!o0pS zz55$Za7DPAWp4l5(W?|v(($zjzQt7r%>81H|J+b$x{LEp>|!R=_#xMPRF@&+8UoeD z7Titt%jaadZvDa0e0%fvn~07`$1Zt4n}zyj<<L^_ka~74Ln1dlD5c#Eog_qUE?;J1 z!rBCy%i-ij)q&2F^+V*LrIAW5q)Vux-xjtC(m0JK!1~uA5GoPkNlOr1a_i-ftx}_} zAwucbXcl}VtX!&|i>~g*V*;A(ta>e&NlXlotTEKqtvg9CF|=i*x2YpbxD3K0>#dXK zh4vBrx*=l{*+%6Zo;DqM0#x{1A{m|1g>uPNvXN3y1W_mZ`+u`k6d47YiOy+uJN6iE zy^KjaP4>4$Mc=>=m_a^DtN3URUgtcj_7}=Z;dVBl;lgp#DWjkZrEj%>Qb(H78ursr zr;w}0Irw<Z8^nu}>Sxo?aC*Qy&=bdx)1@b^=v)4Lcaqu4%0!H%;+9QVNBE63<UIIX z;o82ESW&!RBPQwL4927)u7WTI=c+NdA>!sGNldC(S#>q*`FIT8cu#=2n}y^^>z8AX zW0Sl_70y>Nb?TY)6|~#dGS-6ifJp8G#rCg*4js^9a_Wv6#!NRCoTLegw-?&K;HrvB z!DfGIu$VGe-JANzYJ;{UN>lf-=fK}FF7T!&5$swLfV_C$&<ikbc}<sN>0-aPU-&(` z4`-ccGn^j%fR45iC$(5Y;V}qNWGHlanKPwz?bN2D_*;xRR(>ObdB@>{?#xCI(${%H zR9Os_XFqRi5OG0f$)cuqF4$JtiJNG-T7knM2O|Xz-@>UE8QgN*CawY~MQQuMky_sI z%WY-mTwO#=>0%4$UFyL0?B~a%ef33+>X$E%5t*{c6%X<PrUJiC^g@+G^NUVHi&k@g zxT5F6JK`N*=IOa*3_cJ*A6Q#25gUq9Hp=Nl6%qOUW~4vo|D`?#W)c_Hp_d`ei|mv{ zqHI`9H=}TWf%z?w4}J`BM8aFyYVRG(xH;l50hAK2Vc@W7N#0<r@;3Ndh!zsm&t8I7 zT@?p%xTRtxh1H1hJxJkw4<+$JCF<$Az}l+)sAwa#cI_@|P(xj?2J$2uJ)yc$y?3y) z{>~LG7DAkqpL7`+Rmv>JKO`(fi(}APR5y-NIvD2|(l1N4cHM&rqcN<gw3t8WO2-<B zPl2wGhj)DI*_v*1-54G&L0|6C?bhG1)^4`)nF2fT-r1HooLXxuGDj+OTJ4Bj83VT) zMmtp<*=iY84R?NuIlkhIWsM@pPzvYTcB-Z4Hk+Ipl9?Vg@BcKmRU*dDGl`a~W-W)D zrm?)|;D(7wlFU}nVc;JvV)C*bl+l*f=CcA~p4qBrI`!^#DZW)fqwZMuLDmKvW`!qA zwt8_Tnsh500{y`o*6joYf%|ow&++nmVsicE@oWUD4e=+3_m_jh#I3XJS7??P$C~n5 z+LB7AYs@p%@-}HAX`X6`+%ymF7?eGR3aj<GZK+!yMbON5!M^oIo#2wV=gWWezlaY1 z6^?~<jwoWh;Y0#wNc3r+pe=IB6Grx{xw3b}jE{VCmFE=(hZ$oTmygMqmHff8;gs4% zWbBQM!Y;9#m;%r*>5B+RdM3~Wyt_3pR+owD#KAeZd6Tbq({NFE#d878i~@$c$gE^B zZ>QB)10;+*^VE0(uc9oZ4_79IX6Wv`Mqt)}>`?Ct^^9^sIzVLRlrR?)iuN$gG;iRD ze8F%=wOmd4gX$7<9|e2!@rLy1)h(B*wq|#*7ZoNA&rYX<gl~wk=7;CidN^vo+~;GN z8V!0G+@JOlkk=U3>q>L>k7L+jqcststce*)kGC8}_0!Yj*({dLJjTBeex`Pji7y=m znmpA9r<))!l;LiXW$R(YgxBKp_-OAuJtKjneXsdXh0$jP@XiUTKZQ{YP#8t83*5Q# z1iHLq-k17&VWj_77%dS*B|MrR0EN-6Fi;pdd9b!}VZM^mkdx0NXd2NS3j&3aMzM(b zTVX`Sa{2UD7+wCFQzTVT?`WgOqN*;;o1jsYVm6z|0u8i(MtMscx;2pElW@1GNXGKP z0q^2-SJxU%6l$JSJDmEL!U$6sBRUhux?h2GOW;gg)@Iem{fFOSeT~y^&lUyIRzPy> z%o!Mx?=@LSwyGZ`*PWj5U~anVR*d1Ny8I&3rhHj#_iAD3GG~k{RaEh!RT3}Qre=b< z&*Ptf9=WDKds?OsZ-vpJJgOM-D!4TaJ>SSA=V&kVEwo4#cpn&Lr^q|;L#Yx>%3}D9 zrjI(UKUnLV`DnMZonO!0CR0|f{0Wa%ru}iF6(rqLhkT!!@|*Jw$hffMNhqlhDn8)q zY;@Eg8TqzCV18p;U&~<XK2w@kur--wI1DcR$nnWOs8w1_;8Pq&ZJ|+AUhck2DXZk> zm*NSkd9wqm(D<BAire}&N<{}#y$G=<R`~eY^f*otwLIeq&EID5THnM8KFHG9yHbtt z)D}-upuR?_Mc89ZBgH3RnA^J&<;|cC9uQ2uSnrD$cZv{cbBZXM4*Q>auk6ht7NK-A z$Ihy4Lbkoo*UtsfALMMZOJ}o5M|{(Dr9d(-O*nBv#shyJ7(*fLFFF?^QIf@obny+9 zPf!x%an|*dZ7=3~DPM`X-sjllJQW^WqCgCpHi8BB%KYuHtLXIgaH1znc~KtXz)gyX z5SAqwzk?!KJ@&x>S#T@R?Vt)XjN=N;A8Z-RI!dEffwWxluBYpeWHuN2+VZzS$7N6- z3b7T{HWR$J%8aIh#Nx0j!?L4Hh1MV`o#Su}sYs!Y;yzz$9|qt|eO_Jv34)j9O0keF zOs!~Km^Z_wb|EE!f!r7vSSligPL0kwJHu_rKO=1!C>g5U@7gBGF^Y7BraCEcFytC+ z%H>ugPq*xL_2at@Sp^*o6Jthb6%7w5E3MwBiC74+A7K<8gY7~MsNOn7z#RXre7^}u zP&N|y7MJ%71df0cjo?U{#;ao)>*3VYl-aK$U3nKcMJvuOl#m4)bdJ$vDdS`*d5u#q zITN{j5oY7zCZ0*Z->8A;vD6zO%)@zh_$(-Ip|C=vVI6n~C0dq&rP6a@S*;pqwRDaT zXEL1AkUxfnlH_Z8axFtxr0dGliyvvc6+V1f%sKe%z?ywiNqg|Qn1UjSDlQ+|B_dXZ zIa-U>rWP8FKz>`UIOR~Z{MQ`a(5Ij~yzN_VxZY2;#2rW!9(&jUP+VKc>ghlR(T(-F zM3<E>wFBtIj<*a)#D&v1NaO2L>3F@gIaqk__vU1BF{;yk-|{E>lY}ZH`QBBkiKdG{ zV;8gs@3L?mU%0?i*%M8+@NDd`TRpb$@6b({_H544AIm6q@QTxH7Y~ngF~hb_TK&4$ zI*bsYWaHNuu2Q3wyGeiU&6zHM^jkwYOBsiVuj75V69g}1y>XipL~h(eMny>>nd0Xz zNRilJ>%gE0P<4AS<;Pv&(F!prbhCtCH>k;(S|Do%4yljEi>6UB4SH18w_gue6@~Iu zkx8SFX@?(~DAx31=|j>E9fgb*9{u;f3$LA}^!4*x2X&Q9eZ8mCh2xEKCY`z@hmG<) zl9wxvg=h)BP&`kH+b-mFo9jj?&vcdK!j41t;4vi%oRw{(qYBNYoamWC>Bgp5-HY4Y zZnEO~XobE#oyMW{{+wl?-sQkiKF~p?ZBjej0plER;MRHD@!lNA0@Vs?J2j1C1*|)P zqW!3F6CDLTHtxl`MLCda;6RmqMd%d49fOJqnK$dHGJoY3>l}3;-TA;xv3r!l<0K^p zQs<gAV6J<CO16?h(Kvox-jQD{IvzZ}7d5{vx|O8%gifQIOkb&2@<Cai(MWE5=rMQA zp=>o97sSuv*k|zqDrZY~Pk!X~LtZ|oG@tZ}K*u$hhIYqHwp}2W3Z;25CAth<pd6LR z+-B0{VYs>xmyFnZX0Z<+cD9dPgL5#ppLByGdqRKq=k&F-sE9%+?TaXYF$7pk6@1l- z=rQHf(rL=s-G(oS9qkKIl_`uwDw{x8*c?zTh`p6JqD+Wmbjp(xP79dtr(=()>p)9^ zDVtQB0%M4<){2#?cIVhHl2z}|(`sc5W2N4nn7m#yI>d^GvQ6+)l?^s!Cj?Id;qN<S zWuTVw%w4FjrnZbq+At4LlEP63pG{hf5?80NxRx#=6YcM*mYOC%@$C|wW|cwtvR=sH zGBnztz&$9(1ov{~9g{g<Ow-Z?^O3MZSiS&4=fif1Ojrw^L_o?%@?wx7{nV{^t!Ow+ zL#8k_iF7~VHWQ>t!UUt;{rR7aiW1rP5*SVo<O*OicMHUyrC&q0Kt?H~n{&e*(){-} zE^QmpoYP()uEEiw^10{X75CJ0R|;gy;TFXEHk8FAjQwRrT63vhIH6vX$a}WgTk5UK z%y#fnew!Gp+l;j3Ubn<VskR)&(lo11!y9-m;K?dqvAbJu$xR1nO&zl@tj`pd;-p%$ zW#@)}`gGUpKjJ|Zq>NDeRK^!E#ig%&`zgRf8Fsv^w~rKy%#4D}4-E8nmjBG;mi`qq zw2VI$C;)8!Nk*z`Y}Dxm&)7}TTQFA&(9rp6Y*FnqW2>34$62CCdIHYwU6I}1)&DCQ z(MREj&hCK6QE9Zudl?PB8QRN44l8L-*TM^Zeb19e-jBc(ZJi2B=@>0`E?E23v%lDt z5hLK7jfcuQHzhi#&eK(Ssw1WlyzB!J7>r%i1eQ6a`UD$23atI{w_PCD9?3vB6Zw^l z2%Ta(umTQhetFATxTc!3bXwTWZcO?$XvJ?`MjmO>;hSY=P>jGp5XDDr=XM?RTJDhu zCdOy10}PC{*$G*XCW`~05Ri$U0}27h>1T#lF8heS>uj^u>Ak`Lo8PpB7Z!$N)a#ny zYT_&wOxI$4Q(JShO5R+P@vaDFf|e%l-Z4M`x%O(0Hj`|~_7na&^b|{-=M)5L3*v>F zWNv(5-~4%W!W)}Er&&&B8gc%TRTnVbHO=pMcWbd~VHsU56|2+5RtdfPaeGm)>hjpQ zR!wXLH;#mo5@9?VCu?I&`s#b=OE&|b)kN1fBVXN0)9;h)Ri<FgO?pI!(2eBa)0JTe z8}AqSMC$Y$+s)pCy^39Z_l7TCC_oXzlCqZO$W}tqbd?}|x$oLOUbc1+@0~HV7EF?? zu#oxe8S%w^%1$|X#V)71J?<qgS-ChkF~4WSy6rGLR;ep|QmEj1cOqZ^TRjPnLw!+0 z(_wMq(~=M~NCU`)aP{)ou7$O@+quZHEvU=>`>P4Y8QOr-aA-o_r`ftDlrL_H;~+ml zov4Hlyne``$2iMDr+}~7MV7zv!Y6@ZNP=8T3{44Wyq~o_@*NX<xAN}Z-%va+EdhV` z#P4Gn_W@^Ol_e9TBjT1#76PjrVV=IC-6fl^EU4xCt^NkHgrh1=U8byMx-si`0gCg= zEtB(2|3asj&J<KlPQEf;0XCYm7%X1)AFcD9WDWir#mmtO_rh}}S@N31d$I0amtPf* zJD<6_3BHeOF=`dQ7pcDHs1_7WU?AcJ<Np}BnKLz<T6+90ndY|vn=jFCn-AXECNqyO zDU{i?%VcRL!y-x~U@ZC#?=HOW5*IDctj3PwAYqA#nqMW_t$g&nH*xrbmc?>2J`y1; z<3(L!swAv~_o05WM%;SnO`B&3EH!xyB>PqO5>NW86xknVV?t%u?SQOkpDe0zL0-cI zxm>u~7@_OuDc`182W%huxl_`~dtzTnP)qzRH(3<oDiKB{C>;KKzPT`;R#!A;O7Mp> zQR*h)AH!jv>8ZuV&-L}ZOtp`V$Zf%mY~LMc7mY4ydo<w|PY@ZiflC%|8wq*{P)V{{ zBMoX)b$$-ruUaVCp|VC&UBnx*0y*REJB4DwA@2yobboi>g|vAF&ua}WR8lHTJ;#%` zzF_O4B#^C>Q%%&nCe!Z!eUql^+mVy%SmK}~<AqdLm}q>h7+4wv`^dIPUm$_-Gl?$( z%_P?)X^vx;VnDyWOi2=-0&CLN03WuHK`Y)Va=G3P552YNb*oxhOtMpBgiJSEU)ZWu zS6(KxnHo!KdzHE%@o({kTk-o})>|(x=%E8L-AYmfNwyHIOQ?g0pGY?&(dXBRpY7Qs z8(J$)iDU14jAUeRcQIN~f>xuF<;lAS3A8`ps~9CZ<NhK;aD>>R-k3L3Vy2i`0&)26 zh`v>vC2S=p%x$~O+(8++xg_ygG@5!kXXunw#&zuV%(ceRcL-+J^09-cug8mH#jfL# zVD+^U=M+Q-W@{n?$D$Ua*9G<tbPEG`6Kw}~<SpcZBN7NTL2n}xn$PAj7@jB2;fy$1 zulixnxfWO()IDd(LHmXy_!(HARoOu{=L+GPNaUtQ&uzl;C#6@*w}JkQ9)PT2Qxa*5 z8jjyh+7si3|Ev+4yqLqok1|=jYkJ`zP%rl3@CKFn;e3R&f>>ZZ<YBMw34-Dt(<R}u zHa97$3}MWZR=RHT<CT)sk7+s|4tQ~b-el>s+Io~$`_{`1DE2v-ej?hCi?81_g(0?2 zs&G_&s5_F^%_1$}rU~{2s0S5%NcC!wHNni?h_!s?EfG%2`V58o%ZEjj*RjU*+2Afp zD9}IrQea>%R#J=BZmTY3&8>QH<#Z-V2EBk6!eMfts9Fz$VwszFyn8rz>c?iaK8(%p zMik6C>}@q6-GQikA)>86WR4Vl?Ae!fjk+N#=#p^+65q~f=q7e%Vsn{4(r(2~Pw#c% zfLQpy?5zEi!Sya%ik4Hku~pFyF6*LQb2G`{pedoaRpCX8jdQ({<w9u5Zx2AUPDHeZ zKevaRV~pjC@A<9H`+BF;qL&>IQLk4U;5azE%fDepkP-#!6cXkf2A&$J6{|K`9f>@s zR%<d%)lxgWTHUUy;p>BXy7c2b$*h&Ata^_YKRG?XX**4hO#!!FcAB=_YsUDSj?Jfr zN3>cjey07|nuMQ_R#q;(ohGz)wPKaG3C*iS(#o`@Pi0aIunsD7?bc@+l)`Whk%Loa za=k2>!L=)BI^|XF4@m9|Wp2Q&*8HEh+R=#-vsUEJ-HPRokoB<eOaWw?WnV35QgOzh zx*!rt9$z38cn_>VEMaekx-*32_0>k|g0!Fb-52CUFHq`;;i*^6^}bL%Uxum|b341w z&*F)rqtVz)q660&qMb1c!6HS9-bori78@~pCmrQ}d}Sp?H3PXXEchg?^xmcxg)+W@ z?!)|#4+f-PEDcAKT3g#zwJ{+G7yJm(l?FNqFc2pex9y~As-fO)v-Sm}uVTx7>kWB$ zd8fbDqEX2MVo_y3zpOp`D^A_8@lFg~nP~7f1L3|vGU&6++eAck_em8gpZ0S5#pw6j zKn>ob!&YHwZVg6ru{aL_A1#<uqLSJlhr;sdz7n+3Zf2x?sAm1`AjyX2sPEokq5==x zDu?2mUy!92cGOm<T?+2>&V4BETA%`hEq6nFP)WBCJEy8h)Ul1CtHfG3uU<|b^XgNi z7R@BsvS8E_pYrC#E(VW=j!Z}VNyVr{g~<Gf<U`8mzXhglP%xJGt8DD%L}2xV&sr9S zxeeMyE`D*3$zaKwBjd@$GnSb}9K|ifPLDcH&LI`c^|p*qE>gWcC!Or(OsMf;q&41` z^@)buWcvN;rSPtvZ#7&)QD2$4<iocE?ZV4L1e9H8lfy3IE!ZBzZ=)f|2izJ>htTbU zZ4qkwZQGXy=i|TJe2d^4z#gP}%N$>|%?Es-g!a2fMoET7Dbpi4(!Ie~a`B-K5-?{- zN5CzyuJ++od!uD-1N@{xu|HZuUL|3i3P6C$gUrN*s*-~fnXAr;XApypc=M#xqsE;s ztPki%Z$32gbi^j4qjbQGkzd#^MM~jxG1KmT_KJd6foM&xJ%vSC?eC&|X6gB%@g?#| zB{=(z!7{Ys?$uOH81;S`z4K7P#p;s^yfWBVOSpUU)#$`56nhC<vyb4K)gF#U%*TrY zcYc9<y-p&-1?KNZGn7(Xh`xPgi(>U87)4_XZgQydKo*EexDECsxECDx<@2ivvq(Et zuf{_5z3{Z$fkT0(3p<@>Tck%L0+;K@di^-BUovTouLp&sKCEuppx!_5(&d&mWc-b! z`<=jB2Cd+)D&g6Ct+{y|KvQG}3kYW}<qk1Uom{5joVpG4=(yAnja3m<KM0pwQ4_2O zuGfJssycULD}&gLT|YH{8YH&|My>+VnYLUviX)4?7!HI_3%XhMOc~=+4N3RAV}Y`! zeAS048q>Z3xjF<@n#E$9?EcSvIxq?X`Uy@B#rsI6U+QJnP?*Y%F9TBrs1BKw?3pu1 z*M@sq^6dTnyy7&?AE6y2Kvq26FHQH^Ais5=f4Ex2Kt02Gg@%qUFZZ{TpjU0Qe`*LD zV_-Al8pWaEnYQ8@r2^GoiSF6fAk~PH2IVDHHJ69Pf#M!a72y{~ZeEtq0pqM0bE}Fq zYs9jghZ(406vZY}<fD5?beP4ykP1{gIqB!JIqb*Yu9wTFKP3|70r`B302LcYRI@8r z=T3|FeV}gebe5GTH|@w_O*Y&nV|1H)UJn<_eKHrueG4bgCfUq<8edWJ?kBaDO<jF0 zBqHK-v;Eg)>UdL=xhxUmT@`KZWsT*6;xzokcx)_8Za8dC6C{?L;-aLE$}!x1=?{ZH zmdf)pYtbrY?*fMR61J=Mu@+8Q_S+9VZJOIp>NzL{b`c|sYbd{=2UTDkGNV2T%r5gr zE$<2aFG8qz4$Q`WwuKJPO&NpB{9#1)AD%fbpx+^b>t}QfxG`RPD9tfuLlK4oj~v># zz$3>_%;Xj%YqT{tirg7V+(wXboDNz3ygnV`rj@J0e+yw5AcQ-B5Td;aVcz_?+0VFl zon_p+8$dIZ^(6}EaSKejZ@D<|*6ReVDVn>2oB((<n^F#VI7*+=#0)n%`1U{tPseU$ zEy|8Ux*4%TuPS5~aY;NZ(f<271a8b^zkqic>6(KTlS1r>4*Px0!AqP6UbD#7!#8yc zX6J)-Z!7VlCv2>%uZ|esN=en3k{?KZ7~5}{Q1hi3iMK&k3YY`!ivJ;m(%D~-1L`ym zo1KxE-RJK*4L2T7-e><t+NDnTIgWgyOH@1GF{2C11n1~5{@8q)vO<?yr|zpE6Ug$> zUEbakznZbS`X`cjv_fRC1gucrht;YsWX>L0eHDbt?oqLHreNIibvf+E_(OtvuO~7- zGl@z`SAOoPj56FbP9;|9$iIY;^-T!T{|I51&A$qv!<W^d|0#s}E{~h~e;2}2KnUFf z{}MuhHz9<3Fz+q9I|GC;`!6B<_?Hj{{0AXa{*OX9KA`l!2_e;g5JHOo2SWJ$BlvQ~ ze-c6mPXhWkA@p#z#Qd8OX8%J7ZFT;g5TgGjggcG@H$vEG`JaW*!t$R&`0IZcLUBL{ zVg8d49>V>fLMZz$LU_aUcOm39e*}LMLT~p+-Tx9o#H(iIzYAfx%D)QX?Eer#u>Tt& zr2I<=AOBSd=drhM|ECb1z6oKP4j_anhuG=z(l=0N6us<YyBBFkRpDUm`xD^2)`*kr z!z}d&5k+LKBk1MqtE*aIPysKRoY^PL;&sfX<KJs-O3KU4OU<VgN0B535fDPt{K8Ue zMX)CnrzO@@_QJ2oL-anM%ubG}1<z4Db?ILXTF=`e96O|3t=e@oE^FVar^aU5K=mmu z#8w0g&V^hj!@OhywiKhVy@LNu2<Ljvg!T5&z{OcJG5Gr@B(lti#Df2keAkpCo_83x zCKUbp%1(YCy@m3Q0D9<)S6qNTF#BSuBaFn4sp`?*z>)k!I+UN^Pis!H?M#)kCPvkR zI!)CnF;X?Gfzumvm(v$({*`P2w5k*k!ViEDzJC)!{rNkNk*}UQt7$gpFE{6w=4ifq ztnh^ua)^+PmXRyN7S>s*%O<5P2gL$zH_``m@V(5}3~m^Z2|wA`bAAR!pNpI-mt@uT z-bd-@X>UICK<w4pPNkm&IHzL6$CB6s;dc)we+i-TDH9-s(f=xhEPsTM=cYD}V6=u* z8?5-%92XG6_iq)Us`TO)<T@KB7=sL`-pODn@b}0RTp6B@6w2zgpsGfGf}m>iDcyY{ zHFZWPR}QxbO@|WEVU>y>P5E-pS<l0dN8f~y2Rn*{l2|Y4N0r2In_j^CKSFr(sdrRN zojI5`-$)*{xyg*MIcSN64_Bg6OoJbHDyMEgol~ifhj?-(kWj2K)G~rK*nWTG10aOE z#sLPk8My+AUz0;8*<PXKz?VSW$SoDUG^eK!eoeK@-Ol0@&Dhm8HGXU$D#x0$0`+}B zN;ql$MIVLltz@U{a9@3AxI_3w5poH_t==TT?T)_wDH{r6-*;pb?N3E0&I5tcV#A9R zCrwyl^Alzbevc8R3XwFXT%E?1Xs*w*I%BlW8Gnb6;j*JCk>N1#OSgY`Dm2IEHJm*g zBhF8++4eO}xZ4eUWk{d4w++xN-(U6D;3^lPiq|qP8w)W+gA8UQ#N23-t#LY$<gMl< zNdPqqj<^*XzEk`G#;dlOrWtX4JrUcoF+Clm_>1uu7?wyAB$^;HtZ(81vrS*em>&ZY zW;fcnebXZ_ZGYNNg-$bX6eyfpN()NBkY6AoZ~1|emmj6$;P{ViZMRYoh;l?#-xXBQ z-5+3>K;Z7h-pSVDJmLngX@!Sm(C2BJb3@htnkfO5p~z*wv`AC`>^R9vMj*OzPU%OB z2$6V`_*0~_8K;*IUpmr;V)k@5-r#*vF+#VqR?+JYw?(@%VL(I4(7nhqzrT4D`nM}A zY`k+3g~c-olY1Bo4agE7E$MdbNljhhiYO554Au#%50%8p)lJCATX7ZGU>?^DrPl;Z z{^HLESTVJcdhP;Bk<n&-{PS9=#b)t*RN@(s6V5{}>XHtIU}{2X0%P8C>R*m<<W%x2 zo0L%>;8!$greaSj7%G~2&C=JxjXKoFEVOBGdkI6?R=nJAjX~2k@j>_|uBSzDCqGcn z#$(r^V1bZJ<|O&d?{b9is>*hBt5;S0q<)~j2-^KkGH3?tiJC#)cp2CSt!ux4VyY9c z(<~hyO{*+G$H^CD4{6nvL(|vuZt}$0Z3RVkaG5(!-<;be`$_BIW}6#ajQq<^`?rWH zIo}(zftm8$@-!<So-zy5p0q=xHJR|sjM04VSwD`Or8-ICr9Sqd9H#jtV}>HbGiK$M z9n*F-kk^Nk(w}mV!P{yOhgT~5c=WTgb+asV=)KoW%Qpy9ZGJ(e1KH1e$yq{{Ls!C( zF+J};A`KK;&_bAAJT>c|by@ROPcKLYz^~Z#HMVM>%BRL=*aY;UbH-M9zX_oW%u6aD zgw@4+mj77@W&S@ALbCrPgylB>Zwq0$k2yYopjiPSR5P(z5Jp3v1GhZt7E8I!#%`9h zg2xPf*WMSfAeEO?*Uyl%8C1y~tg`s^OIEaHv=~QB4sX+H^a(nKN=0mV#Y|$-HqIRS zPnX-1<$xMyLNPfNtnZ{;zxU=Gj*ht=VHvtD7dovdM`X$pgUyez^#v-K1;~H%R3cFt zQRPi!urSkBSzsaTHuvh?!x&*Qt0m-|Gu&eD4%Bk1v+IPuZl4eADCt$?>J^bK8zkqg zp~howP+d%W6=xk4xs^(Nd{#DYZ&Fm?Ra5Qn2U8ZDYSL8&^KSB>b2GwdAi1)uP@JAI zy`wKc@W744;@1#pn=xm-x%Q|P3V$BYz?pq%^nJdB=lFrt)FE(tm!7h%t)UR%^S;}p zuN<OaK~W;7sQT<&29>`h{OKX-_8T}Dqj%AFkm4I?!Q3*+_<*0t8wgvhf}Ec&S}rJR zx3(KrR8Hk#_jkEAgtjn*IO()<n~bNJo;w6&p{=m)ZO7W+knZT1)+a3zR2w@8<JS}} zY6r68%Q*U9hcol=-ZwK6s~nq-N<+dJurL(Lk=Kozh?%$&3zbI^OXh9`y2<TKxR>^x z*~svf1%@a08;7YC6*70C;%S2Nw~2Ir&guw?olQ44ZR+#A!rMd+N$hL%ps6Ioc_>aJ z!A=%SEl9pJ6M$cabHu-QJKwL<ql7ZIQ9>i_7P@(AjLCynxstRFBt5%}T_Ovhuy2+g z-W_lDl<&(2ojNMIz6EABGV=0Hkn47sYwIg^j`itvWm9t5cQq%)G$)Osi@D_vXb+|e zgj=V_cKs_Hu_}XGsN9+J=4;k7$$T4pTtyVB&Tz*wj1vTC3<Q@+9*TXkcEDya!yT%N zrKguDY(D&urJRFEDqc`tJRrp8qr(2enKL81GH<-#hCPNpQALqNsjLtE7#=(SmH4{i zS1F^8)hBt%`r^jmDFH)HUrsvWHjx+iA6-_kUC?J>7f1$VYap*X$RR4)k_zaTp1CH= z_KVPx88LK$I6mLW?QlY?F$28l`<H%e3?)US*O{j4W=f)+gI*9g;NcN_vm^)L8CwSI zG|-bkq?A2q+{A)6eLlk`o79*;&fHTh&t4=p?p#g~3@=5si2de*ybFx>yT-?qiO;H3 zM2G(UJLTPwibk8HhmSoHEW6F^9>V#cD?;wdwjLtIUk7=ZB#@N7{eAloBhqWS=Dioi z9&x+hyMDG4FN%3`pUppml5;r#Zwc49`>2~UFfnC<#4Ov5-RHx_e<hQR#ayp(`K}A$ zjO-!>V9;!0{(DX8f%Q?VJf(@)TrDFmcv>C;&o~>OFSer~S7<h1FXDh#+-}9KVgu^4 z8D#N3@od<ZUkqNi;O7t*7{mxI2;F8|i@<9@pyC!^8W;q!BWGZ99~iguz0#WIF<gt? zg3L>X+U}2;1ekIZUZPjFiM{N=^hggZqpM>=cj1@&Asi;pA`iB1q8a7NBB4ULdiV%t zavHH6QZMSwebm*5Mxxr$ubhEG66IP<``Wa_IWR(u_zBOen~lNl;Am~tx2J<96oo!s z4(!_MKT~npAne$0eK$v5@-1Dld$=tL(W5YgKE{zB)ow3QYKgBqef2JYscJ}+9GoW+ z+n(^#h>p}COYJ8SV@ahZb4%&wej(V7+VxA`x*6#2xgx42jgvI!$l)hTjp@wM?Q9oY zf)s5LgP@Ozzp&<z*CErJP~F3I>ff&s(x3b3kz$^S>j|+1A<HuCGM`f{+)6^O-3H7T z=YGAv&wH)0!|nmI&+~Bt@{NDK%@_Me?zY}UGY&*AtMijKxNNM}a2g`&z&K^3gvIFn zI0-Z*`FKB9nn&>Y0?80M<1Ccs)(<ryYFCv^|2tRh9*ORan7{NO!<n19;27+ekBu}_ zMD-Ze-`F=v=slh0`@a?D+FC(}oMfWkN_7#9Qu@zFj@nM1yRPh0>C3V(3UZ|JF~0MY z{zNo+P7@5pm211CI_^r0+l9P2X_d<*$nk<Q41yLFt~uRZd{sJOI8(T|JVRZuK`tf% z>95qfV2yx(zf(T1rmfnM!Z5;}=x3039=tH)T@7c{eyTTNs&W)Z+pIVVpYOF`HZF7J z_nkX|ZkCJ5pOd*&(!^)s>*?ArBU*%-ppLFlAL(=v6Mr?Q*&J^5$DfN%xn~Z!?@|}Z z>1LRW<Udg|mOOTVaKS%r^THIDvi@&3Xc=Id80dbXvrl#fG_Oq-tC1uTJ12DI!575u zpxu9O*ZRIi^x~Cwmqa_73-leh*GGy9>s5*8baY^rm=Bux@N`!hYO~$<ev7HGCoD%p z+86ErYVR$->S&@bVc_EKZWnh6?!n#NCAhmg1b0FR9^BpiVu6cma19n5f(DzL=Y7|j z^;>J^KbUX*rMs%Sx_X~oXV=-n@}<5-2DIP6c5PYlL%yUGcv<txU@60oea!Zg>7Bzy ztkQ9`b@6uI?l_RW>jsCJPT!DcUw%GhiCdB=Ej>nr2qS*EOY3EUx#^1*9g@4HLeXb> zFM_CF+5X@9P$Cpna!EB*q`;5G4~jbK>%U&)xEAW&UiV;b4FpeAA0&IH(cl%ZyC<Sx zYr8@Y3PvxmI)hh!8YbrZcbILYF}+8@_hN5J>p6h&6U#)Ava-pZ*A!B0*3#;s8)g1& z*>ITu2hf`9GPoINNlq|fB~#CHXf2DdhL5q(zXBOjl(?MI=lIF!2nnT4KE~2^rYZez zd{$V#Uz7ViX3LqcU%-61CVF(S*^OZrAb}ZK!6BpInegq?c4~Y4K6M;cI2U>nihTG; zHsk5fFmwB+T4KQu=qW*w>WaKpXzMF2vtf3&(>BSa^Ef3$XdAeZ*9?D12ugnRu~J~i zzaCt#{q%N%05lVwC}nQhG2RzgGq|&HQ2XA#A%Z;)&L7i(Ag}6%;GQ-e2DCuxGH$C0 zV#>u=kKK5~V_hm!1j8k#rLuQvhhkHN3K^*70TZ9~#GqGG=SG|mZn@Fs5H`to;bO8T z)oxHU1fdP**~x208F4_TW~Laat@K%X#`L?thUj2?0cRvfThW||lY|W_k&|omm<MG{ zh7hS(DBnOIcs;i9s8u!#Pi*w=hd+g8b}$=^N`%PNx*J&VCth*kNwjDJRVbI)Oyqg@ zap)x#4)m+{=P!z=5=hCkhRkC2r*Y{o+oYA_SWQA);Rn_M-XG)yn!{ob=$aBu6gSLB z!2STTYGj$weFYQDh^lA^Lc<##lJTV9!MEXRI;pEZdLq%@h){mPf>Tji^X=+95Kk|A zfQ?Xll$w5t9nN;2G`-_q(^5W@T9PnBLvm#w@oPAGDqnA-rSPB9cl(~QzxszjCFjF& zkxQC5L*Z!o4v)Za;X1&*4{@uMAMRc&CRe2Mt*^M9$FXXhjmp79Ge~i{XY=eci(@+X zQBSp?eU+dJSL>*Ib7CIxh;18BkU8QASEyIR>5J~Csze@$E(~Pc;NwRd55iK`Kj%a| z$Zg1h4e?4@4%{Ic0y}%7jb#&AO^36vMRrsEv3$0d6`-P)0|IObcmyYf43)cG09{dQ z_%h8JPWY)aDN;JbS<yV!dEx{F%{<^*Yo-qvcI&_mH@GX2l}lM((sIfKhG3}Yp-v>< zxDYPH&-L|mCry5G^R3PSPLXsV`ApxWfyM>Fq@-rph(dO7&kv))e-M2hYH63lzeC$F zwBh%dfLPO-6u1IHpK>#mLgX{P>pWvb_Oim{R<i!qv@E$*Z4%wCx~Sn}dMMDQ(yLy! z9zg?n-LPZ5+xu<u8dz%_N*_W>c^ku9GfOW2tQrAbL*7wUN_{cT0(zc>OfuK+Q_cT& zq`AvopIz<S3FWeM<h5*zGwjl9)|Uu^FMI&lA(S1O^dlr@9%7OSOY+(N=R<VpzBp$b z$(TVa3^GH^%fg|q#l9$KhCMQF+=&p3UJvyF^?B%U^7;B2--`6S!9T-+v>S9~iG4jn z9n9(zxvwr@bU<~v^&mrpns8$>?HyJO9A8x^)6iFolCXB94#54i9N-dYMs~(A6DEP! zV+;~$ko^BZ`V^%Htp*%o*6Q(rL~hUllx!A4YIkc6QZ@SzqyfS3&wn}vY`@pMnPVcG zn$n)&|8QUU5co6KQ@)A8)re>&_wUac?Ew+yb4py%UO}h5{<W%D%_e)%ui+4oh7T?o z3$mfu$XpK7K#;t2Z)+3g<8wtmal4RD7J4oiL}H2a+mT?1Fg~QUCre#!^C<Tf0UR+h zmXxT87U0Bpa*ywi9B2?12I^0yPUPw_q+>K&_z95d5&gl1Es*t4Vff>Z7iYz3>MF%T z5ZiQ6qsO3OC50`qPeo!x)J(QlUvpCKSgM8FEFi1TrihEDo69yS^f#tSBN*7xvQ8Oo zfp?~++wOQ?RKRV_nZ2a(_dsaDSF=`rrak<qN$6v~g-w#){+jGMxACmoK>(od1hv=m zK~z0sO9P4RoNcT#06z#<Sefg{np%E={zB|?YFP*r5Vy1Zw}L4@r=5QzC0lx7K5#W2 zs*`E9THEGjfki}$O_DOo0?yI7`#f$tlwL!}7)@*2VotkdZ=94(ej9=FVMgNH<*j7N zm!?h9UOnvQItUN1`9ek|I}=VEw^2@!FW`?prYT%Zx~cyhNG-eIHhOrR%`KJmhPAJ@ zpIR)kN^|;HThp4oa@u#MZFZdwqGw&u={2Z?#)xj-Uft3&3}5G&-pnqA05<aa&$MP! zx9x{!Dk8GyG^=)!s$FiiE>>=RQ^7fpqQ$FS!t=%3wszvSgDtG+1p`7`oZ@784AF9O z7ea+|W0Z%Mdx7>p<Dg4qpkRBlQIXZ&S4Rt~nrB;>AjkWO5M16?i~k#5|Nqsh{vTe~ zLpLKi10i^w^iR{};IRO~>pa4BVA#ir=Q&!tN=eeu`eDB;3^!EGGS-Aq&kw^u>V0LZ z23p-T0IDbaaq<P<@zzo+s}MGsfI+Umbx>VNM$q(Tw-3eqeI$*%xm`lW6(QGX-zQU> zRYnlzkX_O*ja>6S`?2iKdJ^ST4X?!G=V8H;5?T`Xbc00>a9<(cQ)hI>fow_TvYlkw zkD;V(e$C2D{Tt}!+<svbRu^3ahwLbe*`ObG$Vm;un9Fk}6dlat7i+pCU$Wli?#lyW z?PVPtIuF8xs1zi5r=TS^#WF?L;hd3zh-$Q(wNTzr>Z1Bl)zE;>-+RrMNuF;CHmFA5 zY*UgPo{d2FelTcF2+BJH0WZn!Rtul+_&NR^U(0~f?@o(d<i-~zca(_Ho$G_hP6-D< z36!ULpc)Yvb?1tv-{SO<zG&wTMR|mN20;xCdj}mRrk9@}jGAT7uVp6Q+o(r|N4max zEexR;bB}v%LHwCbc&B?dQnlaM@*o$`2s=9OryV@|6F2|Gl%i@J*eFOHZf6s4WR|j1 z943AM-*{`HY~Z7l)+#8Vfv1qPk}8~eQ%ydUT%6FxB4|(N;APJgwFaZ=%Z-HjM2<BP z14FODD6+)_Y2lXKgA$)J)#E|WLfQ2X0jqqQR>Td2QP%>aF5r6N?~Ngh+G!lY`I8PV z<FItwOBRGtf4fx{#8lk5X6!^mS9kO-$ek(jfi9oTM^0&GUf%X@@lGeMYEoRuT~^x$ z<+kVa#>lgNJ$!7hN{y<TEBSSjx?!ssEImhZUdGE8xo0;_yvB3g%(+ygjKK>WHg55e zrbXGtLaWIa!kl0<=Zk$i`Cf4i;)(jTd3KWCTAX=}q_2hSEpa%0e~{!p=ASYsILlV) z^UddLw$3(;XJU)8f;H0;(cp9{a*iF#M!n!65l82@N}aQbBovf~!VAocj+jUEb06x{ zBuzq@(95~t5PKN%D|Q46tkde)Y)8@t&su$FltLuWd4bd**RztOh+upVvmMP3?V<#~ zsBeC?9i+1?#!}@=3XNq%%O-!H`dNrTVpQn%@VUfnLAzjrJpH2$eDILvntJ|&+HFnd zpZgdC*9W-NpwnR#D?RdIG6-P|-FVY>CV}X!)0`WwnH#0?)&d9CM02M11KS^Fj<rDR zw%hodTXWePZRlP@Lm40-uxa2Iy^|~N?x9_OgkHF6nX|mteCO7k{7b$iMqa4y9DZLk zVPzxt-FO6q?h~(xI|Kb2)Ni{C>pG)%;eE-@PmBEjacbKxk{G_ZzNcCXXV*W1mz{pE zc=sML)wcCX+*j6E%d;jVb~~FAMzR5~o^V_67Fg$d6)-M#-#`J8kErK15Hig=OxEHf zL+ty2<zR~d5p{jsIj0hp6`HNhtcTk==mRm&mAwdQ3kfy%(ey~Xgx*J|%1}tZ#N3aj z%50PG(YJ`@WhX+!*zJJEm^<wnYYiqorOi*%NSbMW@;j5he}|KU+2rp{><}7b?3Vt( zzc$wra|5e?48^_M2xrbEhYsrAzXkchF?w-aK`MH&PEMnrg?F6=40_wV8}j!_3z&4I zAlnj1#ja7EHBS}by0Gj7D}*y3rA=9DJSnBISZZWt&;VB@n1;}~DviSOlzxFdnR>Ht zYiF-{VJUVbd6Bh_@4*Ksm5xdA`r{usCw^<OVIZSSoW(Fkq$@rxy07(1jNZug3^rvB z;{6bHiiiH3^@8j&&$0|wvF@fndQt2NYl51v&6JkUeMqZd^e^tn4ZQw2Yf4a^QEv4v za6y-baF#&!rzjHFFC>B+=5^}NKwzp5*z(~?9gDp6G1D9601AH&-P6jw>Gpg@l|=rp z=)DnB%<U@x85%dgkMDU9oZ5Hfk<v~XP)^iPOiEf?_Q5XyO6NTNH&BB_Tsbty)&+U# z=-zx^*NIV)lGX*qP#$lGVJdkAY<{~buI$tIxi77}uZI=&j`iBw@^42&0-CFP%&<sA z5tO2B=38=X06rKHTs*v)#Sld6CTZhIcVTZ8GyF<D4q@CK#;d~)w}~5$JQeGb8xUzW zgmKqJ8T3|X2=>We^w@N_w8hMLKNjbW&_}(c85~lXZmetv{Kh?{3BX&hU)IjkRqNu( zZff(bInc=HLKt;DQgC72DEYdvj<MTX8YYP4Tkd~VdT(p2TjgTdQr<e#nKuLTR)_oD z<9Tev0Nx1<Z#CF;$q5o_D|m-9-tEJMAh^Z<K`oZI1IZ0qRv-do%Nx2=OVuH%K``Ui zBfMxq{qARoVNA<E!x;Rum-iWg=z8!6XegLeV;c9HS?AXR9Q3mjaa8J~OK0|Ex)3Cr zg#||$hbdZ>44n@-4tHa7mRiTvJ)63}Jk!YQ-6On!TAGlfSxiiZ8HaEmTQ02&`ul@= z!k;Z}NJ29f2{Aqf@_*ZAsmny|-E?3vX#Jg%4{=*Vp|%?VC~Zg2eYP|~@3gGKya7H2 zsJk!!dPV$vE^8q29NL4M|97EZq5cm7pg1dMJ}t%RA!zWfg9zdhW8AwySP|_2B&$U7 zfw;ur8A)KZ>Mf5+Vxu(kBej-VsP+KgVNgx&!l0n$LLsPaZ2E;{Dd?-W(^+dH8vME$ z$Ov`iR3=ULd8RwQQNMoqeWi7(i7->}TdHR(aR4{<;Y=N0C}$biZpKdHJH~It8*BxK z?E6yHl>De+3^X8X%E$TqK_I()c0SFyX2AS>#{=I(I(N4TmQ40sLXhxtP&cvs_QrGf z_Uk6|rVza@Ep}{@R5`z(Al!M6{EHsro76X4--!4LY-5;YC1SWbyDHHk$Dvu4L%klz zxdt*`)*R;FlFu^9O&5T&qNArIT+O?lL)_!D2+dd7Z$$(vgzU_+oq|I+u~uaHx_!=7 zu4_8huz&itn|@!XFT~HZO!k1|C4LkCRVJM%wIHB?39+4P)`_vf(^l?*g#S1<rsu%A znWTi<bA#K213%@)8tHI*m;A?C;bTTHbNq~;RdrjG;#o(NoIN%_oG9(gY0r&ND{KEr zBL0Ma)6cKWRer8jVLz?tf0W;|7Jm6s3snbiO7?x8c7#Q&l=+}^ob|UrUHvE2iCO^k z3UnzmKxd6|2Ul6U2Hrgl#Ixft$krjmr0`brVMw!v+mr)s>RXm-qx+H|F`jL2Eqh0J z#GW4927Dju8H};t2}?l%*Q5kMTz<#<>b!7tk9q-NUQ#sPSzn^fc+hL-bdas9PSa?H z<g<aaX(<Cz5A;ja_lb);X{$`5gXWE6y;E`0fy!Iq?A&i`mH3kJ<^r0yxwQT&>t>ph zY}W=j8h_$+T%_Kfw<Q_d3Caop7c=4yHkUN7lSyo6d0dW0;LQE?#vXHbI_@|Fyvwqa zGf-pYZ^mmC3F>85S>Y-okG);@kw!d29?!x>oryi|vJp5)4r6i+4xda!wOp^pa4Lpt zJg&;&&qYQYik3&&GmO%lHL7N-qLnUz$auUoPkr1<wvFF4BA>Pug643*vZb=sx0$#) zZ&&6DavFM6UQ!%1DX;wT97P8O6_{js6+(rpCl}(96JN4wS*68VsURIJS^kr@E#>!> zFoTbpCB&Uv!Y+oBL6h|_Y;xYFWPuKj$Ub<u+MJVv%3CtiyN9McM+}Vk6K-|QFzt&( z#w~ukV$!lWb|TG3sJk>asOecR^0GXBS*LA0gK-KbOIqd%8+VxInJj!Wo|3A6Jn)>? zZV5Dh<`$*K;_(ElOwD;5jwntslsOdK8kMT489RK4ODMp3lVsENqAKCT$3gzu!l~#F zEN#c{h3U0$6W@>NuPEbaAsStpKIHc^1UC%h#iO)VX72a{hhBcJpGdLBt8UQ=m@5^H zr%y$1Tl#2{Y5kJ_Vzb)dIQO)Vdm<z4wMv^F@2@^i1!XC+bYdI%)Wf0LmbZe|C$!i1 z`6_tF<f^w332qQUIEI?k%cqo}b%1mkHAtpR=R#6+sa~24XA3S^mvAV&Gzx*aoOClU z$4<f%o*zmS^NqpOvcZO=;x{~cI7U=`6!sXreH)BV*d;P6Y3b>t?lZfddaclvlURvA zqA&J~<x275QnVK*Y(sY9@WMwtBeebtzfKMN?}razHlUeE?FX_-Yo-SlHNf&<-G=ty zrzCBoW=DxSxIp5U-*TsIsDbb=Sq&%NojL0~>Ly2F1Ox0*qC=iWoEh#o3h#uE(pT&< z2F){oe%QCt27B*`pagAhHVxU`RcU99HMKnh>HSPDDj&xpN>iv{zzfOwIJq+^S0^D= ztMyhr^fqh=*F5*0OV~Ex-K4~B*c7l06T<B6{U>NgXy>wp`QACDaam*g26&aZ)1Sb7 z8;tsb_gGJb*6S125C86^SLnmXOk75&nswpn61E;!1<pbXR$)XbZ@F-w<9L^}xRC)P zQIkoef4u|c(9$P>F|)OtDn8wH$VAPaZg|kN1tD(oIA=!*SXX)DRB?gCuXqy-Ncb@; zkKr$1Fx(eUX2Rq~bapTw)%31?kF-A>3lx9G;<h7)7e#)vJ&s_>isT`RN(R_~Y^W4R z<VWPqka}>dYofnYf<E{PoSpQ(efz|hW0|f-^2qYooT}4+-UAg3tU>Pk)dv-AQ1U3S zqdU;QcIeq&s`JKl#dEbxb?#^a--rI@Uy?Vq9J&qrZha<vbQ$Ur+CNt}>u}EngZ-Qg zdH`+5bML=FKZ-s+r$%kGhl#<w&+%{%Qf-RCzrnxoVI?=nO}s;i!N2qKQnP5>g^&-s zB_=fN3t+E{4jPE)yjx4*ba8=zSCpezZ^AJuC-CSI7_x`rp7T08h>vo5SYZ6*#<-|Y zZ5(4o9v1*n_&2>3eP0v`&3OUjE0)LAu{2k~-x#69zTXP~{uFoboV0nG@FzR|$JEDV z<!Qf35q!yC0!zFcpbFqH+&c(9Zkj-eBD@&|+Q=T~iox_DzFCxb1z<g5KPom7SI!EA zAip3#>Pi%lx#2_}l3Xr_W`fwI4F*Es1Myy#8kqQ3REvJ+_QM1dymX%{U>UyAWKa81 zJZfGQ$YeA0p}i12&QK}iZo|Hjz8qbjsK22-qFkA_FkczG5@t_7vB!cB(r{!5ecq9H zmLY#7^Nm-b#hR2{4jH#hBc!vm+=g1WWd)P;4a6Q@_rc>mHa~!C&VJ<F2$}L_M~Cr^ z<#!aGh_R-$Z*p>FH1v+D$F-S-%LdaKr10daxg3K#rvOm~0rSX#On4PJ^0Rq~%i{h3 zYyMw8`RSgjFlb<;p}ETd{CgRq86H$G)-{o6FY9k`S$Yok`mLLlx|*%i^Vo$=_N8{_ zM0o90@ymr$8+mPaHMHr9eZzp3tya;(91D-!%7Zv@l$2wEuTFw~IbRpYZCLcMWiHir zq_vNh4lFLn@rZcs^p;8;J*vt$Hyg6150E<rhPaQi(zr-Tu&XY01K8vBB_6}!>?A&p za9b~h2d2h>nd7>d!c4x`#SE&v)Sd-wxri_&_KA8W??*0=F+^zDgcU>Hnq^?g9v3L+ zzpGO#_`N;CrnJUK%K#b&F;^q^L5ELY#EZ&9<Mt!5er&>WL_4z)*lmzO9YWTb<_2D< z(G5+%jtmja8muV2--j`<$-7%QG`qsTIlv2>QB)x;?|7EnIijWS(TO6Yd8XZ2hTO<; z^9K9a1bL#&7C~qTn}9ig>O*i8*@weN7CucS#>shfuFnSJb{SV0uoIOrbMOaI&b)@k z_G0C0w3anLa!odw#mlPXH0>S;o%*~F=k1tiL9L9=mn3>opAHXnIPgVyhn&`C#mg4) z@^$0wO)kcEHYo-lf;qM3>*dZKbN3?$c*~>!>S%pzk_P!OqSSt}wi84_7>jaCPl7th z-zp+(mN*ut=$+FbN!9Tk7yF2BIfd7UpVvNVWRrZah%5Yhh_G-0^Hl9KIw&gKW&7C0 zIXZ6CeDKEh)T8Om{TpUaN%q$Thc4?-<363nMLw5%GyYScpS4Nhlo3nB0YC5N{4whW zBmNrWsXf_+X2;3&7)u~_Viwx2+O6EuWsl3@`d8kf1|%`4cS;LGDpm>@$l7P%EmWuq z-V-O?tq|g8wF$QL)X>}Cn40Fs!qR$Qs=(pY*mSJ0opqMFHT**|>nK5k>3`3Xz|AB# z0o=j5qO?gMpquDxSD@0zfT0IT=Cqv4J=e||s>Mf=?U0?1A1rJ2iw0-&;y6k?3GO)U zh+l{wuqV>v8H3gbT#{KJS9u^I&?O@Cv5f47i(?sc%POE<8bb@aKW^C2V;pZ+)=!e= z9&f$!&SEn?j-y21xm?dhbq17VZQ+e_<#shn?G2oFC$0!Z5J>!Kuq{>PPCkr9fYZeT zOpN9*z!98}yzv4ZE5~SgLKpJ^HRg~|HzR-4e<%zu3Qj{HJ1S#rqVZ8Ha7(P1X~&w& zaDqMr0i1M{39;<J00H0c>4U69Sd~ovn6gF*wjL7M80IB1+&jxLa@T@pw=z;pU7>R% zSe3`HQO;5rh}0T3Pvv|?NYiv^+DCN=XixW)T@|dLneY%^3k)jOWIzE_2o*26R2449 zUQ9fKxtK8l_1$;ze)9e6JVIYg#$y<nOYxE-9KtSya}x8f{?oE-`+B8uMX~Bx5^P`Y z3XtZkoS^gJ#mE{_QoquN3S7;?i}V@CXdQ^eP_wal21p1(y2rLCwEEwWjmLfobGiaG zW|16a=`3f6$O)K8x{Uu0`vHe`4dk8Nxn&4i;RrL8Vp@dJ1F5jum149Q$rJSHJY^;R zqMMhHe<5>%%$V6N`G2DfNE!86`@m{>yfv^QtSjngzvdtg2_m;;q#)(M2{Y}0^Jxe_ zTnu8g@I(lk?Fw0u>_j7-_=@g$s0}=e6-{rJp^5n8CllqQ39i_#C?Ddlk7OVt?Z69k zxJu3J_?Rr(#!t<3MU?)>Q#|Xv#O3SQ97!L~e2~N(o9Txm5w7Lc;B9>A%mBVCyQ^}l zHir2d)GPgCK?;(1Ds2McM@Op3UammH#k>!bMvmRmPCaWy*^exVCG~(U0Qvr3vJhTr z$W%Rqx0~ZR0&=JzpPbXq`e0mNfb4N~vw)8>VXXvLoZ^OKXBN~ZdLX9oSm~E3essGm zC~`P4Vv<py_9!IEVoMsrp0`5$waecp#!dZOF3MtuzoZC-u=iI=oQfHD64z|euaui} zP{)6F{+Mx-TjIp{G3h4Ut@vZuEign%X1=<eDrU<~c&MI`A06`5$o%4uh$kI&c?KS= zhZXXxDAoorXDi`J8Y{Y$8)do6q1rckk2m3^<4bY3DjYZ;)83+bS!gt^IDL;Q{CalQ zGQeH;O^_Kp=v5UUx!7jFkS(LXWwsK~{tJ?^>yoSmLqey{q#(lmE~qEu6BZ|e0cQM7 zOaYfF0XO7x4B?}IQcy1g{Gk5TYK)NS{0D?wgo0#c%+#tGKTJrh?L1|TU+3@1_fTBR z7g)6w)kS+7nAk27<gR#%(B_x4B`C9qx6sXHM&WB}Y0O!<f_jE<iNTEjpb2#{>FL?| z*48D9dQVh@sLc{@sIzo6KCW->G^ydhRno^-S&l*il@AajXcS5P>bIl06E+QQvs5iP zvBTIy1n2t$n##|S?BpYz+RMK_z^*0T(2>F>U+|hOHFEE=T^Xn9<3gGvg~2%IHGAF= zR<u+q8?zWeER2kl_p1I1kAW=u@oTqHr;s6@H}PRYQFV*La=ZAP6&gScf&8uws^oxi zhim706+aYW7e$$rf?CB+8F8W_r%C15E#BJYgB!aAUvpmuNPWVoH2W9QbyxvHsPJ-d zT61W-gyq_e)KW2cujt1sQT1DOv%b7wuF(Y8k5nB0jS7Xtwla=dB?o>xM+1P(?-jJg zRNAIjkTw#k#3+l`Qd174R^Gx)&Sk2~lSPHMB5#~P#|Zu<;n2kt$Ek5spjiZe<#QXQ zarn@o9q}zf#zo}|xm)NR>YZdMVt))M)zE?%?pvAA<Zv-!onvM0V@kVtj?u5_h>PMU z3F!+BJrxel^QPL>`7@arFb~_3^KkjF!DPZ?uZP*cf$|d*AYG7YtTKjt)!SeMzr+a; z0p<i4!VV0O9z@i5`kQ#ALb1l@--2|#9y(Wk^RHK`2l6A<X2+E;a#hz#3<8<C%xFv| z(V?p0Vykt&PC+E9X+h+VFpnsyGG_uinFIZ#cEi~qf`N!0p4Gt^<02Prdy=0^Ms~6J zi!S{iGyh;;v0k-XEI0(oMERjfzT*0(zXS%wC4`>(ZS7wqGal1y!1gin(q=~$F-2(= z#iHCEuiNQt$L-oid3CRImK-Mwj5KNGO~oPVdgjE=wvski><i?0*;0MByYOzL`o#TP z2bH>rCng#-qj}J~H1H{{jMx^?lIi$4XRvl6&d|ZACwFLaB2!ATaePBWoI7tKq;f7R zyZFX)_og)0zPXptyJtUG$2#`wBJ0)>)KZ|lT;TrW{x@GOPHkq|H--AMfT2;;@ysiy ztB>nCIQmR>eh7~Mw?I?Ucify~8f~%Lo%I_;TEX;K?&`~IUe;odk6N#i=uS|bp2L&2 zGAeG<jmVp-y2XrQe@zgY{W>KIO5^l+1lA|+P5Zbfc#1Vrb6DbKwKaq0cX4yLMKy+F zzmjy{Jz!n4hv(YG2@I_sC_bgx5>%Cen=L&WtIkL4NjrYYVyGlinAtrr>vHX#=s#3A zll*;2(i!rjm+&ozeHeY0A)PKMt%~j2xOXf1**Z#@E5Gys!z5Lf-}*TW(WY}gO@t+) zQ&sB;Y3*-LkLK{gK|hdNA(K6;CG{fw*bwtzi6?gvQv2pork8JRgiA?#&dW_FPFp>) zn-+28iD*vB(|n)>@2MO^hp4(X${u4dy`gLALQIyls^ma&M|SU#!0pAsQ6fX@bvS~8 z24*XFg{128rvwkJ1<%Nj4~`mBnGB(@BfRck9`eUxLK)O_+0InwHY><+-TpL8F?&== z1JC}}oHkvQb1J$dbCl1z2uK&(rulisk)=W_%m_sW6-w{iSw(j>|9&I8kT~#kX%ibk zjuK2e2U`X-MF`DUPLC;<a4i~I`onXHKtSX=OIiuL59Li|_*&i|7%C8>E0{3nkw*J6 z;7Y_V5~pBWff|vKTx55ZgAQzmk!j~1wk)Y0Sy&o}sD(B<xRO|g%VLPSFd_Xn-1hZU zC$Xr}XW5m9*axj7AUcXb=GTyjNN?}&vmMuv_Suj9s3ks6Nk2@aD0kaI@1lFQG^{RA z{Q%?bBxUZjstNL!B;mo>AIwz5z1{N4R>Hi$ld4Z5SW<uJK-8=Q*;8@0#CYc1<ui=d zuRqAB?pfvns@nt=+XpqJIHonDSz+8O&!3$l?)S@MY^c606nw~kZq~<|>6IARG4o$G z`{XiZ%_TCFl`s0fwHA#?*8@XttFR)){Q$J0J4@+GE1dfDm~<#gGxJeHPL{v8E}whI zJpk)7RT_b8MYlo8S6I((#cNH+Q-;k~wds|(#RbfxL)aOCwg3X@r<6{wND%{#4VQf( ze0IU?fNDfO(}OYzzH<5aFx<@=83JJS{+}r7A9{aLxzJ=Ow-xQmr~IWQ{<=n#eQX~3 zQgd=~Bj6JqR&5#`D{i>0hB3kH-M7CrRHhzaOZfJhMSdM(Hs<sAK)wH5SwpL8O@$sZ zp9ZIqa{i@%l;%ZVJA^E~_a-K`3wqH8FCxFeP-F70eBT1^K{Jw8$`}C{0gQEzsA*m* zD!$~cxuHxl(@x7{zq3<{K76PKQ>Vyv5C?jNx*KQZ7_w?<wEv9YhbX{|M-K#<w;f6^ zB-OCJ!+csN;4<@?GK>J~)u9fc<w$MMWpIYQ@|Sgk9p#;{t*)xrt%#Nl)D6TwPTn`A zDqaX+%4G<Om|kxadKW{VsVwF_cU6!8V)dbo;K(Zk0w|2ZW;DuQHtcu&ukNt;5a!)+ zTmg?!E8GYgt#ki=#pJf$hL#L{hQqJ6aFLC_$uDFTDN%a^^uYcfB#Ai3oQw8<!tjM6 z5C<u@#5`l!M7D=+W9Q(DS2^E7z(p|THSWAWVkLsEfgY<EJ$$$ZDr!r-rcC4=ettFI z^RkW(*@edy;Je6bfnhL^uh$kMVhg8@+A8g-T;W$|_(n2f!VNpPa*Gu(M~Jx25y|fx zNVT~x)maPo!wON{z#0CB3!*q=kQ~Rr;WP^!jYxs)CM~x_$_)yrsK2d3+auCdf{^&= zY>&y+P@TsCNqmT*Xs#hHo+{X{dZdjV7*rF-KUle#Se#`1VG@hCkpI>Shu7QjWJUc@ z^M(*Peb(b)U#>Q?#Svx;ncU#$pgT=|$r=&~$Zqb+OD{<m&pz$NsWg7d7OZwpKc^@l z6bZaab!%Hs2?67FlvQw{hkWFLY$azEb&g(YU&yjxlEaIUwgGDROFK9>zuTooT}$!9 zf3#Vm$Ya9QPGt9=9$pz!(Hi(>PW*TJSD9PX`cD-fe6=^>bMz+_RsA+iHMEDw!1IKr zBE_#+Ox&|e>OmzY;#THyv1{&;pAWRJRXP{ndW>|(Hw*%u2gVi_bza>GzPQ|N1ACOI zKsUye&Q^Epw@6tgb2)SL#r>}#i#6Wz|5JYOKdZ{1;)$;w<N5=?uq0wDr>Eua{a02_ zG&K8vc-_mVQbuyboq<x*yS<6uYHUZ7pyTF-pVo8!^!_#-wDA67oT|fx#8sLxiEkkC zfrDuGFO})cL9n1Q#`wlZL$@Wo*~_@>u^KGoaX%DgltTlEFx>C6TFd#gKv0lhw@@SU z$Ri&r-Y_9XL=eBhWM(EDoJ+ePicZjNMKa{5dvt1vHMI5d(6N#R`>2wJw%ZftiwMEw zov#?Q^K;l@BF2@+LFM)<2AV$~A(8SXn*;XC>U;H-uygY8L-BuZ_oK{gkUR#&?fx?| z8xShH-oOkP+o?|;Wl(sGb2`=!MZw~H0R_bd$zx0z{8w7elsq*$CWhf;)6ZjrF{cW# zuS!Zmj3Ie}nV<5zh82T-lMs-(TgZ)K_l4rN@8q@gLAgGlJ)H$u=>Y^3+CO@E)32I7 zC_Q-2Oy4(@+4UMwv}}oDKC=ypb^MH90r2CS_w&Mz;Y-IxdxMzrD-8BR!Pp)pjE;0e z-?8EQ%I+TM{uWH+bVF|g7@wG54Hef7r$mBguB4FiL!iafNoaEE{JMS{0<LP)tWYrD zm-hPqvhL~}9Z^j31W|ul*?7o7T%xE8N+by`Ju>vDmoS5SWa(Ldu8p<FC{$@8e>i=< z?}t>@C0|r3KhQI(TKTYI9Dm*y7cm><^L|?T@&~`>ITdM_2Aoc2xtXR^w&Px&f%Xh` zj#-xL`+3JZIXgUwc{+gJ?97GL>EzarmPbB#N@J?)G(1^ddm!X-j=FqxC#l4_m`e|l zn@TT5kuV`Hr<5IBw3;tU^2^-ll{+o3TXyH~e(`>WUbBU%^h&b2xj1n@CJv)D_Eu|4 z_z+Pij4AqS5<$HKbu;>0U%P?f7hAga?$X!K-&xSv(d>9$Q-46YW$bG&aaop_A<s@# zegEk+nJg7dRq}IHe*U31ohIE>&(O$T97poW45qR&i#A?1ydwW4<r7KMadY|Ej4m^? z!2LYW@@E@)4<9mm3}cnrT}mPfx72-UZDLW2Gl2)z2cpUME-JZ@LKap@P${GHx~9Or zXbbE~%ZsCx2V;&wB~XLLpAMY7SWj0t^I*UV21uFf9avI`*+~s&e4+_k6eMqN)p6J! zd)P;Jib+n1m9=1&y75Jbb*Qxfm$o-Ost`g)9W&rrkD3L2zQPB$Yn2ny^LQj(VS&f< zm^3j}N;jgWoCXEbj<iN<H_5CGgI!A$KKb|L3jsIwp_}0l2HeqvxZw<kc|<Xwr*WdR z!@M>vN%{^fSJ&@ar!v>QQ$8g{I2{pEUw^ye0v9YLN8%xtqvenfveSg9^I%sN6F2>( z4_oYt+=Oe=Ma!r`J-2WcJH%l``jjpFkzeV?wfvJ4*POAjj2}(=fX~KkSj*^&dDsEs zVFYR{H$UAmjC?bPKKLtw61zORLS9fsT5+Av%SWxi4)`Y?Uvt|CpX{rE-<vL9;8EQQ z_FuU?`qi^}V|c;d%Sx`62Q(=LnGM}?_f@-<UE9aIsG_uYobIB-NNMz1LKcOk)CP4( z;BHf9o%CrseRZi3)<@!nPU^zG5m7LAWFUV4DnJR_pC-WO@N;Y;`V{@@Wwu{ZP&ll{ zDYkd!m<f-tHalq*K?$QiJyRk>Fsg0drmq9oyRsC3uMYR4u_Czpa$_6ZIExShxQxHg zD1u9Uha*Ss%|&RoTYkBg3fKg3-L$x617lp|f){u^i1eN4|8=*RQF~PLu4VU!jH<#~ z>>X?8MJ4N1d3v4om(J0|kG?{aG3`}mjgm(S#`mhTzc4A%Upf{fzqbOHbUAu>a}SXU zQeLE%N{nr~zOCj!s#D<+{Lt*IRMsW0@%ThBY=x*JYG!gKP7XaNam*61C!#RFzVdC{ z+G8?dJ6|->8zq?&N)<^g?d5v1Xcg8ExJRER=B3>8Q77cTzI99ddzCWHN-ffPY1i7U z=q52o@}l*EHVkwCeRTyxR|5Aay_j?#@|}2k=IL$4Rv+!JGd-9Av);naL7WWL#zfpk z9BYMQQA9FGwBVabqbnw5vSDO!MqSqa*hvs%3AHY{h6Mzq7<aWsFvyzVeov*-{=3<k zPJB^@f2p>VlAUcH)HwF)uI@fFJPg7S?TAt(88|l3M)wLnZWc+_9T#0tR>yMoM0lxr zi{cY1&;b{KUt-whf(sSE;lb?dJ*W6%q3gbJNcir|JL(&t#EZY^hFU?PKYXue@$-_e z%l5!kR>;lg%zfT*TpIX|AKk?>_8k7cvY^tHglu?8&Msq>!8I<VI;*vbaWk&F8HWI0 zF_+~`G)qrOUd6u>&HsrcOSaaMz?XInJ;Ei<ZkttaSD4C7s{MoeJGP={e0`B3eA>Ju zTl+H}=FOB^#}9<60`n<Nk%ACfGAus%EiJM`1e7ww4y$(L8@||Km+ZCu6H9SXH!Y>t zr-TXckRU<|KRBW#5XT0bHqx<XE~;DMF68LNQRpptC8LY+p^uD0fs%(OBJk7aXmT1+ z)GFne;J*}w%qy?m59DRuzt=5i*O36*Y9c=YaOCh-t5xIu(xhd0XuS9K8&f%+`TS3L z=bxYSn_MinR=rgFaKgkUST7#}UqT)(CO0N~H+v{Pp3oGd%k)MMZLU(6mq4r+Ns@Y7 zg%StcDff8LWu<ys%S4HU_16Pi{6JrR{EUvXJ@y~#Xzgctt@|ndi=2uNu~X-B01R$* RKhKZ!ucq$+SIV7+{{??~e7*nx diff --git a/help/airGR.rdx b/help/airGR.rdx deleted file mode 100644 index 5edb7f54b192f60f0510967be6c0205bbba041e4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 967 zcmV;&133I2iwFP!0000027T6DXcSiz2k<l5O*Dxcv#}-^3r4L<YpKc1Zu|g+&AP^q zCecj=n?8hzxrw8jndQzz`~pRN5sDy%iij_2eDFcBeGr9K&?lo<Y-uPK(`rHOQ?(CO zsi<dnXXeb=T@7q@e&@{G`QMr0&TgpzfC>oVry`WwoPqyB?)O6cMDl%5TCjYSTzLl| zyoOvG2dImXo3{bXyiac14p9F!Ir$;>{~`A+0hoS~yd#XhN8X2-n%l_72XJ#Ud29kR z93+3Y4;?1|IEFq?z9j)_y2ulM0aULfKUj@({E7TT#r`Jpzc|)(vJzSZ&`9Ge&94BO zE|axM^lkFzc>N-)$X~SrMDLKzd1$)6$^pD~(LVAwc;6aMlF!{lpCDg73^3(6`Nk=L zsz1oL&Y=_JU+VDwJ|zFv#C^Yo`{BoU{2ub(<LD#gXV|L><a>$pYdY<_BKiXJeSpsp zUQ19Q4AuBuY3d`w#*O;?!&fL)cj&fZt}}-$w=gwd=ozqG*CzFhF(7rvuuQj9A1L*& z?MQUH^=PneWgTP0Z8RjM&>fL)_hfTz+aD_5S!ZTP9Xlxv#~&(C@3IC(h98g~HTgiz zt93_DWE>;4%aMB4%9Nz5PDyFWz&Rp*p?^bX$}QHhqFTCZcW;?p(_MZwvN1KN8=2kx zJ)?t$cg3b+-ry`6JohKXh~6!XVc~WfOFNzE*!uT%<L~XZd)<iN?M$~N$`sYEGR4^1 za>a6E#>*A`vrp?4(hzoHcvy;Iul9x1O?$}Ns7u{@R2qY|lB*MC-M~DG8~$918~%Js z8tdQDh`+1h&#h87WM|sjE1R(#y!j42xd5+Am;BscZrS(zZ4CVx`7ADP${g~gE$ENP zKO8_WAdmN;=aYZE#`piTh5PXgKK`>q=tZ=oDF35BrGEGV%d5<~i(X7tzvtd?o}EwW zo5r1a&Aopc_pwLZV`JP`@D-)ZBVXUk3^lm?DRZemj;}1`6Y|~1e7+M;xqpAj{h)&T z$r<jaz1%NmqG!{RT>mpVaQ|m@aJQ!T{Y?DF`(M`b`)5q@{+`Lg@wp{mc~i8?R|#|H ziWP0HrWDl5S=3cIHO?4koU@&CDd#fI<t!sVt;#d1Jfm8)Gta2<j4IEl@{B6asPc>| z&&bcC@r)YJsPT+i(Xl+E#xrU>qsB98%UGxwQ=F-tX(<yQWqDz-g52*`rSM@7RLFao p?$o8B4`hV*{;iQ>NJwFBrOH-oBrAn&i^1HWZvppAXEO^60074d`R4!t diff --git a/help/aliases.rds b/help/aliases.rds deleted file mode 100644 index f331e2e75a852bcd5be18d044d41847e0a3ae4a1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 349 zcmV-j0iymNiwFP!000002JMqOZ^AGTfL)*xX`2cd82SUc7m@BEjlx4b6gqT^4q+lo z!H#SrwST^<L5}5+z}Sf)PVW1hv(NH<Js^Y{sHvVt^Z40O!z*ebN4@WX@F>=SGXg>A zgzlII?GspTgpMBr$jF9+B#dg*u~0G|`3udvHfOmcdo6ka#~|@ZFY}`oCe_JIXnv3) z;6$2K7N4^%&dNW;2U<?_@&OY3Op@?ha>!X$*_{(|&bYOPYd|uKLJglwa8RAPSl3LA z=Z3nga0?{+NtTB#DNd}LXG|(0&&z46LhQI##7Thnu)rk6+Vra?iigu{*1Kxo3+oyi z#czHM9L#Ira9juLa(Z>ptp2pdoM7RnDaUESJ~>daV=LfL+@ZeBDyP#eS*wn7VQM)S vrk;wJUJ%|Tp=v{|h7xy0$5Gg0alE~^HoUdrtquRL4bkr(<*O^z3kLuIE_bKi diff --git a/help/paths.rds b/help/paths.rds deleted file mode 100644 index 7c123f5efb9656c1b5dcbf1b3a8dd0475d62af52..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 402 zcmV;D0d4*tiwFP!000002EEqLPr@)12k-^F=*hprBNGC~cpGyWAh4xi#DiHLt}HcM zyR==R|Gjf6E6VYe!+s=NKHry@zNVWC$8kDNx4t^v`qjCtuPf)wIj^6wf9KAjl9X#- zNWtA$iZ`m23rvRO`<`6)ZhQTNC|#vYG(WuV|0saFV^EAw`A+mm`r}4uZnRY`OE6d; za<-MAnc%Jbge)hMvA1mb4K^=I&5G84M)4&DO`DXc{7O;S{b>TGysWhHCDYjbG5Cc@ zX>O%_Qt^M?0Sx{gG<dmY!Mm1Fiu~9*LYdb<N+A#XzeaVFhcIaEM|68&t?=c_Ug2b6 z;wXj3K?*GYNTT{XN8Wwwb^d3FP&S!gHt}fzOUg3Z2E5n_2+44Ef{@WELT+ZrOK2Yw zlD=op9xUwH!-+-PV!uZgZF8NhFzgkTj4Ch7B+ZcNwFItqA_fTs@(7vqu^k8H+;I?c wI7T*nbChiO<~UjLXLkLOW#1gFIfmc7A=g~yLf6LvZJvcc0rpmI^a>6D0Gu4hkpKVy diff --git a/html/00Index.html b/html/00Index.html deleted file mode 100644 index 4d72ca1e..00000000 --- a/html/00Index.html +++ /dev/null @@ -1,101 +0,0 @@ -<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> -<html><head><title>R: Modelling tools used at Irstea-HBAN (France), including GR4J and -CemaNeige</title> -<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> -<link rel="stylesheet" type="text/css" href="R.css"> -</head><body> -<h1> Modelling tools used at Irstea-HBAN (France), including GR4J and -CemaNeige -<img class="toplogo" src="../../../doc/html/logo.jpg" alt="[R logo]"> -</h1> -<hr> -<div align="center"> -<a href="../../../doc/html/packages.html"><img src="../../../doc/html/left.jpg" alt="[Up]" width="30" height="30" border="0"></a> -<a href="../../../doc/html/index.html"><img src="../../../doc/html/up.jpg" alt="[Top]" width="30" height="30" border="0"></a> -</div><h2>Documentation for package ‘airGR’ version 0.8.1.0</h2> - -<ul><li><a href="../DESCRIPTION">DESCRIPTION file</a>.</li> -</ul> - -<h2>Help Pages</h2> - - -<table width="100%"> -<tr><td width="25%"><a href="airGR.html">airGR</a></td> -<td>Modelling tools used at Irstea-HBAN (France), including GR4J and CemaNeige</td></tr> -<tr><td width="25%"><a href="BasinInfo.html">BasinInfo</a></td> -<td>Data sample: characteristics of a fictional catchment (L0123001, L0123002 or L0123003)</td></tr> -<tr><td width="25%"><a href="BasinObs.html">BasinObs</a></td> -<td>Data sample: time series of observations of a fictional catchment (L0123001, L0123002 or L0123003)</td></tr> -<tr><td width="25%"><a href="Calibration.html">Calibration</a></td> -<td>Calibration algorithm which minimises an error criterion on the model outputs using the provided functions</td></tr> -<tr><td width="25%"><a href="Calibration_HBAN.html">Calibration_HBAN</a></td> -<td>Calibration algorithm which minimises the error criterion using the Irstea-HBAN procedure</td></tr> -<tr><td width="25%"><a href="Calibration_optim.html">Calibration_optim</a></td> -<td>Calibration algorithm which minimises the error criterion using the stats::optim function</td></tr> -<tr><td width="25%"><a href="CreateCalibOptions.html">CreateCalibOptions</a></td> -<td>Creation of the CalibOptions object required to the Calibration functions</td></tr> -<tr><td width="25%"><a href="CreateInputsCrit.html">CreateInputsCrit</a></td> -<td>Creation of the InputsCrit object required to the ErrorCrit functions</td></tr> -<tr><td width="25%"><a href="CreateInputsModel.html">CreateInputsModel</a></td> -<td>Creation of the InputsModel object required to the RunModel functions</td></tr> -<tr><td width="25%"><a href="CreateRunOptions.html">CreateRunOptions</a></td> -<td>Creation of the RunOptions object required to the RunModel functions</td></tr> -<tr><td width="25%"><a href="DataAltiExtrapolation_HBAN.html">DataAltiExtrapolation_HBAN</a></td> -<td>Altitudinal extrapolation of precipitation and temperature series</td></tr> -<tr><td width="25%"><a href="ErrorCrit.html">ErrorCrit</a></td> -<td>Error criterion using the provided function</td></tr> -<tr><td width="25%"><a href="ErrorCrit_KGE.html">ErrorCrit_KGE</a></td> -<td>Error criterion based on the KGE formula</td></tr> -<tr><td width="25%"><a href="ErrorCrit_KGE2.html">ErrorCrit_KGE2</a></td> -<td>Error criterion based on the KGE' formula</td></tr> -<tr><td width="25%"><a href="ErrorCrit_NSE.html">ErrorCrit_NSE</a></td> -<td>Error criterion based on the NSE formula</td></tr> -<tr><td width="25%"><a href="ErrorCrit_RMSE.html">ErrorCrit_RMSE</a></td> -<td>Error criterion based on the RMSE</td></tr> -<tr><td width="25%"><a href="PEdaily_Oudin.html">PEdaily_Oudin</a></td> -<td>Computation of daily series of potential evapotranspiration with Oudin's formula</td></tr> -<tr><td width="25%"><a href="plot_OutputsModel.html">plot_OutputsModel</a></td> -<td>Default preview of model outputs</td></tr> -<tr><td width="25%"><a href="RunModel.html">RunModel</a></td> -<td>Run with the provided hydrological model function</td></tr> -<tr><td width="25%"><a href="RunModel_CemaNeige.html">RunModel_CemaNeige</a></td> -<td>Run with the CemaNeige snow module</td></tr> -<tr><td width="25%"><a href="RunModel_CemaNeigeGR4J.html">RunModel_CemaNeigeGR4J</a></td> -<td>Run with the CemaNeigeGR4J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_CemaNeigeGR5J.html">RunModel_CemaNeigeGR5J</a></td> -<td>Run with the CemaNeigeGR5J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_CemaNeigeGR6J.html">RunModel_CemaNeigeGR6J</a></td> -<td>Run with the CemaNeigeGR6J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR1A.html">RunModel_GR1A</a></td> -<td>Run with the GR1A hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR2M.html">RunModel_GR2M</a></td> -<td>Run with the GR2M hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR4H.html">RunModel_GR4H</a></td> -<td>Run with the GR4H hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR4J.html">RunModel_GR4J</a></td> -<td>Run with the GR4J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR5J.html">RunModel_GR5J</a></td> -<td>Run with the GR5J hydrological model</td></tr> -<tr><td width="25%"><a href="RunModel_GR6J.html">RunModel_GR6J</a></td> -<td>Run with the GR6J hydrological model</td></tr> -<tr><td width="25%"><a href="SeriesAggreg.html">SeriesAggreg</a></td> -<td>Conversion of time series to another time-step (aggregation only)</td></tr> -<tr><td width="25%"><a href="TransfoParam.html">TransfoParam</a></td> -<td>Transformation of the parameters using the provided function</td></tr> -<tr><td width="25%"><a href="TransfoParam_CemaNeige.html">TransfoParam_CemaNeige</a></td> -<td>Transformation of the parameters from the CemaNeige module</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR1A.html">TransfoParam_GR1A</a></td> -<td>Transformation of the parameters from the GR1A model</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR2M.html">TransfoParam_GR2M</a></td> -<td>Transformation of the parameters from the GR2M model</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR4H.html">TransfoParam_GR4H</a></td> -<td>Transformation of the parameters from the GR4H model</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR4J.html">TransfoParam_GR4J</a></td> -<td>Transformation of the parameters from the GR4J model</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR5J.html">TransfoParam_GR5J</a></td> -<td>Transformation of the parameters from the GR5J model</td></tr> -<tr><td width="25%"><a href="TransfoParam_GR6J.html">TransfoParam_GR6J</a></td> -<td>Transformation of the parameters from the GR6J model</td></tr> -</table> -</body></html> diff --git a/html/R.css b/html/R.css deleted file mode 100644 index 6f058f3d..00000000 --- a/html/R.css +++ /dev/null @@ -1,57 +0,0 @@ -BODY{ background: white; - color: black } - -A:link{ background: white; - color: blue } -A:visited{ background: white; - color: rgb(50%, 0%, 50%) } - -H1{ background: white; - color: rgb(55%, 55%, 55%); - font-family: monospace; - font-size: x-large; - text-align: center } - -H2{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-size: large; - text-align: center } - -H3{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-size: large } - -H4{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-style: italic; - font-size: large } - -H5{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace } - -H6{ background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-style: italic } - -IMG.toplogo{ vertical-align: middle } - -IMG.arrow{ width: 30px; - height: 30px; - border: 0 } - -span.acronym{font-size: small} -span.env{font-family: monospace} -span.file{font-family: monospace} -span.option{font-family: monospace} -span.pkg{font-weight: bold} -span.samp{font-family: monospace} - -div.vignettes a:hover { - background: rgb(85%, 85%, 85%); -} - diff --git a/libs/i386/airGR.dll b/libs/i386/airGR.dll deleted file mode 100644 index b8c3468b7e5e304fcf53d4c549f8f3b885f7fa6d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 29696 zcmeHw3w%`7wf7k^0|Nxkh>49FbhHNz3Unq3A@2;5Ak?U%1VlwcAQO@rlHAFe5G_{| zW(JrJqq&yeT0dH$)Yd9`vE^zMACrg1@UV!j&LNo)toof{5CJI!P;>ulpEJoM1Z#V5 zzuxvU{Pyg9_Fj9fwbx#It^GQOo9}AkVmOY|BJ}rjTr*<&v#{T<{%Jt*#4BH($n6-r z_o`-1;ohr?$}4J(HTLQi_L7yx<t0^B)uM5k&1iR287r!c`L`}GuB<M#&6qG@oS>q% z7I0jlW-KSZ@ts8xYQ5aVZ;#iEx`d;g8U!$Bj6-ZtpSk85mL8?>tx-Vmi@#$CfbZ05 zSi4YDsYey4KK@v=nd9uJ&uvFrb(DL7zg~{3CjnjPZy(1cj8N7GyswOqAIX{_+Ui9- zq!!_a7^1dPCq(@%<*Z9*l$MAk$jheu8U*6`E_xXJvv5}b47&ojns78Aj7C_35cOx_ zES4F|YHKMgKy7M@DvU}ta7+C&YzjUmqs=HJyvw41khE|n%Zv&Ij>!;hW^~KWgY(ar zb33(^n?^r=1ZqbmLewAd`Dcigj6Wmg??WKCDtZ|FV{mp`W%Y8kZ+cNi{E>X3{s4DF z)Z;hF5hSp{c_g7jD>R@;-f%m|dD=W$L4IKt$GN+<ZvSC(&DL%BX{I42>O0s#F!`PB z33s>oUO*nV2ngc5MS|eo@3`L^&owpInEmek589lEHQveD&o|e2SY~*V0uNd;u=Ky{ zJfiK$7xaV!F-9w5t*`^cWI3PXoJV5ae#bjonvvn`8^yccQvj|+B!_Q<p`sej_PD$6 zZH?ueXEp5EakO*`jYjWGqU>F)4aa2!c-KV0MhL$bMcA`M&_;;X4iMdI?o!EWco&DN z?8)utU8IkLMW^uO?sAMdwr(=9y=7BlbB)_CCPErX)FjeePm!R<v(XbL^zTEPoH~+_ z27EJq8S`66%p`SF8W8$DZQ|@LBy`G}j4aQa&ZF9l&sOo?(Lnzh9{TrXd{%edlPJg` zD_W)_Xb?k+P$?-A9Hq?uW9xLp-w>KRNqV99{{DXA)ZlNffgJP{>8K)=%0B|`&;$a} z3QX)GWqkgnQb()Q;SkC9p+KofZ4UikfHe7bT!S?FahiKS<eUh_5+R58Je5L{XRl|q zAb8@nHO)1=+Xt{MOmX_rzH8+Wln+pP;*3yGJO6}%4Doq7oL|O>*Sk-N*LwQAz}lfB z9N@9v3+!HC^#Z@MeOjAJpAdntmXP=(NTM^dzUc2~%Emk&pWhdLQeFWLd~^GqeVV$O zXxM560s5$eciTbK`K5+;S0FK*-vX7?ux8|roc-eGjEB&bDy9g-Pbm3}o@@ND!V|OA zQR3-vOl6FOAot;nEKyPKMVU{$h6A8uocuxty6NgDzDKEY_9;j`9ibmmg*phG^jYZ8 zB|vYfH!#%1%e;j`k~d#4%98=*Y)`}xjL5r4h?Q3XJ!-{<-)~yz`3M$fOFDW9otq6+ z;u_Fl@o^ZRFEe~cv?#cQI(s5Yp!EIm2`F?P(R*6m`^B-SLbdz%cea5a;Jc@-Y4C61 z9b|!0!OT2KmjndRigM_}Qm?`6hd$J}_w)0C$J2899Zw+!W1+CPdu%W!I7c5G9b6(9 zf^+qVlK6*jh0>$6Qj*!=2<8h0-?TRvi>;a%n5v!-Mzhgt26%!eUl77N@FVR4X)79A zh`L3={6JqY|3IH42R;aNO1pYGyW6B)-Gv~NFQG(82z2(eN=GHXw7V-D?Bdr=1Jz)F z_ukIp@Tgz_rF*-M@M}+kwA3Cr-aWyDW(9QV^!s-ACsJqEC;Zxvsq~G&aWJEo+T5oC ztq;~oo!~_XCJJCj)C7FmR`dR_$$19Wb1lG~XJUBw2CBC=Xb6v%_A-5F)oA356XJE! zUZp*|y|F)bp3ykol6E^=H9-TFIzqt!{&mxDcw8_TNe8t89+d(VI@>f^O9UhDCIbM- znBajXa8w^m2rkw;+f(npxA>kmX;07~?Ey7+6Qh4d>sT)BLf$TEZ>S0?3E4$jx$ZLd zOl=H(3rWa3ctGkLlwaM&kXI+<o78or>-Rv=MwAI;Z>Skb-n|XKQfGLN^Nfzsb4)-l z=z|FW&;X<J%xK31>1~jI8#$i>*m-6QaypSiNP;X!&%5770(pBwyO9`Fza}W(JhX8! z)UGthA+;pPNiB$r0uwCgF-ez?-)=o}tUWE=roi#QTas=b@>tKw-7TP%C_n;B1QU{^ zk&vP6%7r%O3rk52yN~xALTu{pB)*U`1}{hIZhi1>gR^}eTrmc=@0DxOwVW~@R(oAS z6ZN#NkSG;lNbC@{Bg4z#AsyPAWcDLvfu<yZ-aHy5$aJn2k~E&y)BE{{UnS^m!bU{C zST+nat*<jPQ3%srBurEMd9Z-<6$<H~_ZT37YH_fD1{4_Y>+|Ic<rs8vpl3jODPlb! zHxtf6!HS|-#ETJYQN`+k!=wK4ZV<Ks#Cxf`>%nUvglWjwfecNbFRlfnI(DtouL<Vw zF$FJ+fo;kNIF2|wG|o5lz8m|q&<fsNMqS&!nkigVXCbM`rxN0D5eb*Do}x`c14XZ} z=E5#;7+6KZVo7JEF7!*g4jv9lb!0CV(+~~D_$tA6zL1X`6N14rO^`KHm;mMlW4hDu zjBKO)i2$?&N8MN`%%g7XX`wFc*(G%bbVb15b0)}j$AA?Yn}I`kNE?AT33V|vSxXup zP4)*MA<2@z=L16Cy^9eKga9&+0U8NdE(O#u298U*#i||#M+eS83jt}A$6=`<>6S!F z6o%nFPh>H9ky;V|-N%9b;_eXAhVE7vxjFjoTlA72X0IinTdK6npth<z1mFewAQ!w+ z+8r#`<Ea<}ELfZnEH*mZE0vBSHD34<@N+QgjYpP{LEb3PWW=`vddbMIr)ZndMA0PR z+sF!n7QHWDNO$kYvk67~{9Tf+6g)st1?0^`o@W>IEa~+Apuy?aXB=~!4hGOO0_JrO zcTt;Q+wh!Z?)McLG^F6nUVs4+l?gkvupY^v_N-6A7~CXSSjHKE8+;ptbUdL#10pC# zoX^F|NzDODg){&FtM#M`vK<o-pxi)pNYgWkIx;pQqop?npho0OQ<Xk4pYj&ExoGV- zLi@we{wz#=c=s*P`=Cn^iHk`B8WSsZ!f>kg0Uh!f2r!e}*iIrII!I`IG#;UqE2JEt z$R%`Bv{C4#Xos*55k@^^KMHDEkFoQ6<aC8FdSoQ{HEsCqIfN0kQFsbTNmq`J7#Kuj zAqvW7<7loPqNFFZcB$m|#0h~DkWXn~dL=1P#2lLBC$9o+6p*$dn-u*)J-{Wo`w;X9 zKA-(6wzHmqfe`v$PO8cVoT2A9Q<wFi2A?nO>N?D?dlpL(W`UOo^*y2BBE58!aD|>F zpg?!2P!EMZF=9jbb)~2btr^k=updX(u@qLGu@=}3gm7;7B||}j(IUTZ9Jw_pEJrZN zFA%_B3oHXIKx<$j0M?CZ%OV<3o0tWYj&_9(yc3ipT@3^W0KKFWk?Ovgi;Qf8Y)Yrz zsE+_dd=H?FavaKDI!KxU5~?vVbngm$5WH89tnxrBI=ehDVKvpJ=Lro+Vb~WWNUsP# zgS_|`T`b-aTjp^In~)=IV^P-<p$18UX~cxA2Sgs?(Yl(lmo!-K@V6EUHNHg_XN$6i z3%c59xI)PTo!z5?cl9}2^%-wD<Zkag19*HLQm4uqf6i;v0Y5YGz&AF6>n-2ETaXb! z)<oD)Z6s_nSncWf9UUw%NIF+UFfGvCh)X8nAXwzjuo8o7gYwNyhbTx0Mp(L*K$~>* zAXz~Zf`wmu9e9^^OT9fG!qO>z1v81=nBH^-FQIP2{Oz5=Zt6aX36V;Sv^Sz8R(TBw zj@(-oxr~?rIW{k_c6UN2E(xwpN5he8Ahr-26}I@bq|H*B)C+dVdV`gtn6|ov5Ao1- z_`rVXcn8f#54;=fqNx~)dQk-Bx)R2O4VYp*&6A61@=*_~O-9^^ba}8i2~kb3*hE?B z^kX5rJ`WWefTLTPhXjkQKwP{ySiCe?T;AAD_J!FU%qb6mpWPT@1TO6gy^je1U^g;W zL${MbQw&DvQ7mPGlFAYE5o0!VBl47qNM!!gd;}8_7%}<wRF0e44!gzu1onHA@K_-f zXPc0KCzvWDMer&VjdORt1mf@-<FE|Tr{9FtY-H_OD45v7A)OYG-r39(%p)i(&<#Lg z;!=&WX7oLJ;ElfElD0mmT+S99$2pEdo(9nI710`HJ+#cXP4I(Dm<qIwQciyYTW5kQ zEMbydcLmr&!iOmXD~J`4ua&E?4)?i)eLp7E*g*QaQ3#;^pnX@oo6NkM(sb`6tbU4w zRK?9<m6C4$1Pjb;m{XIlaGVD2DSfa$<fSEE6(Vp)dOQWShkXhm@VgK6f?8S&#lhvh zg(uXZ_JP9$s)rolG!X9qCjgYh0$z`7wh;gE8MwZULLw@8lijBtOa)gav^TxwPz+#b zz9*neBdhbhb>#6}d)`8`*_3Y@+;_<Nh9;{L&2rC&j$p-?txCTQ(tk5b`i<?R5fLx< zxA1RGWC<ga#INb!Hlhw}i89?c$!}Z+QG8wh_80*VdWWy@Z_mI&{ssOmx*`0!Wn^Ce zD*tx+(ve$(<|_W}JpveP!C&Iv9wV)1{%sRdL;Rc7Ov7Sx1Yn4NOGVjB7qj8{mHzD) zRGay?r;z$f{TtR#HIp8ifTq<vuQ}hfVVGUmyU8#fFVPx~YHR$?zH5R%qq){YV-!^I zY`u7lcs6yv1^B4q2>vaJc}D}5Y^s0T77@&d{_SED0KbNRyBgGn`L}4l7U`bu6ENcN zYs&P86kS=}k~6i+zx>XHddedI0A=WbVZJSZrX%;y`nLbJXM^*)plAE*{n~EK0d|Gn zjrMJLX47@myKNl7yUj;lc*2kc>_W4j&CsWfg`!~nLD5EGF-1Fsa*D>gJ3TG@{PA#k z&05&rgRrQniVu6~JxKAhXP8&PTIi)j^d<Jll0JK8yC$Mf`K=M}<?PFG9D~QS0;}&8 zfkPzewnK@0*lfcFt{&E%GM#TEc(elClvbW`5kTSQsFX6`;pFQkF?V9nQ}rFBgByhe zLiqxi;S_(>r}`__9K~OmRDXr-3e{hs8F1W7scO+hv_d1dg~sPo&IW-9_*@J%{1x)& zAs;LnC}Ivwj}(NFfT{+Rvv#4Ll1n=g<gXYI7H`r1szdQtO8}|*EBI3kQ(6+1BD3X# z7>$ey(}wyhJvbWfuS^&AS4`fG?bNdoZ>8*4{7<jPn#r>Lh5qUl)QR#}@o^Bv*Y#I2 z>@KABHP&Mf{$>6ux*`0!nSZ6fvdT9SgCn$Nz+YW6v<2A7BU^+O<)2@V`AOrMziLNn zh`-u=9Sw=MA^=1Dl?!EG$6xKC+RR_=L+YQ&U%^Xt+l<{eW97jXTv(;F2e5a3FvPDl zk`vm4Mb;sV*anypIGd=&RYc|yCq%1n13(6sR~Gr(Q!gZZt2_o}5UQ0euPl+})jysK z!cHMucSaUhQfKH7U*UpUMsPuOgA1(JA!qLI?SFm`Ex)k;d2SpzhoS!G>G8}jDE=ov z!{r~&|D67N`=34NdCUZ4id@1GiZ%+zDB2<PB8uz>DvE}A3ENtrEx|sN@@wA2uev4J zjHIMHM#d`I1yT0kmLNT0(O5XRC1?#yKZ!a6F32K3IsxR11S_+|v?XZyiY-AK0R!QP zTY`^)+Q61zCgx0R$)p&T!Ck@n&~}0gbpJwVKtkOZJij^ox^R>uinJuMF=!oOW6%P_ zMDt>k{95eDZ9<{4aQZ0$47Ni#ONe$v^-&vx)ULse!9G%b=7>H=YKSBHmOy>N;r;>x zh;l?0`P{b$9g(H`5J|gx7i=kZ1G^6+X4`}HIMnQ<-Qd6kEn&efQDA}|sfa^*4y@1y zA;roD;WlD!8$0OfQZ@*w?9VKq%GiG1$m^ZI_4+B=A4zT4_+!2ZXSZv+$QxmQ4ZCp4 z4qH%XK-+QD+b-?KRvhz8%I<8W6I9OxanmtKr28MadT2jjnt@%X`zcqB907s|?LJ-s z8DpO|Fd+eyy64g^oT0lVSdb*OV)s(lOXEwI$a<jbaPYvY6*xB18S#8DR2Pd?y-sGM zDZEh92?W*I6$(oH+68C|_T(gT9Fc8FQcn|tRsIyqQxKvdXCnFt76iCfIAa`_hGUw7 zQqP${E7OdP%GTk%Nx`)N>TG|+d+(&D7PcR`nUY6waP1OKB1xOrfa?gnLHqLu_R~== z+m9q$qwYtNR^tds-H%kZ8R;O2?M4zy*q}_p5jVCZv6f3m2DT>$HYJ--8=I1w84@e) zSF%mX$TlY(BNPL^zOj7|K-fGSS;}rC+~?I1_elt_g0m?5lQhah<0I~qIK=*>Vn9MK zpTmZxE{O>_h!YECMZ6aRwXn1i_#t5SYn3{&X&YFTCcCZyepyj~`Xoi{Fn+@Y-wDBE z`xKmbz?pmtY5~T8KpjKUppLTk>{Yu6>(Ed!AU&rd`=x*9_2e|j<--2F2fG);{rLe{ zSD%Y5_avPO)&KGQ`LFue{^#FgJ?T7B2>)U2VveD<gq?X7;mQKWf9-Nfmre4-PA#+% zo6`}sG)k~j^6|+~Nm4F25mm8_uuAOM*d)J;Qp)Xa={X)AKcHVh$=O~=7k5;BqhnS{ zW_fJ=kNaWZ#{@^7?j@I>*o8n&D=5{@2?i(!<*Ae#gn6i)1oO~x@bIeZBZ#K8;T#ei z;S?RV@@8;>ix+4Gy90*%OSlRa0SHXbr{)3dngOuD^z;bu5PpX9a^v~Dtit6Jr7_dm z2HFc|(_yFv7<wfUP7ORn&Tko8jFL~8PfJI!pTlk(Ige!H@|qPJGDX0$I9yEU;kY_C z4UL}`9MctAB`O55d(ZMzF<niUaw7P_rdrBs)F?GDi`f)pr)q5)=ec;^<%WqO)V|t& z!mgNq`=gj|4Z&^S9&QgZQ4F+*slvyXvuQ{osRJy^eXxR&{iC7KsHP~-4z&hU#K>yx z3avn`Cfpio&t_&;*$<-qd2<(u0%E}VN)j9r=c~k-fG8}6p-2LQdJndnR%3Sw4Ul)@ z7@hJ!DS>6;CdRMmXdPPKT`434HwBIXhi}d(Tu*YIOM*rvIbMhmZDN~gCYTv`pnQs6 z5iE!>B5<XGoKWz<14|tD;@k-i5cC)OaKiuq($VPst9`V8CCNTfu(DH#D1Fa=vkwk= zQwNj2UqhQb;b5S#osgj2ZRkAQC<#m<HKh7X6~N3q;$n%aOcs#a0o%?xtq?s{2sv5; zXW&Dz#~PVH801@wiv7nlHyz%hsHYE&CXqYO<@B^TT0{3zPbum*cwb1>z9rDU8i-vC z(Sg58@2gCLMee~qK6;a82<MpugX~8sh+|#?lb~1SC84ue3rKrwmq9<rkoNJ;AA#sd z)Y#%31W1o8a^+W0w8*z86fH!NDC73SD9lJm`)PW}G+?Tj1;r^;G{2Cz;GJ||Xn>P7 zdgTcn8oG5L8GcE*uhzaq*_>15gR7&^G`az8fX=KIM)NP`3!`a@i}SkX>#0rH2knC2 zuM|dmaf}x$bZLd2(189FwbEIYvu}mtBvi<+*rVX4U8FCFti*PE?125ieKWdC79psc z2epYP>MBTcI1A@d_uV<w*>au2gGx<0${1zs3r6_KBYuL32ZD*aob7ttF;nyp10mrh z+)d+l=1|*Yn!JTy8`O8YFG>>+j?C=qFtcb<j$&dHaV~ubcOqMQ&J5n*{4@T@N(TD^ z{;1?zz<xo0GzX<nfxojqdi4_WM@11AGu$67rshFV|2_Z~m|hqGX2Ue%AOENP(KJx{ zEB(>3^Zd~&#k*ic|2O<m<GDl7ao)8C`gFcadgMHp^lZ3gB$u=xeuzsdCqoDSISf>_ zBL-Pe!O1w15@81Y|I8m*4H19Tc+QX6EOSY}jkqLrpsDkvJDRPyp@QoSPHaKrI)h6n z#WS6QAR6MO7CY`5;-#n_t~0UQZeQO&DOVP-25D?31koOf6f@dGl@kY19*WryGOZW( zPtQd>!f^l8c#f`0z(u_tx|@1#V7^H6f%E*+L8!`rf4Z=Vu*kU(8hZBv{>g~aukW9J zPWDcBKDD9#X%9}jE=18HKZjCK9LYbiTS{%3#&a#u2yxzdE^4{ri4<qKMmOM>LWM)* zrHsh%w#a<Y`M2>`IlIwajuVQ<BE>l0V=4ZAxW8Hg*a3fa&tLAZh}H=HDrY>VOT<r< z$6~H(9P)RL#gFQ$20f2*tP1{;*b6wgz-{v29?vs?b@ugROeXNI2hrzv{{ZKBoc!-_ zW&^M4xB*2V125``l#xicbP_R3OhimKQt3Sbtz3$lo;J8eIwzIy0wjC03K@x%F&`N! z5%#i`oDFzqdy*$`cUu#1_Q#9#J_It_C~K&FQ2j08F+&mX%F3mFXM5s6GnI1Oauws9 zeKDeeO-})UH#XRK#l(fC#9A<8WJjJr)Qny9D7Yc>MaV0`8^4;~uF4k#XJ$;D*_jiI z_cKO`<2rOK0b#K>w&<NM@WZ<vr=0c#hVpI@?$EWX?--%kOVOeI@zdBFA9xdFYaHG) z;az>G;+;(IfzTbRm4HDD``_K_N5w4!f@u(ytdEp<<JDaE{;jV7h<E)bp_o7w+?`?; z1TahC4_po52JJ{9RFqHM#v}nL{08T+p#sRXLq`Zv3dRW?r960_E1pxB?$8lw%4IE7 zsL&(YOwHYy<ZrHNJV(F0>m)W`yfNTr6y67G(<<4HPlk%;e0t%>)owTY2fCIiFu2u5 z-~VUNQ8xytzqV8=a@1oD#`%`uZ639`5dUTf(CN3J;j!`_<zA5ywntAo!Rk>V=>*E; zo%k7kAHlO17TVM1JW}bMAV3aKqC|Hm|L_}-=N2O}%%{9oZN|IyiQamB%pLlSclkB% zlW^YDIQ_91Z#xb_#pORi*ve~8J5bLTSLdBcbz43drFqXYSKl$3<O$RX@-t9QC~ZQ_ zjj^7&T8uG^ccvBXV+>OrG)|92H@3+QT5#Tv7yj@nAywgBvw$2DDsuK|dG~(eLPtDn zfQE#^>JcIubxJ+nm7>&1M;*shR8C|U^4L(<%Fn~04Y|LrFcW^x*=G^=1KQ+UEiCcQ zEF=zB3$aARLQMe?lnNe&LBnvocLFc+K-3~W0m|azcv?ajP?J>DG#o>O3)J9UQ=qm0 zDvXJbNF<7=1#*n_(0f+ImGg)J7nR(fK`;B`4WuYq!LUY=r~Dcg(&kg4yHLpblF5`9 zxKR(VZW?@Oi2P$(gDdY+zJfe?o$|~^D0PJjD_0}`JpK6y`h!)#mPB*}#>GUR?PSz` zK!=X<(FL4*5zMepYw>B_xE;wkdymQ0(1i}xgUG<_2;F!k^0!i>n^(J<Yo^nWvv16U zPdod@@1zI*;llvkLP@+|deN2!mf&4}<kEbx@f?G4)<GPvVMNz>=V)KTkr1aj<~77z z>}=C}7Jlek_@NwwwkW{%ZbkD+>+?{}+y#}-A)O3g+(c^L7MnGb)QtBTQOpFX33v^7 zx$Tf|Vf%pI;k^K_g{kcOOl5i3Z8R1NK7@>874d7yq3FE@`&jQ6v`6=1c;gnA(kkQ5 z^++gY+neRaTTs`4uD4d}KE=B)r{o+x8D@7J@PoTZo7bS5`4<-Gv73!{kB^z7b)GeN zpQk5rw)3n}v^&r0#cx4<=&jjGC`m^_FGK_1h&^uph4j-M4R{ibjlaXU1p24`uJKc< ztNGI7=nY@Xzld@U0FJu{OF#gH;u6CCZD4m?k2~RL^uk{G=fD|G^ctq_YDAX-%?Z!K zUe*;<>O$!t>ubnPhaBJ^q(OU-0I<IV|H?303FEGq$)q0WRwl|hdaq@OF7G}IU4~Ml zh3ROayc5q+_7pv{MPGyZFjwNGWljD2*rU(N`YxV|pjRPf$qs#D{&KRh6l!>`UliP3 zBHthPQ}!IzV4CYV4nn4zK`0rU!sId9%w6G8o;KecjW^CsfOxa|SolrV{(C1RfqQtg z(VsE1-=U*tl392ou}LGz1ST*Xv#~C-z+~j--14zyC#=>ysG1RwbZ;3ae(0&IPVd{A z3TQ8&vB74+?oU2;f#wbF&tga!nU*CoTfvMLAdC=EVt>3InVydR_*jbH?2k86+=e<y ztWK&@C#6zIL`XuIX8ywbCv(svH-14(o!%!JJkyC^#zsg)H#Tp-^!5B#Z$)YN!!qUl z(Ijty*0)gWiP!!cbWUf46CSJO{22O3QQNonK?qx?;mKP-y-AJRdIWijEDDZop;med zPWH#AD?9<{F?4T#{5<8kKVFLj1fwO)jC%_!(aUdOnJ}OMv>w5n3e{bp)*t`*cF>%> z32D4nj^0i6PR~a@Zw{GK^shIDaQy*=kk9*2jaa<AtS9YD#T((?yY+a3ylVhk5+kX_ z{7f-{?ETv<4Zx26j5BwkM-zZ!q9=gfN<gp00kn;{#<?(=SrUdUfMGb(H^up0^qz{` zGa3&9T&BYF7Gl{mll{)s(>w8z77-7g0CEUDks%U0(J}qu^=0(FV*+CcrADwa1}baz z-`zG)oe3m9B9Q&!WbY`vqGSjcs`f~qA&Ev$tM>*yYLoISavW$m!{(i*_k33m$;o=G zn1%y|CDh)^Sl<^uFw%TjfO!-1?UQKAdrxF4%f<`i9h56r0$`5b4jl=YRAzusA9@uM z2)8$>@Zz-!6v=laeB$Hs2jtv-IDkS>x-#4$cTzz_fiMrzn*C*snK$1h#(dV+6mxra zV<vqB#c_hNA4nLl;WzpR&l47z{R>bh7UDJlmVeQX9mem*L5aT2zu4)^AD3X>@0}N$ zA*~t{Gf$tf+a8OzcAfsDj1zVl{c>;HaDNN^rTz6p40V$yTafz=@Bw}LRd<4OGPCks z=xNxt`CGE_#J~8|XcjfaA;Ovuw&xRZI{)H+^C{mFLqd2Qb8tx+M{B1*4e7=s$9CZ{ zr+XHdA?Y6I57sU8?k~mz9-zkRBkUv1<5j|kV7@)A^z{hwQs`=|nvY!uC?r%|J_Z11 zyI%eBgmQkOXf9)X3yRJA!FsI9dK0nk+2?H6M#&QjOu9}rNT%|Aky^QGt@TQSw+}YB zQ@omg@szK~1l>G!!?i|n44H9f7;@G)Taz;0vWLw3LB+H0e0dL2lQk+O=3e;%;>)vd zc>l1@84$_aP#uVH99qqmey}Ilt2$3G?=vt_@-7wtdHUU!@RbZ4^1Z{{PX;T35lv2z z>lN^Ytij&x4b-Wp#JMmo5y{AI1thugO%jxY4=1U^j9UF>oOh8HUTKVXE@swZqPy!M z+52E@V+X+!t9`U>q>Ohwn){Uuw%%m+;};ljsHjui9a&r7VvT&8qImzxzhG!Md$Xu( zIJ?qe<zKLB8qO}Dr&`AicpBAkb`d?*Ia2Wy({OeUJuP=!gC}jn+1u&K?nuBB5=G+0 z4QEAhqVuq+;q2JD(Pd4ZK)4C?ln)S~bFkthZg@9+L<0H=*=}Zj!K92|RvKD>LS+Qs zX3gQC*SIVkYmaXXQQA3{n@%w+SQVbyf{ev?VwpxJg%la%m%cloJ;pzO(eVBrUQX-s z=s#v`qB4g+V>d}F`K{<-?EGta96o3p_TcnED@fA>>2uotM;9!1`z60P8Ye{wbRdGe z8Xx_igS}HY*qs~>qgvGW9KsO;^o8vo9UUAm=&$;qOK3n-5Uodqn;TRa2aT=R$Wf9i zCJXK3W@7(}9iAy)IPmsU)j;D13NaW^-lf5B<5~K&3h(+8ijihji;=_l;a#O#mJQx` zcONEj15{77kHQkRoOgW&V7gDy=?P#Lk}jwi<)av4bRt2QC?FYjN#%iYysHDSIH#D1 zFb)BN2#;dNW=gg3@Sc*+PZL`1Dq<IlMRKam$N?H7aMP6v0@l+h6qE!AIr&puEu_u9 z@TJ&mlEOF-4)Y|y@YrA=GG5y2?`{(zt!M$b`-#tp9MK{NUNwIO#D?8btp$G2wWwTS z><;H9!exY`d(;|EB1`?LG)vkQ{-rV=Rq_6E1d)oS;o^J(R$#a|`5){A^St{d{4)56 z@X7pRnDon?SgfN@-~ozJ-|T;xWCb*SdWoKY+)r)b^Y^K$gVvL1d3Q2c!e<CvFOqB& zwL%&1dYK5(S221+|8YT@3kPV1aSLZenkJ$dQCNklQN$IhL0V!0(a$0xxOWtu$i@Su zwCs}-QT@fcvq__(a>PrbF*)>v=|O^tYDucv!i*vL(ouZe2!aY-PDX}}KirQ%_bKC% zG@L|CN{`s+3CMahad@{pFq(I*8^#mwPM{9d?IF!#7rY)A6B-RBAkG%)P*=8!n$XJl zG7;&Tv8NOH^0V|rA9KKoH+9coGYE!vB?2*e7$BB`et!o;R_XT@SZGBtXyJd52chz= zPl@r~kW5jO+<EtJP)rhgnq*IxDs*pw=g{i_gtZzFp{NbdCRGUi5(SDr2PI4wu3#YO zQ!yb5_>yol8;ld_egwj3#lA_pcEY`!P}Gs>AsgfRHR)({f5Jvcy$Ey-K(%C>0RucZ zu17BWBm}>93)LHB@aJG|EOAY@(RBMj2-nruY(TRlU4V51nI?YCYRXwHEFy!wNI5Mo zf~_vXRY*PJMKpREA<xh&5G6?_AId@eGcAdh3GccdMeLhPRL;Ba#Uq&`MLwbLQ(p`) z*u=Z(15WJYC``Y2_i^gVfOJ-czX|YB4hZW>w8hFWs8$|Y#=DB}tJ;!>A%YyvLb)@M zi>rmKq3lB8I=V`L>%NL0*4>M8>2RR)!v3md&}T_4UDFL%w&6x&XU_-t6wV)eI(v|3 zL|$M|Pm6SnU67NcFQ~at#dL6*PD@wDE!4q*+l?QBG|Ci1e>KcR2X{4iA~jaT0_|?; zy#yc$?B#z$OW&1FzZTDI`>Ge!;Y?*MYNC#bp{I`on8MF8eWI~Lhan0j6}jp^sIr0- z_8D%GQ6<c9B1ZXnss%O(C8-p}O(-?W->1=sl0k2zVu4R0oQyfu2i>Q_hGNj~xF1XP zvk3Fi^Lc?^qsb%mYA7eys+@#ghi*i5K9bS>?`c(>Sj1ibkouNXi$tBKj3m*47`-fB zLS|$lNP(k)jsbrd+nkf8iMSO8eP#T50j6XRwwOFyU$p#ybST&VLbV3vr_-uv8On5q z@^c^<Duy8_&+C#aRFv%A2NMKVN&~8Ls$JvABD+Sa{r#CZ=1hWtfcB|E&^Tfvr4L-} zxQNE^^B|!zpvBxgvCYvL?u(W%8il`Od5^UIDQU?g`}2ajhT`U$E==2`j}G=q{-4<= z2R?uaI@CRRJqix?Hhfqh>Ok@g>CExA2M&?)w>2p>&=)Th7(Z_KQYV@u|DTx@(nnd8 zF+^=>`!#)PQKZky998G8#95^OS*x)^uwX}EG22|iRuSzfJ&@waa(;=iPhYSqYvMN? zM(q4pbD$G5BDxQZCC7PtODGz+4}?ug7rlt+{1P7Gr$|Ug&0V;qJVxr>36<`5pYoi3 z71<oWehQ+~G?!C8Q;O*apHGuN19qII(RLm?OT%<~n(u~w{y#d<a|YTEfA~#Q3F-_` z5Ezp~(r!AWz&(_+_;%EU1mp&$81ah^MJ^i2E+OLET@#X!8`PPo9_w^|-5-HT(xoE@ zhJD>;hS$QLf`Pg?kK7_(>GF%?137wRGPV_ldDjP2)9>k{nddt)<_n!qX##JFC*F~} zJL#^C>YpU%7yXXgl=|WMY(AiPoX~G+aAL3Cl?<sk`~3WdsYnDR+KMCA6?WNq@acoE zlITLeLlx#vkGi`g)U0C914=r{VW94YOTL3}(|APsCbg1GH?kGwm2|OaPWa`rCWW!k zwGnv5TT^N1V#>pvsY^k5K*fOqe}noheZn-=-#umNGDwvvb~#e#DK;?lPk9WBFp8I| z@dh<6SL4lUT%*Q|)wo`bH>&YAHEvMjO=|2?<6o%pQ)*nQ#!W0%+MxX6X5yBouwaC0 z%|oyvU~wf*m3BexEYQUSGCv4O&@lt@@)5`34zs~SpMVUHCV{a_kIMWG>p$&QLKs>G z0%fqb*)Pw7G?8!d>YX7CK3ukHj5p3#iY@)1MZs<{FhUl(^k|?n11vDfUM@yOXhUrD z!5#Jj@eN2^E>X@6`==~X+qRy?%J=!?h1=O@9=FF~1L)U>`ujU0r;MaV95$h;^(;+^ zZ~p#iBtU&ie<t)X?7#Z=baQ{6k~E$@+FD%m<dIL*XWF%Y9vk!#$Zz6*Yzb6WEL*Ys zd(+LyGfFEfx#I8E72j@KQBf<}>~kthYHMw^YV*p<%2W;D_UzenByaDYJvmgAl9H15 z_)mU9H$wA{_21vlan{)!*8o_H<(a3SMt;o=gZZ2VWe87E{2Jlh$M7u0^X91f5jevL za7N4d_=dwpU^s5g9ro{jRwm!@)IF<K7o9tqt?+jt{2cw6Qd0g%?E~-H8xUGKt`~gt z`Z;b8uhK>%@;Q<V;>~Kiqw|i<Sy@rFV%18sNfB=`dlbv<#dh1u>N;ETeYX3HOT}tC zS3FoWkY}3PTyrzkpS~(Bl|G^_R;;uc%StLL9d=vhIBs@nsohpvYn)PJEH9}wR#h7- zR+g-=O|P{r7b~i(IHPe<g<W)%RNm&W+3#l+ZKcMtYP)etsd3r;qOI0gA{t8uu%I1- zb*%Pk5qKiCR#k}Q#^v~UyU|oXrJmpxR^3-sy{gJsQ)_dSRvX#(xJ!sGeE?ppUS3^k zth3o`DPv0M44l+|Wu0XeqOrE(0owp9T%x6^xn?C-%hhqqIXfqEGq_TGGQ5)5<Z7x{ z;n)8VLO=QfaRXxN3qP#cLG%TOlVFas)syRLc<9rNvtQmYW37d=WI{*r>GA3nl#e=u zgVjgfhKKfMJyiCy%^&A|{L{RYTdiX(075>;DfK_j8;*xPU$NF7k%rA~M{jam@yZgh z91lrTGmTSf>Ff7XYLlj{m}Z=^Vye-YWVeZRC6zgNfM90ZS2$MMszhUH^~w@JG91RF z{9A9HJ^z-egT=Mb1xICxy+XX-n6zO2jVR-8g^bH8t5+HAB~>eIk*c>YD!6@a;jMQ} z<%-Jj`F&fhqf#_h)EdR=YGdunlFCY?*oXOTH7EpW=ta`PTk<2dIIgH#EU7eBRztn2 z%g{3`sw&DV@J0XSHe*sz;jIf6fVQ>7E>>I+%Bn(foD0*Etq6XEUW5cpWwH@SuHXFq z{Us3jzZc54;F=5AF{&YHGb}Yi67sjh+AoFIw;(<?2crfb0NIBt_D#4FwhtAy<JC~p z3{*_RD9XTpX<$KFCUDJ0UY24V=|3^pd;@Tx-mwJ0;BL^dtC0s?GMbQ{g}Si12Grk7 zqcI(6#8%|l!9zVl1A-f21HvYRUm^Sk;Z=mU5Z*=TLHHxWVT4Z+P9dB_81-}f_XG&B z2$vuj5w1f>MaV^%hfs)cJHj0Z_aZDu_#OgDW)v60X*nG?nj6FExv|_hZaf#uP2eVS zJkEbE;wEtyb8%cecM10`{GSk)a+h(JbBWw!?h5WouB5_#<L%4|l-eqji#hgN&SK>U z=`xu3;^nrLB~`YH6*l#Gh22~-kW5}VkW7tKSYc27-azim!DJee<qos*1K@H8$kGo> zr&2mqNmG(i_`f-d6>>_7s3|ETrlx>ZNf9X}MU-j*fk3~tph-V04VtyJjHXypRepa> zF^Te<zyCE7$lgB4%AOq@NB?ihrl`DBT%%o#D_|r2?Lht>gbxu;AdLPE$0Z^pBiw+n z2%#Kd4Z@=c&mp{t@E*d)2;6Tu?h1r!5Hb<wA(SH2A<*Ai#2XQwLU;kekFW>f_Xynx zA0r$?_#8nC-X|g?AQ%yn5RwtH5#}OT5$-}LMWDZbWZv7kd|RbWw9Uax06w{LfjZwi z$Q8ho+lOa!3p8`>Hd|rEGJA>re(rhAjW%(P!)}M$$0Tn#W{})(&d-})%Kc|lZc(}2 zR#J*g?kMFJmeh&`%2ek|dcL{3)KO`hS5j44X`79!n4^$K$kiz-UL>KM1@~iNv9buW z*x9vnD=KZ2;%cd+sABnjbE+}Jg@%lpUxjv+RAM$byeXQPLR(4QdD&b{Oks6NsoFx& zA07RC2gj|5VN+l$=1SFe*w^JYM$BgC%-RJuabZ<C<Gi$>ez~oN=CI%nlH_u<3o324 z8g9O}$Y#gfy+pJ{M8;XQMU}N+eNjoJ!^YjCy&w|qU$yEy9Cc|<4KEhSVQg_+I_Cda ze^po6>MKOdaEps;ZK9(VG?iH-$34Oom#nN^QOp3i16(mCiB;7&c+nJBKwMyUB{v)C z>SY}Fq^21EH_m<BjiZWHjDH$c?5JXS-;XI?RZ+FF<a?N<z8X`qtlBPeyJMh4?0?hw zD5k8&UQs2MaYtgxpfm8F6k`s3I;LzD)D1bfj;}&b)2_6wTwZfOJU^wtG6y--iuOud z6=n;Rs#?CX2Cc1&pk@Ex68)b`e~WNa!R@yc6s9OkS&)bWoxep`SzEW<E;46MrsSXJ z&oDSAr?qEq!Qk^hPb0r+Nwfqm-Pc@`h+x24JHh`=e@Dya|BJK%>vJ@8vgvBmt)_cT zrKU$rn@s_e*8DB=6mzn9uK6bOznER-ADiDW|IRF#KQ`-<W0NN(XCzyaZ%Y2x<n_rd z$x~BTq}o&KQ#YjkDD}zIy{W&L`Si>svzE=Oo7Fq(%8Z9HHf4O7k&t;uW>;ou_G8)8 zbKc46$~lo^%FWCjpI4uUm7Wo6Lh$e}=AGvJl=_qjsn4hGOx>Sqn0eXE@Jwsk>NHb& zb^6JSq|8?{OS10ET9f6^+LiT(?EdWSxu0Tf$eFNTfoPTK8Pi<zVe?7z_~hG??@qoW zr8?z@DJ?1Qrvy_zNjZ}elUhErA?@`vKK&2rN7Fw~AC=+Bx;ncl`_UYK4wq}oeInPE z_h8<Jyhmxr$AYz|hU2bJZcR3&<fqo8Zco+C{LW0v%vCcVnfc_*w6ub>Thi*%8q?OL z{ae~k)1FNGkF*`Yy({haX}xJj)27V&&aCWN1+$7~mCpL!tj1YCn)Sr2k7jY{lhbcb zzc>By^f%JqPS<4Ip0OgMH{*+piJ9@4*JWmBS~JTte~|g}%(l!wWFE*on0X}gbS9TI zDQj|8Ue=9ScV?Am)n@%Vt1WA9)_Yl_v*WYBot>FooPB@xFSA>+4`iRr*5@SVq~^@Y zxizOOr!L2x^F+>Xa$0kKpED|VYHn`s+}vAo@5y!LdUBu3-I4oRZb$B(+^*c-Tsil6 z?zvn|-nhKW^D^@+d2{m?<lULKKJVeYU*vt1cQWrx9!>+S9JdW(i8W0!%{1L)y3KTl zX^m;U=~t#_O)r~{o6eeaW`p?>^Ht{S&9lu5%y*h6BwwC<b@J5Y8Odvtf0n#8`OW0_ zl7q>8$+0OHr(BkDWlC9!nDUd97gJtI38#F4zL}JIRqD;Dj?^=$F*7fodFjlnW{#gV zdDahRwaxlq)`uC7WuDBu2Yp|ZU6%bs_HVNfWgByD%DE@!`J7OWnCs2`Y3}aap4?-( zkLEp-$1PR<>%$|aQD(jQ3bSBNGv|Y&pP2WWlaiB@=O#ap>;g}}Onxr;h2+=3+1uc) zC;8*#qsga|zf2yTGBM?nlq*tFQ`{*VQ+}PYH|4#Q6Dem?CZ-Ch^nVP}U3)!rj%&br w2hk?;W67J6OH<2JE1@SMMglVZ&>uvxrUX+W!R}L@F;z0@O|g{ozvAz|06j_UivR!s diff --git a/libs/x64/airGR.dll b/libs/x64/airGR.dll deleted file mode 100644 index e85955fa7881f30e194ba7e8da54e3a3833d068c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 34816 zcmeHw4_s8owf`)zups2Fe@I9o$(pWaF_D0OQb<Bv6p~9_l_)Ai<d3ij5rGH0X!=Y< zmyK@MHN3>8ruDV7P4nk9@5R2KO^7w=A_|yjiW(E}FHKCm8#E=RRbpEA_dRp(T^1y1 z`gyN?uYFlQvvX$V%$YN1&YUwdckVLx!6p{U7z;!2`x$FNOdm7<{_?K|6kl`mu4~xN z$b%DFG?s%Ca>^^}3^ldYD{6~Z8A^()s;X^<<yJ$jy~<EgWyqMn(6Fky)S4I*6J=CL zXJ;~2`q(H|zweI4YHR&0@s?2`A=k13<TN5gG1fm8v7RtmYUrE8Au`{T)G{RKqu21v zN3YZHelcd?*>YWuFf6T*^)gmVB)U)|LPp`=O^lr(0R=u9c258v0qAGUG(z^?LyT<# zYhUz9v{~2KQ22a4zVryxcN&zSPZ7&5N-Qn56(esO<<}q(&&w$>_%X9=Z(^;Cm=uou z1_T{KDMHW(c;>_!8ISi7edTRd1|b17vm|rk8X3=|MMg6M(WUl-J{)g(T^(g*N8)Qo zP+<_*z>2(yR+%1`xfg}h*ZLqNfSg{1jK{~M3z^i9Z(oJyO`N?ThjMf2s~3UfvH>CJ zV`gS=qOFqiCsKYt0^v1MV(?=o{%Wn2)g??BYYZIWJvN9#5cr!lH0SRxwNP}NGrY>s zLFvbNjESx`(bXzFdnZ8WanYqc_dI24&m(Ff^|eKc9eg?@c}2%w!_u}g{z(*WmW7y} zvuMd;PSkl=biHYDwc8(Y$3FEV#*)3x!;h9ZKGGz6U9nDN>>_&oqVS8@AAx%Eanb1& z-Dw@IjJ?iV8ZX>zX0J+U&Ht|G>L$z?c4EirwM%a8a)6G35TP*=*stCUTGCmJKIf9N zR#3PsJ-^LyS;MpJeOA#OHZci!qPtv|>?L|rCQ{3OP_(6rsr$^YXl%*gVK#WkOg_^$ zs;mjQLZgXVkQuSKdU?fj&&iCOPWHRC?;_zC&<KsU0nx4PL=qHp+}hXG0@5_6-yTKH zZq&X+mEGDV%yDWuCd<{oi}Xu$_4vCS+7&-!OlCT$AHvNIz+j>$w&E>{Viq9k(B^^^ z8fDU_OBn0(G>Pt*RAfnSPv^8Tp0+IHO`$w5<+<8L$HzJ`_0!d3MRzzg|2xX?cOk3( zJUEbk0ZL+r_TsbD9tYo7zz(fXf#iOiMQXUbe@)!@q$_?uSbg>&>U(0ohe%ogvK`vz zQH8qd`xqGVs3oJo*M%gFx1v2J(w^VAj#ym#T(SAf7_-;Awb}oQ!MX^J<E5ie&@7jf z46M(jZTB<gYIl4dYMbCZZi{#IcW5V~iXR^c(6kha(5C7qD!GnPr8-nn6RvhC<4=CS z)62b|kkQ}wD-~Z_iIzOG{TSZ*3>9CRgvw4Ybo)Dw&oy>ufRk%vqB2{fgA-@|==b~b zz)^t4VdM}Ep>a-d_VN1^(i1^iaNZ%8$rOJ?MB<TC7MO3;ew0+73K15_sEQ_iCani0 zSG(^FBs++Y>5j3zWjl>5l=ia576TcHzD7m<t{h{M=&~47EUpZrNlF7@>3KLjiyKMN zjRH4eP?ZNzrD>7q`hZM`=twh@>#~_K-p{Rs^kcvK8V!Ez_xtXDoYZVA;O!`YeeuVx zr!v<b(RtV=ph7sRlCCck{qONOFkVD|SzA-!lfEQ<arz>~%B&~r#Ds+DMj>IXQJ*0s zWEc(jwiuJ}ontiPJKva%?^0tCzAKG2_}*!3KrH~fjZFY92>L0B;LDxxDpKg^R-*wr zY;kWlCLtCP)0#po*(bVp8qEYcy%vBXfr8lTJbxiw(2u3B**f&@LZ+aP5-%O1_#xc| zA@4R}%YDEl$|;D;geCsW<l`4I1ikj(A3{1yc=V5yn)nh@qUWA{#79}CVCpKHD?GZ7 zisHAUDBXPnXyzZXc-HDPiaoe6ThLGMM%#I<W$A*c^TI4aKmOPSA^$BZG4`POPZ8cM z6HF%v3q`r_AheYUi5<emDd0zNTZpSHq3R4WKO*2{{TNgLZox^aL^X4dgUksqRP`rN zKSG%GQDqr|=`#2$_!B{&IH^;)pFTQojwkHq<o#Kmu=c)$bjM{F=@-x?K%s*3-vC_@ zM(fLjn={Z|N2^BE45YqkyFSA`ZVON}_JfoO6df<HpUrZ#X);nz3QhqUF1j0y+2EH* zAeeQ63BzyV!*AllZ{ovm;=^y^!*AllZ{ovmQitCp55Ks6FDVfjiS+#RW$6X!g>9gl z<XcYjtO*Q-*}sVl=6e7cO(dPY==@pXu{WUqB%KdrQ7t=x_<i52G?ASDf$zR<RMy&~ zAd}H4zOkr{bhted#0<VLIT^u|alStQAEi3M*+*1SBgyw$KuzRIvxNkk(LgFrYMo&; zLuIv3mUGpOQR1{8P#P+jgkg$8Xeag4koIok0?%zlt(aB3R)GeX1zunw<aS6Avq>vW zzoB+RG3cEn<OW`CbR9G}|1+Ro0pBSI|Ew2G#12Fbb|7*yW^6VV0(?A&%};7Oi_fbo zGavV6?Lv}q=vOKvzOF*<$hoe)>D&Zc+`ElB46+55XpK4pEwD{yi!0wKiY2Y0%Vx~R zM9dOIuj4aKmdl%UsY}>GwH>|?(RDQ0KhKlFLb!f`N|ME6Lv2r`aSd6v6wx!CPczY- z$t<1>V~yzEY$Pvj@mP#Sq9?~#E&{I{<(Shb&vIw{QD;G`CX1`mXrR0zsQ^Qi>5j;B zdLK;`VIfn9N*ox6=8B$it;t@oB-$Z5ych_}ffUgdB|`M6Sigvl4vpy8rxWjn7zL*t z>Htk7aShSLCUrfvw}F%(iIjk>S_Zdj;1qC<u?7RDkNt5O*ND5Y>=Iq?kS;)e9dlg= zME8rvZcxU^cECs^?!hR+n%76rc;~>Zqst~DF-kf(k<*yQvuI93K??4aUZ!lQ`T$of z=+O*n3pKRU0m#U(KK;nb{SEYNCXjPUx9&zxK_~GNW(1{hB=>Y_!9>m;P+xQiUyHkt zNo+{jXhr5l$nPg>=0!#59vc3H=v+g|R^qBtGRlm`?6%6BwW5q#Ea-<Kw^LJ6vYGcK z=EpKhu2;GlIVgS${eJ{%4aOk0@1U6Uy^BjI{}U9>CCf4j>|a8l36NK>lgX0p#MBZB zNQNxSO})zR2b^iZmpx8&WikMDuu2#xnke!d$p+JWv`iQ+Oz8%Bl-rty&6jf0oxt31 zCuF&f^4UWS_R@s#lp4)*v4(^H=_g#*c4IE$xt>O@y<*8xi(3!33deNF;ufK?y`t+7 zyphGVmHRV`YcuykivP$8G-h$dK~Z%UXy-@H^TL*P$OEGhrAa<+@$BZU@Pz>!)KL^c zkYv9xElz?f*(O_DrL;)cYV6{yZsso1;#!O8;@K>FQ<sbh$(<4blMj{Ru=b)3N=Rh5 z8O^4oz-$^orl{$bXA{=rCDD%!ollpQ`P8N%7g33cM2<FzIKX5ihfB0+(P?q%EiO@q zc}8L$I?vPv#*o!TFS<$7&P>w|Lx^cd6VAey5nGK7C`NKSUq%3U#@H<9ylC7Z13Qgg z8Q9I$%i?}UUO>n*6b5<%pP>h7hH|HdEJlWVyb=CC@r1B}MuD9E39|XWTh0>&-IxQ3 z-860TjVblvP&k+#AYl1{sZ7v}13-n!($ph0C$-M&mp-1rr$pMzC{<ANpuMO_cwU-X z9Uz<UmG%-QrmdCFdrYj+7+P``gHudjhe?sxE^K@QTQsVA0#$RnX+nVcC0<&=^zzBz z`@YhP_t92N0<nhKy;p8iNQ7si4hS3TL1;)f(qgE`oHfCO$w>YxzhAnQn1l71qx3gZ zwlR5fyS%4igZ#^^!-$|AnSbiyhsxB(T;-;QI`D25cSbmXF=t_cN}sM@Ul0o0AxRRG z_OW6vRTz-G2(ll@Z>1H%ThiXUQ3B{7wIRKX6!2pUfZuXj!@14xLeBkh_==g2Y|cxD zkOzZudnZOX_dWD8|HAsuP7yk|eVdDppabh7%UU$dxnG#y>X0;;3j1_mE!ivFOszDA zbJY>@V3Tq)Ld_)2&=i`>VrrND6nK3~)MJ;pzvb7E@A}VP=TaX1WRk$x7g5IKmiO~A zeN+b-l3!z}8P(84V`vHhwG~oE{WSVorzdf?)7M2BIVeot7BP|6aVJfoSRb>v2-E&w z?m_}J=IiKtWeUFYNMCdRKwqDbj<*Ysk#$2A?KD(D){=gj4Syi=z2IURmp+E*LktDh zWv1WrHl-P$Jvbb<QcHsVN#dAlVpW_!0OUQ?5PFq&g&OlB7dke2T75K-<M$K-Sy*xm zIE5(EbNwH^2rgbWTVOXAOY6~gGrp|kA3BjWdKpF-J`m6%1ASY`vyNVsgzv&u0_TeK zZO=xnM{)^N+{oz6B1&aq-H{2CMO%qXzSM#n;noLBEm$A8ks5rf*2kn;ACqc*Ose(4 zO4kcD0kUj;VE1~F9<+OHG($h}?VuH>FdBx#w+<UjFrm-q>w(-;zB`aX2RwoOX8MvA z-P2gg2R32Sv2Q{R686gLwvxy!*Fn+sF4_AX7Bac}(pysIkS%`3*no=UxS9~pb?&Ei zT{A$7Aa*7nwzxWJwI_;~x@c{cEltJtIlUztM6mgVSu2tZ$gyAxDkgga`kCb(7bd#4 zhEZc&8Pgba%q~%THPjx}<b<<0hm8GxrUj0tcN=KIZOJj5>G$Bv9DCy|uJ@!hHwBfs z-jf@DADLO6r}`m5i>rTdO-ufCfQS)e@K3J-fiH1Imrk7>A7#29fm`znTaKZScG1}) z*0H%bW8w>R@Hx+OI}S<6ky|1)#Ba9jU%%xJJ4?cpcoU7hPZp&6k)~B@5qVKce9N8j z0hR+6+1JXl$LfQMsji5=5}PDjlXUH8et(8Llss)JdD?6du5ufVg{D{bwCemH^tYQ2 zNRSbhuolfn<Z?fNxHOrmX9Z_2EneN|PqG*1Ps&)h#)Srt2b7QWW>ERC%_5&Ws7T`a zbG;D2|0aL?o29TDa4uiL-@XV`ZUTn*+edHUh9~VQl#&|3HGhG>%^}RM=x=w!fRnrW zivBi|ScBEO+TWIQPY|?hNIU-^X9G)tV1N6{^~i-;_!57+l~82<{~P^n8Q1|QBlz1K zoMjFg`1_E8iH^A!_$~CL2;2_(+t@p(SLFMz_P37D#(?d-12BMC=#$%B7qLS#lB*5& zhukM|e>kGQ-9jr__}g2-iQ}_LpzZDgI5K7M-5B04QzQ@G7}`r6AP?IOK(!%Pd06Ui zL7qIc0Z;psNpbG_5O~--rg2GpMGrfHh<#-bdt_?x0PI5w3_VF4e`OE5BNxd3$2_cO zxQ9*S9yZ9o4zY;2c#M|pwUAqV3wuG)v)$Mm2Bp9brwc_mFcDp+Y4^~J6yFq5u5&;6 zREujr_I>0MieAO}Ci_(UIoY5Z%E^9p3+a{{3k%A2N8`vOS~1wP&$OQtaRlQfqEuyw z0}V5i15H91IZ!#?Z8T#^ibD<TfG<mDM-P@E%}GcL#*hR3p6oyehB{D@h>-*RLjQSZ zrt@M3PG9ncEpKwpu^6H=pmIFD!IGjI1m=0Bt1eW-U1$;3$Jn3#34Oq>oA#ke7A)T6 zUTro~qa+Ix`BO7b^pLwG5c|_V5}ZQW=p~QgIt|hs?mENCbxtMMStP=BN`y9e<YRHt zw8fdv<^w4t7V??=*yju#`=qW#FPtUZX;KHgq8q-_H7;ECmx}n;@1?Q-a(_ui<;#wR z_~x_$NPKhJBm*xRn`L09x=Y1CBZpQ@v};z5kA`ke>DZghdkWm);O3NeOSBy4o6`$9 z+}ISHrnNL#D{M|p%H|Y1N5#t!G~+iw<<3$lz-f`PH(da`O`1aMWxaMMQ42Ur`QXYl zK<joX0f@xLBZSaFYuM9ZE%@*!uru9E)-ZTex}VU0%Z<HntHM3slujp>xRa!|)IF(5 z*m!TSkCb_f<Gk^+G};y_o6;ws-^9A?Bngu`mq)wSe#uUSGSBcat>9wG{s7ZJ9ljkU z3{%&i+m3#3A(!I_?r{bd!LoZK$w-rsB!5wb3M2T(LS)O_{8t=g1LR4q1ooq}U;G>T zM?sIXYyEsYSb(BnAXcUT!uS->2_iO?*aruDN9fWz12Wg?z~&`dPtjN6TlHh9@{ENG zAi*Kt5ZxI)ZSXXpK-u}faoZ44{|ZU4A$vknO*&2iBjnoo0;HW<p?xktH&iy8A3Q)K zDQ`AgX@^PYR%mZg3hHB<iP?k`OMEYj;}ZuEwwLHuCuIiqn0z;ijplw-eMF=p>@)G5 znM>a~`MgruXwJQAqnX4HEg=YO2=E;^uLQi^NTUnj8Rf7GyUb=eM>QkZWqOf=g+7_3 zLBrJsUNEbDugIPco62fH>i%Nb`6t=DzdwI>DQX0Nw|vw;guiqDFY<Q`lY;zR5uL~4 z6eOY1*Z^GvuvtBW-KwZ1PGxt<Mb9XwAPFz>Ggu(+H1^6xyX7Z7aC}9eJm~lm22W*c zP=I+RJ3b>nmHj~2pgO(}Fw?bJ^MC?tf0ib8FHN*kW3J-(a)BV9$`UkV5>Wa44R(Ba z(X!*CIjYx=B5ET$z9b+Hb$n;Z1b9a{k}bj_5#(}vVdeO#D0h55OvO4~!10{}OEK=b zU<r<IAE*pEzFcAB7$PyqJ@HlzT#g3(LC5zr6rEU?9Ut`~$nmYE!Y^}tAHy!vBNpWx z_NzI*k8#=qIga4??wN!Veh$kW-xMUNm-|p*1jqL>vSkqlJHC&Qm489m8R9@!*%==F zlKq=<0{gf2c&bN(=feOjC5K1nn*0>?O)&l>Z3EH&C3+0o<slyLH_%qu<Ly^G-Y@1r zbgIY0$)<kBOO!*$+Yks{Bgo}X<*1Wb)fD0}7|vg17rRGlGY%2_PD(;e=!hIg-1(iL zS7^f5#3&Gjf@AFTGZqsp)6PFciU5q!V~IYhfqns9Q_#}+p|J6vXeOfmRALGfO?b>C z=V-m(;uPU%^gpK!DA#%P4(e>e49z`DLujJed7%Cp5|p+bHK?om(0Ji*$=}iwA)u|I z1#T`q$5i~SmHaIow2;3Qa(f6`MT@)9%aVY<$c)Tx00D1{174Z}g(QBQ=)wb+<I7q@ zRb&SYVD6gXhrC7Pd+A_THEAZ*q~WNynVTy(VcDd?347%n)uiF5w^z=QO&Xjq*~%a% zOmbxCb^StcW1%Yqc;rew$j6?hBY}$+AVi34bh#H0&;UWK1$)uUcHegOpg7m}{^$Il zIQK)}4+z4r{5*>bFhH7yNG88}vQ$P5@Co_iZ9|)aCeXN{nlBCHrF&#nI2mFEWnjw} zkFt^O7yNy$7dkL2)xC3Ie>@c%jemsw@c<ny|BvmDN4zhCm9_VRFgY1I*<P0omAVT- ztHI+0<Xoz|SAOD-JIJK(?Pa1+^``VGZj^F}?4%d@c#xIfE}cL&*JR9RoRY%Ac}Knu zqu$qaoHGea4ig7%&8NcTP9gD79WD(_21EKNG~Zb_9>mG`9YU&Wbt17=b|01mj=iR~ zCQLrM+Mw4-%c*4{PrE=Z<MV;aQJ>7K){GJ`so+oL`1+VzcrKo-0pl74gVW~qu@B{Z zd5M#W!F;X8MJ2uVL?&Zo0c4`SlXwb3eHpx;C*SrJ`7s3U@bafWxb@qC#|*GQxMJB4 z4adWd+xgyJ+KgilIgiq}gY|xC4e~s*L&$8?(+OCOohQkmin#YBIzAs~-^DLdfN7B| z8eKUKoR=y0MZa?Ul`tg3+s{Sb@b>!$+c*8$_Sc`w#f+wfC0#S1i-qKO`TEo#1GxPl z16z$|0FdmA4H<~xjK*NyNxtbF;X98*V1m<yZ_$H0Mi2xpT8SRqK=N$mr15;I1EnMy z`RQ(dvKO>6w4hi({<twz792{`deH^@Zw2@U&K34&GFNahGFNahGFNah#1*^-^@Gb; z-Ji*fU;(G&m$Hdrtu!0BuHOO9e+SBN5o&$K(XJ83`Gp7le5T+b2q{e7WlWGIUTMWQ zxa#8gX7o&)fax4p(xC5`?CriZ4E>Pji?TYI1M2h}TxC*qiEEJPx<J|_jm0LCs}M4{ z7KI>V*eISJGKzen($!TndI$w>AVG5Z;lAAMn1PeAN6+sRI~p}4MEV4s$VoIC-kOEW zz_TVh_S`0J6H5;B$%d!xt<*Eip@FtC%vXI(H?R<gU_Q65E&y$e(d5nyk9o2u`?k3y zxD$3b3(xVXwut-i>h%35UM-(4ja|h;GnlbUxZF89jE*6q52^ek5tZJOhT>iK;)|F} z038g={=S!S{)xLrm{59+^!@~18Z(NQn!2DcFbRCsg}4C5$Fzr=1@$J39RCIO^po^2 zv!_43VMKen8QFh*d%75`$(;+BGHDF840}3DExXE|CZU86F}J_((GxC=?iijc+tVv% z8H3aQO7`>sY6RI+4~YJ4?dkf@xm|c=m`PRV`(MkRX6tDLV9(co?!`jK{)O$gtif3& ztbnxPI@CzmOIFo@EV8O}eS}+8vkYuDX3M}<V-Wz1&Wy^Lh=*F$^_Um-bt70*BKsHE zQwDU|o>E1+RUz|Z!XpD@V40xu1AAITwAb&Y&TxA=k{#{Ej19J<^!~%2wWT-014C^C zwsifKA8RQG=CsXsuVPLI{o{YHJsm!Zuc=z3m{jvuvZq{-+@8J;!v%XPZX2|uo>{Q1 zWKLTLVB`3V>jW0YR<@^0g6*lpE8Ej9vZrKAiH>Sdi+Qz??J2`eprQ6uHl&duFr-oV zLVH>R2yjFC+MrD&dx%RFZ{nSrLv?t>TB*SpItKi7ufkxff0Zs~NgJ{G1;P$Om_rEe zm=^(a9O*7((2ZkUyUl@jcj1{664Fv$hpun9+N4Rm5>8F=>eWL;B^DW+HZqDSV>+R` zx?y;dmg1GI9)IkW&6ERJ$&~Mpko}kLhgyJ1&GlZ{2o83qiOTU3MjWo@+s5LO8E81L z?hM?ok(NSIgZWMT-7b?OEp#&8<FQ3`XfI*I26^FCk`UV%dY@!w0DEacTa)OC_dN}w zo*C~^l=`WyS9FKc`ye5B<;c;7J8Gxw=Yy+AzH9I%)2@Jj4tn_me2cEmA?rU%2X#m0 z54XEBjJf<gFUOcm_r3WQARKs;q$9B!!8<1#?xt}Ni_%+e1pEADH0i@zP~^rPZ|Mv{ zC>34Duw0Z*A}RIatBF=CLF><;cTu*1%v`*~MwdI^r5E4E!T?Yv831~>fb`iN^F}#d z@YyeH+0VyV`~Q$kJ|B>`=+1^nj?|8`xXt=Zw^?V=>_J-CFc#>JeNb|5T<Sr4H@&FU zfT5u)@UFc=;|8Kuavm4lSFx<t4?-=j^J3_f#UM`C$U3l!$49ysRyZ9m@I<G#Bq1$o zx=0DLfua-LS`%Trr>y!8-6pb_bpE5DE;QZ=(s<Bma}0#pvmM$<U}=>4iUuo)lV!vV zLR_sZvZ3BXh2Z<i1k9?y`rR>Lw*B0K`LTj-dzpzT@P}*nct$-}<MYS9i{&t0_}l1@ zO#_5+n{^jnYuY1?<tGBf?`z2St%Qn`{Umyg^gtK0A&4Mu?a|b7PuT=y|Iq+*(l~H~ z&VgsM&}acoFfTOD29SYMAtFNjq^J}*8UN9yVV!DAKJR-7b->=7R8(;tlj``TX6@T$ zvc$23kI6>SJa>jkCoQHzPs~hYWVyO`(O5{ckk`cDr%KO}t#(m{d*Wu)&vc%#jS@Z9 zUMNy}{<5|XZ7p&kY$m-HgVwf*o-i}QKDY)<-`;-dKJvDn8T0Yt7AByGs6#ssb?5`1 zO4GvtOY%)*iP)eez+?<WJh~m<ql7I!Ai2}Vq7vR%)MvQkqXA|*j|+{jQ1#SL1xGa* z6i?c(f9dzT=Y)x#MJLi*!l+R5nOhTzdjxGdSLO-nG_BE7Kdn9Pj(OWEYyAw=Og^4` z(c+${-GmD6w2K=t-EUOaAJ|8rcHG@Feu@f$C!89BMGMusk#_50s!ocy)~@Q`qULn} z+gwYxLmtrKQlMEpb5DrwMJ=LxZgYk^EYAOK-}4#n*ep!=Oy^<yM2I9EFki1_xJPAT zHaaJwp$zxzFg({6oN-9F7wTZm1m|+1>u8JS{a($-IIUwRHj%s0U;d6EB;X#4y1I1X zWv{5Y3?VoM^cHuNEqC<<$AC^~>>|;4Vx(_E7lfC)#EwkLVbXk@ojC>!n7v3r1MSDM z5)N5HBQ37En3#*Y(pz+dwhd?s3$;)1>zWzDE1L96Ue<sY?rzCi-${&QC3MZz;L=B? zQZ<CCE<@G6HeS?9Oo6bicXbiCvj4l>0#~Cu32l3Zn-gWM!FF(NWbbf-G{90cFnu)q z8N$n&^o!mG+fS%{WDKJB{S2M5y+KpTnSl~t628RH_|6h8hAeuy*gYE(nyrJild>+O z)D!arvZXY@!RDO%Ck(5dY_^-fEgKKNfpO+W9JUfBQgp>Gq9n}3`?B{Mv@f#1LWL)B z90EU$_hE0xOQK^iJJuto$<^&2*Y4=k*e`;G$B9q4zoiAfy*S1qdx9ek&x|F&?2F*~ z;%f8E*5JiO$35>b`-Q%pZfz8L1$P$yDa^YW^X%esd2aSKQb*MHcg~qbcf21CL~NP* zlhae4#xbafeXRj9#guBZT_;{TBD&(w6NbD)rI(kn-^VG5!5^E~2(@;X5;zH<Yo8K# z_+#%wny`{w?F!zsQr!D&L0|BJfk{4>mHfx7<lkpa*o(J8vQkgrimmN>i)&&HHRjSj zJhV-*<-jt-;j*_$#iuE(_8n5^C%uo!Wm+S;-h#-+FQ->MFE~KS9UlQvWMcd3Sw#NH zANxLKlY?p%8h=V1^<?%^uT!YkFnpM#-O2mOD<`2y;_g}WXgiCEF9^pU`vNDd{SUN4 zh%=@D=+HV~w<5!sw?q4gVhGWV4P?yR+8<1y%9&n(%`({Ok9~;9z}_OmANvRr@GBeO z^oa<6A2kno62n43<nMcF)6fn-cyVbDgBu?mQE|QG>p!<9?Oz!4uAY_VK~%f)R~qyu z`LMkBdjtDQT5RF<R-rK-C3qW$uWxLT9KnAW65`7?(w8*cLV=In2Lh{Cr#-<F$B;;S z5}@r_bzy`>p1ht*gGB&7Sz=-1j|edY^HpekmOw4a><7TeD5RwHU`BQ!hZvzrY-`{M z#E7pJ9ZUNzwY4JcDXQ*4bwZLtf~#{!s8kmk>C}cJaT0eR6<EI{ANPF<BN<4i#S`tH zr-1+r>lC1>y_fqV%j~J^AwMs<nD<bbuhQxwxnnl*H^b!))o?7|uYn@7SSV-E%a*Es z2IiYVdLRN_cD1>+3_bzBW`OmW1HV|n7h{;Km^S#pX852P&Z(qVM@kj9`WPgMR|>iG zv81!N<K5-MD73h|uadKdO_&XJvv?++BTtU|?yjSBkIr=|E8)a13;>h;ecz<<Ma6hv zwufDb%y1bmyR)NRi&!Y^mM82Ae+Mw38;dX3qA<J+7%e*d23tJ6ogN!bEPL%<5k7b_ z=YwzVnsyn`JWU->Ogb3y$5uBe>vP{t5U%TT-+M#Wr+ltr^)njFQg?`}b^ULFWmx~& z?AiCj?`#1vuFCcID~gy5g%viQrF>FG+d5eh?@;B1Y4t)0=S^r#BIU*c&#^aUX@ThP z<@(HLL>@mZRA)pB?c^~dgvM+5bnx0<m1ja1H&SwaMZYi33WL)vmsKhQT?0fm87*-8 z%Jtvo6E<Rg$hvPk!S!Bn76Vh&{mej<Zvu}m5N4rR*83sN%F4fuE5G23muZBdlB5aH zcuu8pMO8ij5E{uBeR@>n{pb3=ThaHofbUC1QD8n`%0&mK`MyJ*1pjg^)bS$ku+VrG zHTgVP2~EHP)#N*hoU$evpU>}N;B#!>E)*&ICApmQpB^axKFSrZs{XzL^ykN1e>xt4 zeBAN7k-!|WO~Z;T=TXX<aS$a<?ossP8~gn4KpC$Qo#*lUAN<u6A9>-Wc+>E>9cwM^ zA)?}mnMYK(11(&}6(aC^4sPujlqDZ`(Sa^#je-g*h;6&#Am3M^8ch0bEU^Kbyw8^A zN)cT(v~C`N!uexw;*4s?QWKt-Go*yBDOyTlgX52#kK!Pjzk-ncec$KrPaE9Y?*iTR zCfXIa`N8j&sLy9SF;8>yzg`PUZtYH@3wM5lTc3K&KB{kydvxkCTLQM3Sazbj`|Tg2 z^)g=N1gZ>@YXtv9;sL$r%GOIO$06Z~xrbx^Couco#@-HPcy&2;9&-CmaQlG$H|?75 zuZ^WGc#&%G`4&6_L$5ssR|Lk(+}bWcm_~LiNn*|b?$GYSH+}rE1OE()d&-*J+JEEt zwp%%+4(<1lB+-(zv7T^izay7FC4B<Z)%Q4PZ9|SfHk^2TLpn~mPb%8d)Pz@U)~C*W z&=x_<8}K8RJaCVwIkY~Nez?j05fwiiH!4KfN{@tic{<8*hK(g^dN{ta#$icqyE9XG zWq&#jX};yjh>V-#iEhAq)}1EsBSxpYI<r!{R_j9XYG&#iwWF}bHCa+S?Prp`pSH<6 zAp<>GdP`b2mijTETfG8Y&w2rmi<e=PL4Ju?5?h5d77w>kr0Eh~$qpA@5yxS}a2J}! z(U9oL*Tuo?J|TM6wwd|_+5cc&Z4y&Ix7{kQwec{4cGfqcA;|na`7niihN>^b2x+d8 z$7nrZpe?^A<`>U{p#zv|U<eJx{1|EM1jU3mIKKQo|5f^e@dvJ*>NcTn@?q2-E0$<~ zM72G!`G|y9azesgI4!{l2DO(?b@J6Z*<wk|N?u26qDa$;?$ZF6$2s@grb7N+hY#Y< zVI%|>wt#y~IFGnE>sABiG-kdaVi_zt_COqa?EIHis72)$eggY-Ixhmh`<_GFy-*e6 z7gGNv(xQN^hr(vS-pT84K76RQg{r-PY7lOuI$PVQ|5P8cPk2Mxg<_h4z3yD&r6a9< zHwW-&zNq#q`8=0-8WGIp1Z@i;wF;u+nK22Gdv|yf^xo;W;f?sqqU#f>NTEDg)LgR1 z^nHWq@jiEqb1w<Q&M?A#e>7UY(RqB`S$B1`sQH8F!khYmpOArmC*vn_2D8d!`vSZ1 zOd(Vgbs<GAGu2-v@Au?sr2C+zC>0uEq?quszTxs*o3`QdDtor@a<-=7@<K}0*=HdY z(r|e(rRwd|kqT|NJeyJ__DM*EHC$dmsaks+QUG#nV;e5pY}YtGN@}<qSsz~3<m&0$ z!dJA{t>Fw|VH^q81ZOE&pyxrJm=_Xgy5CCW_<g4WtZqe=DKq}~`$LY?njXj&)0iHp z*kQ!gUN5fq@suNyiBmYlOIM#26Iw-N=H?Bp-o&j?P~Pw~^eGNUuNg-E0_91>$kFwz zHHHbVWEjI54n&u^!i+t)8+-oPQ)$F1X|E2;*dFY+diI~Zp)cel-sQx779G{>`QQhq zdrx*xWH3$iP$dn&3dd~mC-XURJU7FI5*<#6_uz+})bTk<lR0kiymKL5L)$@vgvSn~ zKJ?h388L4q1>bmo07*2La#9ABR$Y5~yul36!-&-;tWlU5R2naF8v4z=HcqJVN^#;_ zg8L?z=JoFp!)autg+>EqT$bT+GR*7S0Q3F`jkNX!3i>8E(?Y?^5I!#M4WYM0HlaPp zz%Ml35CRk&VNnX^2z(Lm`9`zU0NVjJI?x&Ox5I_TezZXa>UD?#zZ8$NSSp4kdg4~a zNq4Xba%Z;6qQE=o^fsdblmSX_pbDiSEWOQ`(l_B`cVB#vy!-UXh(^$z>@I7<2zHY= z=rJ{yHy*1rgFFt{Xc(5Z*$xKF$Jq;>uj(+#Iuz{LXYqcO<4{at`sAc9W*UQu$Lk8$ z<G{7A4)cI$y@XnQJGnnoWIplF$=Q}TvW&;W=BP3jzVkzHFF3bRA21@j&>Xd=jz?Dn zN$!{=;n*zMOFiJLIjSyv-z#KvDf)#W78=KaBPX6f>t{>=x7ZO56AVXs0-3>;C{0x^ zPDF2=NHmSahp6yT#QESnC?X$;72?x&LqPe_t}WV$3ooWiLgTf=m^#@_Y&oAJMH{ZQ zHe)ai`?YfCGQg?Oc$iC())zs&agK&&%UCyYtewERiY#?Ef{LBrMKPs5F{1OEkRba{ z{STfmK)`Td6u2f8;IvB}J(?j$Mq*rWc0f=>NUn?u+Fzm#!F?|nM4q+-DLQB`LPE9x zWKL_!gd9A2hxN*a46~1~H5TzkU0CsRY>sri(pW<xKDD0^qys4AS$N$R)NIDwt9ne> zLgUYfC(ObiC6lVPvVv{IDI0Z*y2M}k29KY9gBy%~Ull42o}UGeiQv2+<0(sgC(wn) zZ_@a7`|d^+Wj#GOKCm|zVb4(Hdkknwxnj5)-^Jv<it~VYZ1e_xY>~{;8(_6laJQod zhaNi!XjnVW7CM)_iL)oG-gC$pseu_E-9pN+iI1%5l5ZUVG}fs6Op-n(gtv+oH>86c z4dwvV*f5RyDw{QE2%bXX3I(cp!Ho1Q1dC?-eaWCU$Qlr4IH+>t^}M+y*eA;E_6trr z6ou^k7>l7b9^ed~MSkA_!MU51x*L?_xB0ozO2H7P^jucBfsysS3hco7R1Lo)4@@#F zgh_spdqu^`d=F}@7`EMDUvW`%!B){?ys3<i$J|PsY^2{;RPwd)$N?{Md8@F|gR-8F zy7zyv({3Gf+&!(wr<{Oo?%C75|I~Xud%NF1wf_|Ix{=p?;8bf*e~)yk^<+=apHBAR z4;l{cbE%i~n3*OIIs<oI!w<t6!MUObFe<9g>R)FINj{D`W~mrvtb>7J?hIrZgBCVm zp4iL@jJ5vuTIlHU*3WJRWz1ejD}G4;eoWHgjE#FR5}t1@#%XXq5aq$Pq(5Og0?SN< z<hDRuGQjDCQoCqQb&Y61dWjoWWOBma0O6*S-93`;dO*tj;G91<geq8tJ&1jRs6yN{ z76zg$b1gjxqQrvl2o$u5>eI}VN)#HXnM*apP*dg*ih4?}ulPS=Z5*f!>XvUK(V`Fb z8+#jusgi4t?2<8;&7|CPw#dbcaj+N2GaSrm^=Q{N4QX&q>4BS(P9!rnXx^mbU@XX> zVZi%husDcR<$?7Xek}>xFL}JFf2#Zk)=7_G;tk4Qk<=!%BTH(S{O^EF)TIemC88Wm zvEMJ<HiRN+4<vXeQ5<PRPXarLqHjKpY48W!!%kx+n!u(hFwr&k#Tcdim}IU0`~Yr; z!I7&tfO3o?u*IJJG!qobYV6Z7@FvI+bg169Lu|KzcO^%a4~8qZ&HnFwmsI)X8<V6Z zkTD1*DYGF^i6aMd+eAw+eEMfTzUL37{KpT^JgNN%T{=Fw=Y!L|J>DPIezW^MxP;%H zh(C_()4dI6GHqkP<7ae0(vgmdgV9WFgI0esH0RqLG^dB=QOiUb*6HO;!-ox5w6>W& z-Y+&K%KHC=4}#&Qg2XeF<O_5c!4`)0KOS13_EOnD=JE@M{MXbl4zTj3ei!aC!X+l! zZ+BdVQrAIgv0oB4p9A3d5QmZ#0LZuaig=N%k52eFkua`csr?dw<l`W7rG7Li{LFa9 zeg!#!{*r#@Mc1X*fWU-Jd5CBV(Dm1L^TiHL3&~B$=$3v7_VK*=cF!!o@KOgoLE91q zWDtuD0WsiX#gI$)6yK09@X?*cyqJ&26HdMo<E21hGH!#?9ksle_fQ6wcr0u@hlYsS z37$)@NF*Lwy^NSWEaSD--{g{7rJEbQwphwuifqm{+T*{2MEp|0EEEXN6QFnKceXKd zZr(-Pg+sqXtL^rW9e;vE$W=Qb5mUcy3KuV~TIy$9hpM)Cg5m*@aQXyAUnx_<a~P5g zzg)!MNhC$3gZs87+C+a0<K!6d3Y$LwKvyfNo1deSZyaQO>GW$Pa^DY7Sk@#hmBpw1 z0m^0lSMCbP<3~MNgCezeeUA|bRYdGzP-!AQd^Z9b<S#~)@#)o;R(|TPDi>n(7oWlT z({mmg?maQ_3`ocm=RH7w!NduoO`w0`;tCwgBL28sjxQ?lBqjg8VdbZk@@JJ;O@}LZ zPbv9{O1fQ1t8}j@>6eG)tL0Tn{(mTOxDr3LLgr76uN_uirIbIa#Pf#5YWZVI{+2%z zKdY2qDU;h(>#1~4Df#sZ-c3sUx{@ERq_5$zJdT*Au-`b|IXV|0j&~-DF8aYlxBT-< z+*BvgZ|(phUxQV>fiTSeE<Cx0C2kU3F;Ane?+ggiek1UF%IruDuP??`gls%#8(d$A z?tju*+{FgbT@fd`AJ$7tp~mn)_t4Wg+(*iCeS)Vy^h0||B7TPw7sS?L#X`?<_{pMK zdAt?aZ{xua&P1tl$+#w*i~4)f<PtnL>-(;JUW@x#IDYTjsOUFJ2axvJxXPQ+W_%>D zee&@UPghVnXRth((iuq0`bqapNI$pmSp9uq=?FiWi@BZ7CUHcz%(uLUYM>hb6jds} z>#qo2%~!|a>-euDf#Gsax^L(>G!GjW^DpJ{q8)M!e>KAA-&*`L<!r;{kM|VT{OsI$ zC9Ph5P%9l&?i#4+uj9Y11S%_*uPAwFO7hgi(#lF!_^tZF1=bZ6bvA45?8@T0I&0mC z?DW%UdJh~pNAUqAZhrddS1DaoR`wyq=4sQ8P>fHn67zaUPc~C7`AIp}nGqK)T69!N z&!cqEN5yAmIa93{OKFu4_I<g1WJObc@TVa-G1&fadLd@u{SD}`2DHOJ8<y05>(er6 z*7M6&ug&@V_xH%TU)0|aGs;KcZ;&3!lcr63pX7+~=#k~wV5WMwCt~*Un2k3pv65Eh zsg9E>7a0rR4FQM))6GNEe`)<k1NG-tRIOM&W%ZrY>7T^dDppwyWyKYh_FC&*QM`%t z($ZRMU7cZKjiJ1_&QMits906J!aAkST4JlHu3`qm;)+_Ey}0rLyS4UVUfEh|D66hD zOe{4lf7oWNGZfnl#Q`cR-+_ABwbeGzQfscRu$3E1@K0(CNoywJ5sAUDsA^?Z_3A1^ zO`X+VT5aI}7o?clrhjx}t1hXoG}K#b>nLMlX`;;am)BcfVKdZKeA^m~ukxk-KNdB; ziq+xYqLi>&W@Cx?2QHQP3;xtpuMSEM_~pdFIyqLyMIFC>HDAFCRBZ@A93VaL!Zn;u zm-BmD)pEsOD0CRJuBqWgze~M*Wme*2W}Xl?dU=em%4#g90-pe1f%<Zh%BRYo%5R`z zg9;tIdtKQNn?IcS;lIwDHa|PUEa&&ml-vJMi3j=M`8Pf0mGN-@vUY`im9@%dD6L*q zjQ>ewt*wQwm@?+iP0yN_Fj!m%y|h;r*H+jbHkcM>-H$T<nUAq9tE^sas4cEqVO6Wo zU!1w%KFj<i2`sy~)>ctmX{fA*(pHyYoL5v;lvUt=A(dDSrfkdng$p^QoNC(_V&w#| z7|SWgzfZE(*(+@Z{A(p!b+w^xRdHn{ApVb)tTiY^ccAm8Me{OLE>xZ6z2kfrt}3>b zBWX&w%P_Hy{u|T8I@81zw;Lv|NH7>owN_hwab+43P~epx`2FV){)iC$q2E6q;dX>m zNUL)EI{pWdfF5%Kfi>fQHX+_T2LECSa1-JWaSI|2F#YeXnYhkk0&GUS4Iv3|Gva3v z?g6|5@sF;<TTqmb_*>XSGy={>{3C1-woyLfb=W)a0Nj8$0w)@81J)z{#x0DU1Du3- zt&y?Ye+(SNPRy1Jz)gthw*wjh??AjJiLvd3LoqJzodDd7_~$A3g;&BseBds|rvC)L z;fy%%Zd}&`T!i>@gd)K7&z({b$^n}Z??k8s>_t314YVmAvEyFGwgPTK{24+EU<M00 z51|uqHsX^A2LO}h9AieCfDMRWK<Ea%1M!@6^bv42;!Oy@2i$}>Viscqfc1zsB1Hcb z`G^nC1`WWyh%FhA1K@1L|B8?UxEb-JO#II)z)6UYA>;$@Mf`h&Qo!s!#_m9<Bpk#~ zBiH~pBmOBu1K=HqcOo<b_9EVkunBM%;^h0G6M)T#AJ4)#0&YUQ)q?Q=+>H1rf){Wv zVly_oorI4#AK`7lMTkxFAP2xnh;N&ZM<xU#?#xEt0e2xj@&NdK26Pbn7D66?`w=h8 zVQf6$BE+W=ZYLbXYZqY%0XHDNZZYHo*noHrf(39k;%0<wz!aw~f!qL_5wAfg0^ERj z2SPbuiocPIe`^Lf3GotyHGqo{zlhL4IEe4fgG>OM5l21<{R6B=JQm>@!be<&@I2re z#PtX-0&YMYu@p22AMu;T&?UfKh;J-~{s1;0UTB4^02d(+DMMcY_an}%fZPaYC1ZsM z>}SA1T#29qT!YwB3H_mb#E&A32mECpjW&d7r)rWkQQ<6VYIu^iD6A$lJH)HeX_;<T zSW;+FNR0+#qY2ZnunmZHp%ZnXx~Xzrh&C(~FH0}Di7gn2WLc7qnY$y{U7g`<dW)7N zJ|D(R+d|nbn?l(5H5ztZIb@`XWzk8ailS;FvvuC^uCU&aeod^7#cm2?!kSPPRStfh z06$}+fIIqX+(~*i>G=p|*cQ%i*ra9S)}UTF>Rkxpo!6amb=_t0Y}r5z%aNklobFL< zR%aATZHZ(_&+FK&+alP6P2uduHClFUc^Dh58PB4UB8zl25!vD1u&$6^^!@rMcD-i8 z*wIP)BBAD*>=^H;u1Mnlze<<$dz<DexjY!p9vp~f4@je!*d4`Yc1E&0@k+=P^#4}$ ze**e{Bl>?W`afE8!`1wL5#5q_Rx%*42c>J+19<o*c1E+AEu+|-&quK-+aj59lMZwv zKsOw84PTw^NaIL)16!tn5^7>1SPXd8Z3xn<k@D`;gBK%s`388o1-wjPW6KR}lx7Z7 zYigpySu|)x)P^R76lrQWeQHB(@4t(ed-Uv{=idpLw(V%h<V|mfOjvUy<ofc%A)_@f zX(N+#MG=@CU&ss1tp(6!l_xb04`t!ALXtE^id=|q3Y5QG$rp4?(2Qleq==&M8f|u% zH>3;lbH;?m{HNS*xHm8_Nxs8r(tNHBniEl4XH;m^Vann4RNjWq`(Pf1+koL|)pn@; zQu`4R#v-OF<1!p)csiKxFQTu~rI^~f1#w&ii(3=L^yQIEr@5ACl8_e_2Ky1tw1**c zYUhF?`=6j}Oe7nFxx)4DC#n`H^r)O@50_bxtwZrY?5AG&->c=VvK$QPDFu@kJ`BNx zd|KnsdV|(Iv<9K|9<A+Y9Y<?6TA$HcjMiPWmZEhHt)pm7Lu)8n&(Qjb)-tp{q_rTe z`)G|v>p5Dx(K^jwMjNO{Yb08$(YlG&RJGt?4MGEg6JayLc7*2;{uALfgieGb2&WL< zNB9WgcL)~|K1T@IgMV9!5RGsxf&pPN!gPdt5kv$F!UBXP2n7fw2oE8UWI|Xd3u9Uq z&LWtOMdIJmj$+X)hFycV$@OeB8^gx3aV(Zy%dTT_?0R+sUML#R;@M5?W>#ELd;bD{ z##U;roLb2EcR7#cFTiCu0x2x9t}3pwR;;ip=@qrf#Q|{YssK1$t+1kY`a^--8H3=R z0L$&k@)wZH?P!+1I6R%;=`u_pLHOUig>rK;M6JmXHKstIDnrzi3{gvUz(AnyI<!e& z97daUb-YbmaaH-lHH9R~uRs55BydmHAS*AvgSG!5%nt<hGwxli^$)A5p|RzNoGw-3 zwMyKi#Lp`6ZY4gT#Jx&<L5ZW^mg$UF;uIy$R^lQh{<ab~De*H({JIh!R^omo9#G=w zqcZ&)l=x017L{1-Rj!gQQ(~JEZ&Ko?l(<=mUsU3qO8mMKcPeq05+76IGfI3;iGQ!e zSCm)>`O{~N5|3BnNlKig#CIvNj18Nm$nooOkR|dzH4g8x3~Qy;W}S^wL!9_kE>zB_ zFR@IV(A5slW(PF)TWz!LwY50F!!dLT&bisatMjr-*`c7^obp<0aVavH5Q6%a;yPO< z9b#hdO6j@PrS?jzSX@<FX-#Kr5#<qa<scoeK~c`ahw+GKRSwSE)9dc5sI(Hqeo7@d z6(uWYSK}<6u}dLYRp?1^CC;jcGoKY|u@=`~mCfddTB?gnEfvdai)$aoe!3-;AIxXt z)U>)5o~^{niCb&gmCyyYN^o_by^0^@=M*omv@$>C&MvO8;Ss>>YKRU06+Ju*d6w$x zmG&AH83L_+n6VftQ62y+s#;x91*vQgTWGZ{sw(FaD9v0`Vy&Umdh`-wz+MPjSZTG^ zuvfxzthK8us)}t^RrKuju$;;|h+uJXrQOQj4EsVN%onCKin{dl01wdB9Nt}=4Y9&P zJW;EzvaYGHv4u!gR4*?qLtp9NwHFrFS#9<@a3G(`GWIYlEM8T&qL8Drc2<b9+Nx^C z5;TPs7zD7siZy8p@juB|vO7Zx6}qQF3hh-q@7d7e<<+$|wlfrphaAQZhL+XTR#e%_ z*xR9HwN@)*?^2BO`qQChtD&OEi4LQ~WWpX7w#vGyqy{pLBM9s<HZ_b+uZwYta9>!R zt+vuyg;!4rsw!Dk!z#k+)dpzVkstXhhdG%G=4D!@$&V`0+&HxN*9fcX>Pu>Ee6dD7 z`@i|o%g^_RcRp}GVAwr@;do!C|2`y;-Y<`Hh7ylg?sX*fjy(Q<AHDjT%daefB6tBH tZ+a15HQ19Q(l;BLlbTbSS+AUqlT$c^meZ_R*Q{@jYX<7qpTBbn{C`qSLzDmj diff --git a/man/BasinInfo.Rd b/man/BasinInfo.Rd new file mode 100644 index 00000000..b951d612 --- /dev/null +++ b/man/BasinInfo.Rd @@ -0,0 +1,22 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/BasinData.R +\docType{data} +\encoding{UTF-8} +\name{BasinInfo} +\alias{BasinInfo} +\title{Data sample: characteristics of a fictional catchment (L0123001, L0123002 or L0123003)} +\format{List named 'BasinInfo' containing +\itemize{ +\item two strings: catchment's code and station's name +\item one float: catchment's area in km2 +\item one numeric vector: catchment's hypsometric curve (min, quantiles 01 to 99 and max) in metres +}} +\description{ +R-object containing the code, station's name, area and hypsometric curve of the catchment. +} +\examples{ +require(airGR) + data(L0123001) + str(BasinInfo) +} + diff --git a/man/BasinObs.Rd b/man/BasinObs.Rd new file mode 100644 index 00000000..d06a1ebf --- /dev/null +++ b/man/BasinObs.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/BasinData.R +\docType{data} +\encoding{UTF-8} +\name{BasinObs} +\alias{BasinObs} +\title{Data sample: time series of observations of a fictional catchment (L0123001, L0123002 or L0123003)} +\format{Data frame named 'BasinObs' containing +\itemize{ +\item one POSIXlt vector: time series dates in the POSIXlt format +\item five numeric vectors: time series of catchment average precipitation [mm], catchment average air temperature [degC], catchment average potential evapotranspiration [mm], outlet discharge [l/s], outlet discharge [mm] +}} +\description{ +R-object containing the times series of precipitation, temperature, potential evapotranspiration and discharges. \cr +Times series for L0123001 or L0123002 are at the daily time-step for use with daily models such as GR4J, GR5J, GR6J, CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J. +Times series for L0123003 are at the hourly time-step for use with hourly models such as GR4H. +} +\examples{ +require(airGR) + data(L0123001) + str(BasinObs) +} + diff --git a/man/Calibration.Rd b/man/Calibration.Rd new file mode 100644 index 00000000..f97a41fd --- /dev/null +++ b/man/Calibration.Rd @@ -0,0 +1,96 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/Calibration.R +\encoding{UTF-8} +\name{Calibration} +\alias{Calibration} +\title{Calibration algorithm which minimises an error criterion on the model outputs using the provided functions} +\usage{ +Calibration(InputsModel, RunOptions, InputsCrit, CalibOptions, FUN_MOD, + FUN_CRIT, FUN_CALIB = Calibration_HBAN, FUN_TRANSFO = NULL, + quiet = FALSE) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{CalibOptions}{[object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details} + +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{FUN_CALIB}{(optional) [function] calibration algorithm function (e.g. Calibration_HBAN, Calibration_optim), default=Calibration_HBAN} + +\item{FUN_TRANSFO}{(optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] see \code{\link{Calibration_HBAN}} or \code{\link{Calibration_optim}} +} +\description{ +Calibration algorithm which minimises the error criterion using the provided functions. \cr +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration(InputsModel=InputsModel,RunOptions=RunOptions,InputsCrit=InputsCrit, + CalibOptions=CalibOptions,FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE, + FUN_CALIB=Calibration_HBAN) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions, + Param=Param,FUN=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{Calibration_HBAN}}, \code{\link{Calibration_optim}}, + \code{\link{RunModel}}, \code{\link{ErrorCrit}}, \code{\link{TransfoParam}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, + \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +} + diff --git a/man/Calibration_HBAN.Rd b/man/Calibration_HBAN.Rd new file mode 100644 index 00000000..26f14de4 --- /dev/null +++ b/man/Calibration_HBAN.Rd @@ -0,0 +1,128 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/Calibration_HBAN.R +\encoding{UTF-8} +\name{Calibration_HBAN} +\alias{Calibration_HBAN} +\title{Calibration algorithm which minimises the error criterion using the Irstea-HBAN procedure} +\usage{ +Calibration_HBAN(InputsModel, RunOptions, InputsCrit, CalibOptions, FUN_MOD, + FUN_CRIT, FUN_TRANSFO = NULL, quiet = FALSE) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{CalibOptions}{[object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details} + +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{FUN_TRANSFO}{(optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$ParamFinalR } \tab [numeric] parameter set obtained at the end of the calibration \cr + \emph{$CritFinal } \tab [numeric] error criterion obtained at the end of the calibration \cr + \emph{$NIter } \tab [numeric] number of iterations during the calibration \cr + \emph{$NRuns } \tab [numeric] number of model runs done during the calibration \cr + \emph{$HistParamR } \tab [numeric] table showing the progression steps in the search for optimal set: parameter values \cr + \emph{$HistCrit } \tab [numeric] table showing the progression steps in the search for optimal set: criterion values \cr + \emph{$MatBoolCrit } \tab [boolean] table giving the requested and actual time steps when the model is calibrated \cr + \emph{$CritName } \tab [character] name of the calibration criterion \cr + \emph{$CritBestValue} \tab [numeric] theoretical best criterion value \cr + } +} +\description{ +Calibration algorithm which minimises the error criterion. \cr +\cr +The algorithm is based on a local search procedure. +First, a screening is performed using either a rough predefined grid or a list of parameter sets +and then a simple steepest descent local search algorithm is performed. +} +\details{ +A screening is first performed either from a rough predefined grid (considering various initial +values for each paramete) or from a list of initial parameter sets. \cr +The best set identified in this screening is then used as a starting point for the steepest +descent local search algorithm. \cr +For this search, the parameters are used in a transformed version, to obtain uniform +variation ranges (and thus a similar pace), while the true ranges might be quite different. \cr +At each iteration, we start from a parameter set of NParam values (NParam being the number of +free parameters of the chosen hydrological model) and we determine the 2*NParam-1 new candidates +by changing one by one the different parameters (+/- pace). \cr +All these candidates are tested and the best one kept to be the starting point for the next +iteration. At the end of each iteration, the pace is either increased or decreased to adapt +the progression speed. A diagonal progress can occasionally be done. \cr +The calibration algorithm stops when the pace becomes too small. \cr + +To optimise the exploration of the parameter space, transformation functions are used to convert +the model parameters. This is done using the TransfoParam functions. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration_HBAN(InputsModel=InputsModel,RunOptions=RunOptions, + InputsCrit=InputsCrit,CalibOptions=CalibOptions, + FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (August 2013) +} +\references{ +Michel, C. (1991), + Hydrologie appliquée aux petits bassins ruraux, Hydrology handout (in French), Cemagref, Antony, France. +} +\seealso{ +\code{\link{Calibration}}, \code{\link{Calibration_optim}}, + \code{\link{RunModel_GR4J}}, \code{\link{TransfoParam_GR4J}}, \code{\link{ErrorCrit_RMSE}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, + \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +} + diff --git a/man/Calibration_optim.Rd b/man/Calibration_optim.Rd new file mode 100644 index 00000000..aed6de48 --- /dev/null +++ b/man/Calibration_optim.Rd @@ -0,0 +1,104 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/Calibration_optim.R +\encoding{UTF-8} +\name{Calibration_optim} +\alias{Calibration_optim} +\title{Calibration algorithm which minimises the error criterion using the stats::optim function} +\usage{ +Calibration_optim(InputsModel, RunOptions, InputsCrit, CalibOptions, FUN_MOD, + FUN_CRIT, FUN_TRANSFO = NULL, quiet = FALSE) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{CalibOptions}{[object of class \emph{CalibOptions}] see \code{\link{CreateCalibOptions}} for details} + +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{FUN_TRANSFO}{(optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$ParamFinalR } \tab [numeric] parameter set obtained at the end of the calibration \cr + \emph{$CritFinal } \tab [numeric] error criterion obtained at the end of the calibration \cr + \emph{$Nruns } \tab [numeric] number of model runs done during the calibration \cr + \emph{$CritName } \tab [character] name of the calibration criterion \cr + \emph{$CritBestValue} \tab [numeric] theoretical best criterion value \cr + } +} +\description{ +Calibration algorithm which minimises the error criterion. \cr +\cr +The algorithm is based on the "optim" function from the "stats" R-package +(using method="L-BFGS-B", i.e. a local optimization quasi-Newton method). +} +\details{ +To optimise the exploration of the parameter space, transformation functions are used to convert +the model parameters. This is done using the TransfoParam functions. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_optim) + +## calibration +OutputsCalib <- Calibration_optim(InputsModel=InputsModel,RunOptions=RunOptions, + InputsCrit=InputsCrit,CalibOptions=CalibOptions, + FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +} +\author{ +Laurent Coron (August 2013) +} +\seealso{ +\code{\link{Calibration}}, \code{\link{Calibration_HBAN}}, + \code{\link{RunModel_GR4J}}, \code{\link{TransfoParam_GR4J}}, \code{\link{ErrorCrit_RMSE}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, + \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. +} + diff --git a/man/CreateCalibOptions.Rd b/man/CreateCalibOptions.Rd new file mode 100644 index 00000000..6a0676b5 --- /dev/null +++ b/man/CreateCalibOptions.Rd @@ -0,0 +1,128 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/CreateCalibOptions.R +\encoding{UTF-8} +\name{CreateCalibOptions} +\alias{CreateCalibOptions} +\title{Creation of the CalibOptions object required to the Calibration functions} +\usage{ +CreateCalibOptions(FUN_MOD, FUN_CALIB = Calibration_HBAN, + FUN_TRANSFO = NULL, OptimParam = NULL, FixedParam = NULL, + SearchRanges = NULL, StartParam = NULL, StartParamList = NULL, + StartParamDistrib = NULL) +} +\arguments{ +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{FUN_CALIB}{(optional) [function] calibration algorithm function (e.g. Calibration_HBAN, Calibration_optim), default=Calibration_HBAN} + +\item{FUN_TRANSFO}{(optional) [function] model parameters transformation function, if the FUN_MOD used is native in the package FUN_TRANSFO is automatically defined} + +\item{OptimParam}{(optional) [boolean] vector of booleans indicating which parameters must be optimised (NParam columns, 1 line)} + +\item{FixedParam}{(optional) [numeric] vector giving the values to allocate to non-optimised parameter values (NParam columns, 1 line)} + +\item{SearchRanges}{(optional) [numeric] matrix giving the ranges of real parameters (NParam columns, 2 lines) +\tabular{llllll}{ + \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr + [1,] \tab 0 \tab -1 \tab 0 \tab ... \tab 0.0 \cr + [2,] \tab 3000 \tab +1 \tab 100 \tab ... \tab 3.0 \cr +}} + +\item{StartParam}{(optional) [numeric] vector of parameter values used to start global search calibration procedure (e.g. Calibration_optim) +\tabular{llllll}{ + \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr + \tab 1000 \tab -0.5 \tab 22 \tab ... \tab 1.1 \cr +}} + +\item{StartParamList}{(optional) [numeric] matrix of parameter sets used for grid-screening calibration procedure (values in columns, sets in line) +\tabular{llllll}{ + \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr + [set1] \tab 800 \tab -0.7 \tab 25 \tab ... \tab 1.0 \cr + [set2] \tab 1000 \tab -0.5 \tab 22 \tab ... \tab 1.1 \cr + [...] \tab ... \tab ... \tab ... \tab ... \tab ... \cr + [set n] \tab 200 \tab -0.3 \tab 17 \tab ... \tab 1.0 \cr +}} + +\item{StartParamDistrib}{(optional) [numeric] matrix of parameter values used for grid-screening calibration procedure (values in columns, percentiles in line) \cr +\tabular{llllll}{ + \tab [X1] \tab [X2] \tab [X3] \tab [...] \tab [Xi] \cr + [value1] \tab 800 \tab -0.7 \tab 25 \tab ... \tab 1.0 \cr + [value2] \tab 1000 \tab NA \tab 50 \tab ... \tab 1.2 \cr + [value3] \tab 1200 \tab NA \tab NA \tab ... \tab 1.6 \cr +}} +} +\value{ +[list] object of class \emph{CalibOptions} containing the data required to evaluate the model outputs; it can include the following: + \tabular{ll}{ + \emph{$OptimParam } \tab [boolean] vector of booleans indicating which parameters must be optimised \cr + \emph{$FixedParam } \tab [numeric] vector giving the values to allocate to non-optimised parameter values \cr + \emph{$SearchRanges } \tab [numeric] matrix giving the ranges of real parameters \cr + \emph{$StartParam } \tab [numeric] vector of parameter values used to start global search calibration procedure \cr + \emph{$StartParamList } \tab [numeric] matrix of parameter sets used for grid-screening calibration procedure \cr + \emph{$StartParamDistrib} \tab [numeric] matrix of parameter values used for grid-screening calibration procedure \cr + } +} +\description{ +Creation of the CalibOptions object required to the Calibration functions. +} +\details{ +Users wanting to use FUN_MOD, FUN_CALIB or FUN_TRANSFO functions that are not included in +the package must create their own CalibOptions object accordingly. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration(InputsModel=InputsModel,RunOptions=RunOptions,InputsCrit=InputsCrit, + CalibOptions=CalibOptions,FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE, + FUN_CALIB=Calibration_HBAN) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions, + Param=Param,FUN=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{Calibration}}, \code{\link{RunModel}} +} + diff --git a/man/CreateInputsCrit.Rd b/man/CreateInputsCrit.Rd new file mode 100644 index 00000000..fd7176cc --- /dev/null +++ b/man/CreateInputsCrit.Rd @@ -0,0 +1,114 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/CreateInputsCrit.R +\encoding{UTF-8} +\name{CreateInputsCrit} +\alias{CreateInputsCrit} +\title{Creation of the InputsCrit object required to the ErrorCrit functions} +\usage{ +CreateInputsCrit(FUN_CRIT, InputsModel, RunOptions, Qobs, BoolCrit = NULL, + transfo = "", Ind_zeroes = NULL, epsilon = NULL) +} +\arguments{ +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Qobs}{[numeric] series of observed discharges [mm]} + +\item{BoolCrit}{(optional) [boolean] boolean giving the time steps to consider in the computation (all time steps are consider by default)} + +\item{transfo}{(optional) [character] name of the transformation (e.g. "", "sqrt", "log", "inv", "sort")} + +\item{Ind_zeroes}{(optional) [numeric] indices of the time-steps where zeroes are observed} + +\item{epsilon}{(optional) [numeric] epsilon to add to all Qobs and Qsim if \emph{$Ind_zeroes} is not empty} +} +\value{ +[list] object of class \emph{InputsCrit} containing the data required to evaluate the model outputs; it can include the following: + \tabular{ll}{ + \emph{$BoolCrit } \tab [boolean] boolean giving the time steps to consider in the computation \cr + \emph{$Qobs } \tab [numeric] series of observed discharges [mm] \cr + \emph{$transfo } \tab [character] name of the transformation (e.g. "", "sqrt", "log", "inv", "sort") \cr + \emph{$Ind_zeroes} \tab [numeric] indices of the time-steps where zeroes are observed \cr + \emph{$epsilon } \tab [numeric] epsilon to add to all Qobs and Qsim if \emph{$Ind_zeroes} is not empty \cr + } +} +\description{ +Creation of the InputsCrit object required to the ErrorCrit functions. +} +\details{ +Users wanting to use FUN_CRIT functions that are not included in +the package must create their own InputsCrit object accordingly. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions, + Param=Param,FUN=RunModel_GR4J) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency on log-transformed flows +transfo <- "log" +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],transfo=transfo) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency above a threshold (q75\%) +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]<quantile(BasinObs$Qmm[Ind_Run],0.75,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency below a threshold (q10\%) on log-trqansformed flows +transfo <- "log" +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]>quantile(BasinObs$Qmm[Ind_Run],0.10,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel,RunOptions=RunOptions, + Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit,transfo=transfo) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\\n",sep="")) + + + + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateCalibOptions}} +} + diff --git a/man/CreateInputsModel.Rd b/man/CreateInputsModel.Rd new file mode 100644 index 00000000..c741da3f --- /dev/null +++ b/man/CreateInputsModel.Rd @@ -0,0 +1,90 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/CreateInputsModel.R +\encoding{UTF-8} +\name{CreateInputsModel} +\alias{CreateInputsModel} +\title{Creation of the InputsModel object required to the RunModel functions} +\usage{ +CreateInputsModel(FUN_MOD, DatesR, Precip, PotEvap = NULL, TempMean = NULL, + TempMin = NULL, TempMax = NULL, ZInputs = NULL, HypsoData = NULL, + NLayers = 5, quiet = FALSE) +} +\arguments{ +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{DatesR}{[POSIXlt] vector of dates required to create the GR model and CemaNeige module inputs} + +\item{Precip}{[numeric] time series of total precipitation (catchment average) [mm], required to create the GR model and CemaNeige module inputs} + +\item{PotEvap}{[numeric] time series of potential evapotranspiration (catchment average) [mm], required to create the GR model inputs} + +\item{TempMean}{(optional) [numeric] time series of mean air temperature [degC], required to create the CemaNeige module inputs} + +\item{TempMin}{(optional) [numeric] time series of min air temperature [degC], possibly used to create the CemaNeige module inputs} + +\item{TempMax}{(optional) [numeric] time series of max air temperature [degC], possibly used to create the CemaNeige module inputs} + +\item{ZInputs}{(optional) [numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m]} + +\item{HypsoData}{(optional) [numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m], required to create the GR model inputs, if not defined a single elevation is used for CemaNeige} + +\item{NLayers}{(optional) [numeric] integer giving the number of elevation layers requested [-], required to create the GR model inputs, default=5} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] object of class \emph{InputsModel} containing the data required to evaluate the model outputs; it can include the following: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] vector of dates \cr + \emph{$Precip } \tab [numeric] time series of total precipitation (catchment average) [mm] \cr + \emph{$PotEvap } \tab [numeric] time series of potential evapotranspiration (catchment average) [mm], \cr\tab defined if FUN_MOD includes GR4H, GR4J, GR5J, GR6J, GR2M or GR1A \cr \cr + \emph{$LayerPrecip } \tab [list] list of time series of precipitation (layer average) [mm], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr + \emph{$LayerTempMean } \tab [list] list of time series of mean air temperature (layer average) [degC], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr + \emph{$LayerFracSolidPrecip} \tab [list] list of time series of solid precip. fract. (layer average) [-], \cr\tab defined if FUN_MOD includes CemaNeige \cr \cr + } +} +\description{ +Creation of the InputsModel object required to the RunModel functions. +} +\details{ +Users wanting to use FUN_MOD functions that are not included in +the package must create their own InputsModel object accordingly. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}, \code{\link{DataAltiExtrapolation_HBAN}} +} + diff --git a/man/CreateRunOptions.Rd b/man/CreateRunOptions.Rd new file mode 100644 index 00000000..3ab14bc5 --- /dev/null +++ b/man/CreateRunOptions.Rd @@ -0,0 +1,122 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/CreateRunOptions.R +\encoding{UTF-8} +\name{CreateRunOptions} +\alias{CreateRunOptions} +\title{Creation of the RunOptions object required to the RunModel functions} +\usage{ +CreateRunOptions(FUN_MOD, InputsModel, IndPeriod_WarmUp = NULL, IndPeriod_Run, + IniStates = NULL, IniResLevels = NULL, Outputs_Cal = NULL, + Outputs_Sim = "all", RunSnowModule = TRUE, MeanAnSolidPrecip = NULL, + quiet = FALSE) +} +\arguments{ +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} + +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{IndPeriod_WarmUp}{(optional) [numeric] index of period to be used for the model warm-up [-]} + +\item{IndPeriod_Run}{[numeric] index of period to be used for the model run [-]} + +\item{IniStates}{(optional) [numeric] vector of initial model states [mm]} + +\item{IniResLevels}{(optional) [numeric] vector of initial filling rates for production and routing stores (2 values between 0 and 1) [-]} + +\item{Outputs_Cal}{(optional) [character] vector giving the outputs needed for the calibration \cr (e.g. c("Qsim")), the least outputs the fastest the calibration} + +\item{Outputs_Sim}{(optional) [character] vector giving the requested outputs \cr (e.g. c("DatesR","Qsim","SnowPack")), default="all"} + +\item{RunSnowModule}{(optional) [boolean] option indicating whether CemaNeige should be activated, default=TRUE} + +\item{MeanAnSolidPrecip}{(optional) [numeric] vector giving the annual mean of average solid precipitation for each layer (computed from InputsModel if not defined) [mm/y]} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] object of class \emph{RunOptions} containing the data required to evaluate the model outputs; it can include the following: + \tabular{ll}{ + \emph{IndPeriod_WarmUp } \tab [numeric] index of period to be used for the model warm-up [-] \cr + \emph{IndPeriod_Run } \tab [numeric] index of period to be used for the model run [-] \cr + \emph{IniStates } \tab [numeric] vector of initial model states [mm] \cr + \emph{IniResLevels } \tab [numeric] vector of initial filling rates for production and routing stores [-] \cr + \emph{Outputs_Cal } \tab [character] character vector giving only the outputs needed for the calibration \cr + \emph{Outputs_Sim } \tab [character] character vector giving the requested outputs \cr + \emph{RunSnowModule } \tab [boolean] option indicating whether CemaNeige should be activated \cr + \emph{MeanAnSolidPrecip} \tab [numeric] vector giving the annual mean of average solid precipitation for each layer [mm/y] \cr + } +} +\description{ +Creation of the RunOptions object required to the RunModel functions. +} +\details{ +Users wanting to use FUN_MOD functions that are not included in +the package must create their own RunOptions object accordingly. + +##### Initialisation options ##### + +The model initialisation options can either be set to a default configuration or be defined by the user. + +This is done via three vectors: \cr \emph{IndPeriod_WarmUp}, \emph{IniStates}, \emph{IniResLevels}. \cr +A default configuration is used for initialisation if these vectors are not defined. + +(1) Default initialisation options: + +\itemize{ +\item \emph{IndPeriod_WarmUp} default setting ensures a one-year warm-up using the time-steps preceding the \emph{IndPeriod_Run}. +The actual length of this warm-up might be shorter depending on data availability (no missing value being allowed on model input series). + +\item \emph{IniStates} and \emph{IniResLevels} are automatically set to initialise all the model states at 0, except for the production and routing stores which are initialised at 50\% of their capacity. This initialisation is made at the very beginning of the model call (i.e. at the beginning of \emph{IndPeriod_WarmUp} or at the beginning of IndPeriod_Run if the warm-up period is disabled). +} + +(2) Customisation of initialisation options: + +\itemize{ +\item \emph{IndPeriod_WarmUp} can be used to specify the indices of the warm-up period (within the time-series prepared in InputsModel). \cr +- remark 1: for most common cases, indices corresponding to one or several years preceding \emph{IndPeriod_Run} are used (e.g. \emph{IndPeriod_WarmUp <- 1000:1365} and \emph{IndPeriod_Run <- 1366:5000)}. \cr +However, it is also possible to perform a long-term initialisation if other indices than the warm-up ones are set in \emph{IndPeriod_WarmUp} (e.g. \emph{IndPeriod_WarmUp <- c( 1:5000 , 1:5000 , 1:5000 ,1000:1365 )}). \cr +- remark 2: it is also possible to completely disable the warm-up period when using \emph{IndPeriod_WarmUp <- 0}. + +\item \emph{IniStates} and \emph{IniResLevels} can be used to specify the initial model states. \cr +- remark 1: if \emph{IniStates} is used, all model states must be provided (e.g. 60 floats [mm] are required for GR4J, GR5J and GR6J; 60+2*NLayers floats [mm] are required for CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J; see fortran source code for details). \cr +- remark 2: in addition to \emph{IniStates}, \emph{IniResLevels} allows to set the filling rate of the production and routing stores for the GR models. For instance for GR4J, GR5J and GR6J: \emph{IniResLevels <- c(0.3,0.5)} should be used to obtain initial fillings of 30\% and 50\% for the production and routing stores, respectively. \emph{IniResLevels} is optional and can only be used if \emph{IniStates} is also defined (the state values corresponding to these two stores in \emph{IniStates} are not used in such case). \cr \cr +} +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}} +} + diff --git a/man/DataAltiExtrapolation_HBAN.Rd b/man/DataAltiExtrapolation_HBAN.Rd new file mode 100644 index 00000000..e2ad3cc3 --- /dev/null +++ b/man/DataAltiExtrapolation_HBAN.Rd @@ -0,0 +1,65 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/DataAltiExtrapolation_HBAN.R +\encoding{UTF-8} +\name{DataAltiExtrapolation_HBAN} +\alias{DataAltiExtrapolation_HBAN} +\title{Altitudinal extrapolation of precipitation and temperature series} +\usage{ +DataAltiExtrapolation_HBAN(DatesR, Precip, TempMean, TempMin = NULL, + TempMax = NULL, ZInputs, HypsoData, NLayers, quiet = FALSE) +} +\arguments{ +\item{DatesR}{[POSIXlt] vector of dates} + +\item{Precip}{[numeric] time series of daily total precipitation (catchment average) [mm]} + +\item{TempMean}{[numeric] time series of daily mean air temperature [degC]} + +\item{TempMin}{(optional) [numeric] time series of daily min air temperature [degC]} + +\item{TempMax}{(optional) [numeric] time series of daily max air temperature [degC]} + +\item{ZInputs}{[numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m]} + +\item{HypsoData}{[numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m]} + +\item{NLayers}{[numeric] integer giving the number of elevation layers requested [-]} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +list containing the extrapolated series of precip. and air temp. on each elevation layer + \tabular{ll}{ + \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm] \cr + \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [degC] \cr + \emph{$LayerTempMin } \tab [list] list of time series of daily min air temperature (layer average) [degC] \cr + \emph{$LayerTempMax } \tab [list] list of time series of daily max air temperature (layer average) [degC] \cr + \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-] \cr + \emph{$ZLayers } \tab [numeric] vector of median elevation for each layer \cr + } +} +\description{ +Function which extrapolates the precipitation and air temperature series for different elevation layers (method from Valery, 2010). +} +\details{ +Elevation layers of equal surface are created the 101 elevation quantiles (\emph{HypsoData}) +and the number requested elevation layers (\emph{NLayers}). \cr +Forcing data (precipitation and air temperature) are extrapolated using gradients from Valery (2010). +(e.g. gradP=0.0004 [m-1] for France and gradT=0.434 [degreC/100m] for January, 1st). \cr +This function is used by the \emph{CreateInputsModel} function. \cr +} +\author{ +Laurent Coron, Pierre Brigode (June 2014) +} +\references{ +Turcotte, R., L.-G. Fortin, V. Fortin, J.-P. Fortin and J.-P. Villeneuve (2007), + Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent + in southern Quebec, Canada, Nordic Hydrology, 38(3), 211, doi:10.2166/nh.2007.009. \cr + Valéry, A. (2010), Modélisation précipitations-débit sous influence nivale ? : Elaboration d'un module neige + et évaluation sur 380 bassins versants, PhD thesis (in french), AgroParisTech, Paris, France. \cr + USACE (1956), Snow Hydrology, pp. 437, U.S. Army Coprs of Engineers (USACE) North Pacific Division, Portland, Oregon, USA. +} +\seealso{ +\code{\link{CreateInputsModel}}, \code{\link{RunModel_CemaNeigeGR4J}} +} + diff --git a/man/ErrorCrit.Rd b/man/ErrorCrit.Rd new file mode 100644 index 00000000..3a09b9d0 --- /dev/null +++ b/man/ErrorCrit.Rd @@ -0,0 +1,94 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/ErrorCrit.R +\encoding{UTF-8} +\name{ErrorCrit} +\alias{ErrorCrit} +\title{Error criterion using the provided function} +\usage{ +ErrorCrit(InputsCrit, OutputsModel, FUN_CRIT, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{FUN_CRIT}{[function] error criterion function (e.g. ErrorCrit_RMSE, ErrorCrit_NSE)} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs, see \code{\link{ErrorCrit_RMSE}} or \code{\link{ErrorCrit_NSE}} for details +} +\description{ +Function which computes an error criterion with the provided function. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions, + Param=Param,FUN=RunModel_GR4J) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency on log-transformed flows +transfo <- "log" +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],transfo=transfo) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency above a threshold (q75\%) +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]<quantile(BasinObs$Qmm[Ind_Run],0.75,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency below a threshold (q10\%) on log-trqansformed flows +transfo <- "log" +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]>quantile(BasinObs$Qmm[Ind_Run],0.10,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel,RunOptions=RunOptions, + Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit,transfo=transfo) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\\n",sep="")) + + + + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}} +} + diff --git a/man/ErrorCrit_KGE.Rd b/man/ErrorCrit_KGE.Rd new file mode 100644 index 00000000..31574db4 --- /dev/null +++ b/man/ErrorCrit_KGE.Rd @@ -0,0 +1,51 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/ErrorCrit_KGE.R +\encoding{UTF-8} +\name{ErrorCrit_KGE} +\alias{ErrorCrit_KGE} +\title{Error criterion based on the KGE formula} +\usage{ +ErrorCrit_KGE(InputsCrit, OutputsModel, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$CritValue } \tab [numeric] value of the criterion \cr + \emph{$CritName } \tab [character] name of the criterion \cr + \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr + \emph{$SubCritNames } \tab [character] names of the sub-criteria \cr + \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr + \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr + \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr + } +} +\description{ +Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009). +} +\details{ +In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +} +\examples{ +## see example of the ErrorCrit function +} +\author{ +Laurent Coron (June 2014) +} +\references{ +Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), + Decomposition of the mean squared error and NSE performance criteria: Implications + for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr +} +\seealso{ +\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}} +} + diff --git a/man/ErrorCrit_KGE2.Rd b/man/ErrorCrit_KGE2.Rd new file mode 100644 index 00000000..58369b76 --- /dev/null +++ b/man/ErrorCrit_KGE2.Rd @@ -0,0 +1,54 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/ErrorCrit_KGE2.R +\encoding{UTF-8} +\name{ErrorCrit_KGE2} +\alias{ErrorCrit_KGE2} +\title{Error criterion based on the KGE' formula} +\usage{ +ErrorCrit_KGE2(InputsCrit, OutputsModel, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$CritValue } \tab [numeric] value of the criterion \cr + \emph{$CritName } \tab [character] name of the criterion \cr + \emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr + \emph{$SubCritNames } \tab [character] names of the sub-criteria \cr + \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr + \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr + \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr + } +} +\description{ +Function which computes an error criterion based on the KGE' formula proposed by Kling et al. (2012). +} +\details{ +In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +} +\examples{ +## see example of the ErrorCrit function +} +\author{ +Laurent Coron (June 2014) +} +\references{ +Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009), + Decomposition of the mean squared error and NSE performance criteria: Implications + for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr + Kling, H., Fuchs, M. and Paulin, M. (2012), + Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, + Journal of Hydrology, 424-425, 264-277, doi:10.1016/j.jhydrol.2012.01.011. +} +\seealso{ +\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}} +} + diff --git a/man/ErrorCrit_NSE.Rd b/man/ErrorCrit_NSE.Rd new file mode 100644 index 00000000..29c27b8e --- /dev/null +++ b/man/ErrorCrit_NSE.Rd @@ -0,0 +1,49 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/ErrorCrit_NSE.R +\encoding{UTF-8} +\name{ErrorCrit_NSE} +\alias{ErrorCrit_NSE} +\title{Error criterion based on the NSE formula} +\usage{ +ErrorCrit_NSE(InputsCrit, OutputsModel, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$CritValue } \tab [numeric] value of the criterion \cr + \emph{$CritName } \tab [character] name of the criterion \cr + \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr + \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr + \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr + } +} +\description{ +Function which computes an error criterion based on the NSE formula proposed by Nash & Sutcliffe (1970). +} +\details{ +In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +} +\examples{ +## see example of the ErrorCrit function +} +\author{ +Laurent Coron (June 2014) +} +\references{ +Nash, J.E. and Sutcliffe, J.V. (1970), + River flow forecasting through conceptual models part 1. + A discussion of principles, Journal of Hydrology, 10(3), 282-290, doi:10.1016/0022-1694(70)90255-6. \cr +} +\seealso{ +\code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} +} + diff --git a/man/ErrorCrit_RMSE.Rd b/man/ErrorCrit_RMSE.Rd new file mode 100644 index 00000000..27164860 --- /dev/null +++ b/man/ErrorCrit_RMSE.Rd @@ -0,0 +1,44 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/ErrorCrit_RMSE.R +\encoding{UTF-8} +\name{ErrorCrit_RMSE} +\alias{ErrorCrit_RMSE} +\title{Error criterion based on the RMSE} +\usage{ +ErrorCrit_RMSE(InputsCrit, OutputsModel, quiet = FALSE) +} +\arguments{ +\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} + +\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$CritValue } \tab [numeric] value of the criterion \cr + \emph{$CritName } \tab [character] name of the criterion \cr + \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr + \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr + \emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr + } +} +\description{ +Function which computes an error criterion based on the root mean square error (RMSE). +} +\details{ +In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows +the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised +(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE). +} +\examples{ +## see example of the ErrorCrit function +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} +} + diff --git a/man/PEdaily_Oudin.Rd b/man/PEdaily_Oudin.Rd new file mode 100644 index 00000000..ffdc7635 --- /dev/null +++ b/man/PEdaily_Oudin.Rd @@ -0,0 +1,37 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/PEdaily_Oudin.R +\encoding{UTF-8} +\name{PEdaily_Oudin} +\alias{PEdaily_Oudin} +\title{Computation of daily series of potential evapotranspiration with Oudin's formula} +\usage{ +PEdaily_Oudin(JD, Temp, LatRad) +} +\arguments{ +\item{JD}{[numeric] time series of julian day [-]} + +\item{Temp}{[numeric] time series of daily mean air temperature [degC]} + +\item{LatRad}{[numeric] latitude of measurement for the temperature series [rad]} +} +\value{ +[numeric] time series of daily potential evapotranspiration [mm/d] +} +\description{ +Function which computes daily PE using the formula from Oudin et al. (2005). +} +\examples{ +require(airGR) + data(L0123001) + PotEvap <- PEdaily_Oudin(JD=as.POSIXlt(BasinObs$DatesR)$yday,Temp=BasinObs$T,LatRad=0.8) +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil and C. Loumagne (2005), + Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-Towards a + simple and efficient potential evapotranspiration model for rainfall-runoff modelling, Journal of Hydrology, + 303(1-4), 290-306, doi:10.1016/j.jhydrol.2004.08.026. +} + diff --git a/man/RunModel.Rd b/man/RunModel.Rd new file mode 100644 index 00000000..c814a9e4 --- /dev/null +++ b/man/RunModel.Rd @@ -0,0 +1,62 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel.R +\encoding{UTF-8} +\name{RunModel} +\alias{RunModel} +\title{Run with the provided hydrological model function} +\usage{ +RunModel(InputsModel, RunOptions, Param, FUN_MOD) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of model parameters} + +\item{FUN_MOD}{[function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)} +} +\value{ +[list] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details +} +\description{ +Function which performs a single model run with the provided function. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{RunModel_GR4J}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_CemaNeige.Rd b/man/RunModel_CemaNeige.Rd new file mode 100644 index 00000000..ec08a968 --- /dev/null +++ b/man/RunModel_CemaNeige.Rd @@ -0,0 +1,86 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_CemaNeige.R +\encoding{UTF-8} +\name{RunModel_CemaNeige} +\alias{RunModel_CemaNeige} +\title{Run with the CemaNeige snow module} +\usage{ +RunModel_CemaNeige(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 2 parameters +\tabular{ll}{ +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: CemaNeige states [mm & degC] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the CemaNeige daily snow module. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeige,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoData[51],HypsoData=BasinInfo$HypsoData, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeige,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(0.962,2.249) +OutputsModel <- RunModel_CemaNeige(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel) + +} +\author{ +Laurent Coron (January 2014) +} +\references{ +Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? + Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? + Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +} +\seealso{ +\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_CemaNeigeGR4J.Rd b/man/RunModel_CemaNeigeGR4J.Rd new file mode 100644 index 00000000..33a4af32 --- /dev/null +++ b/man/RunModel_CemaNeigeGR4J.Rd @@ -0,0 +1,114 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_CemaNeigeGR4J.R +\encoding{UTF-8} +\name{RunModel_CemaNeigeGR4J} +\alias{RunModel_CemaNeigeGR4J} +\title{Run with the CemaNeigeGR4J hydrological model} +\usage{ +RunModel_CemaNeigeGR4J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 6 parameters +\tabular{ll}{ +GR4J X1 \tab production store capacity [mm] \cr +GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr +GR4J X3 \tab routing store capacity [mm] \cr +GR4J X4 \tab unit hydrograph time constant [d] \cr +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the CemaNeige-GR4J daily lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoData[51],HypsoData=BasinInfo$HypsoData, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR4J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(408.774,2.646,131.264,1.174,0.962,2.249) +OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Perrin, C., C. Michel and V. Andréassian (2003), + Improvement of a parsimonious model for streamflow simulation, + Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? + Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? + Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +} +\seealso{ +\code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_CemaNeigeGR5J.Rd b/man/RunModel_CemaNeigeGR5J.Rd new file mode 100644 index 00000000..1d0cf524 --- /dev/null +++ b/man/RunModel_CemaNeigeGR5J.Rd @@ -0,0 +1,117 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_CemaNeigeGR5J.R +\encoding{UTF-8} +\name{RunModel_CemaNeigeGR5J} +\alias{RunModel_CemaNeigeGR5J} +\title{Run with the CemaNeigeGR5J hydrological model} +\usage{ +RunModel_CemaNeigeGR5J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 7 parameters +\tabular{ll}{ +GR5J X1 \tab production store capacity [mm] \cr +GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +GR5J X3 \tab routing store capacity [mm] \cr +GR5J X4 \tab unit hydrograph time constant [d] \cr +GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the CemaNeige-GR5J daily lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR5J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoData[51],HypsoData=BasinInfo$HypsoData, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR5J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(179.139,-0.100,203.815,1.174,2.478,0.977,2.774) +OutputsModel <- RunModel_CemaNeigeGR5J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances + et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr + Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), + A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, + Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? + Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? + Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +} +\seealso{ +\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_CemaNeigeGR6J.Rd b/man/RunModel_CemaNeigeGR6J.Rd new file mode 100644 index 00000000..cbf4f2cb --- /dev/null +++ b/man/RunModel_CemaNeigeGR6J.Rd @@ -0,0 +1,118 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_CemaNeigeGR6J.R +\encoding{UTF-8} +\name{RunModel_CemaNeigeGR6J} +\alias{RunModel_CemaNeigeGR6J} +\title{Run with the CemaNeigeGR6J hydrological model} +\usage{ +RunModel_CemaNeigeGR6J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 8 parameters +\tabular{ll}{ +GR6J X1 \tab production store capacity [mm] \cr +GR6J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +GR6J X3 \tab routing store capacity [mm] \cr +GR6J X4 \tab unit hydrograph time constant [d] \cr +GR6J X5 \tab intercatchment exchange coefficient 2 [-] \cr +GR6J X6 \tab coefficient for emptying exponential store [-] \cr +CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr +CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr + \emph{$Exp } \tab [numeric] series of exponential store level (X(6)) (negative) [mm] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the CemaNeige-GR6J daily lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR6J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoData[51],HypsoData=BasinInfo$HypsoData, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR6J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(116.482,0.500,72.733,1.224,0.278,30.333,0.977,2.776) +OutputsModel <- RunModel_CemaNeigeGR6J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), + A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, + Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? + Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr + Valéry, A., V. Andréassian and C. Perrin (2014), + "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? + Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. +} +\seealso{ +\code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_GR6J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_GR1A.Rd b/man/RunModel_GR1A.Rd new file mode 100644 index 00000000..17644fc1 --- /dev/null +++ b/man/RunModel_GR1A.Rd @@ -0,0 +1,87 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_GR1A.R +\encoding{UTF-8} +\name{RunModel_GR1A} +\alias{RunModel_GR1A} +\title{Run with the GR1A hydrological model} +\usage{ +RunModel_GR1A(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 4 parameters +\tabular{ll}{ +GR1A X1 \tab model parameter [mm] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/h] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the GR1A yearly lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## conversion of example data from daily to yearly time-step +TabSeries <- data.frame(BasinObs$DatesR,BasinObs$P,BasinObs$E,BasinObs$T,BasinObs$Qmm) +TimeFormat <- "daily" +NewTimeFormat <- "yearly" +ConvertFun <- c("sum","sum","mean","sum") +YearFirstMonth <- 09; +NewTabSeries <- SeriesAggreg(TabSeries=TabSeries,TimeFormat=TimeFormat, + NewTimeFormat=NewTimeFormat,ConvertFun=ConvertFun, + YearFirstMonth=YearFirstMonth) +BasinObs <- NewTabSeries +names(BasinObs) <- c("DatesR","P","E","T","Qmm") + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR1A,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%Y")=="1990"), + which(format(BasinObs$DatesR,format="\%Y")=="1999")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR1A,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(0.840) +OutputsModel <- RunModel_GR1A(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (March 2015) +} +\references{ +Mouelhi S. (2003), + Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier, + PhD thesis (in French), ENGREF, Cemagref Antony, France. \cr +} + diff --git a/man/RunModel_GR2M.Rd b/man/RunModel_GR2M.Rd new file mode 100644 index 00000000..5103fc1e --- /dev/null +++ b/man/RunModel_GR2M.Rd @@ -0,0 +1,101 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_GR2M.R +\encoding{UTF-8} +\name{RunModel_GR2M} +\alias{RunModel_GR2M} +\title{Run with the GR2M hydrological model} +\usage{ +RunModel_GR2M(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 4 parameters +\tabular{ll}{ +GR2M X1 \tab production store capacity [mm] \cr +GR2M X2 \tab groundwater exchange coefficient [mm/month] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/h] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/h] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/h] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/h] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/h] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/h] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/h] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/h] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the GR2M monthly lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## conversion of example data from daily to monthly time-step +TabSeries <- data.frame(BasinObs$DatesR,BasinObs$P,BasinObs$E,BasinObs$T,BasinObs$Qmm) +TimeFormat <- "daily" +NewTimeFormat <- "monthly" +ConvertFun <- c("sum","sum","mean","sum") +NewTabSeries <- SeriesAggreg(TabSeries=TabSeries,TimeFormat=TimeFormat, + NewTimeFormat=NewTimeFormat,ConvertFun=ConvertFun) +BasinObs <- NewTabSeries +names(BasinObs) <- c("DatesR","P","E","T","Qmm") + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR2M,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%m/\%Y")=="01/1990"), + which(format(BasinObs$DatesR,format="\%m/\%Y")=="12/1999")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR2M,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(265.072,1.040) +OutputsModel <- RunModel_GR2M(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (March 2015) +} +\references{ +Mouelhi S. (2003), + Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier, + PhD thesis (in French), ENGREF, Cemagref Antony, France. \cr + Mouelhi, S., C. Michel, C. Perrin and V. Andréassian (2006), + Stepwise development of a two-parameter monthly water balance model, + Journal of Hydrology, 318(1-4), 200-214, doi:10.1016/j.jhydrol.2005.06.014. +} + diff --git a/man/RunModel_GR4H.Rd b/man/RunModel_GR4H.Rd new file mode 100644 index 00000000..b9d7a4a7 --- /dev/null +++ b/man/RunModel_GR4H.Rd @@ -0,0 +1,94 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_GR4H.R +\encoding{UTF-8} +\name{RunModel_GR4H} +\alias{RunModel_GR4H} +\title{Run with the GR4H hydrological model} +\usage{ +RunModel_GR4H(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 4 parameters +\tabular{ll}{ +GR4H X1 \tab production store capacity [mm] \cr +GR4H X2 \tab groundwater exchange coefficient [mm/h] \cr +GR4H X3 \tab routing store capacity [mm] \cr +GR4H X4 \tab unit hydrograph time constant [h] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/h] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/h] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/h] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/h] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/h] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/h] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/h] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/h] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the GR4H hourly lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123003) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4H,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/03/2004 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/2008 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4H,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(521.113,-2.918,218.009,4.124) +OutputsModel <- RunModel_GR4H(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (July 2014) +} +\references{ +Mathevet, T. (2005), + Quels modèles pluie-débit globaux pour le pas de temps horaire ? Développement empirique et comparaison de modèles sur un large échantillon de bassins versants, + PhD thesis (in French), ENGREF - Cemagref (Antony), Paris, France. +} +\seealso{ +\code{\link{RunModel_GR4J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_GR4J.Rd b/man/RunModel_GR4J.Rd new file mode 100644 index 00000000..3e79c8ab --- /dev/null +++ b/man/RunModel_GR4J.Rd @@ -0,0 +1,94 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_GR4J.R +\encoding{UTF-8} +\name{RunModel_GR4J} +\alias{RunModel_GR4J} +\title{Run with the GR4J hydrological model} +\usage{ +RunModel_GR4J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 4 parameters +\tabular{ll}{ +GR4J X1 \tab production store capacity [mm] \cr +GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr +GR4J X3 \tab routing store capacity [mm] \cr +GR4J X4 \tab unit hydrograph time constant [d] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the GR4J daily lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(257.238,1.012,88.235,2.208) +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Perrin, C., C. Michel and V. Andréassian (2003), + Improvement of a parsimonious model for streamflow simulation, + Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. +} +\seealso{ +\code{\link{RunModel_GR5J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR4J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_GR5J.Rd b/man/RunModel_GR5J.Rd new file mode 100644 index 00000000..a67da9d6 --- /dev/null +++ b/man/RunModel_GR5J.Rd @@ -0,0 +1,97 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_GR5J.R +\encoding{UTF-8} +\name{RunModel_GR5J} +\alias{RunModel_GR5J} +\title{Run with the GR5J hydrological model} +\usage{ +RunModel_GR5J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 5 parameters +\tabular{ll}{ +GR5J X1 \tab production store capacity [mm] \cr +GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +GR5J X3 \tab routing store capacity [mm] \cr +GR5J X4 \tab unit hydrograph time constant [d] \cr +GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the GR5J daily lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR5J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR5J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(245.918,1.027,90.017,2.198,0.434) +OutputsModel <- RunModel_GR5J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances + et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr + Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet, and V. Andréassian (2011), + A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, + Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +} +\seealso{ +\code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR5J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/RunModel_GR6J.Rd b/man/RunModel_GR6J.Rd new file mode 100644 index 00000000..4fe20c62 --- /dev/null +++ b/man/RunModel_GR6J.Rd @@ -0,0 +1,98 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/RunModel_GR6J.R +\encoding{UTF-8} +\name{RunModel_GR6J} +\alias{RunModel_GR6J} +\title{Run with the GR6J hydrological model} +\usage{ +RunModel_GR6J(InputsModel, RunOptions, Param) +} +\arguments{ +\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details} + +\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} + +\item{Param}{[numeric] vector of 6 parameters +\tabular{ll}{ +GR6J X1 \tab production store capacity [mm] \cr +GR6J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr +GR6J X3 \tab routing store capacity [mm] \cr +GR6J X4 \tab unit hydrograph time constant [d] \cr +GR6J X5 \tab intercatchment exchange coefficient 2 [-] \cr +GR6J X6 \tab coefficient for emptying exponential store [-] \cr +}} +} +\value{ +[list] list containing the function outputs organised as follows: + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr + \emph{$Exp } \tab [numeric] series of exponential store level (X(6)) (negative) [mm] \cr + \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) +} +\description{ +Function which performs a single run for the GR6J daily lumped model. +} +\details{ +For further details on the model, see the references section. +For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. +} +\examples{ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR6J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR6J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(242.257,0.637,53.517,2.218,0.424,4.759) +OutputsModel <- RunModel_GR6J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\\n",sep="")) + +} +\author{ +Laurent Coron (December 2013) +} +\references{ +Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), + A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, + Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +} +\seealso{ +\code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, + \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. +} + diff --git a/man/SeriesAggreg.Rd b/man/SeriesAggreg.Rd new file mode 100644 index 00000000..dc1e84fe --- /dev/null +++ b/man/SeriesAggreg.Rd @@ -0,0 +1,57 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/SeriesAggreg.R +\encoding{UTF-8} +\name{SeriesAggreg} +\alias{SeriesAggreg} +\title{Conversion of time series to another time-step (aggregation only)} +\usage{ +SeriesAggreg(TabSeries, TimeFormat, NewTimeFormat, ConvertFun, + YearFirstMonth = 1, quiet = FALSE) +} +\arguments{ +\item{TabSeries}{[POSIXlt+numeric] dataframe containing the vector of dates and the time series values} + +\item{TimeFormat}{[character] desired format (i.e. "hourly", "daily", "monthly" or "yearly")} + +\item{NewTimeFormat}{[character] desired format (i.e. "hourly", "daily", "monthly" or "yearly")} + +\item{ConvertFun}{[character] names of aggregation functions (e.g. for P[mm],T[deg],Q[mm] : ConvertFun=c("sum","mean","sum"))} + +\item{YearFirstMonth}{(optional) [numeric] integer used when NewTimeFormat="yearly" to set when the starting month of the year (e.g. 01 for calendar year or 09 for hydrological year starting in september)} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +[POSIXlt+numeric] dataframe containing a vector of aggregated dates and time series values +} +\description{ +Conversion of time series to another time-step (aggregation only). +Warning : on the aggregated outputs, the dates correpond to the beginning ot the time-step +(e.g. for daily time-series 01/03/2005 00:00 = value for period 01/03/2005 00:00 - 01/03/2005 23:59 ) +(e.g. for monthly time-series 01/03/2005 00:00 = value for period 01/03/2005 00:00 - 31/03/2005 23:59 ) +(e.g. for yearly time-series 01/03/2005 00:00 = value for period 01/03/2005 00:00 - 28/02/2006 23:59 ) +} +\examples{ +## load of catchment data +require(airGR) + +## preparation of the initial time series data frame at the daily time-step +data(L0123002) +TabSeries <- data.frame(BasinObs$DatesR,BasinObs$P,BasinObs$E,BasinObs$T,BasinObs$Qmm) +TimeFormat <- "daily" + +## conversion at the monthly time-step +NewTimeFormat <- "monthly" +ConvertFun <- c("sum","sum","mean","sum") +NewTabSeries <- SeriesAggreg(TabSeries=TabSeries,TimeFormat,NewTimeFormat,ConvertFun) + +## conversion at the yearly time-step +NewTimeFormat <- "yearly" +ConvertFun <- c("sum","sum","mean","sum") +NewTabSeries <- SeriesAggreg(TabSeries=TabSeries,TimeFormat,NewTimeFormat,ConvertFun) + +} +\author{ +Laurent Coron (March 2015) +} + diff --git a/man/TransfoParam.Rd b/man/TransfoParam.Rd new file mode 100644 index 00000000..8124b307 --- /dev/null +++ b/man/TransfoParam.Rd @@ -0,0 +1,46 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/TransfoParam.R +\encoding{UTF-8} +\name{TransfoParam} +\alias{TransfoParam} +\title{Transformation of the parameters using the provided function} +\usage{ +TransfoParam(ParamIn, Direction, FUN_TRANSFO) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} + +\item{FUN_TRANSFO}{[function] model parameters transformation function (e.g. TransfoParam_GR4J, TransfoParam_CemaNeigeGR4J)} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa) using the provided function. +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the GR4J model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam(ParamIn=Xreal,Direction="RT",FUN_TRANSFO=TransfoParam_GR4J) + +## transformation Transformed->Real for the GR4J model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam(ParamIn=Xtran,Direction="TR",FUN_TRANSFO=TransfoParam_GR4J) +} +\author{ +Laurent Coron (June 2014) +} +\seealso{ +\code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +} + diff --git a/man/TransfoParam_CemaNeige.Rd b/man/TransfoParam_CemaNeige.Rd new file mode 100644 index 00000000..0dd630f4 --- /dev/null +++ b/man/TransfoParam_CemaNeige.Rd @@ -0,0 +1,44 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/TransfoParam_CemaNeige.R +\encoding{UTF-8} +\name{TransfoParam_CemaNeige} +\alias{TransfoParam_CemaNeige} +\title{Transformation of the parameters from the CemaNeige module} +\usage{ +TransfoParam_CemaNeige(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the CemaNeige module + Xreal <- matrix( c( 0.19, 1.73, + 0.39, 2.51, + 0.74, 4.06), + ncol=2,byrow=TRUE) + Xtran <- TransfoParam_CemaNeige(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the CemaNeige module + Xtran <- matrix( c( -6.26, +0.55, + -2.13, +0.92, + +4.86, +1.40) + ,ncol=2,byrow=TRUE) + Xreal <- TransfoParam_CemaNeige(ParamIn=Xtran,Direction="TR") +} +\author{ +Laurent Coron (December 2013) +} +\seealso{ +\code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}} +} + diff --git a/man/TransfoParam_GR1A.Rd b/man/TransfoParam_GR1A.Rd new file mode 100644 index 00000000..d9067e79 --- /dev/null +++ b/man/TransfoParam_GR1A.Rd @@ -0,0 +1,24 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/TransfoParam_GR1A.R +\encoding{UTF-8} +\name{TransfoParam_GR1A} +\alias{TransfoParam_GR1A} +\title{Transformation of the parameters from the GR1A model} +\usage{ +TransfoParam_GR1A(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\author{ +Laurent Coron (March 2015) +} + diff --git a/man/TransfoParam_GR2M.Rd b/man/TransfoParam_GR2M.Rd new file mode 100644 index 00000000..d031bfa4 --- /dev/null +++ b/man/TransfoParam_GR2M.Rd @@ -0,0 +1,24 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/TransfoParam_GR2M.R +\encoding{UTF-8} +\name{TransfoParam_GR2M} +\alias{TransfoParam_GR2M} +\title{Transformation of the parameters from the GR2M model} +\usage{ +TransfoParam_GR2M(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\author{ +Laurent Coron (March 2015) +} + diff --git a/man/TransfoParam_GR4H.Rd b/man/TransfoParam_GR4H.Rd new file mode 100644 index 00000000..9529ebc3 --- /dev/null +++ b/man/TransfoParam_GR4H.Rd @@ -0,0 +1,24 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/TransfoParam_GR4H.R +\encoding{UTF-8} +\name{TransfoParam_GR4H} +\alias{TransfoParam_GR4H} +\title{Transformation of the parameters from the GR4H model} +\usage{ +TransfoParam_GR4H(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\author{ +Laurent Coron (July 2014) +} + diff --git a/man/TransfoParam_GR4J.Rd b/man/TransfoParam_GR4J.Rd new file mode 100644 index 00000000..329af790 --- /dev/null +++ b/man/TransfoParam_GR4J.Rd @@ -0,0 +1,44 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/TransfoParam_GR4J.R +\encoding{UTF-8} +\name{TransfoParam_GR4J} +\alias{TransfoParam_GR4J} +\title{Transformation of the parameters from the GR4J model} +\usage{ +TransfoParam_GR4J(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the GR4J model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam_GR4J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR4J model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam_GR4J(ParamIn=Xtran,Direction="TR") +} +\author{ +Laurent Coron (December 2013) +} +\seealso{ +\code{\link{TransfoParam}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +} + diff --git a/man/TransfoParam_GR5J.Rd b/man/TransfoParam_GR5J.Rd new file mode 100644 index 00000000..667851df --- /dev/null +++ b/man/TransfoParam_GR5J.Rd @@ -0,0 +1,44 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/TransfoParam_GR5J.R +\encoding{UTF-8} +\name{TransfoParam_GR5J} +\alias{TransfoParam_GR5J} +\title{Transformation of the parameters from the GR5J model} +\usage{ +TransfoParam_GR5J(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the GR5J model + Xreal <- matrix( c( 221.41, -2.65, 27.11, 1.37, -0.76, + 347.23, -0.64, 60.34, 1.76, 0.30, + 854.01, -0.10, 148.41, 2.34, 0.52), + ncol=5,byrow=TRUE) + Xtran <- TransfoParam_GR5J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR5J model + Xtran <- matrix( c( +3.60, -1.70, +3.30, -9.10, -0.70, + +3.90, -0.60, +4.10, -8.70, +0.30, + +4.50, -0.10, +5.00, -8.10, +0.50), + ncol=5,byrow=TRUE) + Xreal <- TransfoParam_GR5J(ParamIn=Xtran,Direction="TR") +} +\author{ +Laurent Coron (December 2013) +} +\seealso{ +\code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR6J}}, \code{\link{TransfoParam_CemaNeige}} +} + diff --git a/man/TransfoParam_GR6J.Rd b/man/TransfoParam_GR6J.Rd new file mode 100644 index 00000000..a8e761e6 --- /dev/null +++ b/man/TransfoParam_GR6J.Rd @@ -0,0 +1,44 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/TransfoParam_GR6J.R +\encoding{UTF-8} +\name{TransfoParam_GR6J} +\alias{TransfoParam_GR6J} +\title{Transformation of the parameters from the GR6J model} +\usage{ +TransfoParam_GR6J(ParamIn, Direction) +} +\arguments{ +\item{ParamIn}{[numeric] matrix of parameter sets (sets in line, parameter values in column)} + +\item{Direction}{[character] direction of the transformation: use "RT" for Real->Transformed and "TR" for Transformed->Real} +} +\value{ +\emph{ParamOut} [numeric] matrix of parameter sets (sets in line, parameter values in column) +} +\description{ +Function which transforms model parameters (from real to transformed parameters and vice versa). +} +\examples{ +require(airGR) + +## transformation Real->Transformed for the GR6J model + Xreal <- matrix( c( 221.41, -1.18, 27.11, 1.37, -0.18, 20.09, + 347.23, -0.52, 60.34, 1.76, 0.02, 54.60, + 854.06, 0.52, 148.41, 2.34, 0.22, 148.41), + ncol=6,byrow=TRUE) + Xtran <- TransfoParam_GR6J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR6J model + Xtran <- matrix( c( +3.60, -1.00, +3.30, -9.10, -0.90, +3.00, + +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, + +4.50, +0.50, +5.00, -8.10, +1.10, +5.00), + ncol=6,byrow=TRUE) + Xreal <- TransfoParam_GR6J(ParamIn=Xtran,Direction="TR") +} +\author{ +Laurent Coron (December 2013) +} +\seealso{ +\code{\link{TransfoParam}}, \code{\link{TransfoParam_GR4J}}, \code{\link{TransfoParam_GR5J}}, \code{\link{TransfoParam_CemaNeige}} +} + diff --git a/man/airGR.Rd b/man/airGR.Rd new file mode 100644 index 00000000..e5aa8c4b --- /dev/null +++ b/man/airGR.Rd @@ -0,0 +1,71 @@ +\name{airGR} +\alias{airGR} +\docType{package} +\encoding{UTF-8} +\title{Modelling tools used at Irstea-HBAN (France), including GR4J and CemaNeige} +\description{ +This package brings into R the hydrological modelling tools used at Irstea-HBAN (France), including GR4H, GR4J, GR5J, GR6J, GR2M, GR1A and CemaNeige. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. \cr + +##### Functions and objects ##### + +The airGR package has been designed to fulfil two major requirements: facilitate the use by non-expert users and allow flexibility regarding the addition of external criteria, models or calibration algorithms. The names of the functions and their arguments were chosen to this end. + +The package is mostly based on three families of functions: \cr +- the functions belonging to the \code{\link{RunModel}} family require three arguments: \emph{InputsModel}, \emph{RunOptions} and \emph{Param}; please refer to help pages \code{\link{CreateInputsModel}} and \code{\link{CreateRunOptions}} for further details and examples; \cr +- the functions belonging to the \code{\link{ErrorCrit}} family require two arguments: \emph{InputsCrit} and \emph{OutputsModel}; please refer to help pages \code{\link{CreateInputsCrit}} and \code{\link{RunModel}} for further details and examples; \cr +- the functions belonging to the \code{\link{Calibration}} family require four arguments: \emph{InputsModel}, \emph{RunOptions}, \emph{InputsCrit} and \emph{CalibOptions}; please refer to help pages \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}} and \code{\link{CreateCalibOptions}} for further details and examples. + +In order to limit the risk of mis-use and increase the flexibility of these main functions, we imposed the structure of their arguments and defined their class. Most users will not need to worry about these imposed structures since functions are provided to prepare these arguments for them: \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}. However, advanced users wishing to supplement the package with their own models will need to comply with these imposed structures and refer to the package source codes to get all the specification requirements. \cr + +##### Models ##### + +Three hydrological models and one snow melt and accumulation module are implemented in airGR. The snow module can also be used alone and each hydrological model can either be used alone or together with the snow module. \cr +These models can be called within airGR using the following functions: \cr +- \code{\link{RunModel_GR4H}}: four-parameter hourly lumped conceptual model (Mathevet, 2005) \cr +- \code{\link{RunModel_GR4J}}: four-parameter daily lumped conceptual model (Perrin et al., 2003) \cr +- \code{\link{RunModel_GR5J}}: five-parameter daily lumped conceptual model (Le Moine, 2008) \cr +- \code{\link{RunModel_GR6J}}: six-parameter daily lumped conceptual model (Pushpalatha, 2013) \cr +- \code{\link{RunModel_GR2M}}: two-parameter monthly lumped conceptual model (Mouelhi, 2003) \cr +- \code{\link{RunModel_GR1A}}: one-parameter yearly lumped conceptual model (Mouelhi, 2003, 2006) \cr +- \code{\link{RunModel_CemaNeige}}: two-parameter degree-day snow melt and accumulation daily module (Valéry et al., 2014) \cr +- \code{\link{RunModel_CemaNeigeGR4J}}: combined use of GR4J and CemaNeige \cr +- \code{\link{RunModel_CemaNeigeGR5J}}: combined use of GR5J and CemaNeige \cr +- \code{\link{RunModel_CemaNeigeGR6J}}: combined use of GR6J and CemaNeige + +##### How to get started ##### + +To learn how to use the functions from the airGR package, it is recommended to follow the five steps described below: \cr +1. refer to the help for \code{\link{RunModel_GR4H}} then run the provided example to assess how to make a simulation ; \cr +2. refer to the help for \code{\link{CreateInputsModel}} to understand how the inputs of a model are prepared/organised ; \cr +3. refer to the help for \code{\link{CreateRunOptions}} to understand how the run options of a model are parametrised/organised ; \cr +4. refer to the help for \code{\link{ErrorCrit_NSE}} and \code{\link{CreateInputsCrit}} to understand how the computation of an error criterion is prepared/made ; \cr +5. refer to the help for \code{\link{Calibration_HBAN}}, run the provided example and then refer to the help for \code{\link{CreateCalibOptions}} to understand how a model calibration is prepared/made ; + +##### References ##### + +- Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modèles pluie-débit ?, PhD thesis (in French), UPMC, Paris, France. \cr +- Mathevet, T. (2005), Quels modèles pluie-débit globaux pour le pas de temps horaire ? Développement empirique et comparaison de modèles sur un large échantillon de bassins versants, PhD thesis (in French), ENGREF - Cemagref (Antony), Paris, France. \cr +- Mouelhi S. (2003), Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier, PhD thesis (in French), ENGREF - Cemagref Antony, Paris, France. \cr +- Mouelhi, S., C. Michel, C. Perrin and V. Andréassian (2006), Stepwise development of a two-parameter monthly water balance model, Journal of Hydrology, 318(1-4), 200-214, doi:10.1016/j.jhydrol.2005.06.014. \cr +- Perrin, C., C. Michel and V. Andréassian (2003), Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. \cr +- Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr +- Valéry, A., V. Andréassian and C. Perrin (2014), "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. \cr + +} + + +\details{ +\tabular{ll}{ +Package: \tab airGR\cr +Type: \tab Package\cr +Version: \tab 0.8.1.0\cr +Date: \tab 2015-10-27\cr +License: \tab GPL-2\cr +} +} +\author{ +Author: Laurent CORON \cr +Maintainer: Laurent CORON, Olivier DELAIGUE <olivier.delaigue@irstea.fr> +} + +\keyword{package, hydrology, modelling} diff --git a/man/plot_OutputsModel.Rd b/man/plot_OutputsModel.Rd new file mode 100644 index 00000000..be75d308 --- /dev/null +++ b/man/plot_OutputsModel.Rd @@ -0,0 +1,40 @@ +% Generated by roxygen2 (4.1.1): do not edit by hand +% Please edit documentation in R/plot_OutputsModel.R +\encoding{UTF-8} +\name{plot_OutputsModel} +\alias{plot_OutputsModel} +\title{Default preview of model outputs} +\usage{ +plot_OutputsModel(OutputsModel, Qobs = NULL, IndPeriod_Plot = NULL, + BasinArea = NULL, PlotChoice = "all", quiet = FALSE) +} +\arguments{ +\item{OutputsModel}{[object of class \emph{OutputsModel}] list of model outputs (which must at least include DatesR, Precip and Qsim) [POSIXlt, mm, mm]} + +\item{Qobs}{(optional) [numeric] time series of observed flow (for the same time-steps than simulated) [mm]} + +\item{IndPeriod_Plot}{(optional) [numeric] indices of the time-steps to be plotted (among the OutputsModel series)} + +\item{BasinArea}{(optional) [numeric] basin area [km2], used to plot flow axes in m3/s} + +\item{PlotChoice}{(optional) [character] choice of plots \cr (e.g. c("Precip","SnowPack","Flows","Regime","CumFreq","CorQQ")), default="all"} + +\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE} +} +\value{ +screen plot window +} +\description{ +Function which creates a screen plot giving an overview of the model outputs +} +\details{ +Dashboard of results including various graphs (depending on the model): +(1) time series of total precipitation and simulated flows (and observed flows if provided) +(2) interannual median monthly simulated flow (and observed flows if provided) +(3) correlation plot between simulated and observed flows (if observed flows provided) +(4) cumulative frequency plot for simulated flows (and observed flows if provided) +} +\author{ +Laurent Coron (June 2014) +} + diff --git a/src/frun_CEMANEIGE.f b/src/frun_CEMANEIGE.f new file mode 100644 index 00000000..77984f8e --- /dev/null +++ b/src/frun_CEMANEIGE.f @@ -0,0 +1,135 @@ + + + SUBROUTINE frun_CEMANEIGE( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsFracSolidPrecip, ! [double] input series of fraction of solid precipitation [0-1] + & InputsTemp , ! [double] input series of air mean temperature [degC] + & MeanAnSolidPrecip , ! [double] value of annual mean solid precip [mm/y] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising = 2 + & StateStart , ! [double] state variables used when the model run starts + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_cemaneige + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, intent(in) :: MeanAnSolidPrecip + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsFracSolidPrecip + doubleprecision, dimension(LInputs) :: InputsTemp + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + doubleprecision CTG,Kf + doubleprecision G,eTG,PliqAndMelt + doubleprecision Tmelt,Gthreshold,MinSpeed + doubleprecision Pliq,Psol,Gratio,PotMelt,Melt + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation des constantes + Tmelt=0 + Gthreshold=0.9*MeanAnSolidPrecip + MinSpeed=0.1 + + !initilisation of model states using StateStart + G=StateStart(1) + eTG=StateStart(2) + PliqAndMelt=0 + + !setting parameter values + CTG=Param(1) + Kf=Param(2) + + !initialisation of model outputs +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + + !SolidPrecip and LiquidPrecip + Pliq=(1-InputsFracSolidPrecip(k))*InputsPrecip(k) + Psol=InputsFracSolidPrecip(k)*InputsPrecip(k) + + !Snow pack volume before melt + G=G+Psol + + !Snow pack thermal state before melt + eTG=CTG*eTG + (1-CTG)*InputsTemp(k) + IF(eTG.GT.0) eTG=0 + + !Potential melt + IF(eTG.EQ.0.AND.InputsTemp(k).GT.Tmelt) THEN + PotMelt=Kf*(InputsTemp(k)-Tmelt) + IF(PotMelt.GT.G) PotMelt=G + ELSE + PotMelt=0 + ENDIF + + !Gratio + IF(G.LT.Gthreshold) THEN + Gratio=G/Gthreshold + ELSE + Gratio=1 + ENDIF + + !Actual melt + Melt=((1-MinSpeed)*Gratio+MinSpeed)*PotMelt + + !Update of snow pack volume + G=G-Melt + + !Update of Gratio + IF(G.LT.Gthreshold) THEN + Gratio=G/Gthreshold + ELSE + Gratio=1 + ENDIF + + !Water volume to pass to the hydrological model + PliqAndMelt=Pliq+Melt + + !Storage of outputs + DO I=1,NOutputs + IF(IndOutputs(I).EQ.1) Outputs(k,I)=Pliq + IF(IndOutputs(I).EQ.2) Outputs(k,I)=Psol + IF(IndOutputs(I).EQ.3) Outputs(k,I)=G + IF(IndOutputs(I).EQ.4) Outputs(k,I)=eTG + IF(IndOutputs(I).EQ.5) Outputs(k,I)=Gratio + IF(IndOutputs(I).EQ.6) Outputs(k,I)=PotMelt + IF(IndOutputs(I).EQ.7) Outputs(k,I)=Melt + IF(IndOutputs(I).EQ.8) Outputs(k,I)=PliqAndMelt + ENDDO + + ENDDO + + StateEnd(1)=G + StateEnd(2)=eTG + + RETURN + + ENDSUBROUTINE + diff --git a/src/frun_GR1A.f b/src/frun_GR1A.f new file mode 100644 index 00000000..f9d34dae --- /dev/null +++ b/src/frun_GR1A.f @@ -0,0 +1,116 @@ + + + SUBROUTINE frun_GR1A( + !inputs + & LInputs , ! [numeric] length of input and output series + & InputsPrecip , ! [numeric] input series of total precipitation [mm] + & InputsPE , ! [numeric] input series PE [mm] + & NParam , ! [numeric] number of model parameter + & Param , ! [numeric] parameter set + & NStates , ! [numeric] number of state variables used for model initialising + & StateStart , ! [numeric] state variables used when the model run starts (none here) + & NOutputs , ! [numeric] number of output series + & IndOutputs , ! [numeric] indices of output series + !outputs + & Outputs , ! [numeric] output series + & StateEnd ) ! [numeric] state variables at the end of the model run (none here) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr1a + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NMISC + parameter (NMISC=3) + doubleprecision MISC(NMISC) + doubleprecision P0,P1,E1,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !parameter values + !Param(1) : fonction parameter [mm] + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=2,LInputs + P0=InputsPrecip(k-1) + P1=InputsPrecip(k) + E1=InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR1A(Param,P0,P1,E1,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR1A(Param,P0,P1,E1,Q,MISC) +C Run on a single time-step with the GR4H model +C Inputs: +C Param Vector of model parameters [mm] +C P0 Value of rainfall during the previous time-step [mm] +C P1 Value of rainfall during the time-step [mm] +C E1 Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NMISC,NParam + PARAMETER (NMISC=3) + PARAMETER (NParam=1) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P0,P1,E1,Q + +C Runoff + Q=P1*(1.-1./(1.+((0.7*P1+0.3*P0)/Param(1)/E1)**2.)**0.5) + + +C Variables storage + MISC( 1)=E1 ! PE ! [numeric] potential evapotranspiration [mm/year] + MISC( 2)=P1 ! Precip ! [numeric] total precipitation [mm/year] + MISC( 3)=Q ! Qsim ! [numeric] outflow at catchment outlet [mm/year] + + + ENDSUBROUTINE + + diff --git a/src/frun_GR2M.f b/src/frun_GR2M.f new file mode 100644 index 00000000..a7ae201c --- /dev/null +++ b/src/frun_GR2M.f @@ -0,0 +1,175 @@ + + + SUBROUTINE frun_GR2M( + !inputs + & LInputs , ! [numeric] length of input and output series + & InputsPrecip , ! [numeric] input series of total precipitation [mm] + & InputsPE , ! [numeric] input series PE [mm] + & NParam , ! [numeric] number of model parameter + & Param , ! [numeric] parameter set + & NStates , ! [numeric] number of state variables used for model initialising + & StateStart , ! [numeric] state variables used when the model run starts (reservoir levels [mm]) + & NOutputs , ! [numeric] number of output series + & IndOutputs , ! [numeric] indices of output series + !outputs + & Outputs , ! [numeric] output series + & StateEnd ) ! [numeric] state variables at the end of the model run (reservoir levels [mm]) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr2m + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NMISC + parameter (NMISC=30) + doubleprecision X(2) + doubleprecision MISC(NMISC) + doubleprecision P,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + + !initilisation of model states using StateStart + X(1)=StateStart(1) + X(2)=StateStart(2) + + !parameter values + !Param(1) : production store capacity [mm] + !Param(2) : groundwater exchange coefficient [mm/month] + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P =InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR2M(X,Param,P,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + StateEnd(1)=X(1) + StateEnd(2)=X(2) + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR2M(X,Param,P,E,Q,MISC) +C Run on a single time-step with the GR4H model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NMISC,NParam + PARAMETER (NMISC=30) + PARAMETER (NParam=2) + DOUBLEPRECISION X(2) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P,E,Q + DOUBLEPRECISION WS,tanHyp,S1,S2 + DOUBLEPRECISION P1,P2,P3,R1,R2 + + +C Production store + WS=P/Param(1) + IF(WS.GT.13)WS=13 + S1=(X(1)+Param(1)*tanHyp(WS))/(1.+X(1)/Param(1)*tanHyp(WS)) + P1=P+X(1)-S1 + WS=E/Param(1) + IF(WS.GT.13)WS=13 + S2=S1*(1.-tanHyp(WS))/(1.+(1.-S1/Param(1))*tanHyp(WS)) + +C Percolation + X(1)=S2/(1+(S2/Param(1))**3.)**(1./3.) + P2=S2-X(1) + P3=P1+P2 + +C QR calculation (routing store) + R1=X(2)+P3 + +C Water exchange + R2=Param(2)*R1 + +C Total runoff + Q=R2*R2/(R2+60.) + +C Updating store level + X(2)=R2-Q + + +C Variables storage + MISC( 1)=E ! PE ! [numeric] potential evapotranspiration [mm/month] + MISC( 2)=P1 ! Precip ! [numeric] total precipitation [mm/month] + MISC( 3)=X(1) ! Prod ! [numeric] production store level (X(2)) [mm] + MISC( 4)=X(2) ! Rout ! [numeric] routing store level (X(1)) [mm] + MISC( 5)=Q ! Qsim ! [numeric] outflow at catchment outlet [mm/month] + + +C MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] +C MISC( 2)=P1 ! Precip ! total precipitation [mm/d] +C MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] +C MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] +C MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] +C MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] +C MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] +C MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] +C MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] +C MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] +C MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] +C MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] +C MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] +C MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + ENDSUBROUTINE + + diff --git a/src/frun_GR4H.f b/src/frun_GR4H.f new file mode 100644 index 00000000..773bdd47 --- /dev/null +++ b/src/frun_GR4H.f @@ -0,0 +1,225 @@ + + + SUBROUTINE frun_GR4H( + !inputs + & LInputs , ! [numeric] length of input and output series + & InputsPrecip , ! [numeric] input series of total precipitation [mm] + & InputsPE , ! [numeric] input series PE [mm] + & NParam , ! [numeric] number of model parameter + & Param , ! [numeric] parameter set + & NStates , ! [numeric] number of state variables used for model initialising + & StateStart , ! [numeric] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [numeric] number of output series + & IndOutputs , ! [numeric] indices of output series + !outputs + & Outputs , ! [numeric] output series + & StateEnd ) ! [numeric] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr4h + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=480,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES) [mm/h] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [h] + + !computation of HU ordinates + D=1.25 + CALL HU1_H(XV,Param(4),D) + CALL HU2_H(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR4H(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR4H(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR4H model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=480,NMISC=30) + PARAMETER (NParam=4) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(21./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3))**3.5 + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! [numeric] potential evapotranspiration [mm/h] + MISC( 2)=P1 ! Precip ! [numeric] total precipitation [mm/h] + MISC( 3)=X(2) ! Prod ! [numeric] production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! [numeric] actual evapotranspiration [mm/h] + MISC( 5)=PERC ! Perc ! [numeric] percolation (PERC) [mm] + MISC( 6)=PR ! PR ! [numeric] PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! [numeric] outflow from HU1 (Q9) [mm/h] + MISC( 8)=X(8+NH) ! Q1 ! [numeric] outflow from HU2 (Q1) [mm/h] + MISC( 9)=X(1) ! Rout ! [numeric] routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! [numeric] potential semi-exchange between catchments (EXCH) [mm/h] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! [numeric] actual total exchange between catchments (AEXCH1+AEXCH2) [mm/h] + MISC(12)=QR ! QR ! [numeric] outflow from routing store (QR) [mm/h] + MISC(13)=QD ! QD ! [numeric] outflow from HU2 branch after exchange (QD) [mm/h] + MISC(14)=Q ! Qsim ! [numeric] outflow at catchment outlet [mm/h] + + + + + ENDSUBROUTINE + + diff --git a/src/frun_GR4J.f b/src/frun_GR4J.f new file mode 100644 index 00000000..953e7647 --- /dev/null +++ b/src/frun_GR4J.f @@ -0,0 +1,225 @@ + + + SUBROUTINE frun_GR4J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr4j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR4J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR4J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR4J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=4) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3))**3.5 + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + + ENDSUBROUTINE + + diff --git a/src/frun_GR5J.f b/src/frun_GR5J.f new file mode 100644 index 00000000..4b7b7351 --- /dev/null +++ b/src/frun_GR5J.f @@ -0,0 +1,226 @@ + + + SUBROUTINE frun_GR5J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr5j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES1) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + !Param(5) : intercatchment exchange constant (X5 - CES2) [-] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR5J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR5J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR5J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=5) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,EN,ER,PN,PR,PS,WS,tanHyp + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3)-Param(5)) + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(14)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + + + ENDSUBROUTINE + + diff --git a/src/frun_GR6J.f b/src/frun_GR6J.f new file mode 100644 index 00000000..9d7f9373 --- /dev/null +++ b/src/frun_GR6J.f @@ -0,0 +1,249 @@ + + + SUBROUTINE frun_GR6J( + !inputs + & LInputs , ! [integer] length of input and output series + & InputsPrecip , ! [double] input series of total precipitation [mm] + & InputsPE , ! [double] input series PE [mm] + & NParam , ! [integer] number of model parameter + & Param , ! [double] parameter set + & NStates , ! [integer] number of state variables used for model initialising + & StateStart , ! [double] state variables used when the model run starts (reservoir levels [mm] and HU) + & NOutputs , ! [integer] number of output series + & IndOutputs , ! [integer] indices of output series + !outputs + & Outputs , ! [double] output series + & StateEnd ) ! [double] state variables at the end of the model run (reservoir levels [mm] and HU) + + + !DEC$ ATTRIBUTES DLLEXPORT :: frun_gr6j + + + Implicit None + !### input and output variables + integer, intent(in) :: LInputs,NParam,NStates,NOutputs + doubleprecision, dimension(LInputs) :: InputsPrecip + doubleprecision, dimension(LInputs) :: InputsPE + doubleprecision, dimension(NParam) :: Param + doubleprecision, dimension(NStates) :: StateStart + doubleprecision, dimension(NStates) :: StateEnd + integer, dimension(NOutputs) :: IndOutputs + doubleprecision, dimension(LInputs,NOutputs) :: Outputs + + !parameters, internal states and variables + integer NPX,NH,NMISC + parameter (NPX=14,NH=20,NMISC=30) + doubleprecision X(5*NH+7),XV(3*NPX+5*NH) + doubleprecision MISC(NMISC) + doubleprecision D + doubleprecision P1,E,Q + integer I,K + + !-------------------------------------------------------------- + !Initialisations + !-------------------------------------------------------------- + + !initilisation of model states to zero + X=0. + XV=0. + + !initilisation of model states using StateStart + DO I=1,3*NH + X(I)=StateStart(I) + ENDDO + + !parameter values + !Param(1) : production store capacity (X1 - PROD) [mm] + !Param(2) : intercatchment exchange constant (X2 - CES1) [mm/d] + !Param(3) : routing store capacity (X3 - ROUT) [mm] + !Param(4) : time constant of unit hydrograph (X4 - TB) [d] + !Param(5) : intercatchment exchange constant (X5 - CES2) [-] + !Param(6) : time constant of exponential store (X6 - EXP) [d] + + !computation of HU ordinates + D=2.5 + CALL HU1(XV,Param(4),D) + CALL HU2(XV,Param(4),D) + + !initialisation of model outputs + Q = -999.999 + MISC = -999.999 +c StateEnd = -999.999 !initialisation made in R +c Outputs = -999.999 !initialisation made in R + + + + !-------------------------------------------------------------- + !Time loop + !-------------------------------------------------------------- + DO k=1,LInputs + P1=InputsPrecip(k) + E =InputsPE(k) +c Q = -999.999 +c MISC = -999.999 + !model run on one time-step + CALL MOD_GR6J(X,XV,Param,P1,E,Q,MISC) + !storage of outputs + DO I=1,NOutputs + Outputs(k,I)=MISC(IndOutputs(I)) + ENDDO + ENDDO + !model states at the end of the run + DO K=1,3*NH + StateEnd(K)=X(K) + ENDDO + + RETURN + + ENDSUBROUTINE + + + + + +c################################################################################################################################ + + + + +C********************************************************************** + SUBROUTINE MOD_GR6J(X,XV,Param,P1,E,Q,MISC) +C Run on a single time-step with the GR6J model +C Inputs: +C X Vector of model states at the beginning of the time-step [mm] +C XV Vector of model states at the beginning of the time-step [mm] +C Param Vector of model parameters [mixed units] +C P1 Value of rainfall during the time-step [mm] +C E Value of potential evapotranspiration during the time-step [mm] +C Outputs: +C X Vector of model states at the end of the time-step [mm] +C XV Vector of model states at the end of the time-step [mm] +C Q Value of simulated flow at the catchment outlet for the time-step [mm] +C MISC Vector of model outputs for the time-step [mm] +C********************************************************************** + Implicit None + INTEGER NPX,NH,NMISC,NParam + PARAMETER (NPX=14,NH=20,NMISC=30) + PARAMETER (NParam=6) + DOUBLEPRECISION X(5*NH+7),XV(3*NPX+5*NH) + DOUBLEPRECISION Param(NParam) + DOUBLEPRECISION MISC(NMISC) + DOUBLEPRECISION P1,E,Q + DOUBLEPRECISION A,B,C,EN,ER,PN,PR,PS,WS,tanHyp,AR + DOUBLEPRECISION PERC,PRHU1,PRHU2,EXCH,QR,QD,QR1 + DOUBLEPRECISION AE,AEXCH1,AEXCH2 + INTEGER K + + DATA B/0.9/ + DATA C/0.4/ + + A=Param(1) + + +C Production store + IF(P1.LE.E) THEN + EN=E-P1 + PN=0. + WS=EN/A + IF(WS.GT.13)WS=13. + ER=X(2)*(2.-X(2)/A)*tanHyp(WS)/(1.+(1.-X(2)/A)*tanHyp(WS)) + AE=ER+P1 + IF(X(2).LT.ER) AE=X(2)+P1 + X(2)=X(2)-ER + PR=0. + ELSE + EN=0. + AE=E + PN=P1-E + WS=PN/A + IF(WS.GT.13)WS=13. + PS=A*(1.-(X(2)/A)**2.)*tanHyp(WS)/(1.+X(2)/A*tanHyp(WS)) + PR=PN-PS + X(2)=X(2)+PS + ENDIF + +C Percolation from production store + IF(X(2).LT.0.)X(2)=0. + PERC=X(2)*(1.-(1.+(X(2)/(9./4.*Param(1)))**4.)**(-0.25)) + X(2)=X(2)-PERC + + PR=PR+PERC + + PRHU1=PR*B + PRHU2=PR*(1.-B) + +C Unit hydrograph HU1 + DO K=1,MAX(1,MIN(NH-1,INT(Param(4)+1))) + X(7+K)=X(8+K)+XV(3*NPX+K)*PRHU1 + ENDDO + X(7+NH)=XV(3*NPX+NH)*PRHU1 + +C Unit hydrograph HU2 + DO K=1,MAX(1,MIN(2*NH-1,2*INT(Param(4)+1))) + X(7+NH+K)=X(8+NH+K)+XV(3*NPX+NH+K)*PRHU2 + ENDDO + X(7+3*NH)=XV(3*NPX+3*NH)*PRHU2 + +C Potential intercatchment semi-exchange + EXCH=Param(2)*(X(1)/Param(3)-Param(5)) + +C Routing store + AEXCH1=EXCH + IF((X(1)+X(8)+EXCH).LT.0) AEXCH1=-X(1)-X(8) + X(1)=X(1)+(1-C)*X(8)+EXCH + IF(X(1).LT.0.)X(1)=0. + QR=X(1)*(1.-(1.+(X(1)/Param(3))**4.)**(-1./4.)) + X(1)=X(1)-QR + +C Update of exponential store + X(6)=X(6)+C*X(8)+EXCH + AR=X(6)/Param(6) + IF(AR.GT.33.)AR=33. + IF(AR.LT.-33.)AR=-33. + + IF(AR.GT.7.)THEN + QR1=X(6)+Param(6)/EXP(AR) + GOTO 3 + ENDIF + + IF(AR.LT.-7.)THEN + QR1=Param(6)*EXP(AR) + GOTO 3 + ENDIF + + QR1=Param(6)*LOG(EXP(AR)+1.) + 3 CONTINUE + + X(6)=X(6)-QR1 + +C Runoff from direct branch QD + AEXCH2=EXCH + IF((X(8+NH)+EXCH).LT.0) AEXCH2=-X(8+NH) + QD=MAX(0.,X(8+NH)+EXCH) + +C Total runoff + Q=QR+QD+QR1 + IF(Q.LT.0.) Q=0. + +C Variables storage + MISC( 1)=E ! PE ! potential evapotranspiration [mm/d] + MISC( 2)=P1 ! Precip ! total precipitation [mm/d] + MISC( 3)=X(2) ! Prod ! production store level (X(2)) [mm] + MISC( 4)=AE ! AE ! actual evapotranspiration [mm/d] + MISC( 5)=PERC ! Perc ! percolation (PERC) [mm] + MISC( 6)=PR ! PR ! PR=PN-PS+PERC [mm] + MISC( 7)=X(8) ! Q9 ! outflow from HU1 (Q9) [mm/d] + MISC( 8)=X(8+NH) ! Q1 ! outflow from HU2 (Q1) [mm/d] + MISC( 9)=X(1) ! Rout ! routing store level (X(1)) [mm] + MISC(10)=EXCH ! Exch ! potential semi-exchange between catchments (EXCH) [mm/d] + MISC(11)=AEXCH1+AEXCH2 ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2) [mm/d] + MISC(12)=QR ! QR ! outflow from routing store (QR) [mm/d] + MISC(13)=QR1 ! QR1 ! outflow from exponential store (QR1) [mm/d] + MISC(14)=X(6) ! Exp ! exponential store level (X(6)) (negative) [mm] + MISC(15)=QD ! QD ! outflow from HU2 branch after exchange (QD) [mm/d] + MISC(16)=Q ! Qsim ! outflow at catchment outlet [mm/d] + + + ENDSUBROUTINE + + diff --git a/src/utils_D.f b/src/utils_D.f new file mode 100644 index 00000000..2028bc71 --- /dev/null +++ b/src/utils_D.f @@ -0,0 +1,272 @@ + + +C********************************************************************** + SUBROUTINE HU1(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU1 using successives differences on the S curve SS1 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+1) to XV(3*NPX+NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS1 + INTEGER I + + DO I=1,NH + XV(3*NPX+I)=SS1(I,C,D)-SS1(I-1,C,D) + ENDDO + ENDSUBROUTINE + + +C********************************************************************** + SUBROUTINE HU2(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU2 using successives differences on the S curve SS2 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS2 + INTEGER I + + DO I =1,2*NH + XV(3*NPX+NH+I)=SS2(I,C,D)-SS2(I-1,C,D) + ENDDO + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU4(XV,ALPHA,BETA) +C Computation of ordinates of MOHYSE unit hydrograph +C Inputs: +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH),U(3*NH) + DOUBLEPRECISION ALPHA,BETA,SU + INTEGER K + + SU=0. +c IF(ALPHA.LT.1.)THEN +c WRITE(*,*)' Pb ALPHA' +c STOP +c ENDIF + IF(ALPHA.EQ.1.)THEN + U(1)=1. + SU=1. + DO 1 K=2,3*NH + U(K)=0. + 1 CONTINUE + ELSE + DO 11 K=1,3*NH + U(K)=FLOAT(K)*(ALPHA-1.)*EXP(-FLOAT(K)/BETA) + SU=SU+U(K) + 11 CONTINUE + ENDIF + +c IF(SU.LT.0.0000000001)THEN +c WRITE(*,*)' Pb HU4',ALPHA, BETA +c STOP +c ENDIF + DO 2 K=1,3*NH + XV(3*NPX+K)=U(K)/SU + 2 CONTINUE + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU(XV,C) +C Computation of ordinates of GRP unit hydrograph +C Inputs: +C C: time constant +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C + DOUBLEPRECISION SH + INTEGER I + DO 10 I=1,2*NH + XV(3*NPX+NH+I)=SH(I,C)-SH(I-1,C) + 10 CONTINUE + RETURN + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION SH(I,C) +C Values of the S curve (cumulative HU curve) of GRP unit hydrograph HU +C Inputs: +C C: time constant +C I: time-step +C Outputs: +C SH: Values of the S curve for I +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION C + DOUBLEPRECISION SH,FI + INTEGER I + + FI=I + IF(FI.LE.0.)THEN + SH=0. + RETURN + ENDIF + IF(FI.GE.C)THEN + SH=1. + RETURN + ENDIF + SH=FI**2.5/(FI**2.5+(C-FI)**2.5) + RETURN + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS1(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU1 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS1: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS1 + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS1=0. + RETURN + ENDIF + IF(FI.LT.C) THEN + SS1=(FI/C)**D + RETURN + ENDIF + SS1=1. + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS2(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU2 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS2: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS2 + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS2=0. + RETURN + ENDIF + IF(FI.LE.C) THEN + SS2=0.5*(FI/C)**D + RETURN + ENDIF + IF(FI.LT.2.*C) THEN + SS2=1.-0.5*(2.-FI/C)**D + RETURN + ENDIF + SS2=1. + ENDFUNCTION + + + +C********************************************************************** + SUBROUTINE DEL(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER I,K + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+3*NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE DEL2(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=20) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER K,I + + IF(C.GT.FLOAT(NH)) C=FLOAT(NH) + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION tanHyp(Val) +C Computation of hyperbolic tangent +C********************************************************************** + Implicit None + DOUBLEPRECISION Val,ValExp,tanHyp + + ValExp=EXP(Val) + tanHyp=(ValExp - 1./ValExp)/(ValExp + 1./ValExp) + RETURN + ENDFUNCTION + diff --git a/src/utils_H.f b/src/utils_H.f new file mode 100644 index 00000000..56ba8e99 --- /dev/null +++ b/src/utils_H.f @@ -0,0 +1,272 @@ + + +C********************************************************************** + SUBROUTINE HU1_H(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU1 using successives differences on the S curve SS1 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+1) to XV(3*NPX+NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=480) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS1_H + INTEGER I + + DO I=1,NH + XV(3*NPX+I)=SS1_H(I,C,D)-SS1_H(I-1,C,D) + ENDDO + ENDSUBROUTINE + + +C********************************************************************** + SUBROUTINE HU2_H(XV,C,D) +C Computation of ordinates of GR unit hydrograph HU2 using successives differences on the S curve SS2 +C Inputs: +C C: time constant +C D: exponent +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=480) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,D,SS2_H + INTEGER I + + DO I =1,2*NH + XV(3*NPX+NH+I)=SS2_H(I,C,D)-SS2_H(I-1,C,D) + ENDDO + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU4_H(XV,ALPHA,BETA) +C Computation of ordinates of MOHYSE unit hydrograph +C Inputs: +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=480) + DOUBLEPRECISION XV(3*NPX+5*NH),U(3*NH) + DOUBLEPRECISION ALPHA,BETA,SU + INTEGER K + + SU=0. +c IF(ALPHA.LT.1.)THEN +c WRITE(*,*)' Pb ALPHA' +c STOP +c ENDIF + IF(ALPHA.EQ.1.)THEN + U(1)=1. + SU=1. + DO 1 K=2,3*NH + U(K)=0. + 1 CONTINUE + ELSE + DO 11 K=1,3*NH + U(K)=FLOAT(K)*(ALPHA-1.)*EXP(-FLOAT(K)/BETA) + SU=SU+U(K) + 11 CONTINUE + ENDIF + +c IF(SU.LT.0.0000000001)THEN +c WRITE(*,*)' Pb HU4',ALPHA, BETA +c STOP +c ENDIF + DO 2 K=1,3*NH + XV(3*NPX+K)=U(K)/SU + 2 CONTINUE + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE HU_H(XV,C) +C Computation of ordinates of GRP unit hydrograph +C Inputs: +C C: time constant +C Alpha: parameter +C Beta: parameter +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=480) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C + DOUBLEPRECISION SH_H + INTEGER I + DO 10 I=1,2*NH + XV(3*NPX+NH+I)=SH_H(I,C)-SH_H(I-1,C) + 10 CONTINUE + RETURN + ENDSUBROUTINE + + + +C********************************************************************** + FUNCTION SH_H(I,C) +C Values of the S curve (cumulative HU curve) of GRP unit hydrograph HU +C Inputs: +C C: time constant +C I: time-step +C Outputs: +C SH: Values of the S curve for I +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=480) + DOUBLEPRECISION C + DOUBLEPRECISION SH_H,FI + INTEGER I + + FI=I + IF(FI.LE.0.)THEN + SH_H=0. + RETURN + ENDIF + IF(FI.GE.C)THEN + SH_H=1. + RETURN + ENDIF + SH_H=FI**2.5/(FI**2.5+(C-FI)**2.5) + RETURN + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS1_H(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU1 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS1: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS1_H + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS1_H=0. + RETURN + ENDIF + IF(FI.LT.C) THEN + SS1_H=(FI/C)**D + RETURN + ENDIF + SS1_H=1. + ENDFUNCTION + + +C********************************************************************** + FUNCTION SS2_H(I,C,D) +C Values of the S curve (cumulative HU curve) of GR unit hydrograph HU2 +C Inputs: +C C: time constant +C D: exponent +C I: time-step +C Outputs: +C SS2: Values of the S curve for I +C********************************************************************** + Implicit None + DOUBLEPRECISION C,D,SS2_H + INTEGER I,FI + + FI=I + IF(FI.LE.0.) THEN + SS2_H=0. + RETURN + ENDIF + IF(FI.LE.C) THEN + SS2_H=0.5*(FI/C)**D + RETURN + ENDIF + IF(FI.LT.2.*C) THEN + SS2_H=1.-0.5*(2.-FI/C)**D + RETURN + ENDIF + SS2_H=1. + ENDFUNCTION + + + +C********************************************************************** + SUBROUTINE DEL_H(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): 2*NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=480) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER I,K + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+3*NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +C********************************************************************** + SUBROUTINE DEL2_H(XV,C) +C Computation of HU ordinates corresponding to a time lag of a given number (possibly non-integer) of time-steps +C (all ordinates are nul except 2 at max) +C Inputs: +C C: time constant +C Outputs: +C XV(3*NPX+NH+1) to XV(3*NPX+3*NH): NH ordinates of discrete hydrograph +C********************************************************************** + Implicit None + INTEGER NPX,NH + PARAMETER (NPX=14,NH=480) + DOUBLEPRECISION XV(3*NPX+5*NH) + DOUBLEPRECISION C,F + INTEGER K,I + + IF(C.GT.FLOAT(NH)) C=FLOAT(NH) + I=INT(C) + F=C-INT(C) + DO 1 K=3*NPX+1,3*NPX+NH + XV(K)=0. + 1 CONTINUE + XV(3*NPX+I)=1.-F + XV(3*NPX+I+1)=F + ENDSUBROUTINE + + + +cC********************************************************************** +c FUNCTION tanHyp_H(Val) +cC Computation of hyperbolic tangent +cC********************************************************************** +c Implicit None +c DOUBLEPRECISION Val,ValExp,tanHyp_H +c +c ValExp=EXP(Val) +c tanHyp_H=(ValExp - 1./ValExp)/(ValExp + 1./ValExp) +c RETURN +c ENDFUNCTION + diff --git a/tests/example_Calibration.R b/tests/example_Calibration.R new file mode 100644 index 00000000..8583f78c --- /dev/null +++ b/tests/example_Calibration.R @@ -0,0 +1,48 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration(InputsModel=InputsModel,RunOptions=RunOptions,InputsCrit=InputsCrit, + CalibOptions=CalibOptions,FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE, + FUN_CALIB=Calibration_HBAN) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions, + Param=Param,FUN=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + + diff --git a/tests/example_Calibration_HBAN.R b/tests/example_Calibration_HBAN.R new file mode 100644 index 00000000..75b7832f --- /dev/null +++ b/tests/example_Calibration_HBAN.R @@ -0,0 +1,46 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_HBAN) + +## calibration +OutputsCalib <- Calibration_HBAN(InputsModel=InputsModel,RunOptions=RunOptions, + InputsCrit=InputsCrit,CalibOptions=CalibOptions, + FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_Calibration_optim.R b/tests/example_Calibration_optim.R new file mode 100644 index 00000000..f08ec410 --- /dev/null +++ b/tests/example_Calibration_optim.R @@ -0,0 +1,45 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## calibration period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## calibration criterion: preparation of the InputsCrit object +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) + +## preparation of CalibOptions object +CalibOptions <- CreateCalibOptions(FUN_MOD=RunModel_GR4J,FUN_CALIB=Calibration_optim) + +## calibration +OutputsCalib <- Calibration_optim(InputsModel=InputsModel,RunOptions=RunOptions, + InputsCrit=InputsCrit,CalibOptions=CalibOptions, + FUN_MOD=RunModel_GR4J,FUN_CRIT=ErrorCrit_NSE) + +## simulation +Param <- OutputsCalib$ParamFinalR +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) diff --git a/tests/example_ErrorCrit.R b/tests/example_ErrorCrit.R new file mode 100644 index 00000000..c19c5105 --- /dev/null +++ b/tests/example_ErrorCrit.R @@ -0,0 +1,61 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions, + Param=Param,FUN=RunModel_GR4J) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency on log-transformed flows +transfo <- "log" +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],transfo=transfo) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Nash-Sutcliffe Efficiency above a threshold (q75%) +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]<quantile(BasinObs$Qmm[Ind_Run],0.75,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\n",sep="")) + +## efficiency criterion: Kling-Gupta Efficiency below a threshold (q10%) on log-trqansformed flows +transfo <- "log" +BoolCrit <- rep(TRUE,length(BasinObs$Qmm[Ind_Run])); +BoolCrit[BasinObs$Qmm[Ind_Run]>quantile(BasinObs$Qmm[Ind_Run],0.10,na.rm=TRUE)] <- FALSE; +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_KGE,InputsModel=InputsModel,RunOptions=RunOptions, + Qobs=BasinObs$Qmm[Ind_Run],BoolCrit=BoolCrit,transfo=transfo) +OutputsCrit <- ErrorCrit_KGE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) +cat(paste("SubCrit ",OutputsCrit$SubCritNames," ",round(OutputsCrit$SubCritValues,4),"\n",sep="")) + + + + diff --git a/tests/example_RunModel.R b/tests/example_RunModel.R new file mode 100644 index 00000000..b240b8cf --- /dev/null +++ b/tests/example_RunModel.R @@ -0,0 +1,29 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_CemaNeige.R b/tests/example_RunModel_CemaNeige.R new file mode 100644 index 00000000..134bd7d7 --- /dev/null +++ b/tests/example_RunModel_CemaNeige.R @@ -0,0 +1,25 @@ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeige,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoData[51],HypsoData=BasinInfo$HypsoData, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeige,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(0.962,2.249) +OutputsModel <- RunModel_CemaNeige(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel) + diff --git a/tests/example_RunModel_CemaNeigeGR4J.R b/tests/example_RunModel_CemaNeigeGR4J.R new file mode 100644 index 00000000..6ed335ae --- /dev/null +++ b/tests/example_RunModel_CemaNeigeGR4J.R @@ -0,0 +1,31 @@ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoData[51],HypsoData=BasinInfo$HypsoData, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR4J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(408.774,2.646,131.264,1.174,0.962,2.249) +OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_CemaNeigeGR5J.R b/tests/example_RunModel_CemaNeigeGR5J.R new file mode 100644 index 00000000..f543b5d5 --- /dev/null +++ b/tests/example_RunModel_CemaNeigeGR5J.R @@ -0,0 +1,31 @@ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR5J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoData[51],HypsoData=BasinInfo$HypsoData, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR5J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(179.139,-0.100,203.815,1.174,2.478,0.977,2.774) +OutputsModel <- RunModel_CemaNeigeGR5J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_CemaNeigeGR6J.R b/tests/example_RunModel_CemaNeigeGR6J.R new file mode 100644 index 00000000..a24e2098 --- /dev/null +++ b/tests/example_RunModel_CemaNeigeGR6J.R @@ -0,0 +1,31 @@ +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR6J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + ZInputs=BasinInfo$HypsoData[51],HypsoData=BasinInfo$HypsoData, + NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR6J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(116.482,0.500,72.733,1.224,0.278,30.333,0.977,2.776) +OutputsModel <- RunModel_CemaNeigeGR6J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR1A.R b/tests/example_RunModel_GR1A.R new file mode 100644 index 00000000..35779d49 --- /dev/null +++ b/tests/example_RunModel_GR1A.R @@ -0,0 +1,40 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## conversion of example data from daily to yearly time-step +TabSeries <- data.frame(BasinObs$DatesR,BasinObs$P,BasinObs$E,BasinObs$T,BasinObs$Qmm) +TimeFormat <- "daily" +NewTimeFormat <- "yearly" +ConvertFun <- c("sum","sum","mean","sum") +YearFirstMonth <- 09; +NewTabSeries <- SeriesAggreg(TabSeries=TabSeries,TimeFormat=TimeFormat, + NewTimeFormat=NewTimeFormat,ConvertFun=ConvertFun, + YearFirstMonth=YearFirstMonth) +BasinObs <- NewTabSeries +names(BasinObs) <- c("DatesR","P","E","T","Qmm") + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR1A,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%Y")=="1990"), + which(format(BasinObs$DatesR,format="%Y")=="1999")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR1A,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(0.840) +OutputsModel <- RunModel_GR1A(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR2M.R b/tests/example_RunModel_GR2M.R new file mode 100644 index 00000000..6ac7e261 --- /dev/null +++ b/tests/example_RunModel_GR2M.R @@ -0,0 +1,38 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## conversion of example data from daily to monthly time-step +TabSeries <- data.frame(BasinObs$DatesR,BasinObs$P,BasinObs$E,BasinObs$T,BasinObs$Qmm) +TimeFormat <- "daily" +NewTimeFormat <- "monthly" +ConvertFun <- c("sum","sum","mean","sum") +NewTabSeries <- SeriesAggreg(TabSeries=TabSeries,TimeFormat=TimeFormat, + NewTimeFormat=NewTimeFormat,ConvertFun=ConvertFun) +BasinObs <- NewTabSeries +names(BasinObs) <- c("DatesR","P","E","T","Qmm") + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR2M,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%m/%Y")=="01/1990"), + which(format(BasinObs$DatesR,format="%m/%Y")=="12/1999")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR2M,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(265.072,1.040) +OutputsModel <- RunModel_GR2M(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR4H.R b/tests/example_RunModel_GR4H.R new file mode 100644 index 00000000..af99a43a --- /dev/null +++ b/tests/example_RunModel_GR4H.R @@ -0,0 +1,28 @@ +## load of catchment data +require(airGR) +data(L0123003) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4H,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/03/2004 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/2008 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4H,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(521.113,-2.918,218.009,4.124) +OutputsModel <- RunModel_GR4H(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR4J.R b/tests/example_RunModel_GR4J.R new file mode 100644 index 00000000..192eee96 --- /dev/null +++ b/tests/example_RunModel_GR4J.R @@ -0,0 +1,28 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(257.238,1.012,88.235,2.208) +OutputsModel <- RunModel_GR4J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR5J.R b/tests/example_RunModel_GR5J.R new file mode 100644 index 00000000..4825f5ff --- /dev/null +++ b/tests/example_RunModel_GR5J.R @@ -0,0 +1,28 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR5J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR5J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(245.918,1.027,90.017,2.198,0.434) +OutputsModel <- RunModel_GR5J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_RunModel_GR6J.R b/tests/example_RunModel_GR6J.R new file mode 100644 index 00000000..38797485 --- /dev/null +++ b/tests/example_RunModel_GR6J.R @@ -0,0 +1,28 @@ +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR6J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR6J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(242.257,0.637,53.517,2.218,0.424,4.759) +OutputsModel <- RunModel_GR6J(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + +## efficiency criterion: Nash-Sutcliffe Efficiency +InputsCrit <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel, + RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run]) +OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel) +cat(paste(" Crit ",OutputsCrit$CritName," ",round(OutputsCrit$CritValue,4),"\n",sep="")) + diff --git a/tests/example_SeriesAggreg.R b/tests/example_SeriesAggreg.R new file mode 100644 index 00000000..6018c5d6 --- /dev/null +++ b/tests/example_SeriesAggreg.R @@ -0,0 +1,18 @@ +## load of catchment data +require(airGR) + +## preparation of the initial time series data frame at the daily time-step +data(L0123002) +TabSeries <- data.frame(BasinObs$DatesR,BasinObs$P,BasinObs$E,BasinObs$T,BasinObs$Qmm) +TimeFormat <- "daily" + +## conversion at the monthly time-step +NewTimeFormat <- "monthly" +ConvertFun <- c("sum","sum","mean","sum") +NewTabSeries <- SeriesAggreg(TabSeries=TabSeries,TimeFormat,NewTimeFormat,ConvertFun) + +## conversion at the yearly time-step +NewTimeFormat <- "yearly" +ConvertFun <- c("sum","sum","mean","sum") +NewTabSeries <- SeriesAggreg(TabSeries=TabSeries,TimeFormat,NewTimeFormat,ConvertFun) + diff --git a/tests/example_TransfoParam.R b/tests/example_TransfoParam.R new file mode 100644 index 00000000..0c5c5037 --- /dev/null +++ b/tests/example_TransfoParam.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR4J model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam(ParamIn=Xreal,Direction="RT",FUN_TRANSFO=TransfoParam_GR4J) + +## transformation Transformed->Real for the GR4J model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam(ParamIn=Xtran,Direction="TR",FUN_TRANSFO=TransfoParam_GR4J) diff --git a/tests/example_TransfoParam_CemaNeige.R b/tests/example_TransfoParam_CemaNeige.R new file mode 100644 index 00000000..85efecfc --- /dev/null +++ b/tests/example_TransfoParam_CemaNeige.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the CemaNeige module + Xreal <- matrix( c( 0.19, 1.73, + 0.39, 2.51, + 0.74, 4.06), + ncol=2,byrow=TRUE) + Xtran <- TransfoParam_CemaNeige(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the CemaNeige module + Xtran <- matrix( c( -6.26, +0.55, + -2.13, +0.92, + +4.86, +1.40) + ,ncol=2,byrow=TRUE) + Xreal <- TransfoParam_CemaNeige(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR1A.R b/tests/example_TransfoParam_GR1A.R new file mode 100644 index 00000000..99346023 --- /dev/null +++ b/tests/example_TransfoParam_GR1A.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR1A model + Xreal <- matrix( c( 0.625, + 1.250, + 1.875), + ncol=1,byrow=TRUE) + Xtran <- TransfoParam_GR1A(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR1A model + Xtran <- matrix( c( -5.00, + +0.00, + +5.00), + ncol=1,byrow=TRUE) + Xreal <- TransfoParam_GR1A(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR2M.R b/tests/example_TransfoParam_GR2M.R new file mode 100644 index 00000000..4c0399a0 --- /dev/null +++ b/tests/example_TransfoParam_GR2M.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR2M model + Xreal <- matrix( c( 221.41, -1.00, + 347.23, +0.00, + 854.01, +1.00), + ncol=2,byrow=TRUE) + Xtran <- TransfoParam_GR2M(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR2M model + Xtran <- matrix( c( +3.60, -5.00, + +3.90, +0.00, + +4.50, +5.00), + ncol=2,byrow=TRUE) + Xreal <- TransfoParam_GR2M(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR4H.R b/tests/example_TransfoParam_GR4H.R new file mode 100644 index 00000000..6a2868cf --- /dev/null +++ b/tests/example_TransfoParam_GR4H.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR4H model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam_GR4H(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR4H model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam_GR4H(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR4J.R b/tests/example_TransfoParam_GR4J.R new file mode 100644 index 00000000..61019033 --- /dev/null +++ b/tests/example_TransfoParam_GR4J.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR4J model + Xreal <- matrix( c( 221.41, -3.63, 30.00, 1.37, + 347.23, -1.03, 60.34, 1.76, + 854.06, -0.10, 148.41, 2.34), + ncol=4,byrow=TRUE) + Xtran <- TransfoParam_GR4J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR4J model + Xtran <- matrix( c( +3.60, -2.00, +3.40, -9.10, + +3.90, -0.90, +4.10, -8.70, + +4.50, -0.10, +5.00, -8.10), + ncol=4,byrow=TRUE) + Xreal <- TransfoParam_GR4J(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR5J.R b/tests/example_TransfoParam_GR5J.R new file mode 100644 index 00000000..b2361f3a --- /dev/null +++ b/tests/example_TransfoParam_GR5J.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR5J model + Xreal <- matrix( c( 221.41, -2.65, 27.11, 1.37, -0.76, + 347.23, -0.64, 60.34, 1.76, 0.30, + 854.01, -0.10, 148.41, 2.34, 0.52), + ncol=5,byrow=TRUE) + Xtran <- TransfoParam_GR5J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR5J model + Xtran <- matrix( c( +3.60, -1.70, +3.30, -9.10, -0.70, + +3.90, -0.60, +4.10, -8.70, +0.30, + +4.50, -0.10, +5.00, -8.10, +0.50), + ncol=5,byrow=TRUE) + Xreal <- TransfoParam_GR5J(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_TransfoParam_GR6J.R b/tests/example_TransfoParam_GR6J.R new file mode 100644 index 00000000..1bd48fa4 --- /dev/null +++ b/tests/example_TransfoParam_GR6J.R @@ -0,0 +1,15 @@ +require(airGR) + +## transformation Real->Transformed for the GR6J model + Xreal <- matrix( c( 221.41, -1.18, 27.11, 1.37, -0.18, 20.09, + 347.23, -0.52, 60.34, 1.76, 0.02, 54.60, + 854.06, 0.52, 148.41, 2.34, 0.22, 148.41), + ncol=6,byrow=TRUE) + Xtran <- TransfoParam_GR6J(ParamIn=Xreal,Direction="RT") + +## transformation Transformed->Real for the GR6J model + Xtran <- matrix( c( +3.60, -1.00, +3.30, -9.10, -0.90, +3.00, + +3.90, -0.50, +4.10, -8.70, +0.10, +4.00, + +4.50, +0.50, +5.00, -8.10, +1.10, +5.00), + ncol=6,byrow=TRUE) + Xreal <- TransfoParam_GR6J(ParamIn=Xtran,Direction="TR") diff --git a/tests/example_plot_OutputsModel.R b/tests/example_plot_OutputsModel.R new file mode 100644 index 00000000..3cd8e8d2 --- /dev/null +++ b/tests/example_plot_OutputsModel.R @@ -0,0 +1,54 @@ +#### example 1 without snow module + +## load of catchment data +require(airGR) +data(L0123001) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR4J,InputsModel=InputsModel,IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(734.568,-0.840,109.809,1.971) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_GR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + + +#### example 2 with snow module + +## load of catchment data +require(airGR) +data(L0123002) + +## preparation of the InputsModel object +InputsModel <- CreateInputsModel(FUN_MOD=RunModel_CemaNeigeGR4J,DatesR=BasinObs$DatesR, + Precip=BasinObs$P,PotEvap=BasinObs$E,TempMean=BasinObs$T, + HypsoData=BasinInfo$HypsoData,NLayers=5) + +## run period selection +Ind_Run <- seq(which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="01/01/1990 00:00"), + which(format(BasinObs$DatesR,format="%d/%m/%Y %H:%M")=="31/12/1999 00:00")) + +## preparation of the RunOptions object +RunOptions <- CreateRunOptions(FUN_MOD=RunModel_CemaNeigeGR4J,InputsModel=InputsModel, + IndPeriod_Run=Ind_Run) + +## simulation +Param <- c(408.774,2.646,131.264,1.174,0.962,2.249) +OutputsModel <- RunModel(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param, + FUN_MOD=RunModel_CemaNeigeGR4J) + +## results preview +plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run]) + + -- GitLab