diff --git a/DESCRIPTION b/DESCRIPTION index 5a652377ab4029e7a8aea1bcdac126022e77d5dd..49092a9318e430a89998bab146e616b8cdf1913f 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: airGR Type: Package Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling -Version: 1.2.12.14 +Version: 1.2.12.15 Date: 2019-04-01 Authors@R: c( person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")), diff --git a/NEWS.rmd b/NEWS.rmd index 1deb2e4f5848512db6303d72ce089c9dca439f99..3d117ae38ab6b93d8c62ad228ac0895ac44ca92c 100644 --- a/NEWS.rmd +++ b/NEWS.rmd @@ -13,7 +13,7 @@ output: -### 1.2.12.14 Release Notes (2019-04-01) +### 1.2.12.15 Release Notes (2019-04-01) diff --git a/man/CreateIniStates.Rd b/man/CreateIniStates.Rd index 769380892dffff734c2de5609b7af14498a53c67..f6ab0da133688e3f3fd23faf005b99923c4a02fd 100644 --- a/man/CreateIniStates.Rd +++ b/man/CreateIniStates.Rd @@ -48,11 +48,11 @@ CreateIniStates(FUN_MOD, InputsModel, \value{ [list] object of class \code{IniStates} containing the initial model internal states; it always includes the following: - \tabular{ll}{ - \emph{$Store } \tab [numeric] list of store levels (\emph{$Prod}, \emph{$Rout} and \emph{$Exp}) \cr - \emph{$UH } \tab [numeric] list of unit hydrographs levels (\emph{$UH1} and \emph{$UH2}) \cr - \emph{$CemaNeigeLayers} \tab [numeric] list of CemaNeige variables (\emph{$G} and \emph{$eTG}) - } + \tabular{ll}{ + \emph{$Store } \tab [numeric] list of store levels (\emph{$Prod}, \emph{$Rout} and \emph{$Exp}) \cr + \emph{$UH } \tab [numeric] list of unit hydrographs levels (\emph{$UH1} and \emph{$UH2}) \cr + \emph{$CemaNeigeLayers} \tab [numeric] list of CemaNeige variables (\emph{$G} and \emph{$eTG}) + } } @@ -140,4 +140,3 @@ Olivier Delaigue \seealso{ \code{\link{CreateRunOptions}} } - diff --git a/man/CreateInputsModel.Rd b/man/CreateInputsModel.Rd index f74f80909bb20ec1d9c7dcd91398d99c737224b4..bee9ad3ebaed1a34ead9c2fcac3da73aa21462dc 100644 --- a/man/CreateInputsModel.Rd +++ b/man/CreateInputsModel.Rd @@ -48,8 +48,8 @@ CreateInputsModel(FUN_MOD, DatesR, Precip, PrecipScale = TRUE, PotEvap = NULL, \emph{$DatesR } \tab [POSIXlt] vector of dates \cr \emph{$Precip } \tab [numeric] time series of total precipitation (catchment average) [mm/time step] \cr \emph{$PotEvap } \tab [numeric] time series of potential evapotranspiration (catchment average) [mm/time step], \cr\tab defined if FUN_MOD includes GR4H, GR4J, GR5J, GR6J, GR2M or GR1A \cr \cr - \emph{$LayerPrecip } \tab [list] list of time series of precipitation (layer average) [mm/time step], \cr\tab defined if \code{FUN_MOD} includes CemaNeige \cr \cr - \emph{$LayerTempMean } \tab [list] list of time series of mean air temperature (layer average) [°C], \cr\tab defined if \code{FUN_MOD} includes CemaNeige \cr \cr + \emph{$LayerPrecip } \tab [list] list of time series of precipitation (layer average) [mm/time step], \cr\tab defined if \code{FUN_MOD} includes CemaNeige \cr \cr + \emph{$LayerTempMean } \tab [list] list of time series of mean air temperature (layer average) [°C], \cr\tab defined if \code{FUN_MOD} includes CemaNeige \cr \cr \emph{$LayerFracSolidPrecip} \tab [list] list of time series of solid precipitation fraction (layer average) [-], \cr\tab defined if \code{FUN_MOD} includes CemaNeige \cr \cr } } diff --git a/man/DataAltiExtrapolation_Valery.Rd b/man/DataAltiExtrapolation_Valery.Rd index 10178828cb71d1e61c47d8bcca74f2e0617b3d1b..df6162d7e35c4592caf59e8eaa344d68e43ec974 100644 --- a/man/DataAltiExtrapolation_Valery.Rd +++ b/man/DataAltiExtrapolation_Valery.Rd @@ -39,12 +39,12 @@ DataAltiExtrapolation_Valery(DatesR, Precip, PrecipScale = TRUE, \value{ list containing the extrapolated series of precip. and air temp. on each elevation layer \tabular{ll}{ - \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm/d] \cr - \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [°C] \cr - \emph{$LayerTempMin } \tab [list] list of time series of daily min air temperature (layer average) [°C] \cr - \emph{$LayerTempMax } \tab [list] list of time series of daily max air temperature (layer average) [°C] \cr - \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-] \cr - \emph{$ZLayers } \tab [numeric] vector of median elevation for each layer \cr + \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm/d] \cr + \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [°C] \cr + \emph{$LayerTempMin } \tab [list] list of time series of daily min air temperature (layer average) [°C] \cr + \emph{$LayerTempMax } \tab [list] list of time series of daily max air temperature (layer average) [°C] \cr + \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-] \cr + \emph{$ZLayers } \tab [numeric] vector of median elevation for each layer \cr } } diff --git a/man/Param_Sets_GR4J.Rd b/man/Param_Sets_GR4J.Rd index c6e5271ed91714cf99ee46bf3d091383528d5b22..9c735ceb056ec10815cc28be44269816bd081cc6 100644 --- a/man/Param_Sets_GR4J.Rd +++ b/man/Param_Sets_GR4J.Rd @@ -11,9 +11,9 @@ \format{Data frame of parameters containing four numeric vectors \itemize{ - \item {GR4J X1} {production store capacity [mm]} - \item {GR4J X2} {intercatchment exchange coefficient [mm/d]} - \item {GR4J X3} {routing store capacity [mm]} + \item {GR4J X1} {production store capacity [mm]} + \item {GR4J X2} {intercatchment exchange coefficient [mm/d]} + \item {GR4J X3} {routing store capacity [mm]} \item {GR4J X4u} {unajusted unit hydrograph time constant [d]} }} diff --git a/man/RunModel_CemaNeigeGR4J.Rd b/man/RunModel_CemaNeigeGR4J.Rd index b4bfd1baceb04b057e5601c6b46b998c40e4eabb..8607b4ed2b839a9a5b410f71fe8afbb1c66dc162 100644 --- a/man/RunModel_CemaNeigeGR4J.Rd +++ b/man/RunModel_CemaNeigeGR4J.Rd @@ -34,41 +34,41 @@ CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall def \value{ [list] list containing the function outputs organised as follows: - \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr - \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr - \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr - \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr - \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr - \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr - \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr - \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr - \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr - \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr - \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr - \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr - \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr - \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/d] \cr - \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr - \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr - \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr - \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr - \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr - } - (refer to the provided references or to the package source code for further details on these model outputs) + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr + \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr + \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) } diff --git a/man/RunModel_CemaNeigeGR6J.Rd b/man/RunModel_CemaNeigeGR6J.Rd index 0496fa0a800e5fcdea706a3ea56edb9fb99f87e0..50a55e8f3693c114ef62bc3add8741daf9adbf0d 100644 --- a/man/RunModel_CemaNeigeGR6J.Rd +++ b/man/RunModel_CemaNeigeGR6J.Rd @@ -36,41 +36,41 @@ CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall def \value{ [list] list containing the function outputs organised as follows: - \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap} \tab [numeric] series of input potential evapotranspiration [mm/d] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr - \emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr - \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr - \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr - \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr - \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr - \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr - \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr - \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr - \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr - \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr - \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr - \emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr - \emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr - \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr - \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr - \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr - \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr - \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr - \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr - \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr - \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap} \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr + \emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr + \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr + \emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr + \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr + \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr + \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr } (refer to the provided references or to the package source code for further details on these model outputs) } diff --git a/man/RunModel_GR1A.Rd b/man/RunModel_GR1A.Rd index fb74dd258c6dcf387cffa1db4b1aae600ddaaa47..400576f4c96c724ef1894cc96f3b75ec32f73824 100644 --- a/man/RunModel_GR1A.Rd +++ b/man/RunModel_GR1A.Rd @@ -27,14 +27,14 @@ GR1A X1 \tab model parameter [-] \cr \value{ [list] list containing the function outputs organised as follows: - \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/y] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/y] \cr - \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/y] \cr - \emph{$StateEnd} \tab [numeric] states at the end of the run (NULL) [-] \cr - } - (refer to the provided references or to the package source code for further details on these model outputs) + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/y] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/y] \cr + \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/y] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (NULL) [-] \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) } diff --git a/man/RunModel_GR2M.Rd b/man/RunModel_GR2M.Rd index 4a75e41aefaa52f3df7fb07e7e54b7914e3d6497..f00869ed3eee0b4fed17f49601a1129cc4718008 100644 --- a/man/RunModel_GR2M.Rd +++ b/man/RunModel_GR2M.Rd @@ -28,21 +28,21 @@ GR2M X2 \tab groundwater exchange coefficient [-] \cr \value{ [list] list containing the function outputs organised as follows: - \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/month] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/month] \cr - \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/month] \cr - \emph{$Pn } \tab [numeric] series of net rainfall (P1) [mm/month] \cr - \emph{$Perc } \tab [numeric] series of percolation (P2) [mm/month] \cr - \emph{$PR } \tab [numeric] series of PR=Pn+Perc (P3) [mm/month] \cr - \emph{$Exch } \tab [numeric] series of potential exchange between catchments [mm/month] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr - \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/month] \cr - \emph{$StateEnd} \tab [numeric] states at the end of the run (production store level and routing store level) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr - } - (refer to the provided references or to the package source code for further details on these model outputs) + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/month] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/month] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/month] \cr + \emph{$Pn } \tab [numeric] series of net rainfall (P1) [mm/month] \cr + \emph{$Perc } \tab [numeric] series of percolation (P2) [mm/month] \cr + \emph{$PR } \tab [numeric] series of PR=Pn+Perc (P3) [mm/month] \cr + \emph{$Exch } \tab [numeric] series of potential exchange between catchments [mm/month] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/month] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (production store level and routing store level) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) } diff --git a/man/RunModel_GR4H.Rd b/man/RunModel_GR4H.Rd index 5ee828643d726c4422abe49d2b06fa1771b7bed5..2a05b06baa361e8f202cb6782144e463f31d0d0f 100644 --- a/man/RunModel_GR4H.Rd +++ b/man/RunModel_GR4H.Rd @@ -19,36 +19,36 @@ RunModel_GR4H(InputsModel, RunOptions, Param) \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} \item{Param}{[numeric] vector of 4 parameters -\tabular{ll}{ -GR4H X1 \tab production store capacity [mm] \cr -GR4H X2 \tab groundwater exchange coefficient [mm/h] \cr -GR4H X3 \tab routing store capacity [mm] \cr -GR4H X4 \tab unit hydrograph time constant [h] \cr -}} + \tabular{ll}{ + GR4H X1 \tab production store capacity [mm] \cr + GR4H X2 \tab groundwater exchange coefficient [mm/h] \cr + GR4H X3 \tab routing store capacity [mm] \cr + GR4H X4 \tab unit hydrograph time constant [h] \cr + }} } \value{ [list] list containing the function outputs organised as follows: - \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/h] \cr - \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/h] \cr - \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/h] \cr - \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/h] \cr - \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/h] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr - \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr - \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h] \cr - \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/h] \cr - \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/h] \cr - \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/h] \cr - \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], see \code{\link{CreateIniStates}} for more details \cr - } - (refer to the provided references or to the package source code for further details on these model outputs) + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/h] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/h] \cr + \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/h] \cr + \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/h] \cr + \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/h] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/h] \cr + \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/h] \cr + \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/h] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], see \code{\link{CreateIniStates}} for more details \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) } diff --git a/man/RunModel_GR4J.Rd b/man/RunModel_GR4J.Rd index 81ff3ad3e0ed2f4cef0bf80f5323a56d2eebd646..711477bcf76d6c366faf2fc004e40504f0cece2e 100644 --- a/man/RunModel_GR4J.Rd +++ b/man/RunModel_GR4J.Rd @@ -19,38 +19,38 @@ RunModel_GR4J(InputsModel, RunOptions, Param) \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} \item{Param}{[numeric] vector of 4 parameters -\tabular{ll}{ - GR4J X1 \tab production store capacity [mm] \cr - GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr - GR4J X3 \tab routing store capacity [mm] \cr - GR4J X4 \tab unit hydrograph time constant [d] \cr -}} + \tabular{ll}{ + GR4J X1 \tab production store capacity [mm] \cr + GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr + GR4J X3 \tab routing store capacity [mm] \cr + GR4J X4 \tab unit hydrograph time constant [d] \cr + }} } \value{ [list] list containing the function outputs organised as follows: - \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr - \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr - \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr - \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr - \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr - \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr - \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr - \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr - \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr - \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr - \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr - \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr - \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr - \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/d] \cr - \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr + \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr + \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr } (refer to the provided references or to the package source code for further details on these model outputs) } diff --git a/man/RunModel_GR5J.Rd b/man/RunModel_GR5J.Rd index 044bff2797a091fb8ce8801c4dbcccc834a53f82..e89ac81cfddd373e9e7d21aa8b55a315e325e014 100644 --- a/man/RunModel_GR5J.Rd +++ b/man/RunModel_GR5J.Rd @@ -19,41 +19,41 @@ RunModel_GR5J(InputsModel, RunOptions, Param) \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} \item{Param}{[numeric] vector of 5 parameters -\tabular{ll}{ -GR5J X1 \tab production store capacity [mm] \cr -GR5J X2 \tab intercatchment exchange coefficient [mm/d] \cr -GR5J X3 \tab routing store capacity [mm] \cr -GR5J X4 \tab unit hydrograph time constant [d] \cr -GR5J X5 \tab intercatchment exchange threshold [-] \cr -}} + \tabular{ll}{ + GR5J X1 \tab production store capacity [mm] \cr + GR5J X2 \tab intercatchment exchange coefficient [mm/d] \cr + GR5J X3 \tab routing store capacity [mm] \cr + GR5J X4 \tab unit hydrograph time constant [d] \cr + GR5J X5 \tab intercatchment exchange threshold [-] \cr + }} } \value{ [list] list containing the function outputs organised as follows: - \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr - \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr - \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr - \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr - \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr - \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr - \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr - \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr - \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr - \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr - \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr - \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr - \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr - \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/d] \cr - \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr - } - (refer to the provided references or to the package source code for further details on these model outputs) + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr + \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr + \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of simulated discharge [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) } diff --git a/man/RunModel_GR6J.Rd b/man/RunModel_GR6J.Rd index 4f3229bd09e287b775ea28ad2733549185d91863..ded1e43191bb5f5bf1598d5df1e874d8e676e738 100644 --- a/man/RunModel_GR6J.Rd +++ b/man/RunModel_GR6J.Rd @@ -19,44 +19,44 @@ RunModel_GR6J(InputsModel, RunOptions, Param) \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details} \item{Param}{[numeric] vector of 6 parameters -\tabular{ll}{ -GR6J X1 \tab production store capacity [mm] \cr -GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr -GR6J X3 \tab routing store capacity [mm] \cr -GR6J X4 \tab unit hydrograph time constant [d] \cr -GR6J X5 \tab intercatchment exchange threshold [-] \cr -GR6J X6 \tab coefficient for emptying exponential store [mm] \cr -}} + \tabular{ll}{ + GR6J X1 \tab production store capacity [mm] \cr + GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr + GR6J X3 \tab routing store capacity [mm] \cr + GR6J X4 \tab unit hydrograph time constant [d] \cr + GR6J X5 \tab intercatchment exchange threshold [-] \cr + GR6J X6 \tab coefficient for emptying exponential store [mm] \cr + }} } \value{ [list] list containing the function outputs organised as follows: - \tabular{ll}{ - \emph{$DatesR } \tab [POSIXlt] series of dates \cr - \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr - \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr - \emph{$Prod } \tab [numeric] series of production store level [mm] \cr - \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr - \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr - \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr - \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr - \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr - \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr - \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr - \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr - \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr - \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr - \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr - \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr - \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr - \emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr - \emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr - \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr - \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr - \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr - } - (refer to the provided references or to the package source code for further details on these model outputs) + \tabular{ll}{ + \emph{$DatesR } \tab [POSIXlt] series of dates \cr + \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr + \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr + \emph{$Prod } \tab [numeric] series of production store level [mm] \cr + \emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr + \emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr + \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr + \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr + \emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr + \emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr + \emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr + \emph{$Rout } \tab [numeric] series of routing store level [mm] \cr + \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr + \emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr + \emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr + \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr + \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr + \emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr + \emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr + \emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr + \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr + \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr + } + (refer to the provided references or to the package source code for further details on these model outputs) }