diff --git a/DESCRIPTION b/DESCRIPTION
index 5a652377ab4029e7a8aea1bcdac126022e77d5dd..49092a9318e430a89998bab146e616b8cdf1913f 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,7 +1,7 @@
 Package: airGR
 Type: Package
 Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
-Version: 1.2.12.14
+Version: 1.2.12.15
 Date: 2019-04-01
 Authors@R: c(
   person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
diff --git a/NEWS.rmd b/NEWS.rmd
index 1deb2e4f5848512db6303d72ce089c9dca439f99..3d117ae38ab6b93d8c62ad228ac0895ac44ca92c 100644
--- a/NEWS.rmd
+++ b/NEWS.rmd
@@ -13,7 +13,7 @@ output:
 
 
 
-### 1.2.12.14 Release Notes (2019-04-01) 
+### 1.2.12.15 Release Notes (2019-04-01) 
 
 
 
diff --git a/man/CreateIniStates.Rd b/man/CreateIniStates.Rd
index 769380892dffff734c2de5609b7af14498a53c67..f6ab0da133688e3f3fd23faf005b99923c4a02fd 100644
--- a/man/CreateIniStates.Rd
+++ b/man/CreateIniStates.Rd
@@ -48,11 +48,11 @@ CreateIniStates(FUN_MOD, InputsModel,
 
 \value{
 [list] object of class \code{IniStates} containing the initial model internal states; it always includes the following:
-         \tabular{ll}{
-         \emph{$Store          }  \tab  [numeric] list of store levels (\emph{$Prod}, \emph{$Rout} and \emph{$Exp}) \cr
-         \emph{$UH             }  \tab  [numeric] list of unit hydrographs levels (\emph{$UH1} and \emph{$UH2}) \cr
-         \emph{$CemaNeigeLayers}  \tab  [numeric] list of CemaNeige variables (\emph{$G} and \emph{$eTG})
-         }
+  \tabular{ll}{
+    \emph{$Store          } \tab [numeric] list of store levels (\emph{$Prod}, \emph{$Rout} and \emph{$Exp}) \cr
+    \emph{$UH             } \tab [numeric] list of unit hydrographs levels (\emph{$UH1} and \emph{$UH2}) \cr
+    \emph{$CemaNeigeLayers} \tab [numeric] list of CemaNeige variables (\emph{$G} and \emph{$eTG})
+  }
 }
 
 
@@ -140,4 +140,3 @@ Olivier Delaigue
 \seealso{
 \code{\link{CreateRunOptions}}
 }
-
diff --git a/man/CreateInputsModel.Rd b/man/CreateInputsModel.Rd
index f74f80909bb20ec1d9c7dcd91398d99c737224b4..bee9ad3ebaed1a34ead9c2fcac3da73aa21462dc 100644
--- a/man/CreateInputsModel.Rd
+++ b/man/CreateInputsModel.Rd
@@ -48,8 +48,8 @@ CreateInputsModel(FUN_MOD, DatesR, Precip, PrecipScale = TRUE, PotEvap = NULL,
     \emph{$DatesR              } \tab [POSIXlt] vector of dates \cr
     \emph{$Precip              } \tab [numeric] time series of total precipitation (catchment average) [mm/time step] \cr
     \emph{$PotEvap             } \tab [numeric] time series of potential evapotranspiration (catchment average) [mm/time step], \cr\tab defined if FUN_MOD includes GR4H, GR4J, GR5J, GR6J, GR2M or GR1A \cr \cr
-    \emph{$LayerPrecip         } \tab [list] list of time series of precipitation (layer average) [mm/time step], \cr\tab defined if  \code{FUN_MOD} includes CemaNeige \cr \cr
-    \emph{$LayerTempMean       } \tab [list] list of time series of mean air temperature (layer average) [°C], \cr\tab defined if  \code{FUN_MOD} includes CemaNeige \cr \cr
+    \emph{$LayerPrecip         } \tab [list] list of time series of precipitation (layer average) [mm/time step], \cr\tab defined if \code{FUN_MOD} includes CemaNeige \cr \cr
+    \emph{$LayerTempMean       } \tab [list] list of time series of mean air temperature (layer average) [°C], \cr\tab defined if \code{FUN_MOD} includes CemaNeige \cr \cr
     \emph{$LayerFracSolidPrecip} \tab [list] list of time series of solid precipitation fraction (layer average) [-], \cr\tab defined if \code{FUN_MOD} includes CemaNeige \cr \cr
          }
 }
diff --git a/man/DataAltiExtrapolation_Valery.Rd b/man/DataAltiExtrapolation_Valery.Rd
index 10178828cb71d1e61c47d8bcca74f2e0617b3d1b..df6162d7e35c4592caf59e8eaa344d68e43ec974 100644
--- a/man/DataAltiExtrapolation_Valery.Rd
+++ b/man/DataAltiExtrapolation_Valery.Rd
@@ -39,12 +39,12 @@ DataAltiExtrapolation_Valery(DatesR, Precip, PrecipScale = TRUE,
 \value{
 list containing the extrapolated series of precip. and air temp. on each elevation layer
          \tabular{ll}{                                                                                                      
-           \emph{$LayerPrecip         }  \tab  [list] list of time series of daily precipitation (layer average) [mm/d]        \cr
-           \emph{$LayerTempMean       }  \tab  [list] list of time series of daily mean air temperature (layer average) [°C]  \cr
-           \emph{$LayerTempMin        }  \tab  [list] list of time series of daily min air temperature (layer average) [°C]   \cr
-           \emph{$LayerTempMax        }  \tab  [list] list of time series of daily max air temperature (layer average) [°C]   \cr
-           \emph{$LayerFracSolidPrecip}  \tab  [list] list of time series of daily solid precip. fract. (layer average) [-]     \cr
-           \emph{$ZLayers             }  \tab  [numeric] vector of median elevation for each layer                              \cr
+           \emph{$LayerPrecip         } \tab [list] list of time series of daily precipitation (layer average) [mm/d]      \cr
+           \emph{$LayerTempMean       } \tab [list] list of time series of daily mean air temperature (layer average) [°C] \cr
+           \emph{$LayerTempMin        } \tab [list] list of time series of daily min air temperature (layer average) [°C]  \cr
+           \emph{$LayerTempMax        } \tab [list] list of time series of daily max air temperature (layer average) [°C]  \cr
+           \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-]  \cr
+           \emph{$ZLayers             } \tab [numeric] vector of median elevation for each layer                           \cr
          }
 }
 
diff --git a/man/Param_Sets_GR4J.Rd b/man/Param_Sets_GR4J.Rd
index c6e5271ed91714cf99ee46bf3d091383528d5b22..9c735ceb056ec10815cc28be44269816bd081cc6 100644
--- a/man/Param_Sets_GR4J.Rd
+++ b/man/Param_Sets_GR4J.Rd
@@ -11,9 +11,9 @@
 
 \format{Data frame of parameters containing four numeric vectors
 \itemize{
-  \item {GR4J X1} {production store capacity [mm]}
-  \item {GR4J X2} {intercatchment exchange coefficient [mm/d]}
-  \item {GR4J X3} {routing store capacity [mm]}
+  \item {GR4J X1}  {production store capacity [mm]}
+  \item {GR4J X2}  {intercatchment exchange coefficient [mm/d]}
+  \item {GR4J X3}  {routing store capacity [mm]}
   \item {GR4J X4u} {unajusted unit hydrograph time constant [d]}
 }}
 
diff --git a/man/RunModel_CemaNeigeGR4J.Rd b/man/RunModel_CemaNeigeGR4J.Rd
index b4bfd1baceb04b057e5601c6b46b998c40e4eabb..8607b4ed2b839a9a5b410f71fe8afbb1c66dc162 100644
--- a/man/RunModel_CemaNeigeGR4J.Rd
+++ b/man/RunModel_CemaNeigeGR4J.Rd
@@ -34,41 +34,41 @@ CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall def
 
 \value{
 [list] list containing the function outputs organised as follows:                                         
-         \tabular{ll}{                                                                                         
-         \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                     \cr
-         \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/d]                 \cr
-         \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/d]                          \cr
-         \emph{$Prod    }          \tab [numeric] series of production store level [mm]                        \cr
-         \emph{$Pn      }          \tab [numeric] series of net rainfall [mm/d]                         			  \cr
-         \emph{$Ps      }          \tab [numeric] series of the part of Pn filling the production store [mm/d]        \cr
-         \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/d]                          \cr
-         \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/d]                                 \cr
-         \emph{$PR      }          \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                      \cr
-         \emph{$Q9      }          \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                   \cr
-         \emph{$Q1      }          \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                   \cr
-         \emph{$Rout    }          \tab [numeric] series of routing store level [mm]                           \cr
-         \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]         \cr
-         \emph{$AExch1  }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d]    \cr
-         \emph{$AExch2  }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d]    \cr
-         \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]           \cr
-         \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/d]                         \cr
-         \emph{$QD      }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]           \cr
-         \emph{$Qsim    }          \tab [numeric] series of simulated discharge [mm/d]                                               \cr
-         \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                          \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Pliq         }   \tab [numeric] series of liquid precip. [mm/d]                          \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Psol         }   \tab [numeric] series of solid precip. [mm/d]                           \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     }   \tab [numeric] series of snow pack [mm]                                 \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$ThermalState }   \tab [numeric] series of snow pack thermal state [°C]                 \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Gratio       }   \tab [numeric] series of Gratio [0-1]                                   \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      }   \tab [numeric] series of potential snow melt [mm/d]                     \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Melt         }   \tab [numeric] series of actual snow melt [mm/d]                        \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  }   \tab [numeric] series of liquid precip. + actual snow melt [mm/d]       \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Temp         }   \tab [numeric] series of air temperature [°C] \cr     
-         \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold   }   \tab [numeric] series of melt threshold [mm] \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax    }   \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
-         \emph{$StateEnd}                                  \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
-         }                                                                                                     
-         (refer to the provided references or to the package source code for further details on these model outputs)
+  \tabular{ll}{                                                                                         
+  \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                  \cr
+  \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/d]              \cr
+  \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/d]                       \cr
+  \emph{$Prod    }          \tab [numeric] series of production store level [mm]                            \cr
+  \emph{$Pn      }          \tab [numeric] series of net rainfall [mm/d]                         			      \cr
+  \emph{$Ps      }          \tab [numeric] series of the part of Pn filling the production store [mm/d]     \cr
+  \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/d]                       \cr
+  \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/d]                              \cr
+  \emph{$PR      }          \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                   \cr
+  \emph{$Q9      }          \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                \cr
+  \emph{$Q1      }          \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                \cr
+  \emph{$Rout    }          \tab [numeric] series of routing store level [mm]                               \cr
+  \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]      \cr
+  \emph{$AExch1  }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
+  \emph{$AExch2  }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
+  \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]        \cr
+  \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/d]                      \cr
+  \emph{$QD      }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]        \cr
+  \emph{$Qsim    }          \tab [numeric] series of simulated discharge [mm/d]                             \cr
+  \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                        \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Pliq         } \tab [numeric] series of liquid precip. [mm/d]                    \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Psol         } \tab [numeric] series of solid precip. [mm/d]                     \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     } \tab [numeric] series of snow pack [mm]                           \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C]             \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Gratio       } \tab [numeric] series of Gratio [0-1]                             \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      } \tab [numeric] series of potential snow melt [mm/d]               \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Melt         } \tab [numeric] series of actual snow melt [mm/d]                  \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Temp         } \tab [numeric] series of air temperature [°C]                     \cr     
+  \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold   } \tab [numeric] series of melt threshold [mm]                      \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax    } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
+  \emph{$StateEnd}                                \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details                               \cr
+  }                                                                                                     
+  (refer to the provided references or to the package source code for further details on these model outputs)
 }
 
 
diff --git a/man/RunModel_CemaNeigeGR6J.Rd b/man/RunModel_CemaNeigeGR6J.Rd
index 0496fa0a800e5fcdea706a3ea56edb9fb99f87e0..50a55e8f3693c114ef62bc3add8741daf9adbf0d 100644
--- a/man/RunModel_CemaNeigeGR6J.Rd
+++ b/man/RunModel_CemaNeigeGR6J.Rd
@@ -36,41 +36,41 @@ CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall def
 
 \value{
 [list] list containing the function outputs organised as follows:                                         
-         \tabular{ll}{                                                                                         
-         \emph{$DatesR }          \tab [POSIXlt] series of dates                                                             \cr
-         \emph{$PotEvap}          \tab [numeric] series of input potential evapotranspiration [mm/d]                         \cr
-         \emph{$Precip }          \tab [numeric] series of input total precipitation [mm/d]                                  \cr
-         \emph{$Prod   }          \tab [numeric] series of production store level [mm]                                       \cr
-         \emph{$Pn     }          \tab [numeric] series of net rainfall [mm/d]                         			                 \cr
-         \emph{$Ps     }          \tab [numeric] series of the part of Ps filling the production store [mm/d]                \cr
-         \emph{$AE     }          \tab [numeric] series of actual evapotranspiration [mm/d]                                  \cr
-         \emph{$Perc   }          \tab [numeric] series of percolation (PERC) [mm/d]                                         \cr
-         \emph{$PR     }          \tab [numeric] series of PR=PN-PS+PERC [mm/d]                                              \cr
-         \emph{$Q9     }          \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                           \cr
-         \emph{$Q1     }          \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                           \cr
-         \emph{$Rout   }          \tab [numeric] series of routing store level [mm]                                          \cr
-         \emph{$Exch   }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]                 \cr
-         \emph{$AExch1 }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d]            \cr
-         \emph{$AExch2 }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d]            \cr
-         \emph{$AExch  }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]                   \cr
-         \emph{$QR     }          \tab [numeric] series of routing store outflow (QR) [mm/d]                                 \cr
-         \emph{$QRExp  }          \tab [numeric] series of exponential store outflow (QRExp) [mm/d]                          \cr
-         \emph{$Exp    }          \tab [numeric] series of exponential store level (negative) [mm]                           \cr
-         \emph{$QD     }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]                   \cr
-         \emph{$Qsim   }          \tab [numeric] series of Qsim [mm/d]                                                       \cr
-         \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                                  \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Pliq         }   \tab [numeric] series of liquid precip. [mm/d]                    \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Psol         }   \tab [numeric] series of solid precip. [mm/d]                     \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     }   \tab [numeric] series of snow pack [mm]                           \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$ThermalState }   \tab [numeric] series of snow pack thermal state [°C]             \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Gratio       }   \tab [numeric] series of Gratio [0-1]                             \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      }   \tab [numeric] series of potential snow melt [mm/d]               \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Melt         }   \tab [numeric] series of actual snow melt [mm/d]                  \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  }   \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Temp         }   \tab [numeric] series of air temperature [°C]                     \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold   }   \tab [numeric] series of melt threshold [mm]                      \cr
-         \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax    }   \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
-         \emph{$StateEnd}                                  \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
+  \tabular{ll}{                                                                                         
+  \emph{$DatesR }          \tab [POSIXlt] series of dates                                                             \cr
+  \emph{$PotEvap}          \tab [numeric] series of input potential evapotranspiration [mm/d]                         \cr
+  \emph{$Precip }          \tab [numeric] series of input total precipitation [mm/d]                                  \cr
+  \emph{$Prod   }          \tab [numeric] series of production store level [mm]                                       \cr
+  \emph{$Pn     }          \tab [numeric] series of net rainfall [mm/d]                         			                \cr
+  \emph{$Ps     }          \tab [numeric] series of the part of Ps filling the production store [mm/d]                \cr
+  \emph{$AE     }          \tab [numeric] series of actual evapotranspiration [mm/d]                                  \cr
+  \emph{$Perc   }          \tab [numeric] series of percolation (PERC) [mm/d]                                         \cr
+  \emph{$PR     }          \tab [numeric] series of PR=PN-PS+PERC [mm/d]                                              \cr
+  \emph{$Q9     }          \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                           \cr
+  \emph{$Q1     }          \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                           \cr
+  \emph{$Rout   }          \tab [numeric] series of routing store level [mm]                                          \cr
+  \emph{$Exch   }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]                 \cr
+  \emph{$AExch1 }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d]            \cr
+  \emph{$AExch2 }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d]            \cr
+  \emph{$AExch  }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]                   \cr
+  \emph{$QR     }          \tab [numeric] series of routing store outflow (QR) [mm/d]                                 \cr
+  \emph{$QRExp  }          \tab [numeric] series of exponential store outflow (QRExp) [mm/d]                          \cr
+  \emph{$Exp    }          \tab [numeric] series of exponential store level (negative) [mm]                           \cr
+  \emph{$QD     }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]                   \cr
+  \emph{$Qsim   }          \tab [numeric] series of Qsim [mm/d]                                                       \cr
+  \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                                  \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Pliq         }   \tab [numeric] series of liquid precip. [mm/d]                    \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Psol         }   \tab [numeric] series of solid precip. [mm/d]                     \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     }   \tab [numeric] series of snow pack [mm]                           \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$ThermalState }   \tab [numeric] series of snow pack thermal state [°C]             \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Gratio       }   \tab [numeric] series of Gratio [0-1]                             \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      }   \tab [numeric] series of potential snow melt [mm/d]               \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Melt         }   \tab [numeric] series of actual snow melt [mm/d]                  \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  }   \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Temp         }   \tab [numeric] series of air temperature [°C]                     \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold   }   \tab [numeric] series of melt threshold [mm]                      \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax    }   \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
+  \emph{$StateEnd}                                  \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
          }                                                                                                     
          (refer to the provided references or to the package source code for further details on these model outputs)
 }
diff --git a/man/RunModel_GR1A.Rd b/man/RunModel_GR1A.Rd
index fb74dd258c6dcf387cffa1db4b1aae600ddaaa47..400576f4c96c724ef1894cc96f3b75ec32f73824 100644
--- a/man/RunModel_GR1A.Rd
+++ b/man/RunModel_GR1A.Rd
@@ -27,14 +27,14 @@ GR1A X1 \tab model parameter [-] \cr
 
 \value{
 [list] list containing the function outputs organised as follows:                                         
-         \tabular{ll}{                                                                                         
-         \emph{$DatesR  } \tab [POSIXlt] series of dates                                     \cr
-         \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/y] \cr
-         \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/y]          \cr
-         \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/y]                \cr
-         \emph{$StateEnd} \tab [numeric] states at the end of the run (NULL) [-]             \cr         
-         }                                                                                                     
-         (refer to the provided references or to the package source code for further details on these model outputs)
+  \tabular{ll}{                                                                                         
+    \emph{$DatesR  } \tab [POSIXlt] series of dates                                     \cr
+    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/y] \cr
+    \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/y]          \cr
+    \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/y]                \cr
+    \emph{$StateEnd} \tab [numeric] states at the end of the run (NULL) [-]             \cr         
+  }                                                                                                     
+  (refer to the provided references or to the package source code for further details on these model outputs)
 }
 
 
diff --git a/man/RunModel_GR2M.Rd b/man/RunModel_GR2M.Rd
index 4a75e41aefaa52f3df7fb07e7e54b7914e3d6497..f00869ed3eee0b4fed17f49601a1129cc4718008 100644
--- a/man/RunModel_GR2M.Rd
+++ b/man/RunModel_GR2M.Rd
@@ -28,21 +28,21 @@ GR2M X2 \tab groundwater exchange coefficient [-] \cr
 
 \value{
 [list] list containing the function outputs organised as follows:                                         
-         \tabular{ll}{                                                                                         
-            \emph{$DatesR  } \tab [POSIXlt] series of dates                                            \cr
-            \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/month]    \cr
-            \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/month]             \cr
-            \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/month]             \cr
-            \emph{$Pn      } \tab [numeric] series of net rainfall (P1) [mm/month]                     \cr
-            \emph{$Perc    } \tab [numeric] series of percolation (P2) [mm/month]                      \cr
-            \emph{$PR      } \tab [numeric] series of PR=Pn+Perc (P3) [mm/month]                       \cr
-            \emph{$Exch    } \tab [numeric] series of potential exchange between catchments [mm/month] \cr
-            \emph{$Prod    } \tab [numeric] series of production store level [mm]                      \cr
-            \emph{$Rout    } \tab [numeric] series of routing store level [mm]                         \cr
-            \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/month]                   \cr
-            \emph{$StateEnd} \tab [numeric] states at the end of the run (production store level and routing store level) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
-         }                                                                                                     
-         (refer to the provided references or to the package source code for further details on these model outputs)
+  \tabular{ll}{                                                                                         
+    \emph{$DatesR  } \tab [POSIXlt] series of dates                                            \cr
+    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/month]    \cr
+    \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/month]             \cr
+    \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/month]             \cr
+    \emph{$Pn      } \tab [numeric] series of net rainfall (P1) [mm/month]                     \cr
+    \emph{$Perc    } \tab [numeric] series of percolation (P2) [mm/month]                      \cr
+    \emph{$PR      } \tab [numeric] series of PR=Pn+Perc (P3) [mm/month]                       \cr
+    \emph{$Exch    } \tab [numeric] series of potential exchange between catchments [mm/month] \cr
+    \emph{$Prod    } \tab [numeric] series of production store level [mm]                      \cr
+    \emph{$Rout    } \tab [numeric] series of routing store level [mm]                         \cr
+    \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/month]                   \cr
+    \emph{$StateEnd} \tab [numeric] states at the end of the run (production store level and routing store level) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
+  }                                                                                                     
+  (refer to the provided references or to the package source code for further details on these model outputs)
 }
 
 
diff --git a/man/RunModel_GR4H.Rd b/man/RunModel_GR4H.Rd
index 5ee828643d726c4422abe49d2b06fa1771b7bed5..2a05b06baa361e8f202cb6782144e463f31d0d0f 100644
--- a/man/RunModel_GR4H.Rd
+++ b/man/RunModel_GR4H.Rd
@@ -19,36 +19,36 @@ RunModel_GR4H(InputsModel, RunOptions, Param)
 \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
 
 \item{Param}{[numeric] vector of 4 parameters
-\tabular{ll}{                                                                      
-GR4H X1 \tab production store capacity [mm]          \cr
-GR4H X2 \tab groundwater exchange coefficient [mm/h] \cr
-GR4H X3 \tab routing store capacity [mm]             \cr
-GR4H X4 \tab unit hydrograph time constant [h]       \cr
-}}
+  \tabular{ll}{                                                                      
+    GR4H X1 \tab production store capacity [mm]          \cr
+    GR4H X2 \tab groundwater exchange coefficient [mm/h] \cr
+    GR4H X3 \tab routing store capacity [mm]             \cr
+    GR4H X4 \tab unit hydrograph time constant [h]       \cr
+  }}
 }
 
 
 \value{
 [list] list containing the function outputs organised as follows:                                         
-         \tabular{ll}{                                                                                         
-         \emph{$DatesR  } \tab [POSIXlt] series of dates                                             \cr
-         \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h]         \cr
-         \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/h]                  \cr
-         \emph{$Prod    } \tab [numeric] series of production store level [mm]                       \cr
-         \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/h]                  \cr
-         \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/h]                         \cr
-         \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/h]                              \cr
-         \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/h]                           \cr
-         \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/h]                           \cr
-         \emph{$Rout    } \tab [numeric] series of routing store level [mm]                          \cr
-         \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr
-         \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h]   \cr
-         \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/h]                 \cr
-         \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/h]   \cr
-         \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/h]                        \cr
-         \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], see \code{\link{CreateIniStates}} for more details \cr
-         }                                                                                                     
-         (refer to the provided references or to the package source code for further details on these model outputs)
+  \tabular{ll}{                                                                                         
+    \emph{$DatesR  } \tab [POSIXlt] series of dates                                             \cr
+    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h]         \cr
+    \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/h]                  \cr
+    \emph{$Prod    } \tab [numeric] series of production store level [mm]                       \cr
+    \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/h]                  \cr
+    \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/h]                         \cr
+    \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/h]                              \cr
+    \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/h]                           \cr
+    \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/h]                           \cr
+    \emph{$Rout    } \tab [numeric] series of routing store level [mm]                          \cr
+    \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr
+    \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h]   \cr
+    \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/h]                 \cr
+    \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/h]   \cr
+    \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/h]                        \cr
+    \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], see \code{\link{CreateIniStates}} for more details \cr
+  }                                                                                                     
+  (refer to the provided references or to the package source code for further details on these model outputs)
 }
 
 
diff --git a/man/RunModel_GR4J.Rd b/man/RunModel_GR4J.Rd
index 81ff3ad3e0ed2f4cef0bf80f5323a56d2eebd646..711477bcf76d6c366faf2fc004e40504f0cece2e 100644
--- a/man/RunModel_GR4J.Rd
+++ b/man/RunModel_GR4J.Rd
@@ -19,38 +19,38 @@ RunModel_GR4J(InputsModel, RunOptions, Param)
 \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
 
 \item{Param}{[numeric] vector of 4 parameters
-\tabular{ll}{                                                                      
-  GR4J X1 \tab production store capacity [mm]             \cr
-  GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr
-  GR4J X3 \tab routing store capacity [mm]                \cr
-  GR4J X4 \tab unit hydrograph time constant [d]          \cr
-}}
+  \tabular{ll}{                                                                      
+    GR4J X1 \tab production store capacity [mm]             \cr
+    GR4J X2 \tab intercatchment exchange coefficient [mm/d] \cr
+    GR4J X3 \tab routing store capacity [mm]                \cr
+    GR4J X4 \tab unit hydrograph time constant [d]          \cr
+  }}
 }
 
 
 \value{
 [list] list containing the function outputs organised as follows:                                         
-         \tabular{ll}{                                                                                         
-           \emph{$DatesR  } \tab [POSIXlt] series of dates                                                          \cr
-           \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d]                      \cr
-           \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/d]                               \cr
-           \emph{$Prod    } \tab [numeric] series of production store level [mm]                 	                  \cr
-           \emph{$Pn      } \tab [numeric] series of net rainfall [mm/d]                         			              \cr
-           \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store [mm/d]             \cr
-           \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/d]                               \cr
-           \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/d]                                      \cr
-           \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                           \cr
-           \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                        \cr
-           \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                        \cr
-           \emph{$Rout    } \tab [numeric] series of routing store level [mm]                     		              \cr
-           \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/d]              \cr
-           \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d]         \cr
-           \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d]         \cr
-           \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]                \cr
-           \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/d]                              \cr
-           \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]                \cr
-           \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/d]                                     \cr
-           \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
+  \tabular{ll}{                                                                                         
+    \emph{$DatesR  } \tab [POSIXlt] series of dates                                                          \cr
+    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d]                      \cr
+    \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/d]                               \cr
+    \emph{$Prod    } \tab [numeric] series of production store level [mm]                 	                 \cr
+    \emph{$Pn      } \tab [numeric] series of net rainfall [mm/d]                         			             \cr
+    \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store [mm/d]             \cr
+    \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/d]                               \cr
+    \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/d]                                      \cr
+    \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                           \cr
+    \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                        \cr
+    \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                        \cr
+    \emph{$Rout    } \tab [numeric] series of routing store level [mm]                     		               \cr
+    \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/d]              \cr
+    \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d]         \cr
+    \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d]         \cr
+    \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]                \cr
+    \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/d]                              \cr
+    \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]                \cr
+    \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/d]                                     \cr
+    \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
          }                                                                                                     
          (refer to the provided references or to the package source code for further details on these model outputs)
 }
diff --git a/man/RunModel_GR5J.Rd b/man/RunModel_GR5J.Rd
index 044bff2797a091fb8ce8801c4dbcccc834a53f82..e89ac81cfddd373e9e7d21aa8b55a315e325e014 100644
--- a/man/RunModel_GR5J.Rd
+++ b/man/RunModel_GR5J.Rd
@@ -19,41 +19,41 @@ RunModel_GR5J(InputsModel, RunOptions, Param)
 \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
 
 \item{Param}{[numeric] vector of 5 parameters
-\tabular{ll}{                                                                      
-GR5J X1 \tab production store capacity [mm]             \cr
-GR5J X2 \tab intercatchment exchange coefficient [mm/d] \cr
-GR5J X3 \tab routing store capacity [mm]                \cr
-GR5J X4 \tab unit hydrograph time constant [d]          \cr
-GR5J X5 \tab intercatchment exchange threshold [-]      \cr
-}}
+  \tabular{ll}{                                                                      
+    GR5J X1 \tab production store capacity [mm]             \cr
+    GR5J X2 \tab intercatchment exchange coefficient [mm/d] \cr
+    GR5J X3 \tab routing store capacity [mm]                \cr
+    GR5J X4 \tab unit hydrograph time constant [d]          \cr
+    GR5J X5 \tab intercatchment exchange threshold [-]      \cr
+  }}
 }
 
 
 \value{
 [list] list containing the function outputs organised as follows:                                         
-         \tabular{ll}{                                                                                         
-         \emph{$DatesR  } \tab [POSIXlt] series of dates                                                  \cr
-         \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d]              \cr
-         \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/d]                       \cr
-         \emph{$Prod    } \tab [numeric] series of production store level [mm]                            \cr
-         \emph{$Pn      } \tab [numeric] series of net rainfall [mm/d]                         			      \cr
-         \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store [mm/d]     \cr
-         \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/d]                       \cr
-         \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/d]                              \cr
-         \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                   \cr
-         \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                \cr
-         \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                \cr
-         \emph{$Rout    } \tab [numeric] series of routing store level [mm]                               \cr
-         \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/d]      \cr
-         \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
-         \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
-         \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]        \cr
-         \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/d]                      \cr
-         \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]        \cr
-         \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/d]                             \cr
-         \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
-         }                                                                                                     
-         (refer to the provided references or to the package source code for further details on these model outputs)
+  \tabular{ll}{                                                                                         
+    \emph{$DatesR  } \tab [POSIXlt] series of dates                                                  \cr
+    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d]              \cr
+    \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/d]                       \cr
+    \emph{$Prod    } \tab [numeric] series of production store level [mm]                            \cr
+    \emph{$Pn      } \tab [numeric] series of net rainfall [mm/d]                         			     \cr
+    \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store [mm/d]     \cr
+    \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/d]                       \cr
+    \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/d]                              \cr
+    \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                   \cr
+    \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                \cr
+    \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                \cr
+    \emph{$Rout    } \tab [numeric] series of routing store level [mm]                               \cr
+    \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/d]      \cr
+    \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
+    \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
+    \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]        \cr
+    \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/d]                      \cr
+    \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]        \cr
+    \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/d]                             \cr
+    \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
+  }                                                                                                     
+  (refer to the provided references or to the package source code for further details on these model outputs)
 }
 
 
diff --git a/man/RunModel_GR6J.Rd b/man/RunModel_GR6J.Rd
index 4f3229bd09e287b775ea28ad2733549185d91863..ded1e43191bb5f5bf1598d5df1e874d8e676e738 100644
--- a/man/RunModel_GR6J.Rd
+++ b/man/RunModel_GR6J.Rd
@@ -19,44 +19,44 @@ RunModel_GR6J(InputsModel, RunOptions, Param)
 \item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
 
 \item{Param}{[numeric] vector of 6 parameters
-\tabular{ll}{                                                            
-GR6J X1 \tab production store capacity [mm]                  \cr
-GR6J X2 \tab intercatchment exchange coefficient [mm/d]      \cr
-GR6J X3 \tab routing store capacity [mm]                     \cr
-GR6J X4 \tab unit hydrograph time constant [d]               \cr
-GR6J X5 \tab intercatchment exchange threshold [-]           \cr
-GR6J X6 \tab coefficient for emptying exponential store [mm] \cr
-}}
+  \tabular{ll}{                                                            
+    GR6J X1 \tab production store capacity [mm]                  \cr
+    GR6J X2 \tab intercatchment exchange coefficient [mm/d]      \cr
+    GR6J X3 \tab routing store capacity [mm]                     \cr
+    GR6J X4 \tab unit hydrograph time constant [d]               \cr
+    GR6J X5 \tab intercatchment exchange threshold [-]           \cr
+    GR6J X6 \tab coefficient for emptying exponential store [mm] \cr
+  }}
 }
 
 
 \value{
 [list] list containing the function outputs organised as follows:                                         
-         \tabular{ll}{                                                                                         
-         \emph{$DatesR  } \tab [POSIXlt] series of dates                                                  \cr
-         \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d]              \cr
-         \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/d]                       \cr
-         \emph{$Prod    } \tab [numeric] series of production store level [mm]                            \cr
-         \emph{$Pn      } \tab [numeric] series of net rainfall [mm/d]                         			     \cr
-         \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store [mm/d]     \cr
-         \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/d]                       \cr
-         \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/d]                              \cr
-         \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                   \cr
-         \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                \cr
-         \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                \cr
-         \emph{$Rout    } \tab [numeric] series of routing store level [mm]                               \cr
-         \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/d]      \cr
-         \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
-         \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
-         \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]        \cr
-         \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/d]                      \cr
-         \emph{$QRExp   } \tab [numeric] series of exponential store outflow (QRExp) [mm/d]               \cr
-         \emph{$Exp     } \tab [numeric] series of exponential store level (negative) [mm]                \cr
-         \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]        \cr
-         \emph{$Qsim    } \tab [numeric] series of Qsim [mm/d]                                            \cr
-         \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
-         }                                                                                                     
-         (refer to the provided references or to the package source code for further details on these model outputs)
+  \tabular{ll}{                                                                                         
+    \emph{$DatesR  } \tab [POSIXlt] series of dates                                                  \cr
+    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d]              \cr
+    \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/d]                       \cr
+    \emph{$Prod    } \tab [numeric] series of production store level [mm]                            \cr
+    \emph{$Pn      } \tab [numeric] series of net rainfall [mm/d]                         			     \cr
+    \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store [mm/d]     \cr
+    \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/d]                       \cr
+    \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/d]                              \cr
+    \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                   \cr
+    \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                \cr
+    \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                \cr
+    \emph{$Rout    } \tab [numeric] series of routing store level [mm]                               \cr
+    \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/d]      \cr
+    \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
+    \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
+    \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]        \cr
+    \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/d]                      \cr
+    \emph{$QRExp   } \tab [numeric] series of exponential store outflow (QRExp) [mm/d]               \cr
+    \emph{$Exp     } \tab [numeric] series of exponential store level (negative) [mm]                \cr
+    \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]        \cr
+    \emph{$Qsim    } \tab [numeric] series of Qsim [mm/d]                                            \cr
+    \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
+  }                                                                                                     
+  (refer to the provided references or to the package source code for further details on these model outputs)
 }