diff --git a/DESCRIPTION b/DESCRIPTION
index 42fc032d6b981b1a06a293314f7fa6dc45dd2b8f..8d6d60b3225b6a1b01a9d75adaf942dcd092e649 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
 Package: airGR
 Type: Package
 Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
-Version: 1.2.15.7
-Date: 2019-05-03
+Version: 1.3.0.0
+Date: 2019-05-20
 Authors@R: c(
   person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
   person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@irstea.fr"),
diff --git a/NEWS.rmd b/NEWS.rmd
index 7a0eb0ac57a29570e889222c53cb8c7c4d1c2f24..4e8aa74c6ba47e69ff88a4fd89aacda59b847196 100644
--- a/NEWS.rmd
+++ b/NEWS.rmd
@@ -13,8 +13,7 @@ output:
 
 
 
-
-### 1.2.15.7 Release Notes (2019-05-03)
+3.0.02.15.7 Release Notes (2019-05-20)
 
 
 #### New features
diff --git a/R/RunModel_CemaNeigeGR4H.R b/R/RunModel_CemaNeigeGR4H.R
new file mode 100644
index 0000000000000000000000000000000000000000..6bd5feae81d4f5a8bc0d73d6adb61cc727743e1b
--- /dev/null
+++ b/R/RunModel_CemaNeigeGR4H.R
@@ -0,0 +1,181 @@
+RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){
+
+  
+  ## Initialization of variables
+  IsHyst <- inherits(RunOptions, "hysteresis")
+  NParam <- ifelse(test = IsHyst, yes = 8L, no = 6L)
+  NStates <- 4L
+  FortranOutputs <- .FortranOutputs(GR = "GR4H", isCN = TRUE)
+
+    
+    ##Arguments_check
+      if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") }  
+      if(!inherits(InputsModel,"hourly"     )){ stop("'InputsModel' must be of class 'hourly'     ") }  
+      if(!inherits(InputsModel,"GR"         )){ stop("'InputsModel' must be of class 'GR'         ") }  
+      if(!inherits(InputsModel,"CemaNeige"  )){ stop("'InputsModel' must be of class 'CemaNeige'  ") }  
+      if(!inherits(RunOptions,"RunOptions"  )){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
+      if(!inherits(RunOptions,"GR"          )){ stop("'RunOptions' must be of class 'GR'          ") }  
+      if(!inherits(RunOptions,"CemaNeige"   )){ stop("'RunOptions' must be of class 'CemaNeige'   ") }  
+      if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
+      if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
+      Param <- as.double(Param);
+
+      Param_X1X3_threshold <- 1e-2
+      Param_X4_threshold   <- 0.5
+      if (Param[1L] < Param_X1X3_threshold) {
+        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+        Param[1L] <- Param_X1X3_threshold
+      }
+      if (Param[3L] < Param_X1X3_threshold) {
+        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+        Param[3L] <- Param_X1X3_threshold
+      }
+      if (Param[4L] < Param_X4_threshold) {
+        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+        Param[4L] <- Param_X4_threshold
+      }      
+      
+    ##Input_data_preparation
+      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
+      IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
+      LInputSeries   <- as.integer(length(IndPeriod1))
+      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
+      ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
+      NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
+      ParamMod       <- Param[1:NParamMod];
+      NLayers        <- length(InputsModel$LayerPrecip);
+      NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
+      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
+      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
+
+      
+    ##SNOW_MODULE________________________________________________________________________________##
+    if(inherits(RunOptions,"CemaNeige")){
+      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
+      } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
+      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
+
+
+    ##Call_DLL_CemaNeige_________________________
+      for(iLayer in 1:NLayers){
+        if (!IsHyst) {
+          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)]
+        } else {
+          StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
+        }
+        RESULTS <- .Fortran("frun_CemaNeige",PACKAGE="airGR",
+                        ##inputs
+                            LInputs=LInputSeries,                                                         ### length of input and output series
+                            InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
+                            InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
+                            InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
+                            MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
+                            NParam=as.integer(NParam),                                                    ### number of model parameter = 2
+                            Param=as.double(ParamCemaNeige),                                              ### parameter set
+                            NStates=as.integer(NStates),                                                  ### number of state variables used for model initialising = 2
+                            StateStart=StateStartCemaNeige,                                               ### state variables used when the model run starts
+                            IsHyst = as.integer(IsHyst),                                                  ### use of hysteresis
+                            NOutputs=as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
+                            IndOutputs=IndOutputsCemaNeige,                                               ### indices of output series
+                        ##outputs                                                               
+                            Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
+                            StateEnd=rep(as.double(-999.999),as.integer(NStates))                                   ### state variables at the end of the model run (reservoir levels [mm] and HU)
+                         )
+        RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
+        RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
+
+        ##Data_storage
+        CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
+        names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
+        IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
+        if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
+        if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
+        if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
+        rm(RESULTS); 
+      } ###ENDFOR_iLayer
+      names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
+    } ###ENDIF_RunSnowModule
+    if(!inherits(RunOptions,"CemaNeige")){
+      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
+      CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]; }
+
+
+
+    ##MODEL______________________________________________________________________________________##
+      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); 
+      } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim);  }
+
+    ##Use_of_IniResLevels
+      if(!is.null(RunOptions$IniResLevels)){
+        RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1];  ### production store level (mm)
+        RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3];  ### routing store level (mm)
+      }
+
+    ##Call_fortan
+      RESULTS <- .Fortran("frun_GR4H",PACKAGE="airGR",
+                 ##inputs
+                     LInputs=LInputSeries,                          ### length of input and output series
+                     InputsPrecip=CatchMeltAndPliq,                 ### input series of total precipitation [mm/h]
+                     InputsPE=InputsModel$PotEvap[IndPeriod1],      ### input series potential evapotranspiration [mm/h]
+                     NParam=NParamMod,                              ### number of model parameter
+                     Param=ParamMod,                                ### parameter set
+                     NStates=NStatesMod,                            ### number of state variables used for model initialising
+                     StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
+                     NOutputs=as.integer(length(IndOutputsMod)),    ### number of output series
+                     IndOutputs=IndOutputsMod,                      ### indices of output series
+                 ##outputs                                        
+                     Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
+                     StateEnd=rep(as.double(-999.999),NStatesMod)                                      ### state variables at the end of the model run
+                     )
+      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
+      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
+      if (ExportStateEnd) {
+        idNStates <- seq_len(NStates*NLayers) %% NStates
+        RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IsHyst = IsHyst,
+                                            ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
+                                            UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
+                                            GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]],
+                                            eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
+                                            GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], 
+                                            GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
+                                            verbose = FALSE)
+      }
+      
+      if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
+
+    ##Output_data_preparation
+      ##OutputsModel_only
+      if(!ExportDatesR & !ExportStateEnd){
+        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                           list(CemaNeigeLayers) );
+        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
+      ##DatesR_and_OutputsModel_only
+      if( ExportDatesR & !ExportStateEnd){
+        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                           list(CemaNeigeLayers) );
+        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers);      }
+      ##OutputsModel_and_SateEnd_only
+      if(!ExportDatesR & ExportStateEnd){
+        OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                           list(CemaNeigeLayers),
+                           list(RESULTS$StateEnd) );
+        names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
+      ##DatesR_and_OutputsModel_and_SateEnd
+      if( ExportDatesR & ExportStateEnd){
+        OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                           lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                           list(CemaNeigeLayers),
+                           list(RESULTS$StateEnd) );
+        names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
+
+    ##End
+      rm(RESULTS); 
+   
+      class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige");
+      if(IsHyst) {
+        class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+      }
+      return(OutputsModel);
+
+}
diff --git a/man/RunModel_CemaNeigeGR4H.Rd b/man/RunModel_CemaNeigeGR4H.Rd
new file mode 100644
index 0000000000000000000000000000000000000000..decf15470424b44452e5c162a443403f6ce7761a
--- /dev/null
+++ b/man/RunModel_CemaNeigeGR4H.Rd
@@ -0,0 +1,178 @@
+\encoding{UTF-8}
+
+
+\name{RunModel_CemaNeigeGR4H}
+\alias{RunModel_CemaNeigeGR4H}
+
+
+\title{Run with the CemaNeigeGR4H hydrological model}
+
+
+\usage{
+RunModel_CemaNeigeGR4H(InputsModel, RunOptions, Param)
+}
+
+
+\arguments{
+\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
+
+\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
+
+\item{Param}{[numeric] vector of 6 (or 8 parameters if \code{IsHyst = TRUE}, see \code{\link{CreateRunOptions}} for details)
+\tabular{ll}{                                                                      
+GR4H X1      \tab production store capacity [mm]                                          \cr
+GR4H X2      \tab intercatchment exchange coefficient [mm/h]                              \cr
+GR4H X3      \tab routing store capacity [mm]                                             \cr
+GR4H X4      \tab unit hydrograph time constant [d]                                       \cr
+CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-]                   \cr
+CemaNeige X2 \tab degree-hour melt coefficient [mm/°C/h]                                   \cr
+CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
+CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE}) \cr
+}}
+}
+
+
+\value{
+[list] list containing the function outputs organised as follows:                                         
+  \tabular{ll}{                                                                                         
+  \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                  \cr
+  \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/h]              \cr
+  \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/h]                       \cr
+  \emph{$Prod    }          \tab [numeric] series of production store level [mm]                            \cr
+  \emph{$Pn      }          \tab [numeric] series of net rainfall [mm/h]                         			      \cr
+  \emph{$Ps      }          \tab [numeric] series of the part of Pn filling the production store [mm/h]     \cr
+  \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/h]                       \cr
+  \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/h]                              \cr
+  \emph{$PR      }          \tab [numeric] series of PR=Pn-Ps+Perc [mm/h]                                   \cr
+  \emph{$Q9      }          \tab [numeric] series of UH1 outflow (Q9) [mm/h]                                \cr
+  \emph{$Q1      }          \tab [numeric] series of UH2 outflow (Q1) [mm/h]                                \cr
+  \emph{$Rout    }          \tab [numeric] series of routing store level [mm]                               \cr
+  \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/h]      \cr
+  \emph{$AExch1  }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/h] \cr
+  \emph{$AExch2  }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/h] \cr
+  \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/h]        \cr
+  \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/h]                      \cr
+  \emph{$QD      }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/h]        \cr
+  \emph{$Qsim    }          \tab [numeric] series of simulated discharge [mm/h]                             \cr
+  \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                        \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Pliq         } \tab [numeric] series of liquid precip. [mm/h]                    \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Psol         } \tab [numeric] series of solid precip. [mm/h]                     \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     } \tab [numeric] series of snow pack [mm]                           \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C]             \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Gratio       } \tab [numeric] series of Gratio [0-1]                             \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      } \tab [numeric] series of potential snow melt [mm/h]               \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Melt         } \tab [numeric] series of actual snow melt [mm/h]                  \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  } \tab [numeric] series of liquid precip. + actual snow melt [mm/h] \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Temp         } \tab [numeric] series of air temperature [°C]                     \cr     
+  \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold   } \tab [numeric] series of melt threshold [mm]                      \cr
+  \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax    } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
+  \emph{$StateEnd}                                \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details                               \cr
+  }                                                                                                     
+  (refer to the provided references or to the package source code for further details on these model outputs)
+}
+
+
+\description{
+Function which performs a single run for the CemaNeige-GR4H daily lumped model over the test period.
+}
+
+
+\details{
+The choice of the CemaNeige version is explained in \code{\link{CreateRunOptions}}. \cr
+For further details on the model, see the references section. \cr
+For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
+}
+
+
+\examples{
+library(airGR)
+
+## loading catchment data
+data(L0123002)
+
+## preparation of the InputsModel object
+InputsModel <- CreateInputsModel(FUN_MOD = RunModel_CemaNeigeGR4H, DatesR = BasinObs$DatesR, 
+                                 Precip = BasinObs$P, PotEvap = BasinObs$E, TempMean = BasinObs$T, 
+                                 ZInputs = median(BasinInfo$HypsoData),
+                                 HypsoData = BasinInfo$HypsoData, NLayers = 5)
+
+## run period selection
+Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1990-01-01"), 
+               which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1999-12-31"))
+
+
+## ---- original version of CemaNeige
+
+## preparation of the RunOptions object
+RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, 
+                               IndPeriod_Run = Ind_Run)
+
+## simulation
+Param <- c(X1 = 408.774, X2 = 2.646, X3 = 131.264, X4 = 1.174,
+           CNX1 = 0.962, CNX2 = 2.249)
+OutputsModel <- RunModel_CemaNeigeGR4H(InputsModel = InputsModel,
+                                       RunOptions = RunOptions, Param = Param)
+
+## results preview
+plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
+
+## efficiency criterion: Nash-Sutcliffe Efficiency
+InputsCrit  <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, 
+                                RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
+OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
+
+
+## ---- version of CemaNeige with the Linear Hysteresis
+
+## preparation of the RunOptions object
+RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, 
+                               IndPeriod_Run = Ind_Run, IsHyst = TRUE)
+
+## simulation                               
+Param <- c(X1 = 408.774, X2 = 2.646, X3 = 131.264, X4 = 1.174,
+           CNX1 = 0.962, CNX2 = 2.249, CNX3 = 100, CNX4 = 0.4)
+OutputsModel <- RunModel_CemaNeigeGR4H(InputsModel = InputsModel,
+                                       RunOptions = RunOptions, Param = Param)
+
+## results preview
+plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
+
+## efficiency criterion: Nash-Sutcliffe Efficiency
+InputsCrit  <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, 
+                                RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
+OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
+}
+
+
+\author{
+Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Vazken Andréassian, Olivier Delaigue
+}
+
+
+\references{
+Perrin, C., C. Michel and V. Andréassian (2003). 
+  Improvement of a parsimonious model for streamflow simulation. 
+  Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7.
+\cr\cr
+Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019). 
+  Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. 
+  Journal of Hydrology and Hydromechanics. doi:10.2478/johh-2018-0004, 67, 1, 70–81.
+\cr\cr
+Valéry, A., V. Andréassian and C. Perrin (2014). 
+  "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? 
+  Part 1 - Comparison of six snow accounting routines on 380 catchments. 
+  Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.059.
+\cr\cr
+Valéry, A., V. Andréassian and C. Perrin (2014). 
+  "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? 
+   Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. 
+   Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.058.
+}
+
+
+\seealso{
+\code{\link{RunModel_CemaNeige}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}},
+\code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4H}},
+\code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}.
+}
+
diff --git a/src/frun_CEMANEIGE.f b/src/frun_CEMANEIGE.f
index f58328e008b8fa0414ebab35add227dd43298471..ef866eb13014143476456acc5b5a4ea8d8787145 100644
--- a/src/frun_CEMANEIGE.f
+++ b/src/frun_CEMANEIGE.f
@@ -5,7 +5,7 @@
       SUBROUTINE frun_CEMANEIGE(
                                  !inputs
      &                             LInputs              , ! [integer] length of input and output series
-     &                             InputsPrecip         , ! [double]  input series of total precipitation [mm]
+     &                             InputsPrecip         , ! [double]  input series of total precipitation [mm/time step]
      &                             InputsFracSolidPrecip, ! [double]  input series of fraction of solid precipitation [0-1]
      &                             InputsTemp           , ! [double]  input series of air mean temperature [degC]
      &                             MeanAnSolidPrecip    , ! [double]  value of annual mean solid precip [mm/y]
@@ -153,14 +153,14 @@ c      Outputs = -999.999  !initialisation made in R
 
         !Storage of outputs
         DO I=1,NOutputs
-          IF(IndOutputs(I).EQ.1)  Outputs(k,I)=Pliq          ! Pliq         ! observed liquid precipitation [mm/day]
-          IF(IndOutputs(I).EQ.2)  Outputs(k,I)=Psol          ! Psol         ! observed solid precipitation [mm/day]
+          IF(IndOutputs(I).EQ.1)  Outputs(k,I)=Pliq          ! Pliq         ! observed liquid precipitation [mm/time step]
+          IF(IndOutputs(I).EQ.2)  Outputs(k,I)=Psol          ! Psol         ! observed solid precipitation [mm/time step]
           IF(IndOutputs(I).EQ.3)  Outputs(k,I)=G             ! SnowPack     ! snow pack [mm]
           IF(IndOutputs(I).EQ.4)  Outputs(k,I)=eTG           ! ThermalState ! thermal state [°C]
           IF(IndOutputs(I).EQ.5)  Outputs(k,I)=Gratio        ! Gratio       ! Gratio [-]
-          IF(IndOutputs(I).EQ.6)  Outputs(k,I)=PotMelt       ! PotMelt      ! potential snow melt [mm/day]
-          IF(IndOutputs(I).EQ.7)  Outputs(k,I)=Melt          ! Melt         ! melt [mm/day]
-          IF(IndOutputs(I).EQ.8)  Outputs(k,I)=PliqAndMelt   ! PliqAndMelt  ! liquid precipitation + melt [mm/day]
+          IF(IndOutputs(I).EQ.6)  Outputs(k,I)=PotMelt       ! PotMelt      ! potential snow melt [mm/time step]
+          IF(IndOutputs(I).EQ.7)  Outputs(k,I)=Melt          ! Melt         ! melt [mm/time step]
+          IF(IndOutputs(I).EQ.8)  Outputs(k,I)=PliqAndMelt   ! PliqAndMelt  ! liquid precipitation + melt [mm/time step]
           IF(IndOutputs(I).EQ.9)  Outputs(k,I)=InputsTemp(k) ! Temp         ! air temperature [°C]
           IF(IndOutputs(I).EQ.10) Outputs(k,I)=Gthreshold    ! Gthreshold   ! melt threshold [mm]
           IF(IndOutputs(I).EQ.11) Outputs(k,I)=Glocalmax     ! Glocalmax    ! local melt threshold for hysteresis [mm]