diff --git a/vignettes/V05_sd_model.Rmd b/vignettes/V05_sd_model.Rmd index 333284e8c64c30178624ab99c070d74ad36d0a94..6c17770e9c503ee166a9ecc34c723106e65986e5 100644 --- a/vignettes/V05_sd_model.Rmd +++ b/vignettes/V05_sd_model.Rmd @@ -198,7 +198,7 @@ As a priori parameter set, we use the calibrated parameter set of the upstream c ParamDownTheo <- c(Velocity, OutputsCalibUp$ParamFinalR) ``` -The De Lavenne criterion is initialised with the a priori parameter set and the value of the KGE of the upstream basin. +The Lavenne criterion is initialised with the a priori parameter set and the value of the KGE of the upstream basin. ```{r} IC_Lavenne <- CreateInputsCrit_Lavenne(InputsModel = InputsModelDown2, @@ -208,7 +208,7 @@ IC_Lavenne <- CreateInputsCrit_Lavenne(InputsModel = InputsModelDown2, AprCrit = OutputsCalibUp$CritFinal) ``` -The De Lavenne criterion is used instead of the KGE for calibration with regularisation +The Lavenne criterion is used instead of the KGE for calibration with regularisation ```{r} OutputsCalibDown3 <- Calibration_Michel(InputsModel = InputsModelDown2, @@ -251,7 +251,7 @@ knitr::kable(mVelocity) ## Value of the performance criteria with theoretical calibration -Theoretically, the parameters of the downstream GR4J model should be the same as the upstream one with the velocity as extra parameter : +Theoretically, the parameters of the downstream GR4J model should be the same as the upstream one with the velocity as extra parameter: ```{r} OutputsModelDownTheo <- RunModel(InputsModel = InputsModelDown2,