diff --git a/DESCRIPTION b/DESCRIPTION index 9c2335262b3edd0d8ec68fc3b1ab7c70d1b85fe7..8f73a3d81d0ec23df00a78e626d2e61a51fa8f54 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,8 +1,8 @@ Package: airGR Type: Package Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling -Version: 1.4.2.20 -Date: 2019-12-11 +Version: 1.4.3.0 +Date: 2019-12-12 Authors@R: c( person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")), person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@irstea.fr"), diff --git a/NEWS.md b/NEWS.md index 97fccb53347019597e0211fbee6b19dde1fb3deb..bc0aa4d9295928d046d13bcbb0eb2d60a45e50db 100644 --- a/NEWS.md +++ b/NEWS.md @@ -2,7 +2,7 @@ -### 1.4.2.20 Release Notes (2019-12-11) +### 1.4.3.0 Release Notes (2019-12-12) #### New features diff --git a/R/RunModel_CemaNeigeGR5H.R b/R/RunModel_CemaNeigeGR5H.R new file mode 100644 index 0000000000000000000000000000000000000000..745b75ba69664c2c5f00c3f45342639893feaa9c --- /dev/null +++ b/R/RunModel_CemaNeigeGR5H.R @@ -0,0 +1,194 @@ +RunModel_GR5H <- function(InputsModel,RunOptions,Param){ + + IsHyst <- inherits(RunOptions, "hysteresis") + NParam <- ifelse(test = IsHyst, yes = 9L, no = 7L) + NParamCN <- NParam - 4L + NStates <- 4L + FortranOutputs <- .FortranOutputs(GR = "GR5H", isCN = TRUE) + IsIntStore <- inherits(RunOptions, "interception") + if(IsIntStore) { + Imax <- RunOptions$Imax + } else { + Imax <- -99 + } + + ##Arguments_check + if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") } + if(!inherits(InputsModel,"hourly" )){ stop("'InputsModel' must be of class 'hourly' ") } + if(!inherits(InputsModel,"GR" )){ stop("'InputsModel' must be of class 'GR' ") } + if(!inherits(InputsModel,"CemaNeige" )){ stop("'InputsModel' must be of class 'CemaNeige' ") } + if(!inherits(RunOptions,"RunOptions" )){ stop("'RunOptions' must be of class 'RunOptions' ") } + if(!inherits(RunOptions,"GR" )){ stop("'RunOptions' must be of class 'GR' ") } + if(!inherits(RunOptions,"CemaNeige" )){ stop("'RunOptions' must be of class 'CemaNeige' ") } + if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } + if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } + Param <- as.double(Param); + + Param_X1X3_threshold <- 1e-2 + Param_X4_threshold <- 0.5 + if (Param[1L] < Param_X1X3_threshold) { + warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[1L] <- Param_X1X3_threshold + } + if (Param[3L] < Param_X1X3_threshold) { + warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) + Param[3L] <- Param_X1X3_threshold + } + if (Param[4L] < Param_X4_threshold) { + warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) + Param[4L] <- Param_X4_threshold + } + + ##Input_data_preparation + if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } + IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); + LInputSeries <- as.integer(length(IndPeriod1)) + if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); + } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } + + ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)]; + NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst))); + ParamMod <- Param[1:NParamMod]; + NLayers <- length(InputsModel$LayerPrecip); + NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers); + + ##Output_data_preparation + IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; + ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; + ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; + + ##SNOW_MODULE________________________________________________________________________________## + if(inherits(RunOptions,"CemaNeige")){ + if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); + } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); } + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; + + + ##Call_DLL_CemaNeige_________________________ + for(iLayer in 1:NLayers){ + if (!IsHyst) { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)] + } else { + StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] + } + RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h] + InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] + InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] + MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] + NParam=as.integer(NParamCN), ### number of model parameters = 2 or 4 + Param=as.double(ParamCemaNeige), ### parameter set + NStates=as.integer(NStates), ### number of state variables used for model initialisation = 4 + StateStart=StateStartCemaNeige, ### state variables used when the model run starts + IsHyst = as.integer(IsHyst), ### use of hysteresis + NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series + IndOutputs=IndOutputsCemaNeige, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] + StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + + ##Data_storage + CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); + names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]; + IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); + if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } + if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } + rm(RESULTS); + } ###ENDFOR_iLayer + names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) + } ###ENDIF_RunSnowModule + if(!inherits(RunOptions,"CemaNeige")){ + CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; + CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } + + + ##MODEL______________________________________________________________________________________## + + ##Use_of_IniResLevels + if(!is.null(RunOptions$IniResLevels)){ + RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) + RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) + if(IsIntStore) { + RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax; ### interception store level (mm) + } + } + + ##Call_fortan + RESULTS <- .Fortran("frun_gr5h",PACKAGE="airGR", + ##inputs + LInputs=LInputSeries, ### length of input and output series + InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] + InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] + NParam=as.integer(length(Param)), ### number of model parameter + Param=Param, ### parameter set + NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising + StateStart=RunOptions$IniStates, ### state variables used when the model run starts + Imax=Imax, ### maximal capacity of interception store + NOutputs=as.integer(length(IndOutputs)), ### number of output series + IndOutputs=IndOutputs, ### indices of output series + ##outputs + Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm or mm/h] + StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run + ) + RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; + RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; + if (ExportStateEnd) { + RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location + RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5H, InputsModel = InputsModel, IsHyst = IsHyst, + ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, + IntStore = RESULTS$StateEnd[4L], + UH1 = NULL, UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], + GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], + eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], + GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], + GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], + verbose = FALSE) + } + + if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } + + ##Output_data_preparation + ##OutputsModel_only + ##OutputsModel_only + if(!ExportDatesR & !ExportStateEnd){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } + ##DatesR_and_OutputsModel_only + if( ExportDatesR & !ExportStateEnd){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers) ); + names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } + ##OutputsModel_and_SateEnd_only + if(!ExportDatesR & ExportStateEnd){ + OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + ##DatesR_and_OutputsModel_and_SateEnd + if( ExportDatesR & ExportStateEnd){ + OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), + lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), + list(CemaNeigeLayers), + list(RESULTS$StateEnd) ); + names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } + + ##End + rm(RESULTS); + class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige"); + if(IsHyst) { + class(OutputsModel) <- c(class(OutputsModel), "hysteresis") + } + if(IsIntStore) { + class(OutputsModel) <- c(class(OutputsModel), "interception") + } + return(OutputsModel); + +}