diff --git a/DESCRIPTION b/DESCRIPTION
index 9c2335262b3edd0d8ec68fc3b1ab7c70d1b85fe7..8f73a3d81d0ec23df00a78e626d2e61a51fa8f54 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
 Package: airGR
 Type: Package
 Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
-Version: 1.4.2.20
-Date: 2019-12-11
+Version: 1.4.3.0
+Date: 2019-12-12
 Authors@R: c(
   person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
   person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@irstea.fr"),
diff --git a/NEWS.md b/NEWS.md
index 97fccb53347019597e0211fbee6b19dde1fb3deb..bc0aa4d9295928d046d13bcbb0eb2d60a45e50db 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -2,7 +2,7 @@
 
 
 
-### 1.4.2.20 Release Notes (2019-12-11)
+### 1.4.3.0 Release Notes (2019-12-12)
 
 
 #### New features
diff --git a/R/RunModel_CemaNeigeGR5H.R b/R/RunModel_CemaNeigeGR5H.R
new file mode 100644
index 0000000000000000000000000000000000000000..745b75ba69664c2c5f00c3f45342639893feaa9c
--- /dev/null
+++ b/R/RunModel_CemaNeigeGR5H.R
@@ -0,0 +1,194 @@
+RunModel_GR5H <- function(InputsModel,RunOptions,Param){
+  
+  IsHyst <- inherits(RunOptions, "hysteresis")
+  NParam <- ifelse(test = IsHyst, yes = 9L, no = 7L)
+  NParamCN <- NParam - 4L
+  NStates <- 4L
+  FortranOutputs <- .FortranOutputs(GR = "GR5H", isCN = TRUE)
+  IsIntStore <- inherits(RunOptions, "interception")
+  if(IsIntStore) {
+    Imax <- RunOptions$Imax
+  } else {
+    Imax <- -99
+  }
+  
+  ##Arguments_check
+  if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") }  
+  if(!inherits(InputsModel,"hourly"     )){ stop("'InputsModel' must be of class 'hourly'     ") }  
+  if(!inherits(InputsModel,"GR"         )){ stop("'InputsModel' must be of class 'GR'         ") }  
+  if(!inherits(InputsModel,"CemaNeige"  )){ stop("'InputsModel' must be of class 'CemaNeige'  ") }  
+  if(!inherits(RunOptions,"RunOptions"  )){ stop("'RunOptions' must be of class 'RunOptions'  ") }  
+  if(!inherits(RunOptions,"GR"          )){ stop("'RunOptions' must be of class 'GR'          ") }  
+  if(!inherits(RunOptions,"CemaNeige"   )){ stop("'RunOptions' must be of class 'CemaNeige'   ") }  
+  if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
+  if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
+  Param <- as.double(Param);
+  
+  Param_X1X3_threshold <- 1e-2
+  Param_X4_threshold   <- 0.5
+  if (Param[1L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[1L] <- Param_X1X3_threshold
+  }
+  if (Param[3L] < Param_X1X3_threshold) {
+    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
+    Param[3L] <- Param_X1X3_threshold
+  }
+  if (Param[4L] < Param_X4_threshold) {
+    warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
+    Param[4L] <- Param_X4_threshold
+  }     
+  
+  ##Input_data_preparation
+  if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
+  IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
+  LInputSeries <- as.integer(length(IndPeriod1))
+  if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
+  } else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim);  }
+  
+  ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
+  NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
+  ParamMod       <- Param[1:NParamMod];
+  NLayers        <- length(InputsModel$LayerPrecip);
+  NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
+  
+  ##Output_data_preparation
+  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
+  ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
+  ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
+  
+  ##SNOW_MODULE________________________________________________________________________________##
+  if(inherits(RunOptions,"CemaNeige")){
+    if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
+    } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
+    CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
+    
+    
+    ##Call_DLL_CemaNeige_________________________
+    for(iLayer in 1:NLayers){
+      if (!IsHyst) {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
+      } else {
+        StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
+      }
+      RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR",
+                          ##inputs
+                          LInputs=LInputSeries,                                                         ### length of input and output series
+                          InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                   ### input series of total precipitation [mm/h]
+                          InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
+                          InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                       ### input series of air mean temperature [degC]
+                          MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                       ### value of annual mean solid precip [mm/y]
+                          NParam=as.integer(NParamCN),                                                  ### number of model parameters = 2 or 4
+                          Param=as.double(ParamCemaNeige),                                              ### parameter set
+                          NStates=as.integer(NStates),                                                  ### number of state variables used for model initialisation = 4
+                          StateStart=StateStartCemaNeige,                                               ### state variables used when the model run starts
+                          IsHyst = as.integer(IsHyst),                                                  ### use of hysteresis
+                          NOutputs=as.integer(length(IndOutputsCemaNeige)),                             ### number of output series
+                          IndOutputs=IndOutputsCemaNeige,                                               ### indices of output series
+                          ##outputs                                                               
+                          Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
+                          StateEnd=rep(as.double(-999.999),as.integer(NStates))                                   ### state variables at the end of the model run
+      )
+      RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
+      RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
+      
+      ##Data_storage
+      CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
+      names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
+      IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
+      if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
+      if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
+      if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
+      rm(RESULTS); 
+    } ###ENDFOR_iLayer
+    names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
+  } ###ENDIF_RunSnowModule
+  if(!inherits(RunOptions,"CemaNeige")){
+    CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
+    CatchMeltAndPliq  <- InputsModel$Precip[IndPeriod1]; }
+  
+  
+  ##MODEL______________________________________________________________________________________##
+  
+  ##Use_of_IniResLevels
+  if(!is.null(RunOptions$IniResLevels)){
+    RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1];  ### production store level (mm)
+    RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3];  ### routing store level (mm)
+    if(IsIntStore) {
+      RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax;  ### interception store level (mm)
+    }
+  }
+  
+  ##Call_fortan
+  RESULTS <- .Fortran("frun_gr5h",PACKAGE="airGR",
+                      ##inputs
+                      LInputs=LInputSeries,                             ### length of input and output series
+                      InputsPrecip=InputsModel$Precip[IndPeriod1],      ### input series of total precipitation [mm/h]
+                      InputsPE=InputsModel$PotEvap[IndPeriod1],         ### input series potential evapotranspiration [mm/h]
+                      NParam=as.integer(length(Param)),                 ### number of model parameter
+                      Param=Param,                                      ### parameter set
+                      NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
+                      StateStart=RunOptions$IniStates,                  ### state variables used when the model run starts
+                      Imax=Imax,                                        ### maximal capacity of interception store
+                      NOutputs=as.integer(length(IndOutputs)),          ### number of output series
+                      IndOutputs=IndOutputs,                            ### indices of output series
+                      ##outputs
+                      Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)),  ### output series [mm or mm/h]
+                      StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates))                  ### state variables at the end of the model run
+  )
+  RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
+  RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
+  if (ExportStateEnd) {
+    RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
+    RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR5H, InputsModel = InputsModel, IsHyst = IsHyst,
+                                        ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
+                                        IntStore = RESULTS$StateEnd[4L],
+                                        UH1 = NULL, UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
+                                        GCemaNeigeLayers       = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
+                                        eTGCemaNeigeLayers     = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
+                                        GthrCemaNeigeLayers    = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], 
+                                        GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
+                                        verbose = FALSE)
+  }
+  
+  if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
+  
+  ##Output_data_preparation
+  ##OutputsModel_only
+  ##OutputsModel_only
+  if(!ExportDatesR & !ExportStateEnd){
+    OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                       list(CemaNeigeLayers) );
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
+  ##DatesR_and_OutputsModel_only
+  if( ExportDatesR & !ExportStateEnd){
+    OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                       lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                       list(CemaNeigeLayers) );
+    names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers);      }
+  ##OutputsModel_and_SateEnd_only
+  if(!ExportDatesR & ExportStateEnd){
+    OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                       list(CemaNeigeLayers),
+                       list(RESULTS$StateEnd) );
+    names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
+  ##DatesR_and_OutputsModel_and_SateEnd
+  if( ExportDatesR & ExportStateEnd){
+    OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
+                       lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
+                       list(CemaNeigeLayers),
+                       list(RESULTS$StateEnd) );
+    names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd");      }
+  
+  ##End
+  rm(RESULTS); 
+  class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige");
+  if(IsHyst) {
+    class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
+  }
+  if(IsIntStore) {
+    class(OutputsModel) <- c(class(OutputsModel), "interception")
+  }
+  return(OutputsModel);
+  
+}