\encoding{UTF-8} \name{ErrorCrit_RMSE} \alias{ErrorCrit_RMSE} \title{Error criterion based on the RMSE} \usage{ ErrorCrit_RMSE(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE) } \arguments{ \item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} \item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} \item{warnings}{(optional) [boolean] boolean indicating if the warning messages are shown, default = \code{TRUE}} \item{verbose}{(optional) [boolean] boolean indicating if the function is run in verbose mode or not, default = \code{TRUE}} } \value{ [list] list containing the function outputs organised as follows: \tabular{ll}{ \emph{$CritValue } \tab [numeric] value of the criterion \cr \emph{$CritName } \tab [character] name of the criterion \cr \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr \emph{$Ind_notcomputed} \tab [numeric] indices of the time steps where \emph{InputsCrit$BoolCrit} = \code{FALSE} or no data is available \cr } } \description{ Function which computes an error criterion based on the root mean square error (RMSE). } \details{ In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows the use of the function for model calibration: the product CritValue * Multiplier is the criterion to be minimised (Multiplier = +1 for RMSE). } \examples{ ## see example of the ErrorCrit function } \author{ Laurent Coron, Ludovic Oudin } \seealso{ \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} }