\encoding{UTF-8}


\name{RunModel_GR1A}
\alias{RunModel_GR1A}


\title{Run with the GR1A hydrological model}


\usage{
RunModel_GR1A(InputsModel, RunOptions, Param)
}


\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}

\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}

\item{Param}{[numeric] vector of 1 parameter
\tabular{ll}{                                                                      
GR1A X1      \tab model parameter [-] \cr
}}
}


\value{
[list] list containing the function outputs organised as follows:                                         
         \tabular{ll}{                                                                                         
         \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                     \cr
         \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/y]                 \cr
         \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/y]                          \cr
         \emph{$Qsim    }          \tab [numeric] series of simulated discharge [mm/y]                                \cr
         \emph{$StateEnd}          \tab [numeric] states at the end of the run (NULL) [-] \cr         
         }                                                                                                     
         (refer to the provided references or to the package source code for further details on these model outputs)
}


\description{
Function which performs a single run for the GR1A annual lumped model over the test period.
}


\details{
For further details on the model, see the references section.
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
}


\examples{
library(airGR)

## loading catchment data
data(L0123001)

## conversion of example data from daily to yearly time step
TabSeries       <- data.frame(BasinObs$DatesR, BasinObs$P, BasinObs$E, BasinObs$T, BasinObs$Qmm)
TimeFormat      <- "daily"
NewTimeFormat   <- "yearly"
ConvertFun      <- c("sum", "sum", "mean", "sum")
YearFirstMonth  <- 09;
NewTabSeries    <- SeriesAggreg(TabSeries = TabSeries, TimeFormat = TimeFormat, 
                                NewTimeFormat = NewTimeFormat, ConvertFun = ConvertFun, 
                                YearFirstMonth = YearFirstMonth)
BasinObs        <- NewTabSeries
names(BasinObs) <- c("DatesR", "P", "E", "T", "Qmm")

## preparation of the InputsModel object
InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR1A, DatesR = BasinObs$DatesR, 
                                 Precip = BasinObs$P, PotEvap = BasinObs$E)

## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y")=="1990"), 
               which(format(BasinObs$DatesR, format = "\%Y")=="1999"))

## preparation of the RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR1A,
                               InputsModel = InputsModel, IndPeriod_Run = Ind_Run)

## simulation
Param <- c(0.840)
OutputsModel <- RunModel_GR1A(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param)

## results preview
plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])

## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit  <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, 
                                RunOptions = RunOptions, Qobs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}


\author{
Laurent Coron, Claude Michel
}


\references{
Mouelhi S. (2003), 
      Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier,
      PhD thesis (in French), ENGREF, Cemagref Antony, France. \cr
}


\seealso{
\code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}.
}