RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){ ## Initialization of variables IsHyst <- inherits(RunOptions, "hysteresis") NParam <- ifelse(test = IsHyst, yes = 8L, no = 6L) NStates <- 4L FortranOutputs <- .FortranOutputs(GR = "GR4H", isCN = TRUE) ##Arguments_check if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") } if(!inherits(InputsModel,"hourly" )){ stop("'InputsModel' must be of class 'hourly' ") } if(!inherits(InputsModel,"GR" )){ stop("'InputsModel' must be of class 'GR' ") } if(!inherits(InputsModel,"CemaNeige" )){ stop("'InputsModel' must be of class 'CemaNeige' ") } if(!inherits(RunOptions,"RunOptions" )){ stop("'RunOptions' must be of class 'RunOptions' ") } if(!inherits(RunOptions,"GR" )){ stop("'RunOptions' must be of class 'GR' ") } if(!inherits(RunOptions,"CemaNeige" )){ stop("'RunOptions' must be of class 'CemaNeige' ") } if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") } if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) } Param <- as.double(Param); Param_X1X3_threshold <- 1e-2 Param_X4_threshold <- 0.5 if (Param[1L] < Param_X1X3_threshold) { warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) Param[1L] <- Param_X1X3_threshold } if (Param[3L] < Param_X1X3_threshold) { warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold)) Param[3L] <- Param_X1X3_threshold } if (Param[4L] < Param_X4_threshold) { warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold)) Param[4L] <- Param_X4_threshold } ##Input_data_preparation if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); LInputSeries <- as.integer(length(IndPeriod1)) IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)]; NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst))); ParamMod <- Param[1:NParamMod]; NLayers <- length(InputsModel$LayerPrecip); NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers); ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; ##SNOW_MODULE________________________________________________________________________________## if(inherits(RunOptions,"CemaNeige")){ if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); } CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; ##Call_DLL_CemaNeige_________________________ for(iLayer in 1:NLayers){ if (!IsHyst) { StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)] } else { StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] } RESULTS <- .Fortran("frun_CemaNeige",PACKAGE="airGR", ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h] InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] NParam=as.integer(NParam), ### number of model parameter = 2 Param=as.double(ParamCemaNeige), ### parameter set NStates=as.integer(NStates), ### number of state variables used for model initialising = 2 StateStart=StateStartCemaNeige, ### state variables used when the model run starts IsHyst = as.integer(IsHyst), ### use of hysteresis NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series IndOutputs=IndOutputsCemaNeige, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run (reservoir levels [mm] and HU) ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; ##Data_storage CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]; IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } rm(RESULTS); } ###ENDFOR_iLayer names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) } ###ENDIF_RunSnowModule if(!inherits(RunOptions,"CemaNeige")){ CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } ##MODEL______________________________________________________________________________________## if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); } ##Use_of_IniResLevels if(!is.null(RunOptions$IniResLevels)){ RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) } ##Call_fortan RESULTS <- .Fortran("frun_GR4H",PACKAGE="airGR", ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/h] InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] NParam=NParamMod, ### number of model parameter Param=ParamMod, ### parameter set NStates=NStatesMod, ### number of state variables used for model initialising StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts NOutputs=as.integer(length(IndOutputsMod)), ### number of output series IndOutputs=IndOutputsMod, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; if (ExportStateEnd) { idNStates <- seq_len(NStates*NLayers) %% NStates RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst, ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)], GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], verbose = FALSE) } if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } ##Output_data_preparation ##OutputsModel_only if(!ExportDatesR & !ExportStateEnd){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers) ); names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } ##DatesR_and_OutputsModel_only if( ExportDatesR & !ExportStateEnd){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers) ); names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } ##OutputsModel_and_SateEnd_only if(!ExportDatesR & ExportStateEnd){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers), list(RESULTS$StateEnd) ); names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } ##DatesR_and_OutputsModel_and_SateEnd if( ExportDatesR & ExportStateEnd){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers), list(RESULTS$StateEnd) ); names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } ##End rm(RESULTS); class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige"); if(IsHyst) { class(OutputsModel) <- c(class(OutputsModel), "hysteresis") } return(OutputsModel); }