\encoding{UTF-8} \name{ErrorCrit_RMSE} \alias{ErrorCrit_RMSE} \title{Error criterion based on the RMSE} \usage{ ErrorCrit_RMSE(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE) } \arguments{ \item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details} \item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details} \item{warnings}{(optional) [boolean] boolean indicating if the warning messages are shown, default = \code{TRUE}} \item{verbose}{(optional) [boolean] boolean indicating if the function is run in verbose mode or not, default = \code{TRUE}} } \value{ [list] list containing the function outputs organised as follows: \tabular{ll}{ \emph{$CritValue } \tab [numeric] value of the criterion \cr \emph{$CritName } \tab [character] name of the criterion \cr \emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr \emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr \emph{$Ind_notcomputed} \tab [numeric] indices of the time steps where \emph{InputsCrit$BoolCrit} = \code{FALSE} or no data is available \cr } } \description{ Function which computes an error criterion based on the root-mean-square error (RMSE). } \details{ In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows the use of the function for model calibration: the product CritValue * Multiplier is the criterion to be minimised (Multiplier = +1 for RMSE). } \examples{ library(airGR) ## loading catchment data data(L0123001) ## preparation of the InputsModel object InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E) ## run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y")=="01/01/1990"), which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y")=="31/12/1999")) ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) ## simulation Param <- c(734.568, -0.840, 109.809, 1.971) OutputsModel <- RunModel(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param, FUN = RunModel_GR4J) ## efficiency criterion: root-mean-square error InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel, RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run]) OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) ## efficiency criterion: root-mean-square error on log-transformed flows transfo <- "log" InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel, RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], transfo = transfo) OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) ## efficiency criterion: Kling-Gupta Efficiency above a threshold (quant. 75 \%) BoolCrit <- BasinObs$Qmm[Ind_Run] >= quantile(BasinObs$Qmm[Ind_Run], 0.75, na.rm = TRUE) InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel, RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], BoolCrit = BoolCrit) OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) } \author{ Laurent Coron, Ludovic Oudin, Olivier Delaigue } \seealso{ \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}} }