diff --git a/BaseModels.py b/BaseModels.py
index e3bbe82433e3255e9627dbcec848cd8b56a984be..2271202e3dc3a868ae3c2702b1d09392aaa72f38 100644
--- a/BaseModels.py
+++ b/BaseModels.py
@@ -26,19 +26,19 @@ class CNN1D(tf.keras.Model):
     @tf.function
     def call(self, inputs, training=False):
         conv1 = self.conv1(inputs)
-        conv1 = self.bn1(conv1)
+        #conv1 = self.bn1(conv1)#, training=training)
         conv1 = self.do1(conv1, training=training)
 
         conv2 = self.conv2(conv1)
-        conv2 = self.bn2(conv2)
+        #conv2 = self.bn2(conv2)#, training=training)
         conv2 = self.do2(conv2, training=training)
 
         conv3 = self.conv3(conv2)
-        conv3 = self.bn3(conv3)
+        #conv3 = self.bn3(conv3)#, training=training)
         conv3 = self.do3(conv3, training=training)
 
         conv4 = self.conv4(conv3)
-        conv4 = self.bn4(conv4)
+        #conv4 = self.bn4(conv4)#, training=training)
         conv4 = self.do4(conv4, training=training)
 
         pool = self.pool(conv4)
@@ -51,17 +51,29 @@ class TwoBranchModel(tf.keras.Model):
         self.PixelBranch = CNN1D(n_filters, suffix, dropout_rate=dropout_rate)
         self.ObjBranch = CNN1D(n_filters, suffix, dropout_rate=dropout_rate)
 
-        self.dense1 = tfk.layers.Dense(512, activation='relu')
-        self.dense2 = tfk.layers.Dense(512, activation='relu')
+        self.dense1 = tfk.layers.Dense(256, activation='relu')
+        self.drop1 = tfk.layers.Dropout(rate=dropout_rate)
+        self.bn1 = tfk.layers.BatchNormalization()
+        self.dense2 = tfk.layers.Dense(256, activation='relu')
         self.classif = tfk.layers.Dense(nb_classes, activation='softmax')
 
+        self.classifPix = tfk.layers.Dense(nb_classes, activation='softmax')
+        self.classifObj = tfk.layers.Dense(nb_classes, activation='softmax')
+
     @tf.function
     def call(self, inputs, training=False):
         pixel_inputs, obj_inputs = inputs
         branchP = self.PixelBranch(pixel_inputs, training=training)
         branchO = self.ObjBranch(obj_inputs, training=training)
+
+        classifP = self.classifPix(branchP)
+        classifO = self.classifObj(branchO)
+
+        #feat = branchP + branchO
         feat = tf.concat([branchP, branchO], axis=1)
         output = self.dense1(feat)
+        output = self.bn1(output, training=training)
+        output = self.drop1(output, training=training)
         output = self.dense2(output)
         classif = self.classif(output)
-        return classif
+        return classif, classifP, classifO