diff --git a/extreme_fit/model/abstract_model.py b/extreme_fit/model/abstract_model.py index 331d275365931a3604c8889057b4616b785df772..cd6e735537e487583060702452dc7bcc9427ed9d 100644 --- a/extreme_fit/model/abstract_model.py +++ b/extreme_fit/model/abstract_model.py @@ -1,8 +1,11 @@ class AbstractModel(object): - def __init__(self, params_sample=None): - self.default_params = None - self.user_params_sample = params_sample + def __init__(self, params_user=None): + self.user_params_sample = params_user + + @property + def default_params(self): + return None @property def params_sample(self) -> dict: diff --git a/extreme_fit/model/margin_model/abstract_margin_model.py b/extreme_fit/model/margin_model/abstract_margin_model.py index 8358b41edb49334559e7f252e61946e3c76d8639..d87146e67cfeeac778ffea7d8ebca00837437629 100644 --- a/extreme_fit/model/margin_model/abstract_margin_model.py +++ b/extreme_fit/model/margin_model/abstract_margin_model.py @@ -18,9 +18,9 @@ class AbstractMarginModel(AbstractModel, ABC): -margin_function """ - def __init__(self, coordinates: AbstractCoordinates, params_sample=None, + def __init__(self, coordinates: AbstractCoordinates, params_user=None, params_class=GevParams): - super().__init__(params_sample) + super().__init__(params_user) assert isinstance(coordinates, AbstractCoordinates), type(coordinates) self.coordinates = coordinates self.margin_function = None # type: AbstractMarginFunction diff --git a/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py b/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py index 5e1d147b8fa6a899c2d25666fad6c7351c61d27c..18c2afd59aad785e39bec63d4298d753ffa50564 100644 --- a/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py +++ b/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py @@ -20,13 +20,13 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel): """Linearity only with respect to the temporal coordinates""" def __init__(self, coordinates: AbstractCoordinates, - params_sample=None, starting_point=None, + params_user=None, starting_point=None, fit_method=MarginFitMethod.is_mev_gev_fit, nb_iterations_for_bayesian_fit=5000, params_initial_fit_bayesian=None, type_for_MLE="GEV", params_class=GevParams): - super().__init__(coordinates, params_sample, starting_point, + super().__init__(coordinates, params_user, starting_point, params_class) self.type_for_mle = type_for_MLE self.params_initial_fit_bayesian = params_initial_fit_bayesian diff --git a/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py b/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py index f6091c29514a851159dea019cf26b8700c7ab69b..e3c86ebfecf17c99e51094a762e35c93e3b993f6 100644 --- a/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py +++ b/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py @@ -12,15 +12,11 @@ class LinearMarginModel(ParametricMarginModel): for param_name, coef_list in param_name_to_coef_list.items(): for idx, coef in enumerate(coef_list, -1): params[(param_name, idx)] = coef - return cls(coordinates, params_sample=params, params_class=params_class, **kwargs) + return cls(coordinates, params_user=params, params_class=params_class, **kwargs) def load_margin_functions(self, param_name_to_dims=None): assert param_name_to_dims is not None, 'LinearMarginModel cannot be used for sampling/fitting \n' \ 'load_margin_functions needs to be implemented in child class' - # Load default params (with a dictionary format to enable quick replacement) - # IMPORTANT: Using a dictionary format enable using the default/user params methodology - self.default_params = self.default_param_name_and_dim_to_coef - # Load sample coef coef_sample = self.param_name_to_linear_coef(param_name_and_dim_to_coef=self.params_sample) self.margin_function = LinearMarginFunction(coordinates=self.coordinates, @@ -30,7 +26,7 @@ class LinearMarginModel(ParametricMarginModel): params_class=self.params_class) @property - def default_param_name_and_dim_to_coef(self) -> dict: + def default_params(self) -> dict: default_intercept = 1 default_slope = 0.01 param_name_and_dim_to_coef = {} diff --git a/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_models.py b/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_models.py index 1f8c1e85187be003fb95527694f9bff71fdc0afc..b84dcd7f83dc75c6c699ac56a2464e9f5f72c6c5 100644 --- a/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_models.py +++ b/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_models.py @@ -71,9 +71,9 @@ class NonStationaryLocationAndScaleTemporalModel(AbstractTemporalLinearMarginMod class GumbelTemporalModel(StationaryTemporalModel): def __init__(self, coordinates: AbstractCoordinates, - params_sample=None, starting_point=None, fit_method=MarginFitMethod.is_mev_gev_fit, + params_user=None, starting_point=None, fit_method=MarginFitMethod.is_mev_gev_fit, nb_iterations_for_bayesian_fit=5000, params_initial_fit_bayesian=None): - super().__init__(coordinates, params_sample, starting_point, fit_method, + super().__init__(coordinates, params_user, starting_point, fit_method, nb_iterations_for_bayesian_fit, params_initial_fit_bayesian, type_for_MLE="Gumbel") diff --git a/extreme_fit/model/margin_model/parametric_margin_model.py b/extreme_fit/model/margin_model/parametric_margin_model.py index 3e638248a11397b69e498b3e9b7944a530b58ca9..6aba0d054ba4807be604a151a70f4a0fc566df41 100644 --- a/extreme_fit/model/margin_model/parametric_margin_model.py +++ b/extreme_fit/model/margin_model/parametric_margin_model.py @@ -17,7 +17,7 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo class ParametricMarginModel(AbstractMarginModel, ABC): def __init__(self, coordinates: AbstractCoordinates, - params_sample=None, starting_point=None, params_class=GevParams, + params_user=None, starting_point=None, params_class=GevParams, fit_method=MarginFitMethod.spatial_extremes_mle): """ :param starting_point: starting coordinate for the temporal trend @@ -26,7 +26,7 @@ class ParametricMarginModel(AbstractMarginModel, ABC): self.starting_point = starting_point self.margin_function = None # type: ParametricMarginFunction self.drop_duplicates = True - super().__init__(coordinates, params_sample, params_class) + super().__init__(coordinates, params_user, params_class) def fitmargin_from_maxima_gev(self, data: np.ndarray, df_coordinates_spat: pd.DataFrame, df_coordinates_temp: pd.DataFrame) -> ResultFromSpatialExtreme: diff --git a/extreme_fit/model/margin_model/spline_margin_model.py b/extreme_fit/model/margin_model/spline_margin_model.py index f9fec6a4209463bb63624e38a10d3f10f08ac7b3..83addd3c7a9a1f1bba4365638459e2a7372ab6f3 100644 --- a/extreme_fit/model/margin_model/spline_margin_model.py +++ b/extreme_fit/model/margin_model/spline_margin_model.py @@ -12,8 +12,8 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo class SplineMarginModel(ParametricMarginModel): def __init__(self, coordinates: AbstractCoordinates, - params_sample=None): - super().__init__(coordinates, params_sample) + params_user=None): + super().__init__(coordinates, params_user) def load_margin_functions(self, param_name_to_dims: Dict[str, List[int]] = None, param_name_to_coef: Dict[str, AbstractCoef] = None, diff --git a/extreme_fit/model/max_stable_model/abstract_max_stable_model.py b/extreme_fit/model/max_stable_model/abstract_max_stable_model.py index 8e7cb652f55d7ce08b80f59189527813b1e5216d..09513822dda16ee94d5f5020261b5804c758cdac 100644 --- a/extreme_fit/model/max_stable_model/abstract_max_stable_model.py +++ b/extreme_fit/model/max_stable_model/abstract_max_stable_model.py @@ -14,8 +14,8 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo class AbstractMaxStableModel(AbstractModel): - def __init__(self, params_sample=None): - super().__init__(params_sample) + def __init__(self, params_user=None): + super().__init__(params_user) self.cov_mod = None @property @@ -105,12 +105,15 @@ class CovarianceFunction(Enum): class AbstractMaxStableModelWithCovarianceFunction(AbstractMaxStableModel): - def __init__(self, params_sample=None, + def __init__(self, params_user=None, covariance_function: CovarianceFunction = None): - super().__init__(params_sample) + super().__init__(params_user) assert covariance_function is not None self.covariance_function = covariance_function - self.default_params = { + + @property + def default_params(self): + return { 'range': 3, 'smooth': 0.5, 'nugget': 0.5 diff --git a/extreme_fit/model/max_stable_model/max_stable_models.py b/extreme_fit/model/max_stable_model/max_stable_models.py index bcc3ad8332b1bdb4de97a9f0003e50bcad8e094b..7ba235478f393c9d4c00db77121b7119caa28a0e 100644 --- a/extreme_fit/model/max_stable_model/max_stable_models.py +++ b/extreme_fit/model/max_stable_model/max_stable_models.py @@ -9,7 +9,10 @@ class Smith(AbstractMaxStableModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cov_mod = 'gauss' - self.default_params = { + + @property + def default_params(self): + return { 'var': 1, 'cov11': 1, 'cov12': 0, @@ -29,7 +32,10 @@ class BrownResnick(AbstractMaxStableModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cov_mod = 'brown' - self.default_params = { + + @property + def default_params(self): + return { 'range': 3, 'smooth': 0.5, } @@ -40,7 +46,6 @@ class Schlather(AbstractMaxStableModelWithCovarianceFunction): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cov_mod = self.covariance_function.name - self.default_params.update({}) class Geometric(AbstractMaxStableModelWithCovarianceFunction): @@ -48,7 +53,12 @@ class Geometric(AbstractMaxStableModelWithCovarianceFunction): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cov_mod = 'g' + self.covariance_function.name - self.default_params.update({'sigma2': 0.5}) + + @property + def default_params(self): + d = super().default_params + d.update({'sigma2': 0.5}) + return d class ExtremalT(AbstractMaxStableModelWithCovarianceFunction): @@ -56,7 +66,12 @@ class ExtremalT(AbstractMaxStableModelWithCovarianceFunction): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cov_mod = 't' + self.covariance_function.name - self.default_params.update({'DoF': 2}) + + @property + def default_params(self): + d = super().default_params + d.update({'DoF': 2}) + return d class ISchlather(AbstractMaxStableModelWithCovarianceFunction): @@ -64,4 +79,9 @@ class ISchlather(AbstractMaxStableModelWithCovarianceFunction): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cov_mod = 'i' + self.covariance_function.name - self.default_params.update({'alpha': 0.5}) + + @property + def default_params(self): + d = super().default_params + d.update({'alpha': 0.5}) + return d diff --git a/test/test_extreme_fit/test_model/test_margin_model.py b/test/test_extreme_fit/test_model/test_margin_model.py index 626a624b3ff4ca9fd9d71fc612d60c5086c3accf..b26149b5e73f06b29213eefca1174e24bac467a3 100644 --- a/test/test_extreme_fit/test_model/test_margin_model.py +++ b/test/test_extreme_fit/test_model/test_margin_model.py @@ -19,7 +19,7 @@ class TestVisualizationLinearMarginModel(unittest.TestCase): def test_example_visualization_1D(self): coordinates = LinSpaceSpatialCoordinates.from_nb_points(nb_points=self.nb_points) - self.margin_model = self.margin_model_class(coordinates=coordinates, params_sample={(GevParams.SHAPE, 0): 0.02}) + self.margin_model = self.margin_model_class(coordinates=coordinates, params_user={(GevParams.SHAPE, 0): 0.02}) def test_example_visualization_2D_spatial(self): spatial_coordinates = LinSpaceSpatial2DCoordinates.from_nb_points(nb_points=self.nb_points) @@ -42,7 +42,7 @@ class TestVisualizationSplineMarginModel(unittest.TestCase): def test_example_visualization_1D_spline(self): coordinates = LinSpaceSpatialCoordinates.from_nb_points(nb_points=self.nb_points, start=0.0) - self.margin_model = self.margin_model_class(coordinates=coordinates, params_sample={(GevParams.SHAPE, 1): 0.02}) + self.margin_model = self.margin_model_class(coordinates=coordinates, params_user={(GevParams.SHAPE, 1): 0.02}) def test_example_visualization_2D_spatial_spline(self): spatial_coordinates = LinSpaceSpatial2DCoordinates.from_nb_points(nb_points=self.nb_points) diff --git a/test/test_unitary_r_packages/test_spatial_extreme/test_rmaxstab/test_rmaxstab_without_margin.py b/test/test_unitary_r_packages/test_spatial_extreme/test_rmaxstab/test_rmaxstab_without_margin.py index 5e32c74009af2be983b6d841110818e7fdd6eb63..92e9cee552f938a905fc5e686f52eb0fed99d945 100644 --- a/test/test_unitary_r_packages/test_spatial_extreme/test_rmaxstab/test_rmaxstab_without_margin.py +++ b/test/test_unitary_r_packages/test_spatial_extreme/test_rmaxstab/test_rmaxstab_without_margin.py @@ -26,7 +26,7 @@ class TestRMaxStab(TestUnitaryAbstract): coordinates = AbstractSpatialCoordinates.from_df(df) # Load max stable model params_sample = {'range': 3, 'smooth': 0.5, 'nugget': 0} - max_stable_model = Schlather(covariance_function=CovarianceFunction.whitmat, params_sample=params_sample) + max_stable_model = Schlather(covariance_function=CovarianceFunction.whitmat, params_user=params_sample) return coordinates, max_stable_model @property