diff --git a/extreme_trend/abstract_gev_trend_test.py b/extreme_trend/abstract_gev_trend_test.py
index dc078514207e2230959234a9f1312d0fa4bcb138..85df6b20bda42f18411aee377bcc33450fdc8c28 100644
--- a/extreme_trend/abstract_gev_trend_test.py
+++ b/extreme_trend/abstract_gev_trend_test.py
@@ -372,11 +372,11 @@ class AbstractGevTrendTest(object):
         size = 15
         standard_gumbel_quantiles = self.get_standard_gumbel_quantiles()
         unconstrained_empirical_quantiles = self.compute_empirical_quantiles(self.unconstrained_estimator)
-        constrained_empirical_quantiles = self.compute_empirical_quantiles(self.constrained_estimator)
-        all_quantiles = standard_gumbel_quantiles + unconstrained_empirical_quantiles + constrained_empirical_quantiles
-        epsilon = 0.5
+        # constrained_empirical_quantiles = self.compute_empirical_quantiles(self.constrained_estimator)
+        all_quantiles = standard_gumbel_quantiles + unconstrained_empirical_quantiles
+        epsilon = 0.1
         ax_lim = [min(all_quantiles) - epsilon, max(all_quantiles) + epsilon]
-        ax.plot(standard_gumbel_quantiles, standard_gumbel_quantiles, color='k')
+
         # ax.plot(standard_gumbel_quantiles, constrained_empirical_quantiles, 'x',
         #         label='Stationary Gumbel model $\mathcal{M}_0$')
 
@@ -390,10 +390,12 @@ class AbstractGevTrendTest(object):
         ax.legend(loc='lower right', prop={'size': 10})
         ax.set_xlim(ax_lim)
         ax.set_ylim(ax_lim)
+
+        ax.plot(ax_lim, ax_lim, color='k')
         ticks = [i for i in range(ceil(ax_lim[0]), floor(ax_lim[1]) + 1)]
         ax.set_xticks(ticks)
         ax.set_yticks(ticks)
-        ax.grid()
+        # ax.grid()
         ax.tick_params(labelsize=size)
 
     def get_standard_gumbel_quantiles(self):
diff --git a/extreme_trend/visualizers/study_visualizer_for_non_stationary_trends.py b/extreme_trend/visualizers/study_visualizer_for_non_stationary_trends.py
index b07a5eca8e0167fd5898fdaefc5ebb87005c086f..7f99652def22204dd953989b6fd5a0800db13306 100644
--- a/extreme_trend/visualizers/study_visualizer_for_non_stationary_trends.py
+++ b/extreme_trend/visualizers/study_visualizer_for_non_stationary_trends.py
@@ -144,59 +144,21 @@ class StudyVisualizerForNonStationaryTrends(StudyVisualizer):
             d = {m: v for m, v in d.items() if self.massif_name_to_psnow[m] >= 0.9}
         return d
 
-    @property
-    def massif_name_to_trend_test_that_minimized_aic(self) -> Dict[str, AbstractGevTrendTest]:
-        return self.massif_name_to_trend_test_tuple[0]
-
-    @property
-    def massif_name_to_stationary_trend_test_that_minimized_aic(self) -> Dict[str, AbstractGevTrendTest]:
-        return self.massif_name_to_trend_test_tuple[1]
-
-    @property
-    def massif_name_to_gumbel_trend_test_that_minimized_aic(self) -> Dict[str, AbstractGevTrendTest]:
-        return self.massif_name_to_trend_test_tuple[2]
-
     @cached_property
-    def massif_name_to_trend_test_tuple(self) -> Tuple[
-        Dict[str, AbstractGevTrendTest], Dict[str, AbstractGevTrendTest], Dict[str, AbstractGevTrendTest]]:
-        print('cached', self.altitude, id(self))
-
+    def massif_name_to_trend_test_that_minimized_aic(self) -> Dict[str, AbstractGevTrendTest]:
         massif_name_to_trend_test_that_minimized_aic = {}
-        massif_name_to_stationary_trend_test_that_minimized_aic = {}
-        massif_name_to_gumbel_trend_test_that_minimized_aic = {}
         for massif_name in self.massif_name_to_years_and_maxima_for_model_fitting.keys():
             # Compute sorted trend test
             sorted_trend_test = self.get_sorted_trend_test(massif_name)
-
             # Extract the stationary or non-stationary model that minimized AIC
             trend_test_that_minimized_aic = sorted_trend_test[0]
-            if self.select_only_model_that_pass_anderson_test and \
-                    (not trend_test_that_minimized_aic.goodness_of_fit_anderson_test):
-                    print('not anderson')
-            else:
-                print('ok')
+            if (not self.select_only_model_that_pass_anderson_test) or \
+                    trend_test_that_minimized_aic.goodness_of_fit_anderson_test:
                 massif_name_to_trend_test_that_minimized_aic[massif_name] = trend_test_that_minimized_aic
-
-            # Extract the stationary model that minimized AIC
-            stationary_trend_tests_that_minimized_aic = [t for t in sorted_trend_test if type(t) in
-                                                         [GumbelVersusGumbel, GevStationaryVersusGumbel]]
-            if len(stationary_trend_tests_that_minimized_aic) == 0:
-                stationary_trend_test_that_minimized_aic = None
-            else:
-                stationary_trend_test_that_minimized_aic = stationary_trend_tests_that_minimized_aic[0]
-            massif_name_to_stationary_trend_test_that_minimized_aic[
-                massif_name] = stationary_trend_test_that_minimized_aic
-            # Extract the Gumbel model that minimized AIC
-            gumbel_trend_tests = [t for t in sorted_trend_test if
-                                  type(t) in [GumbelVersusGumbel, GumbelLocationTrendTest, GumbelScaleTrendTest,
-                                              GumbelLocationAndScaleTrendTest]]
-            if len(gumbel_trend_tests) > 0:
-                gumbel_trend_test_that_minimized_aic = gumbel_trend_tests[0]
             else:
-                gumbel_trend_test_that_minimized_aic = None
-            massif_name_to_gumbel_trend_test_that_minimized_aic[massif_name] = gumbel_trend_test_that_minimized_aic
+                print('anderson test was not passed')
 
-        return massif_name_to_trend_test_that_minimized_aic, massif_name_to_stationary_trend_test_that_minimized_aic, massif_name_to_gumbel_trend_test_that_minimized_aic
+        return massif_name_to_trend_test_that_minimized_aic
 
     def get_sorted_trend_test(self, massif_name):
         x, y = self.massif_name_to_years_and_maxima_for_model_fitting[massif_name]
@@ -360,12 +322,6 @@ class StudyVisualizerForNonStationaryTrends(StudyVisualizer):
     def massif_name_and_model_subset_to_model_class(self, massif_name, model_subset_for_uncertainty):
         if model_subset_for_uncertainty is ModelSubsetForUncertainty.stationary_gumbel:
             return GumbelTemporalModel
-        if model_subset_for_uncertainty is ModelSubsetForUncertainty.stationary_gev:
-            return StationaryTemporalModel
-        elif model_subset_for_uncertainty is ModelSubsetForUncertainty.stationary_gumbel_and_gev:
-            return self.massif_name_to_stationary_trend_test_that_minimized_aic[massif_name].unconstrained_model_class
-        elif model_subset_for_uncertainty is ModelSubsetForUncertainty.non_stationary_gumbel:
-            return self.massif_name_to_gumbel_trend_test_that_minimized_aic[massif_name].unconstrained_model_class
         elif model_subset_for_uncertainty is ModelSubsetForUncertainty.non_stationary_gumbel_and_gev:
             return self.massif_name_to_trend_test_that_minimized_aic[massif_name].unconstrained_model_class
         else:
@@ -378,6 +334,10 @@ class StudyVisualizerForNonStationaryTrends(StudyVisualizer):
         # Compute for the uncertainty massif names
         massifs_names = set(self.massif_name_to_years_and_maxima_for_model_fitting.keys()). \
             intersection(self.uncertainty_massif_names)
+        # Update the name of the massif (because some massifs might have been removed by anderson test)
+        if model_subset_for_uncertainty is ModelSubsetForUncertainty.non_stationary_gumbel_and_gev\
+                and self.select_only_model_that_pass_anderson_test:
+            massifs_names = massifs_names.intersection(set(self.massif_name_to_trend_test_that_minimized_aic.keys()))
         arguments = [
             [self.massif_name_to_years_and_maxima_for_model_fitting[m],
              self.massif_name_and_model_subset_to_model_class(m, model_subset_for_uncertainty),
diff --git a/projects/exceeding_snow_loads/section_data/main_example_swe_total_plot.py b/projects/exceeding_snow_loads/section_data/main_example_swe_total_plot.py
index bb78ef8dfe0f60caa629844f13daeaa043b8cba2..9b6a86ed4f3e4b5af803764a21caf99cc851b2a5 100644
--- a/projects/exceeding_snow_loads/section_data/main_example_swe_total_plot.py
+++ b/projects/exceeding_snow_loads/section_data/main_example_swe_total_plot.py
@@ -55,7 +55,7 @@ def max_graph_annual_maxima_poster():
             last_plot = color == "magenta"
             label = '{} massif at {}m'.format(massif_name, altitude)
             tight_pad = {'h_pad': 0.2}
-            snow_abbreviation = 'annual maxima of ' + snow_abbreviation
+            snow_abbreviation = 'annual maximum of ' + snow_abbreviation
             study_visualizer.visualize_max_graphs_poster(massif_name, altitude, snow_abbreviation, color, label,
                                                          last_plot, ax, tight_pad=tight_pad,
                                                          dpi=dpi_paper1_figure,
diff --git a/projects/exceeding_snow_loads/section_results/main_result_trends_and_return_levels.py b/projects/exceeding_snow_loads/section_results/main_result_trends_and_return_levels.py
index 46f93e5223ea9a8262f0b88bbeee0f63e203478d..efc2f2d4ec54b4c0037ec39d78db2d771e0ca5f1 100644
--- a/projects/exceeding_snow_loads/section_results/main_result_trends_and_return_levels.py
+++ b/projects/exceeding_snow_loads/section_results/main_result_trends_and_return_levels.py
@@ -74,8 +74,10 @@ def intermediate_result(altitudes, massif_names=None,
     plot_uncertainty_massifs(altitude_to_visualizer)
     plot_uncertainty_histogram(altitude_to_visualizer)
     plot_selection_curves(altitude_to_visualizer)
-    # uncertainty_interval_size(altitude_to_visualizer)
     plot_intensity_against_gumbel_quantile_for_3_examples(altitude_to_visualizer)
+
+    # Additional plots
+    # uncertainty_interval_size(altitude_to_visualizer)
     # plot_full_diagnostic(altitude_to_visualizer)
 
 
@@ -85,13 +87,9 @@ def major_result():
     # massif_names = ['Beaufortain', 'Vercors']
     massif_names = None
     study_classes = paper_study_classes[:1]
-    # model_subsets_for_uncertainty = [ModelSubsetForUncertainty.stationary_gumbel,
-    #                                  ModelSubsetForUncertainty.stationary_gumbel_and_gev,
-    #                                  ModelSubsetForUncertainty.non_stationary_gumbel,
-    #                                  ModelSubsetForUncertainty.non_stationary_gumbel_and_gev]
     model_subsets_for_uncertainty = None
     # study_classes = [CrocusSnowLoad3Days, CrocusSnowLoad5Days, CrocusSnowLoad7Days][::-1]
-    altitudes = [300, 600]
+    # altitudes = [300, 600, 900, 1800, 2700][:2]
     altitudes = paper_altitudes
     # altitudes = [900, 1800, 2700][:1]
     for study_class in study_classes:
diff --git a/projects/exceeding_snow_loads/utils.py b/projects/exceeding_snow_loads/utils.py
index 62104769a695a572439ff7eb53a43b210404d930..c28ee205adc1f036a08d96263476ca947f309c5c 100644
--- a/projects/exceeding_snow_loads/utils.py
+++ b/projects/exceeding_snow_loads/utils.py
@@ -19,7 +19,7 @@ from extreme_trend.trend_test_two_parameters.gumbel_test_two_parameters import \
     GumbelLocationAndScaleTrendTest, GumbelLocationQuadraticTrendTest, GumbelScaleQuadraticTrendTest
 
 paper_altitudes = ALL_ALTITUDES_WITHOUT_NAN
-paper_study_classes = [CrocusSnowLoadTotal, CrocusSnowLoadEurocode, CrocusSnowLoad3Days][:2]
+paper_study_classes = [CrocusSnowLoadTotal, CrocusSnowLoadEurocode][:]
 # dpi_paper1_figure = 700
 dpi_paper1_figure = None
 NON_STATIONARY_TREND_TEST_PAPER_1 = [GumbelVersusGumbel,