From 384abbcd17af1cdc5b5724463b57dfd4c8bcd223 Mon Sep 17 00:00:00 2001 From: Le Roux Erwan <erwan.le-roux@irstea.fr> Date: Mon, 26 Nov 2018 18:11:14 +0100 Subject: [PATCH] [MARGIN FUNCTION] add full visualization for 1D/2D margin functions --- .../regression_margin}/__init__.py | 0 .../regression_margin/regression_margin.py | 42 +++++++++++++++++++ .../visualization_margin_model.py | 33 +++++++++++++++ experiment/return_level_plot/__init__.py | 0 .../return_level_plot/spatial_2D_plot.py | 0 extreme_estimator/estimator/full_estimator.py | 8 ++-- .../estimator/margin_estimator.py | 2 +- .../margin_model/abstract_margin_model.py | 34 ++++++++------- .../abstract_margin_function.py | 41 +++++++++++++++++- .../independent_margin_function.py | 3 +- .../margin_function/param_function.py | 4 +- .../margin_model/smooth_margin_model.py | 2 +- .../abstract_max_stable_model.py | 2 +- .../coordinates_1D.py | 9 ++++ .../dataset/simulation_dataset.py | 7 ++-- .../annual_maxima_observations.py | 4 +- .../test_R_model/test_margin_function.py | 21 ---------- .../test_estimator/test_margin_estimators.py | 3 +- .../test_gev/__init__.py | 0 .../test_gev_mle_fit.py | 0 20 files changed, 160 insertions(+), 55 deletions(-) rename {test/test_extreme_estimator/test_R_model => experiment/regression_margin}/__init__.py (100%) create mode 100644 experiment/regression_margin/regression_margin.py create mode 100644 experiment/regression_margin/visualization_margin_model.py create mode 100644 experiment/return_level_plot/__init__.py rename {extreme_estimator => experiment}/return_level_plot/spatial_2D_plot.py (100%) delete mode 100644 test/test_extreme_estimator/test_R_model/test_margin_function.py create mode 100644 test/test_extreme_estimator/test_gev/__init__.py rename test/test_extreme_estimator/{test_R_model => test_gev}/test_gev_mle_fit.py (100%) diff --git a/test/test_extreme_estimator/test_R_model/__init__.py b/experiment/regression_margin/__init__.py similarity index 100% rename from test/test_extreme_estimator/test_R_model/__init__.py rename to experiment/regression_margin/__init__.py diff --git a/experiment/regression_margin/regression_margin.py b/experiment/regression_margin/regression_margin.py new file mode 100644 index 00000000..e7089fee --- /dev/null +++ b/experiment/regression_margin/regression_margin.py @@ -0,0 +1,42 @@ +import numpy as np + +from extreme_estimator.estimator.full_estimator import FullEstimatorInASingleStepWithSmoothMargin +from extreme_estimator.extreme_models.margin_model.smooth_margin_model import LinearShapeAxis0MarginModel, \ + LinearAllParametersAllAxisMarginModel +from extreme_estimator.extreme_models.max_stable_model.max_stable_models import Smith +from extreme_estimator.gev_params import GevParams +from spatio_temporal_dataset.coordinates.unidimensional_coordinates.coordinates_1D import LinSpaceCoordinates +import matplotlib.pyplot as plt + +from spatio_temporal_dataset.dataset.simulation_dataset import FullSimulatedDataset + +nb_points = 50 +nb_obs = 100 + +coordinates = LinSpaceCoordinates.from_nb_points(nb_points=nb_points) + + +########## GENERATING THE DATA ##################### + +# MarginModel Linear with respect to the shape (from 0.01 to 0.02) +margin_model = LinearShapeAxis0MarginModel(coordinates=coordinates, params_sample={GevParams.GEV_SHAPE: 0.02}) +max_stable_model = Smith() +dataset = FullSimulatedDataset.from_double_sampling(nb_obs=nb_obs, margin_model=margin_model, + coordinates=coordinates, + max_stable_model=max_stable_model) +# Visualize the sampling margin +dataset.margin_model.margin_function_sample.visualize_all() +# Plot a realization from the maxima gev (i.e the maxima obtained just by simulating the marginal law) +for maxima_gev in np.transpose(dataset.maxima_gev): + plt.plot(coordinates.coordinates_values, maxima_gev) +plt.show() + +######### FITTING A MODEL ################# + +margin_model = LinearAllParametersAllAxisMarginModel(coordinates) +full_estimator = FullEstimatorInASingleStepWithSmoothMargin(dataset, margin_model, max_stable_model) +full_estimator.fit() +print(full_estimator.full_params_fitted) + +# Plot the margin functions +# margin_model.margin_function_sample.visualize_2D() diff --git a/experiment/regression_margin/visualization_margin_model.py b/experiment/regression_margin/visualization_margin_model.py new file mode 100644 index 00000000..1f405c9d --- /dev/null +++ b/experiment/regression_margin/visualization_margin_model.py @@ -0,0 +1,33 @@ +import unittest + +from extreme_estimator.gev_params import GevParams +from extreme_estimator.extreme_models.margin_model.smooth_margin_model import LinearShapeAxis0MarginModel, \ + LinearAllParametersAllAxisMarginModel +from spatio_temporal_dataset.coordinates.spatial_coordinates.generated_spatial_coordinates import CircleCoordinates +from spatio_temporal_dataset.coordinates.unidimensional_coordinates.coordinates_1D import LinSpaceCoordinates + + +class VisualizationMarginModel(unittest.TestCase): + DISPLAY = True + nb_points = 50 + margin_model = [LinearShapeAxis0MarginModel, LinearAllParametersAllAxisMarginModel][-1] + + @classmethod + def example_visualization_2D(cls): + spatial_coordinates = CircleCoordinates.from_nb_points(nb_points=cls.nb_points) + margin_model = cls.margin_model(coordinates=spatial_coordinates) + if cls.DISPLAY: + margin_model.margin_function_sample.visualize_all() + + @classmethod + def example_visualization_1D(cls): + coordinates = LinSpaceCoordinates.from_nb_points(nb_points=cls.nb_points) + # MarginModel Linear with respect to the shape (from 0.01 to 0.02) + margin_model = cls.margin_model(coordinates=coordinates, params_sample={GevParams.GEV_SHAPE: 0.02}) + if cls.DISPLAY: + margin_model.margin_function_sample.visualize_all() + + +if __name__ == '__main__': + VisualizationMarginModel.example_visualization_1D() + VisualizationMarginModel.example_visualization_2D() diff --git a/experiment/return_level_plot/__init__.py b/experiment/return_level_plot/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/extreme_estimator/return_level_plot/spatial_2D_plot.py b/experiment/return_level_plot/spatial_2D_plot.py similarity index 100% rename from extreme_estimator/return_level_plot/spatial_2D_plot.py rename to experiment/return_level_plot/spatial_2D_plot.py diff --git a/extreme_estimator/estimator/full_estimator.py b/extreme_estimator/estimator/full_estimator.py index 04fe3ad9..33b3e5da 100644 --- a/extreme_estimator/estimator/full_estimator.py +++ b/extreme_estimator/estimator/full_estimator.py @@ -25,7 +25,7 @@ class SmoothMarginalsThenUnitaryMsp(AbstractFullEstimator): self.margin_estimator.fit() # Compute the maxima_frech maxima_frech = AbstractMarginModel.gev2frech(maxima_gev=self.dataset.maxima_gev, - coordinates=self.dataset.coordinates_values, + coordinates_values=self.dataset.coordinates_values, margin_function=self.margin_estimator.margin_function_fitted) # Update maxima frech field through the dataset object self.dataset.maxima_frech = maxima_frech @@ -47,15 +47,15 @@ class FullEstimatorInASingleStepWithSmoothMargin(AbstractFullEstimator): self.smooth_margin_function_to_fit = margin_model.margin_function_start_fit def _fit(self): - # todo: specify the shape of the margin - # Estimate the margin - self.max_stable_params_fitted = self.max_stable_model.fitmaxstab( + # Estimate both the margin and the max-stable structure + self.full_params_fitted = self.max_stable_model.fitmaxstab( maxima_frech=self.dataset.maxima_frech, df_coordinates=self.dataset.df_coordinates, fit_marge=True, fit_marge_form_dict=self.smooth_margin_function_to_fit.fit_marge_form_dict, margin_start_dict=self.smooth_margin_function_to_fit.margin_start_dict ) + # Initialize class PointwiseAndThenUnitaryMsp(AbstractFullEstimator): diff --git a/extreme_estimator/estimator/margin_estimator.py b/extreme_estimator/estimator/margin_estimator.py index ce4d9a3e..4453d868 100644 --- a/extreme_estimator/estimator/margin_estimator.py +++ b/extreme_estimator/estimator/margin_estimator.py @@ -33,4 +33,4 @@ class SmoothMarginEstimator(AbstractMarginEstimator): def _fit(self): self._margin_function_fitted = self.margin_model.fitmargin_from_maxima_gev(maxima_gev=self.dataset.maxima_gev, - coordinates=self.dataset.coordinates_values) + coordinates_values=self.dataset.coordinates_values) diff --git a/extreme_estimator/extreme_models/margin_model/abstract_margin_model.py b/extreme_estimator/extreme_models/margin_model/abstract_margin_model.py index f6cff25c..7365f4e6 100644 --- a/extreme_estimator/extreme_models/margin_model/abstract_margin_model.py +++ b/extreme_estimator/extreme_models/margin_model/abstract_margin_model.py @@ -1,7 +1,8 @@ import numpy as np from extreme_estimator.extreme_models.abstract_model import AbstractModel -from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import AbstractMarginFunction +from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function \ + import AbstractMarginFunction from extreme_estimator.gev_params import GevParams from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates @@ -27,34 +28,36 @@ class AbstractMarginModel(AbstractModel): # Conversion class methods @classmethod - def convert_maxima(cls, convertion_r_function, maxima: np.ndarray, coordinates: np.ndarray, - margin_function: AbstractMarginFunction): - assert isinstance(coordinates, np.ndarray) - assert len(maxima) == len(coordinates) + def convert_maxima(cls, convertion_r_function, maxima: np.ndarray, coordinates_values: np.ndarray, + margin_function: AbstractMarginFunction) -> np.ndarray: + assert isinstance(coordinates_values, np.ndarray) + assert len(maxima) == len(coordinates_values) converted_maxima = [] - for x, coordinate in zip(maxima, coordinates): + for x, coordinate in zip(maxima, coordinates_values): gev_params = margin_function.get_gev_params(coordinate) x_gev = convertion_r_function(x, **gev_params.to_dict()) converted_maxima.append(x_gev) return np.array(converted_maxima) @classmethod - def gev2frech(cls, maxima_gev: np.ndarray, coordinates: np.ndarray, margin_function: AbstractMarginFunction): - return cls.convert_maxima(cls.r.gev2frech, maxima_gev, coordinates, margin_function) + def gev2frech(cls, maxima_gev: np.ndarray, coordinates_values: np.ndarray, + margin_function: AbstractMarginFunction) -> np.ndarray: + return cls.convert_maxima(cls.r.gev2frech, maxima_gev, coordinates_values, margin_function) @classmethod - def frech2gev(cls, maxima_frech: np.ndarray, coordinates: np.ndarray, margin_function: AbstractMarginFunction): - return cls.convert_maxima(cls.r.frech2gev, maxima_frech, coordinates, margin_function) + def frech2gev(cls, maxima_frech: np.ndarray, coordinates_values: np.ndarray, + margin_function: AbstractMarginFunction) -> np.ndarray: + return cls.convert_maxima(cls.r.frech2gev, maxima_frech, coordinates_values, margin_function) # Sampling methods - def rmargin_from_maxima_frech(self, maxima_frech: np.ndarray, coordinates: np.ndarray): - maxima_gev = self.frech2gev(maxima_frech, coordinates, self.margin_function_sample) + def rmargin_from_maxima_frech(self, maxima_frech: np.ndarray, coordinates_values: np.ndarray) -> np.ndarray: + maxima_gev = self.frech2gev(maxima_frech, coordinates_values, self.margin_function_sample) return maxima_gev - def rmargin_from_nb_obs(self, nb_obs, coordinates): + def rmargin_from_nb_obs(self, nb_obs: int, coordinates_values: np.ndarray) -> np.ndarray: maxima_gev = [] - for coordinate in coordinates: + for coordinate in coordinates_values: gev_params = self.margin_function_sample.get_gev_params(coordinate) x_gev = self.r.rgev(nb_obs, **gev_params.to_dict()) maxima_gev.append(x_gev) @@ -62,5 +65,6 @@ class AbstractMarginModel(AbstractModel): # Fitting methods needs to be defined in child classes - def fitmargin_from_maxima_gev(self, maxima_gev: np.ndarray, coordinates: np.ndarray) -> AbstractMarginFunction: + def fitmargin_from_maxima_gev(self, maxima_gev: np.ndarray, coordinates_values: np.ndarray) \ + -> AbstractMarginFunction: pass diff --git a/extreme_estimator/extreme_models/margin_model/margin_function/abstract_margin_function.py b/extreme_estimator/extreme_models/margin_model/margin_function/abstract_margin_function.py index 8b768b35..32bf0301 100644 --- a/extreme_estimator/extreme_models/margin_model/margin_function/abstract_margin_function.py +++ b/extreme_estimator/extreme_models/margin_model/margin_function/abstract_margin_function.py @@ -14,12 +14,40 @@ class AbstractMarginFunction(object): self.default_params = default_params.to_dict() def get_gev_params(self, coordinate: np.ndarray) -> GevParams: - """Main function that maps each coordinate to its GEV parameters""" + """Main method that maps each coordinate to its GEV parameters""" pass # Visualization function - def visualize_2D(self, gev_param_name=GevParams.GEV_LOC, ax=None, show=False): + def visualize_all(self): + fig, axes = plt.subplots(3, 1, sharex='col', sharey='row') + fig.subplots_adjust(hspace=0.4, wspace=0.4, ) + for i, gev_param_name in enumerate(GevParams.GEV_PARAM_NAMES): + ax = axes[i] + self.visualize(gev_param_name, ax, show=False) + title_str = gev_param_name + ax.set_title(title_str) + plt.show() + + def visualize(self, gev_param_name=GevParams.GEV_LOC, ax=None, show=True): + if self.coordinates.nb_columns == 1: + self.visualize_1D(gev_param_name, ax, show) + elif self.coordinates.nb_columns == 2: + self.visualize_2D(gev_param_name, ax, show) + else: + raise NotImplementedError('3D Margin visualization not yet implemented') + + def visualize_1D(self, gev_param_name=GevParams.GEV_LOC, ax=None, show=True): + x = self.coordinates.x_coordinates + grid, linspace = self.get_grid_1D(x) + gev_param_idx = GevParams.GEV_PARAM_NAMES.index(gev_param_name) + if ax is None: + ax = plt.gca() + ax.plot(linspace, grid[:, gev_param_idx]) + if show: + plt.show() + + def visualize_2D(self, gev_param_name=GevParams.GEV_LOC, ax=None, show=True): x = self.coordinates.x_coordinates y = self.coordinates.y_coordinates grid = self.get_grid_2D(x, y) @@ -32,6 +60,15 @@ class AbstractMarginFunction(object): if show: plt.show() + def get_grid_1D(self, x): + # TODO: to avoid getting the value several times, I could cache the results + resolution = 100 + grid = np.zeros([resolution, 3]) + linspace = np.linspace(x.min(), x.max(), resolution) + for i, xi in enumerate(linspace): + grid[i] = self.get_gev_params(np.array([xi])).to_array() + return grid, linspace + def get_grid_2D(self, x, y): resolution = 100 grid = np.zeros([resolution, resolution, 3]) diff --git a/extreme_estimator/extreme_models/margin_model/margin_function/independent_margin_function.py b/extreme_estimator/extreme_models/margin_model/margin_function/independent_margin_function.py index 24780e79..25de6fe2 100644 --- a/extreme_estimator/extreme_models/margin_model/margin_function/independent_margin_function.py +++ b/extreme_estimator/extreme_models/margin_model/margin_function/independent_margin_function.py @@ -65,7 +65,8 @@ class LinearMarginFunction(IndependentMarginFunction): start=self.default_params[gev_param_name]) # Some check on the Linear param function if gev_param_name == GevParams.GEV_SCALE: - assert param_function.end > param_function.start, 'Impossible linear rate for Scale parameter' + assert param_function.end > 0 and param_function.start > 0, \ + 'Impossible start/end value for Scale parameter' # Add the param_function to the dictionary self.gev_param_name_to_param_function[gev_param_name] = param_function diff --git a/extreme_estimator/extreme_models/margin_model/margin_function/param_function.py b/extreme_estimator/extreme_models/margin_model/margin_function/param_function.py index 5503da2c..24a81791 100644 --- a/extreme_estimator/extreme_models/margin_model/margin_function/param_function.py +++ b/extreme_estimator/extreme_models/margin_model/margin_function/param_function.py @@ -20,7 +20,7 @@ class ConstantParamFunction(ParamFunction): class LinearOneAxisParamFunction(ParamFunction): - def __init__(self, linear_axis: int, coordinates_axis: np.ndarray, start: float, end: float = 2.0): + def __init__(self, linear_axis: int, coordinates_axis: np.ndarray, start: float, end: float = 0.01): self.linear_axis = linear_axis self.t_min = coordinates_axis.min() self.t_max = coordinates_axis.max() @@ -36,7 +36,7 @@ class LinearOneAxisParamFunction(ParamFunction): class LinearParamFunction(ParamFunction): - def __init__(self, linear_axes: List[int], coordinates: np.ndarray, start: float, end: float = 2.0): + def __init__(self, linear_axes: List[int], coordinates: np.ndarray, start: float, end: float = 0.01): self.linear_one_axis_param_functions = [] # type: List[LinearOneAxisParamFunction] self.start = start self.end = end diff --git a/extreme_estimator/extreme_models/margin_model/smooth_margin_model.py b/extreme_estimator/extreme_models/margin_model/smooth_margin_model.py index 8d22b109..88951e44 100644 --- a/extreme_estimator/extreme_models/margin_model/smooth_margin_model.py +++ b/extreme_estimator/extreme_models/margin_model/smooth_margin_model.py @@ -20,7 +20,7 @@ class LinearMarginModel(AbstractMarginModel): default_params=GevParams.from_dict(self.params_start_fit), gev_param_name_to_linear_axes=gev_param_name_to_linear_axis) - def fitmargin_from_maxima_gev(self, maxima_gev: np.ndarray, coordinates: np.ndarray) -> AbstractMarginFunction: + def fitmargin_from_maxima_gev(self, maxima_gev: np.ndarray, coordinates_values: np.ndarray) -> AbstractMarginFunction: return self.margin_function_start_fit diff --git a/extreme_estimator/extreme_models/max_stable_model/abstract_max_stable_model.py b/extreme_estimator/extreme_models/max_stable_model/abstract_max_stable_model.py index 5ad1c115..d8051e86 100644 --- a/extreme_estimator/extreme_models/max_stable_model/abstract_max_stable_model.py +++ b/extreme_estimator/extreme_models/max_stable_model/abstract_max_stable_model.py @@ -21,7 +21,7 @@ class AbstractMaxStableModel(AbstractModel): return {'cov.mod': self.cov_mod} def fitmaxstab(self, maxima_frech: np.ndarray, df_coordinates: pd.DataFrame, fit_marge=False, - fit_marge_form_dict=None, margin_start_dict=None): + fit_marge_form_dict=None, margin_start_dict=None) -> dict: assert isinstance(maxima_frech, np.ndarray) assert isinstance(df_coordinates, pd.DataFrame) if fit_marge: diff --git a/spatio_temporal_dataset/coordinates/unidimensional_coordinates/coordinates_1D.py b/spatio_temporal_dataset/coordinates/unidimensional_coordinates/coordinates_1D.py index 53730282..49df99a0 100644 --- a/spatio_temporal_dataset/coordinates/unidimensional_coordinates/coordinates_1D.py +++ b/spatio_temporal_dataset/coordinates/unidimensional_coordinates/coordinates_1D.py @@ -10,6 +10,15 @@ class AbstractUniDimensionalCoordinates(AbstractCoordinates): pass +class LinSpaceCoordinates(AbstractUniDimensionalCoordinates): + + @classmethod + def from_nb_points(cls, nb_points, start=-1.0, end=1.0): + axis_coordinates = np.linspace(start, end, nb_points) + df = pd.DataFrame.from_dict({cls.COORDINATE_X: axis_coordinates}) + return cls.from_df(df) + + class UniformCoordinates(AbstractUniDimensionalCoordinates): @classmethod diff --git a/spatio_temporal_dataset/dataset/simulation_dataset.py b/spatio_temporal_dataset/dataset/simulation_dataset.py index 4738c8c8..a635baa7 100644 --- a/spatio_temporal_dataset/dataset/simulation_dataset.py +++ b/spatio_temporal_dataset/dataset/simulation_dataset.py @@ -19,8 +19,8 @@ class SimulatedDataset(AbstractDataset): margin_model: AbstractMarginModel = None): super().__init__(temporal_observations, coordinates) assert margin_model is not None or max_stable_model is not None - self.margin_model = margin_model - self.max_stable_model = max_stable_model + self.margin_model = margin_model # type: AbstractMarginModel + self.max_stable_model = max_stable_model # type: AbstractMaxStableModel class MaxStableDataset(SimulatedDataset): @@ -47,4 +47,5 @@ class FullSimulatedDataset(SimulatedDataset): margin_model: AbstractMarginModel): temporal_obs = FullAnnualMaxima.from_double_sampling(nb_obs, max_stable_model, coordinates, margin_model) - return cls(temporal_obs, coordinates, max_stable_model) + return cls(temporal_observations=temporal_obs, coordinates=coordinates, max_stable_model=max_stable_model, + margin_model=margin_model) diff --git a/spatio_temporal_dataset/temporal_observations/annual_maxima_observations.py b/spatio_temporal_dataset/temporal_observations/annual_maxima_observations.py index 6eb582b7..b159bbba 100644 --- a/spatio_temporal_dataset/temporal_observations/annual_maxima_observations.py +++ b/spatio_temporal_dataset/temporal_observations/annual_maxima_observations.py @@ -19,7 +19,7 @@ class MarginAnnualMaxima(AnnualMaxima): @classmethod def from_sampling(cls, nb_obs: int, coordinates: AbstractCoordinates, margin_model: AbstractMarginModel): - maxima_gev = margin_model.rmargin_from_nb_obs(nb_obs=nb_obs, coordinates=coordinates.coordinates_values) + maxima_gev = margin_model.rmargin_from_nb_obs(nb_obs=nb_obs, coordinates_values=coordinates.coordinates_values) df_maxima_gev = pd.DataFrame(data=maxima_gev, index=coordinates.index) return cls(df_maxima_gev=df_maxima_gev) @@ -41,6 +41,6 @@ class FullAnnualMaxima(MaxStableAnnualMaxima): max_stable_annual_maxima = super().from_sampling(nb_obs, max_stable_model, coordinates) # Compute df_maxima_gev from df_maxima_frech maxima_gev = margin_model.rmargin_from_maxima_frech(maxima_frech=max_stable_annual_maxima.maxima_frech, - coordinates=coordinates.coordinates_values) + coordinates_values=coordinates.coordinates_values) max_stable_annual_maxima.df_maxima_gev = pd.DataFrame(data=maxima_gev, index=coordinates.index) return max_stable_annual_maxima diff --git a/test/test_extreme_estimator/test_R_model/test_margin_function.py b/test/test_extreme_estimator/test_R_model/test_margin_function.py deleted file mode 100644 index f412d8d0..00000000 --- a/test/test_extreme_estimator/test_R_model/test_margin_function.py +++ /dev/null @@ -1,21 +0,0 @@ -import unittest - -from extreme_estimator.gev_params import GevParams -from extreme_estimator.extreme_models.margin_model.smooth_margin_model import LinearShapeAxis0MarginModel -from spatio_temporal_dataset.coordinates.spatial_coordinates.generated_spatial_coordinates import CircleCoordinates - - -class TestLinearMarginModel(unittest.TestCase): - DISPLAY = False - - def test_visualization_2D(self): - spatial_coordinates = CircleCoordinates.from_nb_points(nb_points=50) - margin_model = LinearShapeAxis0MarginModel(coordinates=spatial_coordinates) - for gev_param_name in GevParams.GEV_PARAM_NAMES: - margin_model.margin_function_sample.visualize_2D(gev_param_name=gev_param_name, show=self.DISPLAY) - # maxima_gev = margin_model.rmargin_from_nb_obs(nb_obs=10, coordinates=coordinates) - # fitted_margin_function = margin_model.fitmargin_from_maxima_gev(maxima_gev=maxima_gev, coordinates=coordinates) - - -if __name__ == '__main__': - unittest.main() diff --git a/test/test_extreme_estimator/test_estimator/test_margin_estimators.py b/test/test_extreme_estimator/test_estimator/test_margin_estimators.py index 473b88fa..cd7b0a9e 100644 --- a/test/test_extreme_estimator/test_estimator/test_margin_estimators.py +++ b/test/test_extreme_estimator/test_estimator/test_margin_estimators.py @@ -1,8 +1,7 @@ import unittest from extreme_estimator.estimator.margin_estimator import SmoothMarginEstimator -from extreme_estimator.return_level_plot.spatial_2D_plot import Spatial2DPlot -from spatio_temporal_dataset.coordinates.spatial_coordinates.generated_spatial_coordinates import CircleCoordinates +from experiment.return_level_plot.spatial_2D_plot import Spatial2DPlot from spatio_temporal_dataset.dataset.simulation_dataset import MarginDataset from test.test_utils import load_smooth_margin_models, load_test_1D_and_2D_coordinates diff --git a/test/test_extreme_estimator/test_gev/__init__.py b/test/test_extreme_estimator/test_gev/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/test/test_extreme_estimator/test_R_model/test_gev_mle_fit.py b/test/test_extreme_estimator/test_gev/test_gev_mle_fit.py similarity index 100% rename from test/test_extreme_estimator/test_R_model/test_gev_mle_fit.py rename to test/test_extreme_estimator/test_gev/test_gev_mle_fit.py -- GitLab