diff --git a/test/test_extreme_estimator/test_margin_fits/test_gev/test_gev_temporal_bayesian.py b/test/test_extreme_estimator/test_margin_fits/test_gev/test_gev_temporal_bayesian.py index 36aeac8168b1ccae46ad5b2431273d37d78bbff6..9c85fdb3f68ab6edf3b46361bd6ef79cb0777d12 100644 --- a/test/test_extreme_estimator/test_margin_fits/test_gev/test_gev_temporal_bayesian.py +++ b/test/test_extreme_estimator/test_margin_fits/test_gev/test_gev_temporal_bayesian.py @@ -9,7 +9,7 @@ from extreme_fit.estimator.margin_estimator.abstract_margin_estimator import Lin from extreme_fit.model.margin_model.linear_margin_model.abstract_temporal_linear_margin_model import \ AbstractTemporalLinearMarginModel from extreme_fit.model.margin_model.linear_margin_model.temporal_linear_margin_models import StationaryStationModel, \ - NonStationaryLocationStationModel + NonStationaryLocationStationModel, NonStationaryLocationAndScaleModel from extreme_fit.model.result_from_model_fit.result_from_extremes import ResultFromExtremes from extreme_fit.model.utils import r, set_seed_r from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates @@ -51,7 +51,7 @@ class TestGevTemporalBayesian(unittest.TestCase): for key in ref.keys(): self.assertAlmostEqual(ref[key], mle_params_estimated[key], places=3) - def test_gev_temporal_margin_fit_non_stationary(self): + def test_gev_temporal_margin_fit_non_stationary_location(self): # Create estimator estimator = fitted_linear_margin_estimator(NonStationaryLocationStationModel, self.coordinates, self.dataset, starting_year=0, @@ -63,6 +63,18 @@ class TestGevTemporalBayesian(unittest.TestCase): mle_params_estimated_year3 = estimator.margin_function_from_fit.get_gev_params(np.array([3])).to_dict() self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3) + def test_gev_temporal_margin_fit_non_stationary_location_and_scale(self): + # Create estimator + estimator = fitted_linear_margin_estimator(NonStationaryLocationAndScaleModel, self.coordinates, self.dataset, + starting_year=0, + fit_method=AbstractTemporalLinearMarginModel.EXTREMES_FEVD_BAYESIAN_FIT_METHOD_STR) + mu1_values = estimator.result_from_model_fit.df_posterior_samples.iloc[:, 1] + self.assertTrue((mu1_values != 0).any()) + # Checks that parameters returned are indeed different + mle_params_estimated_year1 = estimator.margin_function_from_fit.get_gev_params(np.array([1])).to_dict() + mle_params_estimated_year3 = estimator.margin_function_from_fit.get_gev_params(np.array([3])).to_dict() + self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3) + # # def test_gev_temporal_margin_fit_nonstationary_with_start_point(self): # # Create estimator