diff --git a/experiment/paper_past_snow_loads/check_mle_convergence_for_trends/qqplot/plot_qqplot.py b/experiment/paper_past_snow_loads/check_mle_convergence_for_trends/qqplot/plot_qqplot.py
index db7b5e6c3a35f9d3fe6749027beaf774a6f9f8ca..62605d088d7651d19a5a4bc997b625fde6d23a72 100644
--- a/experiment/paper_past_snow_loads/check_mle_convergence_for_trends/qqplot/plot_qqplot.py
+++ b/experiment/paper_past_snow_loads/check_mle_convergence_for_trends/qqplot/plot_qqplot.py
@@ -1,25 +1,21 @@
+from itertools import chain
 from typing import Dict
 
+import matplotlib.pyplot as plt
+import numpy as np
+from matplotlib.ticker import PercentFormatter
+
 from experiment.meteo_france_data.scm_models_data.crocus.crocus import CrocusSnowLoadTotal
+from experiment.meteo_france_data.scm_models_data.visualization.study_visualization.main_study_visualizer import \
+    ALL_ALTITUDES_WITHOUT_NAN
 from experiment.paper_past_snow_loads.data.main_example_swe_total_plot import marker_altitude_massif_name_for_paper1
-from experiment.paper_past_snow_loads.paper_main_utils import load_altitude_to_visualizer
 from experiment.paper_past_snow_loads.study_visualizer_for_non_stationary_trends import \
     StudyVisualizerForNonStationaryTrends
-from experiment.trend_analysis.univariate_test.extreme_trend_test.abstract_gev_trend_test import AbstractGevTrendTest
-
-
-def plot_qqplot_wrt_standard_gumbel(altitude_to_visualizer: Dict[int, StudyVisualizerForNonStationaryTrends],
-                                    plot_all=False):
-    if plot_all:
-        pass
-    else:
-        # Plot only some examples
-        plot_qqplot_for_time_series_examples(altitude_to_visualizer)
-        plot_qqplot_for_time_series_with_missing_zeros(altitude_to_visualizer)
 
 
-def plot_qqplot_for_time_series_with_missing_zeros(altitude_to_visualizer: Dict[int, StudyVisualizerForNonStationaryTrends],
-                                                   nb_worst_examples=3):
+def plot_qqplot_for_time_series_with_missing_zeros(
+        altitude_to_visualizer: Dict[int, StudyVisualizerForNonStationaryTrends],
+        nb_worst_examples=3):
     # Extract all the values
     l = []
     for a, v in altitude_to_visualizer.items():
@@ -38,11 +34,37 @@ def plot_qqplot_for_time_series_examples(altitude_to_visualizer: Dict[int, Study
         v.qqplot(m, color)
 
 
+def plot_hist_psnow(altitude_to_visualizer: Dict[int, StudyVisualizerForNonStationaryTrends]):
+    """Plot an histogram of psnow containing data from all the visualizers given as argument"""
+    # Gather the data
+    data = [list(v.massif_name_to_psnow.values()) for v in altitude_to_visualizer.values()]
+    data = list(chain.from_iterable(data))
+    print(sorted(data))
+    data = np.array(data)
+    percentage_of_one = sum([d == 1 for d in data]) / len(data)
+    print(percentage_of_one)
+    data = [d for d in data if d < 1]
+    # Plot histogram
+    nb_bins = 13
+    percentage = False
+    weights = [1 / len(data) for _ in data] if percentage else None
+    plt.hist(data, bins=nb_bins, range=(0.35, 1), weights=weights)
+    plt.xticks([0.05 * i + 0.35 for i in range(nb_bins + 1)])
+    if weights:
+        plt.gca().yaxis.set_major_formatter(PercentFormatter(1))
+    plt.xlabel('Distribution of P(Y > 0) when $\\neq 1$')
+    s = '%' if percentage else 'Number'
+    plt.ylabel('{} of time series'.format(s))
+    plt.show()
+
+
 if __name__ == '__main__':
-    # for the five worst, 300 is interesti
-    altitudes = [300, 900, 1800, 2700]
-    altitude_to_visualizer = {altitude:  StudyVisualizerForNonStationaryTrends(CrocusSnowLoadTotal(altitude=altitude),
-                                                                               multiprocessing=True)
+    # altitudes = [300, 600, 900, 1200, 1500, 1800][:2]
+    altitudes = ALL_ALTITUDES_WITHOUT_NAN
+    altitude_to_visualizer = {altitude: StudyVisualizerForNonStationaryTrends(CrocusSnowLoadTotal(altitude=altitude),
+                                                                              multiprocessing=True)
                               for altitude in altitudes}
-    plot_qqplot_wrt_standard_gumbel(altitude_to_visualizer)
-
+    # plot_qqplot_wrt_standard_gumbel(altitude_to_visualizer)
+    # plot_hist_psnow(altitude_to_visualizer)
+    plot_qqplot_for_time_series_examples(altitude_to_visualizer)
+    # plot_qqplot_for_time_series_with_missing_zeros(altitude_to_visualizer, nb_worst_examples=3)
diff --git a/experiment/trend_analysis/univariate_test/extreme_trend_test/abstract_gev_trend_test.py b/experiment/trend_analysis/univariate_test/extreme_trend_test/abstract_gev_trend_test.py
index 0eea9ea08e7824ba85aa9c33f56e76b7335ca1d2..6bc14d7a2d395206b91641a1549ec8bac4a84da4 100644
--- a/experiment/trend_analysis/univariate_test/extreme_trend_test/abstract_gev_trend_test.py
+++ b/experiment/trend_analysis/univariate_test/extreme_trend_test/abstract_gev_trend_test.py
@@ -217,8 +217,12 @@ class AbstractGevTrendTest(AbstractUnivariateTest):
         unconstrained_empirical_quantiles = self.compute_empirical_quantiles(self.unconstrained_estimator)
         constrained_empirical_quantiles = self.compute_empirical_quantiles(self.constrained_estimator)
         plt.plot(standard_gumbel_quantiles, standard_gumbel_quantiles, color=color)
-        plt.plot(standard_gumbel_quantiles, constrained_empirical_quantiles, 'x')
-        plt.plot(standard_gumbel_quantiles, unconstrained_empirical_quantiles, linestyle='None', **marker)
+        plt.plot(standard_gumbel_quantiles, constrained_empirical_quantiles, 'x', label='Gumbel model')
+        plt.plot(standard_gumbel_quantiles, unconstrained_empirical_quantiles, linestyle='None',
+                 label='Selected model', **marker)
+        plt.xlabel("Standard Gumbel quantiles")
+        plt.ylabel("Empirical quantiles")
+        plt.legend()
         plt.show()
 
     def compute_empirical_quantiles(self, estimator):