From 7c9681944daad8d60887cb94c70ec9a3dd72be7d Mon Sep 17 00:00:00 2001
From: Le Roux Erwan <erwan.le-roux@irstea.fr>
Date: Sat, 18 Apr 2020 10:55:36 +0200
Subject: [PATCH] [refactor] gev_param_name -> param_name

---
 .../visualization/create_shifted_cmap.py      |  6 +-
 .../visualization/study_visualizer.py         | 16 ++---
 extreme_fit/distribution/gev/gev_params.py    |  6 +-
 extreme_fit/estimator/utils.py                |  2 +-
 .../abstract_margin_function.py               | 10 ++--
 .../independent_margin_function.py            | 10 ++--
 .../margin_function/linear_margin_function.py | 37 ++++++------
 .../parametric_margin_function.py             | 46 +++++++--------
 .../margin_function/spline_margin_function.py | 22 +++----
 extreme_fit/function/margin_function/utils.py |  6 +-
 .../function/param_function/abstract_coef.py  |  8 +--
 .../function/param_function/linear_coef.py    | 18 +++---
 .../function/param_function/spline_coef.py    | 12 ++--
 .../abstract_temporal_linear_margin_model.py  | 10 ++--
 .../linear_margin_model.py                    | 54 ++++++++---------
 .../temporal_linear_margin_exp_models.py      |  2 +-
 .../temporal_linear_margin_models.py          | 12 ++--
 .../model/margin_model/spline_margin_model.py | 58 +++++++++----------
 .../abstract_result_from_extremes.py          | 12 ++--
 .../result_from_bayesian_extremes.py          |  8 +--
 .../result_from_mle_extremes.py               |  6 +-
 .../result_from_ismev.py                      |  6 +-
 .../model/result_from_model_fit/utils.py      | 16 ++---
 extreme_trend/abstract_gev_trend_test.py      |  4 +-
 .../gev_trend_test_one_parameter.py           | 12 ++--
 .../gumbel_trend_test_one_parameter.py        |  4 +-
 .../gev_trend_test_three_parameters.py        |  4 +-
 .../gev_trend_test_two_parameters.py          |  4 +-
 .../gumbel_test_two_parameters.py             |  4 +-
 .../main_bayesian_mcmc.py                     | 24 ++++----
 .../daily_exp_simulation.py                   |  8 +--
 .../gev_simulation.py                         | 12 ++--
 .../test_function/test_margin_function.py     |  6 +-
 .../test_spatio_temporal_observations.py      |  4 +-
 .../test_rmaxstab_with_margin.py              |  8 +--
 35 files changed, 238 insertions(+), 239 deletions(-)

diff --git a/extreme_data/meteo_france_data/scm_models_data/visualization/create_shifted_cmap.py b/extreme_data/meteo_france_data/scm_models_data/visualization/create_shifted_cmap.py
index ed734262..e3ad6d16 100644
--- a/extreme_data/meteo_france_data/scm_models_data/visualization/create_shifted_cmap.py
+++ b/extreme_data/meteo_france_data/scm_models_data/visualization/create_shifted_cmap.py
@@ -49,7 +49,7 @@ def get_colors(values, cmap, vmin, vmax, replace_blue_by_white=False):
     return colors
 
 
-def imshow_shifted(ax, gev_param_name, values, visualization_extend, mask_2D=None):
+def imshow_shifted(ax, param_name, values, visualization_extend, mask_2D=None):
     condition = np.isnan(values)
     if mask_2D is not None:
         condition |= mask_2D
@@ -57,9 +57,9 @@ def imshow_shifted(ax, gev_param_name, values, visualization_extend, mask_2D=Non
     vmin, vmax = np.min(masked_array), np.max(masked_array)
     shifted_cmap = get_shifted_map(vmin, vmax)
     norm = get_norm(vmin, vmax)
-    create_colorbase_axis(ax, gev_param_name, shifted_cmap, norm)
+    create_colorbase_axis(ax, param_name, shifted_cmap, norm)
     shifted_cmap.set_bad(color='white')
-    if gev_param_name != AbstractParams.SHAPE:
+    if param_name != AbstractParams.SHAPE:
         epsilon = 1e-2 * (np.max(values) - np.min(values))
         value = np.min(values)
         # The right blue corner will be blue (but most of the time, another display will be on top)
diff --git a/extreme_data/meteo_france_data/scm_models_data/visualization/study_visualizer.py b/extreme_data/meteo_france_data/scm_models_data/visualization/study_visualizer.py
index 8a4fa435..603b4020 100644
--- a/extreme_data/meteo_france_data/scm_models_data/visualization/study_visualizer.py
+++ b/extreme_data/meteo_france_data/scm_models_data/visualization/study_visualizer.py
@@ -583,11 +583,11 @@ class StudyVisualizer(VisualizationParameters):
             fig, axes = plt.subplots(1, len(params_names))
             fig.subplots_adjust(hspace=self.subplot_space, wspace=self.subplot_space)
 
-        for i, gev_param_name in enumerate(params_names):
+        for i, param_name in enumerate(params_names):
             ax = axes[i]
-            self.study.visualize_study(ax=ax, massif_name_to_value=df.loc[gev_param_name, :].to_dict(), show=False,
-                                       replace_blue_by_white=gev_param_name != GevParams.SHAPE,
-                                       label=gev_param_name)
+            self.study.visualize_study(ax=ax, massif_name_to_value=df.loc[param_name, :].to_dict(), show=False,
+                                       replace_blue_by_white=param_name != GevParams.SHAPE,
+                                       label=param_name)
         self.clean_axes_write_title_on_the_left(axes, title='Independent fits')
 
         if show:
@@ -613,12 +613,12 @@ class StudyVisualizer(VisualizationParameters):
 
         # 2) Second row, gev parameters fitted independently (and a qqplot)
         axes_second_row = axes[1]
-        for ax, gev_param_name in zip(axes_second_row, GevParams.PARAM_NAMES):
+        for ax, param_name in zip(axes_second_row, GevParams.PARAM_NAMES):
             self.study.visualize_study(ax=ax,
-                                       massif_name_to_value=self.df_gev_parameters.loc[gev_param_name, :].to_dict(),
+                                       massif_name_to_value=self.df_gev_parameters.loc[param_name, :].to_dict(),
                                        show=False,
-                                       replace_blue_by_white=gev_param_name != GevParams.SHAPE,
-                                       label=gev_param_name)
+                                       replace_blue_by_white=param_name != GevParams.SHAPE,
+                                       label=param_name)
         # todo: add qqplot drawn for each massif on the map in the last cell
         # or just it could be some fitting score based on the qqplot... and we just display the value
         # like the log likelihood, (or we could also display some uncertainty here)
diff --git a/extreme_fit/distribution/gev/gev_params.py b/extreme_fit/distribution/gev/gev_params.py
index ce34b36b..195a5b18 100644
--- a/extreme_fit/distribution/gev/gev_params.py
+++ b/extreme_fit/distribution/gev/gev_params.py
@@ -124,13 +124,13 @@ class GevParams(AbstractExtremeParams):
         return indicator_name_to_value
 
     @classmethod
-    def greek_letter_from_gev_param_name(cls, gev_param_name):
-        assert gev_param_name in cls.PARAM_NAMES
+    def greek_letter_from_param_name(cls, param_name):
+        assert param_name in cls.PARAM_NAMES
         return {
             cls.LOC: 'mu',
             cls.SCALE: 'sigma',
             cls.SHAPE: 'zeta',
-        }[gev_param_name]
+        }[param_name]
 
     def gumbel_standardization(self, x):
         x -= self.location
diff --git a/extreme_fit/estimator/utils.py b/extreme_fit/estimator/utils.py
index 8debd940..a7446b45 100644
--- a/extreme_fit/estimator/utils.py
+++ b/extreme_fit/estimator/utils.py
@@ -10,7 +10,7 @@ def load_margin_function(estimator: AbstractEstimator, margin_model: LinearMargi
     if coef_dict is None:
         coef_dict = estimator.result_from_model_fit.margin_coef_ordered_dict
     return margin_function_class.from_coef_dict(coordinates=estimator.dataset.coordinates,
-                                                gev_param_name_to_dims=margin_model.margin_function_start_fit.gev_param_name_to_dims,
+                                                param_name_to_dims=margin_model.margin_function_start_fit.param_name_to_dims,
                                                 coef_dict=coef_dict,
                                                 starting_point=margin_model.starting_point)
 
diff --git a/extreme_fit/function/margin_function/abstract_margin_function.py b/extreme_fit/function/margin_function/abstract_margin_function.py
index 4a424e1c..a271da29 100644
--- a/extreme_fit/function/margin_function/abstract_margin_function.py
+++ b/extreme_fit/function/margin_function/abstract_margin_function.py
@@ -163,12 +163,12 @@ class AbstractMarginFunction(AbstractFunction):
 
     # Visualization 2D
 
-    def visualize_2D(self, gev_param_name=GevParams.LOC, ax=None, show=True, temporal_step=None):
+    def visualize_2D(self, param_name=GevParams.LOC, ax=None, show=True, temporal_step=None):
         if ax is None:
             ax = plt.gca()
 
         # Special display
-        imshow_shifted(ax, gev_param_name, self.grid_2D(temporal_step)[gev_param_name], self.visualization_extend,
+        imshow_shifted(ax, param_name, self.grid_2D(temporal_step)[param_name], self.visualization_extend,
                        self.mask_2D)
 
         # X axis
@@ -223,7 +223,7 @@ class AbstractMarginFunction(AbstractFunction):
 
     # Visualization 3D
 
-    def visualize_2D_spatial_1D_temporal(self, gev_param_name=GevParams.LOC, axes=None, show=True):
+    def visualize_2D_spatial_1D_temporal(self, param_name=GevParams.LOC, axes=None, show=True):
         if axes is None:
             axes = create_adjusted_axes(self.VISUALIZATION_TEMPORAL_STEPS, 1)
         assert len(axes) == self.VISUALIZATION_TEMPORAL_STEPS
@@ -231,8 +231,8 @@ class AbstractMarginFunction(AbstractFunction):
         # Build temporal_steps a list of time steps
         assert len(self.temporal_steps) == self.VISUALIZATION_TEMPORAL_STEPS
         for ax, temporal_step in zip(axes, self.temporal_steps):
-            self.visualize_2D(gev_param_name, ax, show=False, temporal_step=temporal_step)
-            self.set_title(ax, gev_param_name)
+            self.visualize_2D(param_name, ax, show=False, temporal_step=temporal_step)
+            self.set_title(ax, param_name)
 
         if show:
             plt.show()
diff --git a/extreme_fit/function/margin_function/independent_margin_function.py b/extreme_fit/function/margin_function/independent_margin_function.py
index bdd14bfc..b1d6b54a 100644
--- a/extreme_fit/function/margin_function/independent_margin_function.py
+++ b/extreme_fit/function/margin_function/independent_margin_function.py
@@ -15,19 +15,19 @@ class IndependentMarginFunction(AbstractMarginFunction):
     """
 
     def __init__(self, coordinates: AbstractCoordinates, params_class: type = GevParams):
-        """Attribute 'gev_param_name_to_param_function' maps each GEV parameter to its corresponding function"""
+        """Attribute 'param_name_to_param_function' maps each GEV parameter to its corresponding function"""
         super().__init__(coordinates, params_class)
-        self.gev_param_name_to_param_function = None  # type: Union[None, Dict[str, AbstractParamFunction]]
+        self.param_name_to_param_function = None  # type: Union[None, Dict[str, AbstractParamFunction]]
 
     def get_params(self, coordinate: np.ndarray, is_transformed: bool = True) -> GevParams:
         """Each GEV parameter is computed independently through its corresponding param_function"""
         # Since all the coordinates are usually transformed by default
         # then we assume that the input coordinate are transformed by default
-        assert self.gev_param_name_to_param_function is not None
-        assert len(self.gev_param_name_to_param_function) == len(self.params_class.PARAM_NAMES)
+        assert self.param_name_to_param_function is not None
+        assert len(self.param_name_to_param_function) == len(self.params_class.PARAM_NAMES)
         transformed_coordinate = coordinate if is_transformed else self.transform(coordinate)
         params = {param_name: param_function.get_param_value(transformed_coordinate)
-                  for param_name, param_function in self.gev_param_name_to_param_function.items()}
+                  for param_name, param_function in self.param_name_to_param_function.items()}
         return self.params_class.from_dict(params)
 
 
diff --git a/extreme_fit/function/margin_function/linear_margin_function.py b/extreme_fit/function/margin_function/linear_margin_function.py
index 81a9ee8d..3ef5baae 100644
--- a/extreme_fit/function/margin_function/linear_margin_function.py
+++ b/extreme_fit/function/margin_function/linear_margin_function.py
@@ -19,25 +19,24 @@ class LinearMarginFunction(ParametricMarginFunction):
         dim = 2 correspond to the second coordinate
         dim = 3 correspond to the third coordinate....
 
-        gev_param_name_to_linear_dims             maps each parameter of the GEV distribution to its linear dimensions
+        param_name_to_linear_dims             maps each parameter of the GEV distribution to its linear dimensions
 
-        gev_param_name_to_linear_coef             maps each parameter of the GEV distribution to its linear coefficients
+        param_name_to_linear_coef             maps each parameter of the GEV distribution to its linear coefficients
 
     """
 
     COEF_CLASS = LinearCoef
 
-    def __init__(self, coordinates: AbstractCoordinates, gev_param_name_to_dims: Dict[str, List[int]],
-                 gev_param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None,
+    def __init__(self, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]],
+                 param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None,
                  params_class: type = GevParams):
-        self.gev_param_name_to_coef = None  # type: Union[None, Dict[str, LinearCoef]]
-        super().__init__(coordinates, gev_param_name_to_dims, gev_param_name_to_coef, starting_point,
-                         params_class)
+        self.param_name_to_coef = None  # type: Union[None, Dict[str, LinearCoef]]
+        super().__init__(coordinates, param_name_to_dims, param_name_to_coef, starting_point, params_class)
 
-    def load_specific_param_function(self, gev_param_name) -> AbstractParamFunction:
-        return LinearParamFunction(dims=self.gev_param_name_to_dims[gev_param_name],
+    def load_specific_param_function(self, param_name) -> AbstractParamFunction:
+        return LinearParamFunction(dims=self.param_name_to_dims[param_name],
                                    coordinates=self.coordinates.coordinates_values(),
-                                   linear_coef=self.gev_param_name_to_coef[gev_param_name])
+                                   linear_coef=self.param_name_to_coef[param_name])
 
     @classmethod
     def idx_to_coefficient_name(cls, coordinates: AbstractCoordinates) -> Dict[int, str]:
@@ -55,9 +54,9 @@ class LinearMarginFunction(ParametricMarginFunction):
     @property
     def coef_dict(self) -> Dict[str, float]:
         coef_dict = {}
-        for gev_param_name in GevParams.PARAM_NAMES:
-            dims = self.gev_param_name_to_dims.get(gev_param_name, [])
-            coef = self.gev_param_name_to_coef[gev_param_name]
+        for param_name in self.params_class.PARAM_NAMES:
+            dims = self.param_name_to_dims.get(param_name, [])
+            coef = self.param_name_to_coef[param_name]
             coef_dict.update(coef.coef_dict(dims, self.idx_to_coefficient_name(self.coordinates)))
         return coef_dict
 
@@ -68,19 +67,19 @@ class LinearMarginFunction(ParametricMarginFunction):
     @property
     def form_dict(self) -> Dict[str, str]:
         form_dict = {}
-        for gev_param_name in self.params_class.PARAM_NAMES:
-            linear_dims = self.gev_param_name_to_dims.get(gev_param_name, [])
+        for param_name in self.params_class.PARAM_NAMES:
+            linear_dims = self.param_name_to_dims.get(param_name, [])
             # Load spatial form_dict (only if we have some spatial coordinates)
             if self.coordinates.has_spatial_coordinates:
                 spatial_names = [name for name in self.coordinates.spatial_coordinates_names
                                  if self.coefficient_name_to_dim(self.coordinates)[name] in linear_dims]
-                spatial_form = self.gev_param_name_to_coef[gev_param_name].spatial_form_dict(spatial_names)
+                spatial_form = self.param_name_to_coef[param_name].spatial_form_dict(spatial_names)
                 form_dict.update(spatial_form)
             # Load temporal form dict (only if we have some temporal coordinates)
             if self.coordinates.has_temporal_coordinates:
                 temporal_names = [name for name in self.coordinates.temporal_coordinates_names
                                   if self.coefficient_name_to_dim(self.coordinates)[name] in linear_dims]
-                temporal_form = self.gev_param_name_to_coef[gev_param_name].temporal_form_dict(temporal_names)
+                temporal_form = self.param_name_to_coef[param_name].temporal_form_dict(temporal_names)
                 # Specifying a formula '~ 1' creates a bug in fitspatgev of SpatialExtreme R package
                 assert not any(['1' in formula for formula in temporal_form.values()])
                 form_dict.update(temporal_form)
@@ -88,10 +87,10 @@ class LinearMarginFunction(ParametricMarginFunction):
 
     # Properties for the location parameter
 
-    def get_coef(self, gev_param_name, coef_name):
+    def get_coef(self, param_name, coef_name):
         idx = 1 if coef_name in [AbstractCoordinates.COORDINATE_T, LinearCoef.INTERCEPT_NAME] \
             else AbstractCoordinates.COORDINATE_SPATIAL_NAMES.index(coef_name) + 2
-        return self.coef_dict[LinearCoef.coef_template_str(gev_param_name, coef_name).format(idx)]
+        return self.coef_dict[LinearCoef.coef_template_str(param_name, coef_name).format(idx)]
     
     @property
     def mu1_temporal_trend(self):
diff --git a/extreme_fit/function/margin_function/parametric_margin_function.py b/extreme_fit/function/margin_function/parametric_margin_function.py
index f6964588..e47e4054 100644
--- a/extreme_fit/function/margin_function/parametric_margin_function.py
+++ b/extreme_fit/function/margin_function/parametric_margin_function.py
@@ -17,49 +17,49 @@ class ParametricMarginFunction(IndependentMarginFunction):
 
         -depend on some integer dimensions (dimension 1 or/and dimension 2 for instance).
         Coordinate name corresponding to the dimension depends on the order of the columns of self.coordinates
-        gev_param_name_to_dims maps each GEV parameter to its corresponding dimensions
+        param_name_to_dims maps each GEV parameter to its corresponding dimensions
 
         -have a set of all potential coefficient that could be used to define a function
-        gev_param_name_to_coef maps each GEV parameter to an AbstractCoef object. This object contains
+        param_name_to_coef maps each GEV parameter to an AbstractCoef object. This object contains
 
         -combining the integer dimensions & the set of all potential coefficient
         to keep only the relevant coefficient, and build the corresponding function from that
-        gev_param_name_to_param_function maps each GEV parameter to a AbstractParamFunction object.
+        param_name_to_param_function maps each GEV parameter to a AbstractParamFunction object.
 
     """
 
     COEF_CLASS = None
 
-    def __init__(self, coordinates: AbstractCoordinates, gev_param_name_to_dims: Dict[str, List[int]],
-                 gev_param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None,
+    def __init__(self, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]],
+                 param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None,
                  params_class: type = GevParams):
         # Starting point for the trend is the same for all the parameters
         self.starting_point = starting_point
         super().__init__(coordinates, params_class)
-        self.gev_param_name_to_dims = gev_param_name_to_dims  # type: Dict[str, List[int]]
+        self.param_name_to_dims = param_name_to_dims  # type: Dict[str, List[int]]
 
         # Check the dimension are well-defined with respect to the coordinates
-        for dims in self.gev_param_name_to_dims.values():
+        for dims in self.param_name_to_dims.values():
             for dim in dims:
                 assert 0 <= dim < coordinates.nb_coordinates, \
                     "dim={}, nb_columns={}".format(dim, coordinates.nb_coordinates)
 
-        self.gev_param_name_to_coef = gev_param_name_to_coef  # type: Dict[str, AbstractCoef]
+        self.param_name_to_coef = param_name_to_coef  # type: Dict[str, AbstractCoef]
 
         # Build gev_parameter_to_param_function dictionary
-        self.gev_param_name_to_param_function = {}  # type: Dict[str, AbstractParamFunction]
-        # Map each gev_param_name to its corresponding param_function
-        for gev_param_name in self.params_class.PARAM_NAMES:
+        self.param_name_to_param_function = {}  # type: Dict[str, AbstractParamFunction]
+        # Map each param_name to its corresponding param_function
+        for param_name in self.params_class.PARAM_NAMES:
             # By default, if dims are not specified, a constantParamFunction is chosen
-            if self.gev_param_name_to_dims.get(gev_param_name) is None:
-                param_function = ConstantParamFunction(constant=self.gev_param_name_to_coef[gev_param_name].intercept)
+            if self.param_name_to_dims.get(param_name) is None:
+                param_function = ConstantParamFunction(constant=self.param_name_to_coef[param_name].intercept)
             # Otherwise, we load a specific param function
             else:
-                param_function = self.load_specific_param_function(gev_param_name)
+                param_function = self.load_specific_param_function(param_name)
             # In both cases, we add the param_function to the dictionary
-            self.gev_param_name_to_param_function[gev_param_name] = param_function
+            self.param_name_to_param_function[param_name] = param_function
 
-    def load_specific_param_function(self, gev_param_name) -> AbstractParamFunction:
+    def load_specific_param_function(self, param_name) -> AbstractParamFunction:
         raise NotImplementedError
 
     @property
@@ -77,16 +77,16 @@ class ParametricMarginFunction(IndependentMarginFunction):
         return super().get_params(coordinate, is_transformed=is_transformed)
 
     @classmethod
-    def from_coef_dict(cls, coordinates: AbstractCoordinates, gev_param_name_to_dims: Dict[str, List[int]],
+    def from_coef_dict(cls, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]],
                        coef_dict: Dict[str, float], starting_point: Union[None, int] = None):
         assert cls.COEF_CLASS is not None, 'a COEF_CLASS class attributes needs to be defined'
-        gev_param_name_to_coef = {}
-        for gev_param_name in GevParams.PARAM_NAMES:
-            dims = gev_param_name_to_dims.get(gev_param_name, [])
-            coef = cls.COEF_CLASS.from_coef_dict(coef_dict=coef_dict, gev_param_name=gev_param_name, dims=dims,
+        param_name_to_coef = {}
+        for param_name in GevParams.PARAM_NAMES:
+            dims = param_name_to_dims.get(param_name, [])
+            coef = cls.COEF_CLASS.from_coef_dict(coef_dict=coef_dict, param_name=param_name, dims=dims,
                                                  coordinates=coordinates)
-            gev_param_name_to_coef[gev_param_name] = coef
-        return cls(coordinates, gev_param_name_to_dims, gev_param_name_to_coef, starting_point)
+            param_name_to_coef[param_name] = coef
+        return cls(coordinates, param_name_to_dims, param_name_to_coef, starting_point)
 
     @property
     def form_dict(self) -> Dict[str, str]:
diff --git a/extreme_fit/function/margin_function/spline_margin_function.py b/extreme_fit/function/margin_function/spline_margin_function.py
index d7f9cb2b..f3513046 100644
--- a/extreme_fit/function/margin_function/spline_margin_function.py
+++ b/extreme_fit/function/margin_function/spline_margin_function.py
@@ -13,7 +13,7 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo
 
 class SplineMarginFunction(ParametricMarginFunction):
     """
-    -gev_param_name_to_dims maps each GEV parameters to its correspond knot dimensions.
+    -param_name_to_dims maps each GEV parameters to its correspond knot dimensions.
         For instance, dims = [1,2] means the knot will be realized with 2D knots
         dims = [1] means the knot will lie only on the first axis
 
@@ -21,16 +21,16 @@ class SplineMarginFunction(ParametricMarginFunction):
 
     COEF_CLASS = SplineCoef
 
-    def __init__(self, coordinates: AbstractCoordinates, gev_param_name_to_dims: Dict[str, List[int]],
-                 gev_param_name_to_coef: Dict[str, AbstractCoef],
-                 gev_param_name_to_nb_knots: Dict[str, int],
+    def __init__(self, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[int]],
+                 param_name_to_coef: Dict[str, AbstractCoef],
+                 param_name_to_nb_knots: Dict[str, int],
                  degree=3):
-        self.gev_param_name_to_coef = None  # type: Dict[str, SplineCoef]
+        self.param_name_to_coef = None  # type: Dict[str, SplineCoef]
         # Attributes specific for SplineMarginFunction
-        self.gev_param_name_to_nb_knots = gev_param_name_to_nb_knots
+        self.param_name_to_nb_knots = param_name_to_nb_knots
         assert degree % 2 == 1
         self.degree = degree
-        super().__init__(coordinates, gev_param_name_to_dims, gev_param_name_to_coef)
+        super().__init__(coordinates, param_name_to_dims, param_name_to_coef)
 
 
     def compute_knots(self, dims, nb_knots) -> np.ndarray:
@@ -47,10 +47,10 @@ class SplineMarginFunction(ParametricMarginFunction):
         """
         pass
 
-    def load_specific_param_function(self, gev_param_name) -> AbstractParamFunction:
-        dims = self.gev_param_name_to_dims[gev_param_name]
-        coef = self.gev_param_name_to_coef[gev_param_name]
-        nb_knots = self.gev_param_name_to_nb_knots[gev_param_name]
+    def load_specific_param_function(self, param_name) -> AbstractParamFunction:
+        dims = self.param_name_to_dims[param_name]
+        coef = self.param_name_to_coef[param_name]
+        nb_knots = self.param_name_to_nb_knots[param_name]
         knots = self.compute_knots(dims, nb_knots)
         return SplineParamFunction(dims=dims, degree=self.degree, spline_coef=coef, knots=knots)
 
diff --git a/extreme_fit/function/margin_function/utils.py b/extreme_fit/function/margin_function/utils.py
index 5f5fdac2..3ab12fc8 100644
--- a/extreme_fit/function/margin_function/utils.py
+++ b/extreme_fit/function/margin_function/utils.py
@@ -20,8 +20,8 @@ def error_dict_between_margin_functions(reference: AbstractMarginFunction, fitte
         'Coordinates have either been resampled or the split is not the same'
     reference_values = reference.gev_value_name_to_serie
     fitted_values = fitted.gev_value_name_to_serie
-    gev_param_name_to_error_serie = {}
+    param_name_to_error_serie = {}
     for gev_value_name in GevParams.SUMMARY_NAMES:
         error = 100 * relative_abs_error(reference_values[gev_value_name], fitted_values[gev_value_name])
-        gev_param_name_to_error_serie[gev_value_name] = error
-    return gev_param_name_to_error_serie
+        param_name_to_error_serie[gev_value_name] = error
+    return param_name_to_error_serie
diff --git a/extreme_fit/function/param_function/abstract_coef.py b/extreme_fit/function/param_function/abstract_coef.py
index 88a10d74..28dfa230 100644
--- a/extreme_fit/function/param_function/abstract_coef.py
+++ b/extreme_fit/function/param_function/abstract_coef.py
@@ -5,8 +5,8 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo
 
 class AbstractCoef(object):
 
-    def __init__(self, gev_param_name: str = '', default_value: float = 0.0, idx_to_coef=None):
-        self.gev_param_name = gev_param_name
+    def __init__(self, param_name: str = '', default_value: float = 0.0, idx_to_coef=None):
+        self.param_name = param_name
         self.default_value = default_value
         self.idx_to_coef = idx_to_coef
 
@@ -29,11 +29,11 @@ class AbstractCoef(object):
         raise NotImplementedError
 
     @classmethod
-    def from_coef(cls, coef_dict: Dict[str, float], gev_param_name: str, dims: List[int], coordinates: AbstractCoordinates):
+    def from_coef(cls, coef_dict: Dict[str, float], param_name: str, dims: List[int], coordinates: AbstractCoordinates):
         raise NotImplementedError
 
     """ Form dict """
 
     def form_dict(self, names: List[str]) -> Dict[str, str]:
         formula_str = '1' if not names else '+'.join(names)
-        return {self.gev_param_name + '.form': self.gev_param_name + ' ~ ' + formula_str}
\ No newline at end of file
+        return {self.param_name + '.form': self.param_name + ' ~ ' + formula_str}
\ No newline at end of file
diff --git a/extreme_fit/function/param_function/linear_coef.py b/extreme_fit/function/param_function/linear_coef.py
index 10cdd1c1..5ea2d0cc 100644
--- a/extreme_fit/function/param_function/linear_coef.py
+++ b/extreme_fit/function/param_function/linear_coef.py
@@ -20,20 +20,20 @@ class LinearCoef(AbstractCoef):
         return self.get_coef(idx=-1)
 
     @classmethod
-    def coef_template_str(cls, gev_param_name: str, coefficient_name: str) -> str:
+    def coef_template_str(cls, param_name: str, coefficient_name: str) -> str:
         """
         Example of coef that can be specified
             -for the spatial covariates: locCoeff
             -for the temporal covariates: tempCoeffLoc
-        :param gev_param_name:
+        :param param_name:
         :param coefficient_name:
         :return:
         """
         assert coefficient_name == cls.INTERCEPT_NAME or coefficient_name in AbstractCoordinates.COORDINATES_NAMES
         if coefficient_name == cls.INTERCEPT_NAME or coefficient_name in AbstractCoordinates.COORDINATE_SPATIAL_NAMES:
-            coef_template_str = gev_param_name + cls.COEFF_STR + '{}'
+            coef_template_str = param_name + cls.COEFF_STR + '{}'
         else:
-            coef_template_str = 'temp' + cls.COEFF_STR + gev_param_name.title() + '{}'
+            coef_template_str = 'temp' + cls.COEFF_STR + param_name.title() + '{}'
         assert cls.COEFF_STR in coef_template_str
         return coef_template_str
 
@@ -49,18 +49,18 @@ class LinearCoef(AbstractCoef):
     """ Coef dict """
 
     @classmethod
-    def from_coef_dict(cls, coef_dict: Dict[str, float], gev_param_name: str, dims: List[int],
+    def from_coef_dict(cls, coef_dict: Dict[str, float], param_name: str, dims: List[int],
                        coordinates: AbstractCoordinates):
-        idx_to_coef = {-1: coef_dict[cls.coef_template_str(gev_param_name, coefficient_name=cls.INTERCEPT_NAME).format(1)]}
+        idx_to_coef = {-1: coef_dict[cls.coef_template_str(param_name, coefficient_name=cls.INTERCEPT_NAME).format(1)]}
         j = 2
         for dim in dims:
             coefficient_name = coordinates.coordinates_names[dim]
             if coefficient_name == AbstractCoordinates.COORDINATE_T:
                 j = 1
-            coef = coef_dict[cls.coef_template_str(gev_param_name, coefficient_name).format(j)]
+            coef = coef_dict[cls.coef_template_str(param_name, coefficient_name).format(j)]
             idx_to_coef[dim] = coef
             j += 1
-        return cls(gev_param_name=gev_param_name, idx_to_coef=idx_to_coef)
+        return cls(param_name=param_name, idx_to_coef=idx_to_coef)
 
     def coef_dict(self, dims, dim_to_coefficient_name: Dict[int, str]) -> Dict[str, float]:
         dims = self.add_intercept_idx(dims)
@@ -71,7 +71,7 @@ class LinearCoef(AbstractCoef):
             if coefficient_name == AbstractCoordinates.COORDINATE_T:
                 j = 1
             coef = self.idx_to_coef[dim]
-            coef_dict[self.coef_template_str(self.gev_param_name, coefficient_name).format(j)] = coef
+            coef_dict[self.coef_template_str(self.param_name, coefficient_name).format(j)] = coef
             j += 1
         return coef_dict
 
diff --git a/extreme_fit/function/param_function/spline_coef.py b/extreme_fit/function/param_function/spline_coef.py
index c5983fe6..c506811d 100644
--- a/extreme_fit/function/param_function/spline_coef.py
+++ b/extreme_fit/function/param_function/spline_coef.py
@@ -11,8 +11,8 @@ class PolynomialCoef(AbstractCoef):
         degree = 3 correspond to the the coefficient of the first order polynomial
     """
 
-    def __init__(self, gev_param_name: str, default_value: float = 1.0, degree_to_coef=None):
-        super().__init__(gev_param_name, default_value, idx_to_coef=degree_to_coef)
+    def __init__(self, param_name: str, default_value: float = 1.0, degree_to_coef=None):
+        super().__init__(param_name, default_value, idx_to_coef=degree_to_coef)
 
     def compute_default_value(self, idx):
         return self.default_value / idx
@@ -20,13 +20,13 @@ class PolynomialCoef(AbstractCoef):
 
 class KnotCoef(AbstractCoef):
 
-    def __init__(self, gev_param_name: str, default_value: float = 1.0, idx_to_coef=None):
-        super().__init__(gev_param_name, default_value, idx_to_coef)
+    def __init__(self, param_name: str, default_value: float = 1.0, idx_to_coef=None):
+        super().__init__(param_name, default_value, idx_to_coef)
 
 
 class SplineCoef(AbstractCoef):
 
-    def __init__(self, gev_param_name: str, knot_coef: KnotCoef, dim_to_polynomial_coef: Dict[int, PolynomialCoef]):
-        super().__init__(gev_param_name, 1.0, None)
+    def __init__(self, param_name: str, knot_coef: KnotCoef, dim_to_polynomial_coef: Dict[int, PolynomialCoef]):
+        super().__init__(param_name, 1.0, None)
         self.knot_coef = knot_coef
         self.dim_to_polynomial_coef = dim_to_polynomial_coef
diff --git a/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py b/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py
index af2e2533..831ae8a9 100644
--- a/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py
+++ b/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py
@@ -60,7 +60,7 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel):
         res = safe_run_r_estimator(function=r('gev.fit'), use_start=self.use_start_value,
                                    xdat=x, y=y, mul=self.mul,
                                    sigl=self.sigl, shl=self.shl)
-        return ResultFromIsmev(res, self.margin_function_start_fit.gev_param_name_to_dims)
+        return ResultFromIsmev(res, self.margin_function_start_fit.param_name_to_dims)
 
     # Gev fit with extRemes package
 
@@ -86,7 +86,7 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel):
                                    method=method,
                                    **r_type_argument_kwargs
                                    )
-        return ResultFromMleExtremes(res, self.margin_function_start_fit.gev_param_name_to_dims,
+        return ResultFromMleExtremes(res, self.margin_function_start_fit.param_name_to_dims,
                                      type_for_mle=self.type_for_mle)
 
     def extremes_fevd_bayesian_fit(self, x, df_coordinates_temp) -> AbstractResultFromExtremes:
@@ -95,8 +95,8 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel):
         r_type_argument_kwargs['initial'] = r.list(**params_start_fit)
         # Assert for any non-stationary model that the shape parameter is constant
         # (because the prior function considers that the last parameter should be the shape)
-        assert GevParams.SHAPE not in self.margin_function_start_fit.gev_param_name_to_dims \
-               or len(self.margin_function_start_fit.gev_param_name_to_dims[GevParams.SHAPE]) == 1
+        assert GevParams.SHAPE not in self.margin_function_start_fit.param_name_to_dims \
+               or len(self.margin_function_start_fit.param_name_to_dims[GevParams.SHAPE]) == 1
         res = safe_run_r_estimator(function=r('fevd_fixed'),
                                    x=x,
                                    data=y,
@@ -106,7 +106,7 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel):
                                    iter=self.nb_iterations_for_bayesian_fit,
                                    **r_type_argument_kwargs
                                    )
-        return ResultFromBayesianExtremes(res, self.margin_function_start_fit.gev_param_name_to_dims)
+        return ResultFromBayesianExtremes(res, self.margin_function_start_fit.param_name_to_dims)
 
     def extreme_arguments(self, df_coordinates_temp):
         # Disable the use of log sigma parametrization
diff --git a/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py b/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py
index 422bb806..68166e99 100644
--- a/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py
+++ b/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py
@@ -7,15 +7,15 @@ from extreme_fit.distribution.gev.gev_params import GevParams
 class LinearMarginModel(ParametricMarginModel):
 
     @classmethod
-    def from_coef_list(cls, coordinates, gev_param_name_to_coef_list, params_class=GevParams, **kwargs):
+    def from_coef_list(cls, coordinates, param_name_to_coef_list, params_class=GevParams, **kwargs):
         params = {}
-        for param_name, coef_list in gev_param_name_to_coef_list.items():
+        for param_name, coef_list in param_name_to_coef_list.items():
             for idx, coef in enumerate(coef_list, -1):
                 params[(param_name, idx)] = coef
         return cls(coordinates, params_sample=params, params_start_fit=params, params_class=params_class, **kwargs)
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
-        assert gev_param_name_to_dims is not None, 'LinearMarginModel cannot be used for sampling/fitting \n' \
+    def load_margin_functions(self, param_name_to_dims=None):
+        assert param_name_to_dims is not None, 'LinearMarginModel cannot be used for sampling/fitting \n' \
                                                    'load_margin_functions needs to be implemented in child class'
         # Load default params (with a dictionary format to enable quick replacement)
         # IMPORTANT: Using a dictionary format enable using the default/user params methodology
@@ -23,18 +23,18 @@ class LinearMarginModel(ParametricMarginModel):
         self.default_params_start_fit = self.default_param_name_and_dim_to_coef
 
         # Load sample coef
-        coef_sample = self.gev_param_name_to_linear_coef(param_name_and_dim_to_coef=self.params_sample)
+        coef_sample = self.param_name_to_linear_coef(param_name_and_dim_to_coef=self.params_sample)
         self.margin_function_sample = LinearMarginFunction(coordinates=self.coordinates,
-                                                           gev_param_name_to_coef=coef_sample,
-                                                           gev_param_name_to_dims=gev_param_name_to_dims,
+                                                           param_name_to_coef=coef_sample,
+                                                           param_name_to_dims=param_name_to_dims,
                                                            starting_point=self.starting_point,
                                                            params_class=self.params_class)
 
         # Load start fit coef
-        coef_start_fit = self.gev_param_name_to_linear_coef(param_name_and_dim_to_coef=self.params_start_fit)
+        coef_start_fit = self.param_name_to_linear_coef(param_name_and_dim_to_coef=self.params_start_fit)
         self.margin_function_start_fit = LinearMarginFunction(coordinates=self.coordinates,
-                                                              gev_param_name_to_coef=coef_start_fit,
-                                                              gev_param_name_to_dims=gev_param_name_to_dims,
+                                                              param_name_to_coef=coef_start_fit,
+                                                              param_name_to_dims=param_name_to_dims,
                                                               starting_point=self.starting_point,
                                                               params_class=self.params_class)
 
@@ -42,51 +42,51 @@ class LinearMarginModel(ParametricMarginModel):
     def default_param_name_and_dim_to_coef(self) -> dict:
         default_intercept = 1
         default_slope = 0.01
-        gev_param_name_and_dim_to_coef = {}
+        param_name_and_dim_to_coef = {}
         for param_name in self.params_class.PARAM_NAMES:
-            gev_param_name_and_dim_to_coef[(param_name, -1)] = default_intercept
+            param_name_and_dim_to_coef[(param_name, -1)] = default_intercept
             for dim in self.coordinates.coordinates_dims:
-                gev_param_name_and_dim_to_coef[(param_name, dim)] = default_slope
-        return gev_param_name_and_dim_to_coef
+                param_name_and_dim_to_coef[(param_name, dim)] = default_slope
+        return param_name_and_dim_to_coef
 
-    def gev_param_name_to_linear_coef(self, param_name_and_dim_to_coef):
+    def param_name_to_linear_coef(self, param_name_and_dim_to_coef):
         param_name_to_linear_coef = {}
         param_names = list(set([e[0] for e in param_name_and_dim_to_coef.keys()]))
         for param_name in param_names:
             idx_to_coef = {idx: param_name_and_dim_to_coef[(param_name, idx)] for idx in
                            [-1] + self.coordinates.coordinates_dims}
-            linear_coef = LinearCoef(gev_param_name=param_name, idx_to_coef=idx_to_coef)
+            linear_coef = LinearCoef(param_name=param_name, idx_to_coef=idx_to_coef)
             param_name_to_linear_coef[param_name] = linear_coef
         return param_name_to_linear_coef
 
 
 class ConstantMarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
+    def load_margin_functions(self, param_name_to_dims=None):
         super().load_margin_functions({})
 
 
 class LinearShapeDim0MarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: [0]})
 
 
 class LinearScaleDim0MarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SCALE: [0]})
 
 
 class LinearShapeDim0and1MarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: [0, 1]})
 
 
 class LinearAllParametersDim0MarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: [0],
                                        GevParams.LOC: [0],
                                        GevParams.SCALE: [0]})
@@ -94,7 +94,7 @@ class LinearAllParametersDim0MarginModel(LinearMarginModel):
 
 class LinearMarginModelExample(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: [0],
                                        GevParams.LOC: [1],
                                        GevParams.SCALE: [0]})
@@ -102,19 +102,19 @@ class LinearMarginModelExample(LinearMarginModel):
 
 class LinearLocationAllDimsMarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.LOC: self.coordinates.coordinates_dims})
 
 
 class LinearShapeAllDimsMarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: self.coordinates.coordinates_dims})
 
 
 class LinearAllParametersAllDimsMarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: self.coordinates.coordinates_dims,
                                        GevParams.LOC: self.coordinates.coordinates_dims,
                                        GevParams.SCALE: self.coordinates.coordinates_dims})
@@ -122,7 +122,7 @@ class LinearAllParametersAllDimsMarginModel(LinearMarginModel):
 
 class LinearStationaryMarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: self.coordinates.spatial_coordinates_dims,
                                        GevParams.LOC: self.coordinates.spatial_coordinates_dims,
                                        GevParams.SCALE: self.coordinates.spatial_coordinates_dims})
@@ -130,7 +130,7 @@ class LinearStationaryMarginModel(LinearMarginModel):
 
 class LinearNonStationaryLocationMarginModel(LinearMarginModel):
 
-    def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_dims=None):
+    def load_margin_functions(self, margin_function_class: type = None, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: self.coordinates.spatial_coordinates_dims,
                                        GevParams.LOC: self.coordinates.coordinates_dims,
                                        GevParams.SCALE: self.coordinates.spatial_coordinates_dims})
diff --git a/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_exp_models.py b/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_exp_models.py
index 677f1865..0204a860 100644
--- a/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_exp_models.py
+++ b/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_exp_models.py
@@ -11,5 +11,5 @@ class NonStationaryRateTemporalModel(AbstractTemporalLinearMarginModel, Abstract
         super().__init__(*arg, **kwargs)
         self.drop_duplicates = False
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
+    def load_margin_functions(self, param_name_to_dims=None):
         super().load_margin_functions({ExpParams.RATE: [self.coordinates.idx_temporal_coordinates]})
diff --git a/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_models.py b/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_models.py
index 4746520c..94c69423 100644
--- a/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_models.py
+++ b/extreme_fit/model/margin_model/linear_margin_model/temporal_linear_margin_models.py
@@ -9,13 +9,13 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo
 
 class StationaryTemporalModel(AbstractTemporalLinearMarginModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
+    def load_margin_functions(self, param_name_to_dims=None):
         super().load_margin_functions({})
 
 
 class NonStationaryLocationTemporalModel(AbstractTemporalLinearMarginModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
+    def load_margin_functions(self, param_name_to_dims=None):
         super().load_margin_functions({GevParams.LOC: [self.coordinates.idx_temporal_coordinates]})
 
     @property
@@ -25,7 +25,7 @@ class NonStationaryLocationTemporalModel(AbstractTemporalLinearMarginModel):
 
 class NonStationaryScaleTemporalModel(AbstractTemporalLinearMarginModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
+    def load_margin_functions(self, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SCALE: [self.coordinates.idx_temporal_coordinates]})
 
     @property
@@ -35,7 +35,7 @@ class NonStationaryScaleTemporalModel(AbstractTemporalLinearMarginModel):
 
 class NonStationaryLogScaleTemporalModel(NonStationaryScaleTemporalModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
+    def load_margin_functions(self, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SCALE: [self.coordinates.idx_temporal_coordinates]})
 
     @property
@@ -45,7 +45,7 @@ class NonStationaryLogScaleTemporalModel(NonStationaryScaleTemporalModel):
 
 class NonStationaryShapeTemporalModel(AbstractTemporalLinearMarginModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
+    def load_margin_functions(self, param_name_to_dims=None):
         super().load_margin_functions({GevParams.SHAPE: [self.coordinates.idx_temporal_coordinates]})
 
     @property
@@ -55,7 +55,7 @@ class NonStationaryShapeTemporalModel(AbstractTemporalLinearMarginModel):
 
 class NonStationaryLocationAndScaleTemporalModel(AbstractTemporalLinearMarginModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims=None):
+    def load_margin_functions(self, param_name_to_dims=None):
         super().load_margin_functions({GevParams.LOC: [self.coordinates.idx_temporal_coordinates],
                                        GevParams.SCALE: [self.coordinates.idx_temporal_coordinates]})
 
diff --git a/extreme_fit/model/margin_model/spline_margin_model.py b/extreme_fit/model/margin_model/spline_margin_model.py
index 20d75800..fe2252d0 100644
--- a/extreme_fit/model/margin_model/spline_margin_model.py
+++ b/extreme_fit/model/margin_model/spline_margin_model.py
@@ -15,54 +15,54 @@ class SplineMarginModel(ParametricMarginModel):
                  params_sample=None):
         super().__init__(coordinates, use_start_value, params_start_fit, params_sample)
 
-    def load_margin_functions(self, gev_param_name_to_dims: Dict[str, List[int]] = None,
-                              gev_param_name_to_coef: Dict[str, AbstractCoef] = None,
-                              gev_param_name_to_nb_knots: Dict[str, int] = None,
+    def load_margin_functions(self, param_name_to_dims: Dict[str, List[int]] = None,
+                              param_name_to_coef: Dict[str, AbstractCoef] = None,
+                              param_name_to_nb_knots: Dict[str, int] = None,
                               degree=3):
         # Default parameters
         # todo: for the default parameters: take inspiration from the linear_margin_model
         # also implement the class method thing
-        if gev_param_name_to_dims is None:
-            gev_param_name_to_dims = {gev_param_name: self.coordinates.coordinates_dims
-                                      for gev_param_name in GevParams.PARAM_NAMES}
-        if gev_param_name_to_coef is None:
-            gev_param_name_to_coef = {}
-            for gev_param_name in GevParams.PARAM_NAMES:
-                knot_coef = KnotCoef(gev_param_name)
-                polynomial_coef = PolynomialCoef(gev_param_name)
+        if param_name_to_dims is None:
+            param_name_to_dims = {param_name: self.coordinates.coordinates_dims
+                                  for param_name in GevParams.PARAM_NAMES}
+        if param_name_to_coef is None:
+            param_name_to_coef = {}
+            for param_name in GevParams.PARAM_NAMES:
+                knot_coef = KnotCoef(param_name)
+                polynomial_coef = PolynomialCoef(param_name)
                 dim_to_polynomial_coef = {dim: polynomial_coef for dim in self.coordinates.coordinates_dims}
-                spline_coef = SplineCoef(gev_param_name, knot_coef, dim_to_polynomial_coef)
-                gev_param_name_to_coef[gev_param_name] = spline_coef
-        if gev_param_name_to_nb_knots is None:
-            gev_param_name_to_nb_knots = {gev_param_name: 2 for gev_param_name in GevParams.PARAM_NAMES}
+                spline_coef = SplineCoef(param_name, knot_coef, dim_to_polynomial_coef)
+                param_name_to_coef[param_name] = spline_coef
+        if param_name_to_nb_knots is None:
+            param_name_to_nb_knots = {param_name: 2 for param_name in GevParams.PARAM_NAMES}
 
         # Load sample coef
         self.margin_function_sample = SplineMarginFunction(coordinates=self.coordinates,
-                                                           gev_param_name_to_dims=gev_param_name_to_dims,
-                                                           gev_param_name_to_coef=gev_param_name_to_coef,
-                                                           gev_param_name_to_nb_knots=gev_param_name_to_nb_knots,
+                                                           param_name_to_dims=param_name_to_dims,
+                                                           param_name_to_coef=param_name_to_coef,
+                                                           param_name_to_nb_knots=param_name_to_nb_knots,
                                                            degree=degree)
         # Load start fit coef
         self.margin_function_start_fit = SplineMarginFunction(coordinates=self.coordinates,
-                                                              gev_param_name_to_dims=gev_param_name_to_dims,
-                                                              gev_param_name_to_coef=gev_param_name_to_coef,
-                                                              gev_param_name_to_nb_knots=gev_param_name_to_nb_knots,
+                                                              param_name_to_dims=param_name_to_dims,
+                                                              param_name_to_coef=param_name_to_coef,
+                                                              param_name_to_nb_knots=param_name_to_nb_knots,
                                                               degree=degree)
 
 
 class ConstantSplineMarginModel(SplineMarginModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims: Dict[str, List[int]] = None,
-                              gev_param_name_to_coef: Dict[str, AbstractCoef] = None,
-                              gev_param_name_to_nb_knots: Dict[str, int] = None, degree=3):
-        super().load_margin_functions({}, gev_param_name_to_coef, gev_param_name_to_nb_knots,
+    def load_margin_functions(self, param_name_to_dims: Dict[str, List[int]] = None,
+                              param_name_to_coef: Dict[str, AbstractCoef] = None,
+                              param_name_to_nb_knots: Dict[str, int] = None, degree=3):
+        super().load_margin_functions({}, param_name_to_coef, param_name_to_nb_knots,
                                       degree)
 
 
 class Degree1SplineMarginModel(SplineMarginModel):
 
-    def load_margin_functions(self, gev_param_name_to_dims: Dict[str, List[int]] = None,
-                              gev_param_name_to_coef: Dict[str, AbstractCoef] = None,
-                              gev_param_name_to_nb_knots: Dict[str, int] = None, degree=3):
-        super().load_margin_functions(gev_param_name_to_dims, gev_param_name_to_coef, gev_param_name_to_nb_knots,
+    def load_margin_functions(self, param_name_to_dims: Dict[str, List[int]] = None,
+                              param_name_to_coef: Dict[str, AbstractCoef] = None,
+                              param_name_to_nb_knots: Dict[str, int] = None, degree=3):
+        super().load_margin_functions(param_name_to_dims, param_name_to_coef, param_name_to_nb_knots,
                                       degree=1)
diff --git a/extreme_fit/model/result_from_model_fit/result_from_extremes/abstract_result_from_extremes.py b/extreme_fit/model/result_from_model_fit/result_from_extremes/abstract_result_from_extremes.py
index 763b9070..9211019a 100644
--- a/extreme_fit/model/result_from_model_fit/result_from_extremes/abstract_result_from_extremes.py
+++ b/extreme_fit/model/result_from_model_fit/result_from_extremes/abstract_result_from_extremes.py
@@ -14,9 +14,9 @@ from extreme_fit.model.utils import r
 
 class AbstractResultFromExtremes(AbstractResultFromModelFit):
 
-    def __init__(self, result_from_fit: robjects.ListVector, gev_param_name_to_dim=None) -> None:
+    def __init__(self, result_from_fit: robjects.ListVector, param_name_to_dim=None) -> None:
         super().__init__(result_from_fit)
-        self.gev_param_name_to_dim = gev_param_name_to_dim
+        self.param_name_to_dim = param_name_to_dim
 
     @property
     def summary_name_to_value(self):
@@ -44,7 +44,7 @@ class AbstractResultFromExtremes(AbstractResultFromModelFit):
 
     @property
     def is_non_stationary(self):
-        return len(self.gev_param_name_to_dim) > 0
+        return len(self.param_name_to_dim) > 0
 
     def load_dataframe_from_r_matrix(self, name):
         r_matrix = self.name_to_value[name]
@@ -58,9 +58,9 @@ class AbstractResultFromExtremes(AbstractResultFromModelFit):
             'tscale': False,
             'type': r.c("return.level")
         }
-        if self.gev_param_name_to_dim:
-            d = {GevParams.greek_letter_from_gev_param_name(gev_param_name) + '1': r.c(transformed_temporal_covariate) for
-                 gev_param_name in self.gev_param_name_to_dim.keys()}
+        if self.param_name_to_dim:
+            d = {GevParams.greek_letter_from_param_name(param_name) + '1': r.c(transformed_temporal_covariate) for
+                 param_name in self.param_name_to_dim.keys()}
             kwargs = {
                 "vals": r.list(**d
                                )
diff --git a/extreme_fit/model/result_from_model_fit/result_from_extremes/result_from_bayesian_extremes.py b/extreme_fit/model/result_from_model_fit/result_from_extremes/result_from_bayesian_extremes.py
index 21d30fd4..e2176c23 100644
--- a/extreme_fit/model/result_from_model_fit/result_from_extremes/result_from_bayesian_extremes.py
+++ b/extreme_fit/model/result_from_model_fit/result_from_extremes/result_from_bayesian_extremes.py
@@ -11,9 +11,9 @@ from extreme_fit.model.utils import r
 
 class ResultFromBayesianExtremes(AbstractResultFromExtremes):
 
-    def __init__(self, result_from_fit: robjects.ListVector, gev_param_name_to_dim=None,
+    def __init__(self, result_from_fit: robjects.ListVector, param_name_to_dim=None,
                  burn_in_percentage=0.5) -> None:
-        super().__init__(result_from_fit, gev_param_name_to_dim)
+        super().__init__(result_from_fit, param_name_to_dim)
         self.burn_in_percentage = burn_in_percentage
 
     @property
@@ -51,7 +51,7 @@ class ResultFromBayesianExtremes(AbstractResultFromExtremes):
     def get_coef_dict_from_posterior_sample(self, s: pd.Series):
         assert len(s) >= 3
         values = {i: v for i, v in enumerate(s)}
-        return get_margin_coef_ordered_dict(self.gev_param_name_to_dim, values)
+        return get_margin_coef_ordered_dict(self.param_name_to_dim, values)
 
     @property
     def margin_coef_ordered_dict(self):
@@ -65,7 +65,7 @@ class ResultFromBayesianExtremes(AbstractResultFromExtremes):
                 'FUN': "mean",
         }
         res = r.ci(self.result_from_fit, **bayesian_ci_parameters, **common_kwargs)
-        if self.gev_param_name_to_dim:
+        if self.param_name_to_dim:
             a = np.array(res)[0]
             lower, mean_estimate, upper = a
         else:
diff --git a/extreme_fit/model/result_from_model_fit/result_from_extremes/result_from_mle_extremes.py b/extreme_fit/model/result_from_model_fit/result_from_extremes/result_from_mle_extremes.py
index 14ea112b..4425b7ea 100644
--- a/extreme_fit/model/result_from_model_fit/result_from_extremes/result_from_mle_extremes.py
+++ b/extreme_fit/model/result_from_model_fit/result_from_extremes/result_from_mle_extremes.py
@@ -11,9 +11,9 @@ from extreme_fit.model.utils import r
 
 class ResultFromMleExtremes(AbstractResultFromExtremes):
 
-    def __init__(self, result_from_fit: robjects.ListVector, gev_param_name_to_dim=None,
+    def __init__(self, result_from_fit: robjects.ListVector, param_name_to_dim=None,
                  type_for_mle="GEV") -> None:
-        super().__init__(result_from_fit, gev_param_name_to_dim)
+        super().__init__(result_from_fit, param_name_to_dim)
         self.type_for_mle = type_for_mle
 
     @property
@@ -24,7 +24,7 @@ class ResultFromMleExtremes(AbstractResultFromExtremes):
             values = {i: param for i, param in enumerate(np.array(d['par']))}
         else:
             values = {i: np.array(v)[0] for i, v in enumerate(d.values())}
-        return get_margin_coef_ordered_dict(self.gev_param_name_to_dim, values, self.type_for_mle)
+        return get_margin_coef_ordered_dict(self.param_name_to_dim, values, self.type_for_mle)
 
     def _confidence_interval_method(self, common_kwargs, ci_method, return_period):
         method_name = ci_method_to_method_name[ci_method]
diff --git a/extreme_fit/model/result_from_model_fit/result_from_ismev.py b/extreme_fit/model/result_from_model_fit/result_from_ismev.py
index 22eef48d..8db50675 100644
--- a/extreme_fit/model/result_from_model_fit/result_from_ismev.py
+++ b/extreme_fit/model/result_from_model_fit/result_from_ismev.py
@@ -10,13 +10,13 @@ from extreme_fit.model.result_from_model_fit.utils import get_margin_coef_ordere
 
 class ResultFromIsmev(AbstractResultFromModelFit):
 
-    def __init__(self, result_from_fit: robjects.ListVector, gev_param_name_to_dim=None) -> None:
+    def __init__(self, result_from_fit: robjects.ListVector, param_name_to_dim=None) -> None:
         super().__init__(result_from_fit)
-        self.gev_param_name_to_dim = gev_param_name_to_dim
+        self.param_name_to_dim = param_name_to_dim
 
     @property
     def margin_coef_ordered_dict(self):
-        return get_margin_coef_ordered_dict(self.gev_param_name_to_dim, self.name_to_value['mle'])
+        return get_margin_coef_ordered_dict(self.param_name_to_dim, self.name_to_value['mle'])
 
     @property
     def all_parameters(self):
diff --git a/extreme_fit/model/result_from_model_fit/utils.py b/extreme_fit/model/result_from_model_fit/utils.py
index 1bb34aae..020a3b82 100644
--- a/extreme_fit/model/result_from_model_fit/utils.py
+++ b/extreme_fit/model/result_from_model_fit/utils.py
@@ -11,23 +11,23 @@ def convertFloatVector_to_float(f):
     return np.array(f)[0]
 
 
-def get_margin_coef_ordered_dict(gev_param_name_to_dim, mle_values, type_for_mle="GEV"):
-    assert gev_param_name_to_dim is not None
-    # Build the Coeff dict from gev_param_name_to_dim
+def get_margin_coef_ordered_dict(param_name_to_dim, mle_values, type_for_mle="GEV"):
+    assert param_name_to_dim is not None
+    # Build the Coeff dict from param_name_to_dim
     coef_dict = OrderedDict()
     i = 0
-    for gev_param_name in GevParams.PARAM_NAMES:
+    for param_name in GevParams.PARAM_NAMES:
         # Add intercept (i.e. stationary parameter)
-        intercept_coef_name = LinearCoef.coef_template_str(gev_param_name, LinearCoef.INTERCEPT_NAME).format(1)
-        if type_for_mle == "Gumbel" and gev_param_name == GevParams.SHAPE:
+        intercept_coef_name = LinearCoef.coef_template_str(param_name, LinearCoef.INTERCEPT_NAME).format(1)
+        if type_for_mle == "Gumbel" and param_name == GevParams.SHAPE:
             coef_value = 0
         else:
             coef_value = mle_values[i]
         coef_dict[intercept_coef_name] = coef_value
         i += 1
         # Add a potential linear temporal trend
-        if gev_param_name in gev_param_name_to_dim:
-            temporal_coef_name = LinearCoef.coef_template_str(gev_param_name,
+        if param_name in param_name_to_dim:
+            temporal_coef_name = LinearCoef.coef_template_str(param_name,
                                                               AbstractCoordinates.COORDINATE_T).format(1)
             coef_dict[temporal_coef_name] = mle_values[i]
             i += 1
diff --git a/extreme_trend/abstract_gev_trend_test.py b/extreme_trend/abstract_gev_trend_test.py
index d9786929..5cbfa164 100644
--- a/extreme_trend/abstract_gev_trend_test.py
+++ b/extreme_trend/abstract_gev_trend_test.py
@@ -106,8 +106,8 @@ class AbstractGevTrendTest(object):
     def test_sign(self) -> int:
         return np.sign(self.time_derivative_of_return_level)
 
-    def get_non_stationary_linear_coef(self, gev_param_name: str):
-        return self.unconstrained_estimator.function_from_fit.get_coef(gev_param_name,
+    def get_non_stationary_linear_coef(self, param_name: str):
+        return self.unconstrained_estimator.function_from_fit.get_coef(param_name,
                                                                        AbstractCoordinates.COORDINATE_T)
 
     @cached_property
diff --git a/extreme_trend/trend_test_one_parameter/gev_trend_test_one_parameter.py b/extreme_trend/trend_test_one_parameter/gev_trend_test_one_parameter.py
index c2371186..e23df337 100644
--- a/extreme_trend/trend_test_one_parameter/gev_trend_test_one_parameter.py
+++ b/extreme_trend/trend_test_one_parameter/gev_trend_test_one_parameter.py
@@ -17,7 +17,7 @@ class GevTrendTestOneParameter(AbstractGevTrendTest):
 
 class GevTrendTestOneParameterAgainstStationary(GevTrendTestOneParameter):
 
-    def __init__(self, years, maxima, starting_year, unconstrained_model_class, gev_param_name,
+    def __init__(self, years, maxima, starting_year, unconstrained_model_class, param_name,
                  quantile_level=EUROCODE_QUANTILE,
                  constrained_model_class=StationaryTemporalModel,
                  fit_method=MarginFitMethod.extremes_fevd_mle):
@@ -26,11 +26,11 @@ class GevTrendTestOneParameterAgainstStationary(GevTrendTestOneParameter):
                          quantile_level=quantile_level,
                          constrained_model_class=constrained_model_class,
                          fit_method=fit_method)
-        self.gev_param_name = gev_param_name
+        self.param_name = param_name
 
     @property
     def non_stationary_linear_coef(self):
-        return self.get_non_stationary_linear_coef(gev_param_name=self.gev_param_name)
+        return self.get_non_stationary_linear_coef(param_name=self.param_name)
 
 
 class GevLocationTrendTest(GevTrendTestOneParameterAgainstStationary):
@@ -40,7 +40,7 @@ class GevLocationTrendTest(GevTrendTestOneParameterAgainstStationary):
         super().__init__(years, maxima, starting_year,
                          unconstrained_model_class=NonStationaryLocationTemporalModel,
                          constrained_model_class=constrained_model_class,
-                         gev_param_name=GevParams.LOC,
+                         param_name=GevParams.LOC,
                          quantile_level=quantile_level,
                          fit_method=fit_method)
 
@@ -65,7 +65,7 @@ class GevScaleTrendTest(GevTrendTestOneParameterAgainstStationary):
         super().__init__(years, maxima, starting_year,
                          unconstrained_model_class=NonStationaryScaleTemporalModel,
                          constrained_model_class=constrained_model_class,
-                         gev_param_name=GevParams.SCALE,
+                         param_name=GevParams.SCALE,
                          quantile_level=quantile_level,
                          fit_method=fit_method)
 
@@ -91,7 +91,7 @@ class GevShapeTrendTest(GevTrendTestOneParameterAgainstStationary):
     def __init__(self, years, maxima, starting_year, quantile_level=EUROCODE_QUANTILE, fit_method=MarginFitMethod.extremes_fevd_mle):
         super().__init__(years, maxima, starting_year,
                          unconstrained_model_class=NonStationaryShapeTemporalModel,
-                         gev_param_name=GevParams.SHAPE,
+                         param_name=GevParams.SHAPE,
                          quantile_level=quantile_level,
                          fit_method=fit_method)
 
diff --git a/extreme_trend/trend_test_one_parameter/gumbel_trend_test_one_parameter.py b/extreme_trend/trend_test_one_parameter/gumbel_trend_test_one_parameter.py
index e3028a00..79e8f494 100644
--- a/extreme_trend/trend_test_one_parameter/gumbel_trend_test_one_parameter.py
+++ b/extreme_trend/trend_test_one_parameter/gumbel_trend_test_one_parameter.py
@@ -70,7 +70,7 @@ class GumbelLocationTrendTest(GevTrendTestOneParameterAgainstStationary):
     def __init__(self, years, maxima, starting_year, quantile_level=EUROCODE_QUANTILE, fit_method=MarginFitMethod.extremes_fevd_mle):
         super().__init__(years, maxima, starting_year,
                          unconstrained_model_class=NonStationaryLocationGumbelModel,
-                         gev_param_name=GevParams.LOC,
+                         param_name=GevParams.LOC,
                          quantile_level=quantile_level,
                          constrained_model_class=GumbelTemporalModel, fit_method=fit_method)
 
@@ -97,7 +97,7 @@ class GumbelScaleTrendTest(GevTrendTestOneParameterAgainstStationary):
                  fit_method=MarginFitMethod.extremes_fevd_mle):
         super().__init__(years, maxima, starting_year,
                          unconstrained_model_class=NonStationaryScaleGumbelModel,
-                         gev_param_name=GevParams.SCALE,
+                         param_name=GevParams.SCALE,
                          quantile_level=quantile_level,
                          constrained_model_class=GumbelTemporalModel,
                          fit_method=fit_method)
diff --git a/extreme_trend/trend_test_three_parameters/gev_trend_test_three_parameters.py b/extreme_trend/trend_test_three_parameters/gev_trend_test_three_parameters.py
index 793c7ea3..e69fd8a4 100644
--- a/extreme_trend/trend_test_three_parameters/gev_trend_test_three_parameters.py
+++ b/extreme_trend/trend_test_three_parameters/gev_trend_test_three_parameters.py
@@ -26,11 +26,11 @@ class GevLocationAndScaleTrendTestAgainstGumbel(GevTrendTestThreeParameters):
 
     @property
     def mu1(self):
-        return self.get_non_stationary_linear_coef(gev_param_name=GevParams.LOC)
+        return self.get_non_stationary_linear_coef(param_name=GevParams.LOC)
 
     @property
     def sigma1(self):
-        return self.get_non_stationary_linear_coef(gev_param_name=GevParams.SCALE)
+        return self.get_non_stationary_linear_coef(param_name=GevParams.SCALE)
 
     def _slope_strength(self):
         return self.unconstrained_estimator_gev_params.time_derivative_of_return_level(p=self.quantile_level,
diff --git a/extreme_trend/trend_test_two_parameters/gev_trend_test_two_parameters.py b/extreme_trend/trend_test_two_parameters/gev_trend_test_two_parameters.py
index 21d596e8..ae6b8f54 100644
--- a/extreme_trend/trend_test_two_parameters/gev_trend_test_two_parameters.py
+++ b/extreme_trend/trend_test_two_parameters/gev_trend_test_two_parameters.py
@@ -29,11 +29,11 @@ class GevLocationAndScaleTrendTest(GevTrendTestTwoParameters):
 
     @property
     def mu1(self):
-        return self.get_non_stationary_linear_coef(gev_param_name=GevParams.LOC)
+        return self.get_non_stationary_linear_coef(param_name=GevParams.LOC)
 
     @property
     def sigma1(self):
-        return self.get_non_stationary_linear_coef(gev_param_name=GevParams.SCALE)
+        return self.get_non_stationary_linear_coef(param_name=GevParams.SCALE)
 
     def _slope_strength(self):
         return self.unconstrained_estimator_gev_params.time_derivative_of_return_level(p=self.quantile_level,
diff --git a/extreme_trend/trend_test_two_parameters/gumbel_test_two_parameters.py b/extreme_trend/trend_test_two_parameters/gumbel_test_two_parameters.py
index 812f259f..db57fb57 100644
--- a/extreme_trend/trend_test_two_parameters/gumbel_test_two_parameters.py
+++ b/extreme_trend/trend_test_two_parameters/gumbel_test_two_parameters.py
@@ -24,11 +24,11 @@ class GumbelLocationAndScaleTrendTest(GevTrendTestTwoParameters):
 
     @property
     def mu1(self):
-        return self.get_non_stationary_linear_coef(gev_param_name=GevParams.LOC)
+        return self.get_non_stationary_linear_coef(param_name=GevParams.LOC)
 
     @property
     def sigma1(self):
-        return self.get_non_stationary_linear_coef(gev_param_name=GevParams.SCALE)
+        return self.get_non_stationary_linear_coef(param_name=GevParams.SCALE)
 
     def _slope_strength(self):
         return self.unconstrained_estimator_gev_params.time_derivative_of_return_level(p=self.quantile_level,
diff --git a/projects/contrasting_trends_in_snow_loads/check_mcmc_convergence_for_return_levels/main_bayesian_mcmc.py b/projects/contrasting_trends_in_snow_loads/check_mcmc_convergence_for_return_levels/main_bayesian_mcmc.py
index 969b8bae..81818b43 100644
--- a/projects/contrasting_trends_in_snow_loads/check_mcmc_convergence_for_return_levels/main_bayesian_mcmc.py
+++ b/projects/contrasting_trends_in_snow_loads/check_mcmc_convergence_for_return_levels/main_bayesian_mcmc.py
@@ -47,15 +47,15 @@ def plot_chain(N=10000, show=True):
     lns = []
     # Last color is for the return level
     colors = ['r', 'g', 'b', 'tab:orange']
-    gev_param_name_to_color = dict(zip(GevParams.PARAM_NAMES, colors))
-    gev_param_name_to_ax = dict(
+    param_name_to_color = dict(zip(GevParams.PARAM_NAMES, colors))
+    param_name_to_ax = dict(
         zip(GevParams.PARAM_NAMES, [ax_trajectories, ax_trajectories, ax_trajectories]))
     # zip(GevParams.PARAM_NAMES, [ax_trajectories, ax_trajectories, ax_trajectories_inverted]))
-    gev_param_name_to_label = {n: GevParams.greek_letter_from_gev_param_name(n) for n in GevParams.PARAM_NAMES}
-    for j, gev_param_name in enumerate(GevParams.PARAM_NAMES[:]):
-        label = gev_param_name_to_label[gev_param_name]
-        ax = gev_param_name_to_ax[gev_param_name]
-        color = gev_param_name_to_color[gev_param_name]
+    param_name_to_label = {n: GevParams.greek_letter_from_param_name(n) for n in GevParams.PARAM_NAMES}
+    for j, param_name in enumerate(GevParams.PARAM_NAMES[:]):
+        label = param_name_to_label[param_name]
+        ax = param_name_to_ax[param_name]
+        color = param_name_to_color[param_name]
         ln = ax.plot(iteration_step, df_all_samples.iloc[:, j].values, label=label, color=color)
         lns.extend(ln)
     ax_trajectories_inverted.set_ylim(-0.3, 10)
@@ -71,15 +71,15 @@ def plot_chain(N=10000, show=True):
     # Plot the parameter posterior on axes 1
     ax_parameter_posterior = axes[1]
     ax_parameter_posterior_flip = ax_parameter_posterior.twiny()
-    gev_param_name_to_ax = dict(
+    param_name_to_ax = dict(
         zip(GevParams.PARAM_NAMES,
             [ax_parameter_posterior, ax_parameter_posterior.twiny(), ax_parameter_posterior_flip]))
     df_posterior_samples = return_level_bayesian.result_from_fit.df_posterior_samples
     lns = []
-    for j, gev_param_name in enumerate(GevParams.PARAM_NAMES[:]):
-        label = gev_param_name_to_label[gev_param_name]
-        color = gev_param_name_to_color[gev_param_name]
-        ax = gev_param_name_to_ax[gev_param_name]
+    for j, param_name in enumerate(GevParams.PARAM_NAMES[:]):
+        label = param_name_to_label[param_name]
+        color = param_name_to_color[param_name]
+        ax = param_name_to_ax[param_name]
         ln = sns.kdeplot(df_posterior_samples.iloc[:, j], ax=ax, label=label, color=color)
         lns.append(ln)
     labs = [l.get_label() for l in lns]
diff --git a/projects/quantile_regression_vs_evt/annual_maxima_simulation/daily_exp_simulation.py b/projects/quantile_regression_vs_evt/annual_maxima_simulation/daily_exp_simulation.py
index 3f02d4fe..5c2a76f8 100644
--- a/projects/quantile_regression_vs_evt/annual_maxima_simulation/daily_exp_simulation.py
+++ b/projects/quantile_regression_vs_evt/annual_maxima_simulation/daily_exp_simulation.py
@@ -41,10 +41,10 @@ class AbstractDailyExpSimulation(AnnualMaximaSimulation, ABC):
 class StationaryExpSimulation(AbstractDailyExpSimulation):
 
     def create_model(self, coordinates):
-        gev_param_name_to_coef_list = {
+        param_name_to_coef_list = {
             AbstractParams.RATE: [10],
         }
-        return StationaryTemporalModel.from_coef_list(coordinates, gev_param_name_to_coef_list,
+        return StationaryTemporalModel.from_coef_list(coordinates, param_name_to_coef_list,
                                                       fit_method=MarginFitMethod.extremes_fevd_mle,
                                                       params_class=ExpParams)
 
@@ -52,9 +52,9 @@ class StationaryExpSimulation(AbstractDailyExpSimulation):
 class NonStationaryExpSimulation(AbstractDailyExpSimulation):
 
     def create_model(self, coordinates):
-        gev_param_name_to_coef_list = {
+        param_name_to_coef_list = {
             AbstractParams.RATE: [0.1, 0.01],
         }
-        return NonStationaryRateTemporalModel.from_coef_list(coordinates, gev_param_name_to_coef_list,
+        return NonStationaryRateTemporalModel.from_coef_list(coordinates, param_name_to_coef_list,
                                                              fit_method=MarginFitMethod.extremes_fevd_mle,
                                                              params_class=ExpParams)
diff --git a/projects/quantile_regression_vs_evt/annual_maxima_simulation/gev_simulation.py b/projects/quantile_regression_vs_evt/annual_maxima_simulation/gev_simulation.py
index 07a79aa9..72864322 100644
--- a/projects/quantile_regression_vs_evt/annual_maxima_simulation/gev_simulation.py
+++ b/projects/quantile_regression_vs_evt/annual_maxima_simulation/gev_simulation.py
@@ -30,34 +30,34 @@ class GevSimulation(AnnualMaximaSimulation):
 class StationarySimulation(GevSimulation):
 
     def create_model(self, coordinates):
-        gev_param_name_to_coef_list = {
+        param_name_to_coef_list = {
             GevParams.LOC: [0],
             GevParams.SHAPE: [0],
             GevParams.SCALE: [1],
         }
-        return StationaryTemporalModel.from_coef_list(coordinates, gev_param_name_to_coef_list,
+        return StationaryTemporalModel.from_coef_list(coordinates, param_name_to_coef_list,
                                                       fit_method=MarginFitMethod.extremes_fevd_mle)
 
 
 class NonStationaryLocationGumbelSimulation(GevSimulation):
 
     def create_model(self, coordinates):
-        gev_param_name_to_coef_list = {
+        param_name_to_coef_list = {
             GevParams.LOC: [0, 10],
             GevParams.SHAPE: [0],
             GevParams.SCALE: [1],
         }
-        return NonStationaryLocationTemporalModel.from_coef_list(coordinates, gev_param_name_to_coef_list,
+        return NonStationaryLocationTemporalModel.from_coef_list(coordinates, param_name_to_coef_list,
                                                                  fit_method=MarginFitMethod.extremes_fevd_mle)
 
 
 class NonStationaryLocationGevSimulation(GevSimulation):
 
     def create_model(self, coordinates):
-        gev_param_name_to_coef_list = {
+        param_name_to_coef_list = {
             GevParams.LOC: [0, 1],
             GevParams.SHAPE: [0.3],
             GevParams.SCALE: [1],
         }
-        return NonStationaryLocationTemporalModel.from_coef_list(coordinates, gev_param_name_to_coef_list,
+        return NonStationaryLocationTemporalModel.from_coef_list(coordinates, param_name_to_coef_list,
                                                                  fit_method=MarginFitMethod.extremes_fevd_mle)
diff --git a/test/test_extreme_fit/test_function/test_margin_function.py b/test/test_extreme_fit/test_function/test_margin_function.py
index fb586df7..10f83b7b 100644
--- a/test/test_extreme_fit/test_function/test_margin_function.py
+++ b/test/test_extreme_fit/test_function/test_margin_function.py
@@ -30,8 +30,8 @@ class MarginFunction(unittest.TestCase):
                      'tempCoeffLoc1': 1, 'tempCoeffScale1': 1,
                      'tempCoeffShape1': 1}
         margin_function = self.margin_function_class.from_coef_dict(coordinates,
-                                                  margin_model.margin_function_sample.gev_param_name_to_dims,
-                                                  coef_dict)
+                                                                    margin_model.margin_function_sample.param_name_to_dims,
+                                                                    coef_dict)
         gev_param = margin_function.get_params(coordinate=np.array([0.5, 1.0]), is_transformed=False)
         self.assertEqual({'loc': 2, 'scale': 2, 'shape': 2}, gev_param.to_dict())
 
@@ -44,7 +44,7 @@ class MarginFunction(unittest.TestCase):
             'scaleCoeff2': 1, 'shapeCoeff1': 0,
             'shapeCoeff2': 1}
         margin_function = self.margin_function_class.from_coef_dict(coordinates,
-                                                                    margin_model.margin_function_sample.gev_param_name_to_dims,
+                                                                    margin_model.margin_function_sample.param_name_to_dims,
                                                                     coef_dict)
         gev_param = margin_function.get_params(coordinate=np.array([1]), is_transformed=False)
         self.assertEqual({'loc': 3, 'scale': 1, 'shape': 1}, gev_param.to_dict())
diff --git a/test/test_spatio_temporal_dataset/test_spatio_temporal_observations.py b/test/test_spatio_temporal_dataset/test_spatio_temporal_observations.py
index e3285a30..a484b7ab 100644
--- a/test/test_spatio_temporal_dataset/test_spatio_temporal_observations.py
+++ b/test/test_spatio_temporal_dataset/test_spatio_temporal_observations.py
@@ -55,10 +55,10 @@ class TestDailyObservations(unittest.TestCase):
         super().setUp()
         set_seed_for_test(seed=42)
         self.coordinates = ConsecutiveTemporalCoordinates.from_nb_temporal_steps(nb_temporal_steps=10)
-        gev_param_name_to_coef_list = {
+        param_name_to_coef_list = {
             AbstractParams.RATE: [1],
         }
-        self.margin_model = StationaryTemporalModel.from_coef_list(self.coordinates, gev_param_name_to_coef_list,
+        self.margin_model = StationaryTemporalModel.from_coef_list(self.coordinates, param_name_to_coef_list,
                                                                    params_class=ExpParams)
 
     def test_instance_exp_params(self):
diff --git a/test/test_unitary_r_packages/test_spatial_extreme/test_rmaxstab/test_rmaxstab_with_margin.py b/test/test_unitary_r_packages/test_spatial_extreme/test_rmaxstab/test_rmaxstab_with_margin.py
index df02dd5a..8d80948d 100644
--- a/test/test_unitary_r_packages/test_spatial_extreme/test_rmaxstab/test_rmaxstab_with_margin.py
+++ b/test/test_unitary_r_packages/test_spatial_extreme/test_rmaxstab/test_rmaxstab_with_margin.py
@@ -30,12 +30,12 @@ class TestRMaxStabWithMarginConstant(TestUnitaryAbstract):
     def python_code(cls):
         coordinates, max_stable_model = TestRMaxStab.python_code()
         # Load margin model
-        gev_param_name_to_coef_list = {
+        param_name_to_coef_list = {
             GevParams.LOC: [0.2],
             GevParams.SHAPE: [0.2],
             GevParams.SCALE: [0.2],
         }
-        margin_model = ConstantMarginModel.from_coef_list(coordinates, gev_param_name_to_coef_list)
+        margin_model = ConstantMarginModel.from_coef_list(coordinates, param_name_to_coef_list)
         # Load dataset
         dataset = FullSimulatedDataset.from_double_sampling(nb_obs=40, margin_model=margin_model,
                                                             coordinates=coordinates,
@@ -76,12 +76,12 @@ class TestRMaxStabWithLinearMargin(TestUnitaryAbstract):
     def python_code(cls):
         coordinates, max_stable_model = TestRMaxStab.python_code()
         # Load margin model
-        gev_param_name_to_coef_list = {
+        param_name_to_coef_list = {
             GevParams.LOC: [-10, 0, 2],
             GevParams.SHAPE: [2, -3, 0],
             GevParams.SCALE: [5, 2, 1],
         }
-        margin_model = LinearAllParametersAllDimsMarginModel.from_coef_list(coordinates, gev_param_name_to_coef_list)
+        margin_model = LinearAllParametersAllDimsMarginModel.from_coef_list(coordinates, param_name_to_coef_list)
         # Load dataset
         dataset = FullSimulatedDataset.from_double_sampling(nb_obs=40, margin_model=margin_model,
                                                             coordinates=coordinates,
-- 
GitLab