From 80137755aba3d4db8691dba84d28006ba048a6d1 Mon Sep 17 00:00:00 2001 From: Le Roux Erwan <erwan.le-roux@irstea.fr> Date: Sat, 23 Nov 2019 14:48:07 +0100 Subject: [PATCH] [TREND ANALYSIS] put MLE extreme package method as default mle method for trend analysis. add aic score in trend analysis. start study_visualizer for non stationary trends. --- .../scm_models_data/abstract_study.py | 2 +- .../study_visualization/study_visualizer.py | 3 - .../method/main_result.py | 15 ++++ ...dy_visualizer_for_non_stationary_trends.py | 90 +++++++++++++++++++ .../abstract_gev_trend_test.py | 45 +++++++--- .../abstract_univariate_test.py | 2 +- .../univariate_test_results.py | 2 +- .../abstract_result_from_model_fit.py | 2 +- .../abstract_result_from_extremes.py | 8 ++ .../result_from_ismev.py | 4 - 10 files changed, 152 insertions(+), 21 deletions(-) create mode 100644 experiment/paper_past_snow_loads/method/main_result.py diff --git a/experiment/meteo_france_data/scm_models_data/abstract_study.py b/experiment/meteo_france_data/scm_models_data/abstract_study.py index 752d7093..ac9208b6 100644 --- a/experiment/meteo_france_data/scm_models_data/abstract_study.py +++ b/experiment/meteo_france_data/scm_models_data/abstract_study.py @@ -299,7 +299,7 @@ class AbstractStudy(object): default_color_for_nan_values='w', massif_name_to_color=None, show_label=True, - scaled=False, + scaled=True, fontsize=7, axis_off=False, massif_name_to_hatch_boolean_list=None, diff --git a/experiment/meteo_france_data/scm_models_data/visualization/study_visualization/study_visualizer.py b/experiment/meteo_france_data/scm_models_data/visualization/study_visualization/study_visualizer.py index ba731820..2829bf6e 100644 --- a/experiment/meteo_france_data/scm_models_data/visualization/study_visualization/study_visualizer.py +++ b/experiment/meteo_france_data/scm_models_data/visualization/study_visualization/study_visualizer.py @@ -711,9 +711,6 @@ class StudyVisualizer(VisualizationParameters): self.massif_id_to_smooth_maxima[massif_id] = (x, y) return self.massif_id_to_smooth_maxima[massif_id] - def visualize_brown_resnick_fit(self): - pass - def visualize_linear_margin_fit(self, only_first_max_stable=False): margin_class = LinearNonStationaryLocationMarginModel if self.temporal_non_stationarity else LinearStationaryMarginModel plot_name = 'Full Likelihood with Linear marginals and max stable dependency structure' diff --git a/experiment/paper_past_snow_loads/method/main_result.py b/experiment/paper_past_snow_loads/method/main_result.py new file mode 100644 index 00000000..085564f9 --- /dev/null +++ b/experiment/paper_past_snow_loads/method/main_result.py @@ -0,0 +1,15 @@ +from experiment.meteo_france_data.scm_models_data.crocus.crocus import CrocusSnowLoadTotal +from experiment.paper_past_snow_loads.method.study_visualizer_for_non_stationary_trends import \ + StudyVisualizerForNonStationaryTrends + +ALTITUDE_TRENDS = [1800] + + +def draw_snow_load_map(altitude): + study = CrocusSnowLoadTotal(altitude=altitude) + visualizer = StudyVisualizerForNonStationaryTrends(study, multiprocessing=True) + visualizer.plot_trends() + +if __name__ == '__main__': + draw_snow_load_map(altitude=1800) + diff --git a/experiment/paper_past_snow_loads/method/study_visualizer_for_non_stationary_trends.py b/experiment/paper_past_snow_loads/method/study_visualizer_for_non_stationary_trends.py index e69de29b..be8f34ad 100644 --- a/experiment/paper_past_snow_loads/method/study_visualizer_for_non_stationary_trends.py +++ b/experiment/paper_past_snow_loads/method/study_visualizer_for_non_stationary_trends.py @@ -0,0 +1,90 @@ +from typing import Dict + +import numpy as np +from cached_property import cached_property + +from experiment.meteo_france_data.scm_models_data.abstract_study import AbstractStudy +from experiment.meteo_france_data.scm_models_data.visualization.study_visualization.study_visualizer import \ + StudyVisualizer +from experiment.trend_analysis.abstract_score import MeanScore +from experiment.trend_analysis.univariate_test.abstract_gev_trend_test import AbstractGevTrendTest +from experiment.trend_analysis.univariate_test.gev_trend_test_one_parameter import GevScaleTrendTest, \ + GevLocationTrendTest +from experiment.trend_analysis.univariate_test.gev_trend_test_two_parameters import GevLocationAndScaleTrendTest + + +class StudyVisualizerForNonStationaryTrends(StudyVisualizer): + + def __init__(self, study: AbstractStudy, show=True, save_to_file=False, only_one_graph=False, only_first_row=False, + vertical_kde_plot=False, year_for_kde_plot=None, plot_block_maxima_quantiles=False, + temporal_non_stationarity=False, transformation_class=None, verbose=False, multiprocessing=False, + complete_non_stationary_trend_analysis=False, normalization_under_one_observations=True, + score_class=MeanScore): + super().__init__(study, show, save_to_file, only_one_graph, only_first_row, vertical_kde_plot, + year_for_kde_plot, plot_block_maxima_quantiles, temporal_non_stationarity, + transformation_class, verbose, multiprocessing, complete_non_stationary_trend_analysis, + normalization_under_one_observations, score_class) + self.non_stationary_trend_test = [GevLocationTrendTest, GevScaleTrendTest, GevLocationAndScaleTrendTest] + + # Utils + + @cached_property + def massif_name_to_years_and_maxima(self): + d = {} + df_maxima = self.study.observations_annual_maxima.df_maxima_gev + years = np.array(df_maxima.columns) + for massif_name, s_maxima in df_maxima.iterrows(): + d[massif_name] = (years, np.array(s_maxima)) + return d + + @cached_property + def massif_name_to_psnow(self): + return {m: np.count_nonzero(maxima) / len(maxima) for m, (_, maxima) in + self.massif_name_to_years_and_maxima.items()} + + @cached_property + def massif_name_to_non_null_years_and_maxima(self): + d = {} + for m, (years, maxima) in self.massif_name_to_years_and_maxima.items(): + mask = np.nonzero(maxima) + d[m] = (years[mask], maxima[mask]) + return d + + @cached_property + def massif_name_to_minimized_aic_non_stationary_trend_test(self) -> Dict[str, AbstractGevTrendTest]: + starting_year = 1958 + massif_name_to_trend_test_that_minimized_aic = {} + for massif_name, (x, y) in self.massif_name_to_non_null_years_and_maxima.items(): + non_stationary_trend_test = [t(x, y, starting_year) for t in self.non_stationary_trend_test] + trend_test_that_minimized_aic = sorted(non_stationary_trend_test, key=lambda t: t.aic)[0] + massif_name_to_trend_test_that_minimized_aic[massif_name] = trend_test_that_minimized_aic + return massif_name_to_trend_test_that_minimized_aic + + # Part 1 - Trends + + def plot_trends(self): + v = max(abs(min(self.massif_name_to_tdrl_value.values())), max(self.massif_name_to_tdrl_value.values())) + vmin, vmax = -v, v + self.study.visualize_study(massif_name_to_value=self.massif_name_to_tdrl_value, vmin=vmin, vmax=vmax, + replace_blue_by_white=False, axis_off=True, show_label=False, + add_colorbar=True) + + @cached_property + def massif_name_to_tdrl_value(self): + return {m: t.time_derivative_of_return_level for m, t in self.massif_name_to_minimized_aic_non_stationary_trend_test.items()} + + @property + def massif_name_to_minimized_aic_model_class(self): + return {m: t.unconstrained_model_class for m, t in self.massif_name_to_minimized_aic_non_stationary_trend_test.items()} + + @property + def massif_name_to_model_significance_symbol(self): + return {} + + + # Part 1 - Uncertainty return level plot + + + + def massif_name_to_uncertainty(self): + pass diff --git a/experiment/trend_analysis/univariate_test/abstract_gev_trend_test.py b/experiment/trend_analysis/univariate_test/abstract_gev_trend_test.py index 96096bbd..bfe20929 100644 --- a/experiment/trend_analysis/univariate_test/abstract_gev_trend_test.py +++ b/experiment/trend_analysis/univariate_test/abstract_gev_trend_test.py @@ -27,15 +27,29 @@ class AbstractGevTrendTest(AbstractUnivariateTest): constrained_model_class=StationaryTemporalModel, ): super().__init__(years, maxima, starting_year) - self.fit_method = TemporalMarginFitMethod.is_mev_gev_fit + self.unconstrained_model_class = unconstrained_model_class + self.constrained_model_class = constrained_model_class + self.fit_method = TemporalMarginFitMethod.extremes_fevd_mle # Load observations, coordinates and datasets self.coordinates, self.dataset = load_temporal_coordinates_and_dataset(maxima, years) + # By default crashed boolean is False + self.crashed = False try: - # Fit constrained model - self.constrained_estimator = fitted_linear_margin_estimator(constrained_model_class, self.coordinates, self.dataset, self.starting_year, self.fit_method) - # Fit unconstrained model - self.unconstrained_estimator = fitted_linear_margin_estimator(unconstrained_model_class, self.coordinates, self.dataset, self.starting_year, self.fit_method) - self.crashed = False + pass + except SafeRunException: + self.crashed = True + + @cached_property + def constrained_estimator(self): + try: + return fitted_linear_margin_estimator(self.constrained_model_class, self.coordinates, self.dataset, self.starting_year, self.fit_method) + except SafeRunException: + self.crashed = True + + @cached_property + def unconstrained_estimator(self): + try: + return fitted_linear_margin_estimator(self.unconstrained_model_class, self.coordinates, self.dataset, self.starting_year, self.fit_method) except SafeRunException: self.crashed = True @@ -69,6 +83,15 @@ class AbstractGevTrendTest(AbstractUnivariateTest): def degree_freedom_chi2(self) -> int: raise NotImplementedError + @property + def total_number_of_parameters_for_unconstrained_model(self) -> int: + return self.degree_freedom_chi2 + 3 + + @property + def aic(self): + # deviance = - 2 * nllh + return 2 * self.total_number_of_parameters_for_unconstrained_model - self.unconstrained_model_deviance + @property def likelihood_ratio(self): return self.unconstrained_model_deviance - self.constrained_model_deviance @@ -82,23 +105,25 @@ class AbstractGevTrendTest(AbstractUnivariateTest): @property def unconstrained_model_deviance(self): + unconstrained_estimator = self.unconstrained_estimator if self.crashed: return np.nan else: - return self.unconstrained_estimator.result_from_model_fit.deviance + return unconstrained_estimator.result_from_model_fit.deviance @property def unconstained_nllh(self): + unconstrained_estimator = self.unconstrained_estimator if self.crashed: return np.nan else: - return self.unconstrained_estimator.result_from_model_fit.nllh + return unconstrained_estimator.result_from_model_fit.nllh # Evolution of the GEV parameters and corresponding quantiles @property def test_sign(self) -> int: - return np.sign(self.test_trend_slope_strength) + return np.sign(self.time_derivative_of_return_level) def get_non_stationary_linear_coef(self, gev_param_name: str): return self.unconstrained_estimator.margin_function_from_fit.get_coef(gev_param_name, @@ -117,7 +142,7 @@ class AbstractGevTrendTest(AbstractUnivariateTest): is_transformed=False) @property - def test_trend_slope_strength(self): + def time_derivative_of_return_level(self): if self.crashed: return 0.0 else: diff --git a/experiment/trend_analysis/univariate_test/abstract_univariate_test.py b/experiment/trend_analysis/univariate_test/abstract_univariate_test.py index a039b9d9..cf3f9b5c 100644 --- a/experiment/trend_analysis/univariate_test/abstract_univariate_test.py +++ b/experiment/trend_analysis/univariate_test/abstract_univariate_test.py @@ -105,7 +105,7 @@ class AbstractUnivariateTest(object): return len(self.years) @property - def test_trend_slope_strength(self): + def time_derivative_of_return_level(self): return 0.0 @property diff --git a/experiment/trend_analysis/univariate_test/univariate_test_results.py b/experiment/trend_analysis/univariate_test/univariate_test_results.py index 3b3c0695..009da783 100644 --- a/experiment/trend_analysis/univariate_test/univariate_test_results.py +++ b/experiment/trend_analysis/univariate_test/univariate_test_results.py @@ -12,7 +12,7 @@ def compute_gev_change_point_test_result(smooth_maxima, starting_year, trend_tes trend_test = trend_test_class(years, smooth_maxima, starting_year) # type: AbstractGevTrendTest assert isinstance(trend_test, AbstractGevTrendTest) return trend_test.test_trend_type, \ - trend_test.test_trend_slope_strength, \ + trend_test.time_derivative_of_return_level, \ trend_test.unconstained_nllh, \ trend_test.test_trend_constant_quantile, \ trend_test.mean_difference_same_sign_as_slope_strenght, \ diff --git a/extreme_fit/model/result_from_model_fit/abstract_result_from_model_fit.py b/extreme_fit/model/result_from_model_fit/abstract_result_from_model_fit.py index be61be0d..c82898e0 100644 --- a/extreme_fit/model/result_from_model_fit/abstract_result_from_model_fit.py +++ b/extreme_fit/model/result_from_model_fit/abstract_result_from_model_fit.py @@ -42,7 +42,7 @@ class AbstractResultFromModelFit(object): @property def deviance(self): - raise NotImplementedError + return - 2 * self.nllh @property def convergence(self) -> str: diff --git a/extreme_fit/model/result_from_model_fit/result_from_extremes/abstract_result_from_extremes.py b/extreme_fit/model/result_from_model_fit/result_from_extremes/abstract_result_from_extremes.py index cbd16d9a..acf56fa5 100644 --- a/extreme_fit/model/result_from_model_fit/result_from_extremes/abstract_result_from_extremes.py +++ b/extreme_fit/model/result_from_model_fit/result_from_extremes/abstract_result_from_extremes.py @@ -14,6 +14,14 @@ class AbstractResultFromExtremes(AbstractResultFromModelFit): super().__init__(result_from_fit) self.gev_param_name_to_dim = gev_param_name_to_dim + @property + def results(self): + return self.get_python_dictionary(self.name_to_value['results']) + + @property + def nllh(self): + return np.array(self.results['value'])[0] + @property def is_non_stationary(self): return len(self.gev_param_name_to_dim) > 0 diff --git a/extreme_fit/model/result_from_model_fit/result_from_ismev.py b/extreme_fit/model/result_from_model_fit/result_from_ismev.py index 2332a660..22eef48d 100644 --- a/extreme_fit/model/result_from_model_fit/result_from_ismev.py +++ b/extreme_fit/model/result_from_model_fit/result_from_ismev.py @@ -26,10 +26,6 @@ class ResultFromIsmev(AbstractResultFromModelFit): def nllh(self): return convertFloatVector_to_float(self.name_to_value['nllh']) - @property - def deviance(self): - return - 2 * self.nllh - @property def convergence(self) -> str: return convertFloatVector_to_float(self.name_to_value['conv']) == 0 -- GitLab