diff --git a/extreme_estimator/gev/gevmle_fit.py b/extreme_estimator/gev/gevmle_fit.py
index 21bb625d2623c5335b0c06a83128b1b9ae83af6c..c63732eb578a72b1e581a9b2b2117613a735cdbf 100644
--- a/extreme_estimator/gev/gevmle_fit.py
+++ b/extreme_estimator/gev/gevmle_fit.py
@@ -32,8 +32,11 @@ def spatial_extreme_gevmle_fit(x_gev):
 class GevMleFit(object):
 
     def __init__(self, x_gev: np.ndarray):
+        assert np.ndim(x_gev) == 1
+        assert len(x_gev) > 1
         self.x_gev = x_gev
         self.mle_params = spatial_extreme_gevmle_fit(x_gev)
+        self.gev_params = GevParams.from_dict(self.mle_params)
         self.shape = self.mle_params[GevParams.GEV_SHAPE]
         self.scale = self.mle_params[GevParams.GEV_SCALE]
         self.loc = self.mle_params[GevParams.GEV_LOC]
diff --git a/extreme_estimator/gev_params.py b/extreme_estimator/gev_params.py
index 3fe0a213669a8de5d942cef63d552cbda233aa4e..2189cf87c7bc90a4b48be0c73e953fd0cf3863c9 100644
--- a/extreme_estimator/gev_params.py
+++ b/extreme_estimator/gev_params.py
@@ -1,4 +1,5 @@
 import numpy as np
+import pandas as pd
 
 from extreme_estimator.extreme_models.utils import r
 
@@ -38,8 +39,10 @@ class GevParams(object):
         }
 
     def to_array(self) -> np.ndarray:
-        gev_param_name_to_value = self.to_dict()
-        return np.array([gev_param_name_to_value[gev_param_name] for gev_param_name in self.GEV_PARAM_NAMES])
+        return self.to_serie().values
+
+    def to_serie(self) -> pd.Series:
+        return pd.Series(self.to_dict(), index=self.GEV_PARAM_NAMES)
 
     # GEV quantiles
 
diff --git a/safran_data/read_safran.py b/safran_data/read_safran.py
deleted file mode 100644
index 7eb012b0316b41dd25c09b36998785080ea8ee7f..0000000000000000000000000000000000000000
--- a/safran_data/read_safran.py
+++ /dev/null
@@ -1,170 +0,0 @@
-import numpy as np
-import matplotlib.pyplot as plt
-from matplotlib.lines import Line2D
-import os
-import os.path as op
-
-import pandas as pd
-from netCDF4 import Dataset
-
-from extreme_estimator.gev.fit_gev import gev_mle_fit
-from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
-from spatio_temporal_dataset.coordinates.spatial_coordinates.abstract_spatial_coordinates import \
-    AbstractSpatialCoordinates
-from utils import get_full_path
-from collections import OrderedDict
-from datetime import datetime, timedelta
-
-
-class Safran(object):
-
-    def __init__(self):
-        self.year_to_dataset = OrderedDict()
-        print(self.safran_full_path)
-        nc_files = [(self.str_to_year(file), file) for file in os.listdir(self.safran_full_path) if file.endswith('.nc')]
-        for year, nc_file in sorted(nc_files, key=lambda t: t[0]):
-            self.year_to_dataset[year] = Dataset(op.join(self.safran_full_path, nc_file))
-        #
-        # Map each index to the corresponding massif
-        print(list(self.year_to_dataset.keys()))
-        massifs_str = self.year_to_dataset[1958].massifsList.split('/')
-        self.int_to_massif = {j: Massif.from_str(massif_str) for j, massif_str in enumerate(massifs_str)}
-        safran_massif_names = set([massif.name for massif in self.int_to_massif.values()])
-
-        # # Map each datetime to a snowfall amount in kg/m2
-        self.datetime_to_snowfall_amount = OrderedDict()
-        self.year_to_snowfall_amount = {}
-        for year, dataset in self.year_to_dataset.items():
-            # Starting date
-            start_datetime = self.new_year_day(year)
-            start_times = np.array(dataset.variables['time'])[:-1]
-            snowfall_rates = np.array(dataset.variables['Snowf'])
-            mean_snowfall_rates = 0.5 * (snowfall_rates[:-1] + snowfall_rates[1:])
-            self.year_to_snowfall_amount[year] = []
-            for start_time, mean_snowrate in zip(start_times, mean_snowfall_rates):
-                # time is in seconds, snowfall is in kg/m2/s
-                delta_time = timedelta(seconds=start_time)
-                current_datetime = start_datetime + delta_time
-                snowfall_in_one_hour = 60 * 60 * mean_snowrate
-                # TODO: for the datetime, I should put the middle of the interval, isntead of the start
-                self.datetime_to_snowfall_amount[current_datetime] = snowfall_in_one_hour
-                self.year_to_snowfall_amount[year].append(snowfall_in_one_hour)
-
-        # Extract the maxima, and fit a GEV on each massif
-        massif_to_maxima = {massif_name: [] for massif_name in safran_massif_names}
-        for year, snowfall_amount in self.year_to_snowfall_amount.items():
-            snowfall_amount = np.array(snowfall_amount)
-            print(snowfall_amount.shape)
-            max_snowfall_amount = snowfall_amount.max(axis=0)
-            # todo: take the daily maxima
-
-            print(max_snowfall_amount.shape)
-            for i, massif in self.int_to_massif.items():
-                massif_to_maxima[massif.name].append(max_snowfall_amount[i])
-        print(massif_to_maxima)
-
-        # Fit a gev n each massif
-        # todo: find another for the gev fit
-        massif_to_gev_mle = {massif: gev_mle_fit(np.array(massif_to_maxima[massif])) for massif in safran_massif_names}
-
-        # Visualize the massif
-        # todo: adapt the color depending on the value (create 3 plots, one for each gev aprameters) REFACTOR THE CODE
-        self.visualize(safran_massif_names)
-
-    def visualize(self, safran_massif_names):
-        # Map each index to the correspond centroid
-        df_centroid = pd.read_csv(op.join(self.map_full_path, 'coordonnees_massifs_alpes.csv'))
-        for coord_column in [AbstractCoordinates.COORDINATE_X, AbstractCoordinates.COORDINATE_Y]:
-            df_centroid.loc[:, coord_column] = df_centroid[coord_column].str.replace(',', '.').astype(float)
-        coordinate_massif_names = set(df_centroid['NOM'])
-        # Assert that the massif names are the same between SAFRAN and the coordinates
-        assert not set(safran_massif_names).symmetric_difference(coordinate_massif_names)
-        # todo: the coordinate are probably in Lambert extended
-        # Build coordinate object
-        print(df_centroid.dtypes)
-        coordinate = AbstractSpatialCoordinates.from_df(df_centroid)
-        # Load the
-        df_massif = pd.read_csv(op.join(self.map_full_path, 'massifsalpes.csv'))
-        coord_tuples = [(row_massif['idx'], row_massif[AbstractCoordinates.COORDINATE_X],
-                         row_massif[AbstractCoordinates.COORDINATE_Y])
-                        for _, row_massif in df_massif.iterrows()]
-        for massif_idx in set([tuple[0] for tuple in coord_tuples]):
-            l = [coords for idx, *coords in coord_tuples if idx == massif_idx]
-            l = list(zip(*l))
-            plt.plot(*l, color='black')
-            plt.fill(*l)
-            coordinate.visualization_2D()
-
-
-    def new_year_day(self, year):
-        return datetime(year=year, month=8, day=1, hour=6)
-
-    def year_to_daily_maxima(self, nb_days=1):
-        deltatime = timedelta(days=nb_days)
-        start_time, *_, end_time = self.datetime_to_snowfall_amount.keys()
-        total_snowfall = np.zeros(shape=(len(self.datetime_to_snowfall_amount), len(self.int_to_massif)))
-        print(total_snowfall.shape)
-        # for initial_time in self.datetime_to_snowfall_amount.keys():
-        #     final_time = initial_time + deltatime
-        #     new_year = self.new_year_day(initial_time.year)
-        #     # two dates should correspond to the same year
-        #     if not ((final_time > new_year) and (initial_time < new_year)):
-        #
-        # print(start_time)
-        # print(end_time)
-
-    @staticmethod
-    def str_to_year(s):
-        return int(s.split('_')[1][:4])
-
-    @property
-    def full_path(self) -> str:
-        return get_full_path(relative_path=self.relative_path)
-
-    @property
-    def relative_path(self) -> str:
-        return r'local/spatio_temporal_datasets'
-
-    @property
-    def safran_altitude(self) -> int:
-        raise NotImplementedError
-
-    @property
-    def safran_full_path(self) -> str:
-        return op.join(self.full_path, 'safran-crocus_{}'.format(self.safran_altitude), 'Safran')
-
-    @property
-    def map_full_path(self):
-        return op.join(self.full_path, 'map')
-
-
-class Safran1800(Safran):
-
-    @property
-    def safran_altitude(self) -> int:
-        return 1800
-
-class Safran2400(Safran):
-
-    @property
-    def safran_altitude(self) -> int:
-        return 2400
-
-
-class Massif(object):
-
-    def __init__(self, name: str, id: int, lat: float, lon: float) -> None:
-        self.lon = lon
-        self.lat = lat
-        self.id = id
-        self.name = name
-
-    @classmethod
-    def from_str(cls, s: str):
-        name, id, lat, lon = s.split(',')
-        return cls(name.strip(), int(id), float(lat), float(lon))
-
-
-if __name__ == '__main__':
-    safran_object = Safran1800()
-    # print(safran_object.year_to_daily_maxima(nb_days=3))
diff --git a/safran_study/abstract_safran.py b/safran_study/abstract_safran.py
new file mode 100644
index 0000000000000000000000000000000000000000..5dce958e0f486568eff55b3b5177fa27b497d845
--- /dev/null
+++ b/safran_study/abstract_safran.py
@@ -0,0 +1,115 @@
+import os
+import os.path as op
+from collections import OrderedDict
+
+import matplotlib.pyplot as plt
+import pandas as pd
+from netCDF4 import Dataset
+
+from extreme_estimator.gev.gevmle_fit import GevMleFit
+from safran_study.massif import safran_massif_names_from_datasets
+from safran_study.snowfall_annual_maxima import SafranSnowfall
+from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
+from spatio_temporal_dataset.coordinates.spatial_coordinates.abstract_spatial_coordinates import \
+    AbstractSpatialCoordinates
+from utils import get_full_path, cached_property
+
+
+class Safran(object):
+
+    def __init__(self, nb_days_of_snowfall=1):
+        self.safran_altitude = None
+        self.nb_days_of_snowfall = nb_days_of_snowfall
+
+    def write_to_file(self, df):
+        if not op.exists(self.result_full_path):
+            os.makedirs(self.result_full_path, exist_ok=True)
+        df.to_csv(op.join(self.result_full_path, 'merged_array_{}_altitude.csv'.format(self.safran_altitude)))
+
+    """ Visualization methods """
+
+    def visualize(self):
+        df_massif = pd.read_csv(op.join(self.map_full_path, 'massifsalpes.csv'))
+        coord_tuples = [(row_massif['idx'], row_massif[AbstractCoordinates.COORDINATE_X],
+                         row_massif[AbstractCoordinates.COORDINATE_Y])
+                        for _, row_massif in df_massif.iterrows()]
+        for massif_idx in set([tuple[0] for tuple in coord_tuples]):
+            l = [coords for idx, *coords in coord_tuples if idx == massif_idx]
+            l = list(zip(*l))
+            plt.plot(*l, color='black')
+            plt.fill(*l)
+        self.massifs_coordinates.visualization_2D()
+
+    """ Statistics methods """
+
+    @property
+    def df_gev_mle_each_massif(self):
+        # Fit a gev n each massif
+        massif_to_gev_mle = {massif_name: GevMleFit(self.df_annual_maxima[massif_name]).gev_params.to_serie()
+                             for massif_name in self.safran_massif_names}
+        return pd.DataFrame(massif_to_gev_mle)
+
+    """ Annual maxima of snowfall """
+
+    @property
+    def df_annual_maxima(self):
+        return pd.DataFrame(self.year_to_annual_maxima, index=self.safran_massif_names).T
+
+    """ Load some attributes only once """
+
+    @cached_property
+    def year_to_annual_maxima(self):
+        year_to_safran_snowfall = {year: SafranSnowfall(dataset) for year, dataset in
+                                   self.year_to_dataset_ordered_dict.items()}
+        year_to_annual_maxima = OrderedDict()
+        for year in self.year_to_dataset_ordered_dict.keys():
+            year_to_annual_maxima[year] = year_to_safran_snowfall[year].annual_maxima_of_snowfall(
+                self.nb_days_of_snowfall)
+        return year_to_annual_maxima
+
+    @cached_property
+    def safran_massif_names(self):
+        # Load the names of the massif as defined by SAFRAN
+        return safran_massif_names_from_datasets(self.year_to_dataset_ordered_dict.values())
+
+    @cached_property
+    def year_to_dataset_ordered_dict(self) -> OrderedDict:
+        # Map each year to the correspond netCDF4 Dataset
+        year_to_dataset = OrderedDict()
+        nc_files = [(int(f.split('_')[1][:4]), f) for f in os.listdir(self.safran_full_path) if f.endswith('.nc')]
+        for year, nc_file in sorted(nc_files, key=lambda t: t[0]):
+            year_to_dataset[year] = Dataset(op.join(self.safran_full_path, nc_file))
+        return year_to_dataset
+
+    @cached_property
+    def massifs_coordinates(self) -> AbstractSpatialCoordinates:
+        # Coordinate object that represents the massif coordinates in Lambert extended
+        df_centroid = pd.read_csv(op.join(self.map_full_path, 'coordonnees_massifs_alpes.csv'))
+        for coord_column in [AbstractCoordinates.COORDINATE_X, AbstractCoordinates.COORDINATE_Y]:
+            df_centroid.loc[:, coord_column] = df_centroid[coord_column].str.replace(',', '.').astype(float)
+        # Assert that the massif names are the same between SAFRAN and the coordinate file
+        assert not set(self.safran_massif_names).symmetric_difference(set(df_centroid['NOM']))
+        # Build coordinate object from df_centroid
+        return AbstractSpatialCoordinates.from_df(df_centroid)
+
+    """ Some properties """
+
+    @property
+    def relative_path(self) -> str:
+        return r'local/spatio_temporal_datasets'
+
+    @property
+    def full_path(self) -> str:
+        return get_full_path(relative_path=self.relative_path)
+
+    @property
+    def safran_full_path(self) -> str:
+        return op.join(self.full_path, 'safran-crocus_{}'.format(self.safran_altitude), 'Safran')
+
+    @property
+    def map_full_path(self) -> str:
+        return op.join(self.full_path, 'map')
+
+    @property
+    def result_full_path(self) -> str:
+        return op.join(self.full_path, 'results')
\ No newline at end of file
diff --git a/safran_study/massif.py b/safran_study/massif.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe535b14718774fa503473596abe81fbfecc718f
--- /dev/null
+++ b/safran_study/massif.py
@@ -0,0 +1,22 @@
+from utils import first
+
+
+class Massif(object):
+
+    def __init__(self, name: str, id: int, lat: float, lon: float) -> None:
+        self.lon = lon
+        self.lat = lat
+        self.id = id
+        self.name = name
+
+    @classmethod
+    def from_str(cls, s: str):
+        name, id, lat, lon = s.split(',')
+        return cls(name.strip(), int(id), float(lat), float(lon))
+
+
+def safran_massif_names_from_datasets(datasets):
+    # Assert the all the datasets have the same indexing for the massif
+    assert len(set([dataset.massifsList for dataset in datasets])) == 1
+    # List of the name of the massif used by all the SAFRAN datasets
+    return [Massif.from_str(massif_str).name for massif_str in first(datasets).massifsList.split('/')]
\ No newline at end of file
diff --git a/safran_study/safran.py b/safran_study/safran.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc32c2bf35db47a0ac32689085a189efd71d4a3a
--- /dev/null
+++ b/safran_study/safran.py
@@ -0,0 +1,36 @@
+import pandas as pd
+
+from safran_study.abstract_safran import Safran
+from utils import VERSION
+
+
+class Safran1800(Safran):
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.safran_altitude = 1800
+
+
+class Safran2400(Safran):
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.safran_altitude = 2400
+
+def fit_mle_gev_for_all_safran_and_different_days():
+    # Dump the result in a csv
+    dfs = []
+    for safran_class in [Safran1800, Safran2400]:
+        for nb_day in [1, 3, 7]:
+            print('here')
+            safran = safran_class(nb_day)
+            df = safran.df_gev_mle_each_massif
+            df.index += ' Safran{} with {} days'.format(safran.safran_altitude, safran.nb_days_of_snowfall)
+            dfs.append(df)
+    df = pd.concat(dfs)
+    path = r'/home/erwan/Documents/projects/spatiotemporalextremes/local/spatio_temporal_datasets/results/fit_mle_massif/fit_mle_gev_{}.csv'
+    df.to_csv(path.format(VERSION))
+
+
+if __name__ == '__main__':
+    fit_mle_gev_for_all_safran_and_different_days()
\ No newline at end of file
diff --git a/safran_study/snowfall_annual_maxima.py b/safran_study/snowfall_annual_maxima.py
new file mode 100644
index 0000000000000000000000000000000000000000..a92c992f39d91410e91e753329ac9a5326a347da
--- /dev/null
+++ b/safran_study/snowfall_annual_maxima.py
@@ -0,0 +1,44 @@
+import numpy as np
+
+
+class SafranSnowfall(object):
+    """"
+    Hypothesis:
+
+    -How to count how much snowfall in one hour ?
+        I take the average between the rhythm of snowfall per second between the start and the end
+        and multiply that by 60 x 60 which corresponds to the number of seconds in one hour
+
+    -How do how I define the limit of a day ?
+        From the start, i.e. in August at 4am something like that,then if I add a 24H duration, I arrive to the next day
+
+    -How do you aggregate several days ?
+        We aggregate all the N consecutive days into a value x_i, then we take the max
+        (but here the problem might be that the x_i are not idnependent, they are highly dependent one from another)
+    """
+
+    def __init__(self, dataset):
+        self.dataset = dataset
+        # Corresponding starting times
+        # start_datetime = datetime(year=year, month=8, day=1, hour=6)
+        # start_times = np.array(dataset.variables['time'])[:-1]
+
+        # Compute the daily snowfall in kg/m2
+        snowfall_rates = np.array(dataset.variables['Snowf'])
+        mean_snowfall_rates = 0.5 * (snowfall_rates[:-1] + snowfall_rates[1:])
+        hourly_snowfall = 60 * 60 * mean_snowfall_rates
+        # Transform the snowfall amount into a dataframe
+        nb_days = len(hourly_snowfall) // 24
+        self.daily_snowfall = [sum(hourly_snowfall[24 * i:24 * (i+1)]) for i in range(nb_days)]
+
+    def annual_maxima_of_snowfall(self, nb_days_of_snowfall=1):
+        # Aggregate the daily snowfall by the number of consecutive days
+        shifted_list = [self.daily_snowfall[i:] for i in range(nb_days_of_snowfall)]
+        snowfall_in_consecutive_days = [sum(e) for e in zip(*shifted_list)]
+        # Return the maximum of the aggregated list
+        return np.array(snowfall_in_consecutive_days).max(axis=0)
+
+
+
+
+
diff --git a/test/test_safran_study/test_safran_gev.py b/test/test_safran_study/test_safran_gev.py
new file mode 100644
index 0000000000000000000000000000000000000000..8f974fa439e5860a0b164e236be042893420dbaf
--- /dev/null
+++ b/test/test_safran_study/test_safran_gev.py
@@ -0,0 +1,15 @@
+import unittest
+
+from test.test_utils import load_safran_objects
+
+
+class TestFullEstimators(unittest.TestCase):
+
+    def test_gev_mle_per_massif(self):
+        safran_1800_one_day = load_safran_objects()[0]
+        df = safran_1800_one_day.df_gev_mle_each_massif
+        self.assertAlmostEqual(df.values.sum(), 1131.4551665871832)
+
+
+if __name__ == '__main__':
+    unittest.main()
diff --git a/test/test_utils.py b/test/test_utils.py
index eeed52af32a3c2d7b03961d481e4031809439d65..1c4fa3131a440960b01cd1e45e2856f8f1c194f2 100644
--- a/test/test_utils.py
+++ b/test/test_utils.py
@@ -7,6 +7,7 @@ from extreme_estimator.extreme_models.max_stable_model.abstract_max_stable_model
     AbstractMaxStableModelWithCovarianceFunction, CovarianceFunction
 from extreme_estimator.extreme_models.max_stable_model.max_stable_models import Smith, BrownResnick, Schlather, \
     Geometric, ExtremalT, ISchlather
+from safran_study.safran import Safran2400, Safran1800
 from spatio_temporal_dataset.coordinates.spatial_coordinates.alps_station_3D_coordinates import \
     AlpsStation3DCoordinatesWithAnisotropy
 from spatio_temporal_dataset.coordinates.spatial_coordinates.generated_spatial_coordinates import \
@@ -80,3 +81,9 @@ def load_test_spatiotemporal_coordinates(nb_points, nb_steps, train_split_ratio=
     return [coordinate_class.from_nb_points_and_nb_steps(nb_points=nb_points, nb_steps=nb_steps,
                                                          train_split_ratio=train_split_ratio)
             for coordinate_class in TEST_SPATIO_TEMPORAL_COORDINATES]
+
+
+def load_safran_objects():
+    nb_days_list = [1, 3, 5][:1]
+    safran_classes = [Safran1800, Safran2400][:1]
+    return [safran_class(nb_days) for safran_class in safran_classes for nb_days in nb_days_list]
\ No newline at end of file
diff --git a/utils.py b/utils.py
index 3b0a9ccc060413531336f4ed95f0fda1b4fb273e..c682da11bc8506ed8699b0b22689b111535e2cc2 100644
--- a/utils.py
+++ b/utils.py
@@ -1,5 +1,7 @@
+import datetime
 import os.path as op
 
+VERSION = datetime.datetime.now()
 
 def get_root_path() -> str:
     return op.dirname(op.abspath(__file__))
@@ -12,3 +14,48 @@ def get_full_path(relative_path: str) -> str:
 def get_display_name_from_object_type(object_type):
     # assert isinstance(object_type, type), object_type
     return str(object_type).split('.')[-1].split("'")[0]
+
+
+def first(s):
+    """Return the first element from an ordered collection
+       or an arbitrary element from an unordered collection.
+       Raise StopIteration if the collection is empty.
+    """
+    return next(iter(s))
+
+
+class cached_property(object):
+    """
+    Descriptor (non-data) for building an attribute on-demand on first use.
+    From: https://stackoverflow.com/questions/4037481/caching-attributes-of-classes-in-python
+    """
+
+    def __init__(self, factory):
+        """
+        <factory> is called such: factory(instance) to build the attribute.
+        """
+        self._attr_name = factory.__name__
+        self._factory = factory
+
+    def __get__(self, instance, owner):
+        # Build the attribute.
+        attr = self._factory(instance)
+
+        # Cache the value; hide ourselves.
+        setattr(instance, self._attr_name, attr)
+
+        return attr
+
+
+class Example(object):
+
+    @cached_property
+    def big_attribute(self):
+        print('Long loading only once...')
+        return 2
+
+
+if __name__ == '__main__':
+    e = Example()
+    print(e.big_attribute)
+    print(e.big_attribute)